III: 01, 1-23, LNM 88 (1969)
ARTZNER, Philippe
Extension du théorème de Sazonov-Minlos d'après L.~Schwartz (
Measure theory,
Functional analysis)
Exposition of three notes by L.~Schwartz (
CRAS 265, 1967 and
266, 1968) showing that some classes of maps between spaces $\ell^p$ and $\ell^q$ transform Gaussian cylindrical measures into Radon measures. The result turns out to be an extension of Minlos' theorem
Comment: Self-contained and detailed exposition, possibly still useful
Keywords: Radonifying mapsNature: Exposition Retrieve article from Numdam
IV: 04, 47-59, LNM 124 (1970)
DACUNHA-CASTELLE, Didier
Principe de dualité pour des espaces de suites associés à une suite de variables aléatoires (
Miscellanea)
The ``duality principe'' (too technical to be stated here) is a result of L.~Schwartz on Banach spaces of type (L), i.e., consisting of sequences $(b_n)$ such that $\sum_n b_nX_n$ is bounded in probability, where $(X_n)$ is a given sequence of r.v.'s
Comment: Related to the theory of radonifying maps, then in fast progress. To be completed
Keywords: Banach spaces,
Radonifying mapsNature: Exposition Retrieve article from Numdam