Quick search | Browse volumes | |

X: 17, 245-400, LNM 511 (1976)

**MEYER, Paul-André**

Un cours sur les intégrales stochastiques (6 chapters) (Stochastic calculus, Martingale theory, General theory of processes)

This is a systematic exposition of the theory of stochastic integration with respect to semimartingales, with the exception of stochastic differential equations. Chapter I is devoted to a quick exposition of the general theory of processes, and of the trivial stochastic integral with respect to a process of finite variation. Chapter II is the Kunita-Watanabe theory of square integrables martingales, angle and square bracket, stable subspaces, compensated sums of jumps, and the corresponding $L^2$ theory of stochastic integration. Chapter III studies a restricted class of semimartingales and introduces the Ito formula, with its celebrated applications due to Watanabe, to Brownian motion and the Poisson process. Chapter IV localizes the theory and gives the general definitions of semimartingales and special semimartingales, and studies the stochastic exponential, multiplicative decomposition. It also sketches a theory of multiple stochastic integrals. Chapter V deals with the application of the spaces $H^1$ and $BMO$ to the theory of stochastic integration, and to martingales inequalities (it contains the extension to continuous time of Garsia's ``Fefferman implies Davis implies Burkholder'' approach). Chapter VI contains more special topics: Stratonovich integrals, Girsanov's theorem, local times, representation of elements of $BMO$

Comment: This set of lectures was well circulated in its time, an intermediate stage between a research paper and a polished book form. See also 1131. Now the material can be found in many books

Keywords: Increasing processes, Stable subpaces, Angle bracket, Square bracket, Stochastic integrals, Optional stochastic integrals, Previsible representation, Change of variable formula, Semimartingales, Stochastic exponentials, Multiplicative decomposition, Fefferman inequality, Davis inequality, Stratonovich integrals, Burkholder inequalities, $BMO$, Multiple stochastic integrals, Girsanov's theorem

Nature: Exposition, Original additions

Retrieve article from Numdam

X: 21, 432-480, LNM 511 (1976)

**YOEURP, Chantha**

Décomposition des martingales locales et formules exponentielles (Martingale theory, Stochastic calculus)

It is shown that local martingales can be decomposed uniquely into three pieces, a continuous part and two purely discontinuous pieces, one with accessible jumps, and one with totally inaccessible jumps. Two beautiful lemmas say that a purely discontinuous local martingale whose jumps are summable is a finite variation process, and if it has accessible jumps, then it is the sum of its jumps without compensation. Conditions are given for the existence of the angle bracket of two local martingales which are not locally square integrable. Lemma 2.3 is the lemma often quoted as ``Yoeurp's Lemma'': given a local martingale $M$ and a previsible process of finite variation $A$, $[M,A]$ is a local martingale. The definition of a local martingale on an open interval $[0,T[$ is given when $T$ is previsible, and the behaviour of local martingales under changes of laws (Girsanov's theorem) is studied in a set up where the positive martingale defining the mutual density is replaced by a local martingale. The existence and uniqueness of solutions of the equation $Z_t=1+\int_0^t\tilde Z_s dX_s$, where $X$ is a given special semimartingale of decomposition $M+A$, and $\widetilde Z$ is the previsible projection of the unknown special semimartingale $Z$, is proved under an assumption that the jumps $ėlta A_t$ do not assume the value $1$. Then this ``exponential'' is used to study the multiplicative decomposition of a positive supermartingale in full generality

Comment: The problems in this paper have some relation with Kunita 1005 (in a Markovian set up), and are further studied by Yoeurp in LN**1118**, *Grossissements de filtrations,* 1985. The subject of multiplicative decompositions of positive submartingales is much more difficult since they may vanish. For a simple case see in this volume Yoeurp-Meyer 1023. The general case is due to Azéma (*Z. für W-theorie,* **45,** 1978, presented in 1321) See also 1622

Keywords: Stochastic exponentials, Multiplicative decomposition, Angle bracket, Girsanov's theorem, Föllmer measures

Nature: Original

Retrieve article from Numdam

XII: 07, 53-56, LNM 649 (1978)

**LENGLART, Érik**

Sur la localisation des intégrales stochastiques (Stochastic calculus)

