Browse by: Author name - Classification - Keywords - Nature

2 matches found
IV: 15, 170-194, LNM 124 (1970)
MOKOBODZKI, Gabriel
Densité relative de deux potentiels comparables (Potential theory)
The main problem considered here is the following: given a transient resolvent $(V_{\lambda})$ on a measurable space, a finite potential $Vg$, an excessive function $u$ dominated by $Vg$ in the strong sense (i.e., $Vg-u$ is excessive), show that $u=Vf$ for some $f\leq g$, and compute $f$ by some ``derivation'' procedure, like $\lim_{\lambda\rightarrow\infty} \lambda(I-\lambda V_{\lambda})\,u$
Comment: The main theorem and the technical tools of its proof have been landmarks in the potential theory of a resolvent, though in the case of the resolvent of a good Markov process there is a simple probabilistic proof of the main result. Another exposition can be found in Séminaire Bourbaki, 422, November 1972. See also Chapter XII of Dellacherie-Meyer, Probabilités et potentiel, containing new proofs due to Feyel
Keywords: Resolvents, Strong ordering, Lebesgue derivation theorem
Nature: Original
Retrieve article from Numdam
IV: 16, 195-207, LNM 124 (1970)
MOKOBODZKI, Gabriel
Quelques propriétés remarquables des opérateurs presque positifs (Potential theory)
A sequel to the preceding paper 415. Almost positive operators are candidates to the role of derivation operators relative to a resolvent
Comment: Same as 415
Keywords: Resolvents, Strong ordering, Lebesgue derivation theorem
Nature: Original
Retrieve article from Numdam