A mapping $T$ from processes to processes is*local * if, whenever two processes $X,Y$ are equal on an event $A\subset\Omega$, the same is true for $TX,TY$. Classical results on locality in stochastic calculus are derived here in a simple way from the generalized Girsanov theorem (which concerns a pair of laws $P,Q$ with $Q$ absolutely continuous with respect to $P$, but not necessarily equivalent to it: see Lenglart, *Zeit. für W-theorie,* 39, 1977). A new result is derived: if $X$ and $Y$ are semimartingales and their difference is of finite variation on an event $A$, then their continuous martingale parts are equal on $A$

Keywords: Girsanov's theorem

Nature: Original

Retrieve article from Numdam

Un cours sur les intégrales stochastiques (6 chapters) (Stochastic calculus, Martingale theory, General theory of processes)

This is a systematic exposition of the theory of stochastic integration with respect to semimartingales, with the exception of stochastic differential equations. Chapter I is devoted to a quick exposition of the general theory of processes, and of the trivial stochastic integral with respect to a process of finite variation. Chapter II is the Kunita-Watanabe theory of square integrables martingales, angle and square bracket, stable subspaces, compensated sums of jumps, and the corresponding $L^2$ theory of stochastic integration. Chapter III studies a restricted class of semimartingales and introduces the Ito formula, with its celebrated applications due to Watanabe, to Brownian motion and the Poisson process. Chapter IV localizes the theory and gives the general definitions of semimartingales and special semimartingales, and studies the stochastic exponential, multiplicative decomposition. It also sketches a theory of multiple stochastic integrals. Chapter V deals with the application of the spaces $H^1$ and $BMO$ to the theory of stochastic integration, and to martingales inequalities (it contains the extension to continuous time of Garsia's ``Fefferman implies Davis implies Burkholder'' approach). Chapter VI contains more special topics: Stratonovich integrals, Girsanov's theorem, local times, representation of elements of $BMO$

Comment: This set of lectures was well circulated in its time, an intermediate stage between a research paper and a polished book form. See also 1131. Now the material can be found in many books

Keywords: Increasing processes, Stable subpaces, Angle bracket, Square bracket, Stochastic integrals, Optional stochastic integrals, Previsible representation, Change of variable formula, Semimartingales, Stochastic exponentials, Multiplicative decomposition, Fefferman inequality, Davis inequality, Stratonovich integrals, Burkholder inequalities, $BMO$, Multiple stochastic integrals, Girsanov's theorem

Nature: Exposition, Original additions

Retrieve article from Numdam

X: 21, 432-480, LNM 511 (1976)

Décomposition des martingales locales et formules exponentielles (Martingale theory, Stochastic calculus)

It is shown that local martingales can be decomposed uniquely into three pieces, a continuous part and two purely discontinuous pieces, one with accessible jumps, and one with totally inaccessible jumps. Two beautiful lemmas say that a purely discontinuous local martingale whose jumps are summable is a finite variation process, and if it has accessible jumps, then it is the sum of its jumps without compensation. Conditions are given for the existence of the angle bracket of two local martingales which are not locally square integrable. Lemma 2.3 is the lemma often quoted as ``Yoeurp's Lemma'': given a local martingale $M$ and a previsible process of finite variation $A$, $[M,A]$ is a local martingale. The definition of a local martingale on an open interval $[0,T[$ is given when $T$ is previsible, and the behaviour of local martingales under changes of laws (Girsanov's theorem) is studied in a set up where the positive martingale defining the mutual density is replaced by a local martingale. The existence and uniqueness of solutions of the equation $Z_t=1+\int_0^t\tilde Z_s dX_s$, where $X$ is a given special semimartingale of decomposition $M+A$, and $\widetilde Z$ is the previsible projection of the unknown special semimartingale $Z$, is proved under an assumption that the jumps $ėlta A_t$ do not assume the value $1$. Then this ``exponential'' is used to study the multiplicative decomposition of a positive supermartingale in full generality

Comment: The problems in this paper have some relation with Kunita 1005 (in a Markovian set up), and are further studied by Yoeurp in LN

Keywords: Stochastic exponentials, Multiplicative decomposition, Angle bracket, Girsanov's theorem, Föllmer measures

Nature: Original

Retrieve article from Numdam

XII: 07, 53-56, LNM 649 (1978)

Sur la localisation des intégrales stochastiques (Stochastic calculus)

A mapping $T$ from processes to processes is

Keywords: Girsanov's theorem

Nature: Original

Retrieve article from Numdam