Quick search | Browse volumes | |

XI: 18, 327-339, LNM 581 (1977)

**CAIROLI, Renzo**; **WALSH, John B.**

Prolongement de processus holomorphes. Cas ``carré intégrable'' (Several parameter processes)

This paper concerns a class of two-parameter (real) processes adapted to the filtration of the Brownian sheet, and called holomorphic in the seminal paper of the authors in*Acta Math.* **4**, 1975. These processes have stochastic integral representations along (increasing) paths, with a common kernel called their derivative. Under an integrability restriction, a process holomorphic in a region of the plane is shown to be extendable as a holomorphic process to a larger region of a canonical shape (intersection of a rectangle and a disk centered at the origin)

Comment: See also 1119

Keywords: Holomorphic processes, Brownian sheet

Nature: Original

Retrieve article from Numdam

XI: 19, 340-348, LNM 581 (1977)

**CAIROLI, Renzo**; **WALSH, John B.**

Some examples of holomorphic processes (Several parameter processes)

This is a sequel to the preceding paper 1118. It also extends the definition to processes defined on a random domain

Comment: See the author's paper in*Ann. Prob.* **5**, 1971 for additional results

Keywords: Holomorphic processes, Brownian sheet

Nature: Original

Retrieve article from Numdam

XI: 20, 349-355, LNM 581 (1977)

**CAIROLI, Renzo**; **WALSH, John B.**

On changing time (Several parameter processes)

The analogue of the well-known result that any continuous martingale can be time changed into a Brownian motion using its own quadratic variation process is answered negatively for two-parameter martingales (even strong ones) in the filtration of the Brownian sheet

Keywords: Brownian sheet

Nature: Original

Retrieve article from Numdam

XII: 18, 162-169, LNM 649 (1978)

**CAIROLI, Renzo**

Une représentation intégrale pour les martingales fortes (Several parameter processes)

This paper uses the results of Cairoli-Walsh,*Ann. Prob.* 5, 1977, to prove a stochastic integral representation of the strong martingales of the Brownian sheet filtration, without assuming they are square integrable

Keywords: Strong martingales, Brownian sheet

Nature: Original

Retrieve article from Numdam

XIV: 03, 18-25, LNM 784 (1980)

**CAIROLI, Renzo**

Sur l'extension de la définition d'intégrale stochastique (Several parameter processes)

A result of Wong-Zakai (*Ann. Prob.* **5**, 1977) extending the definition of the two kinds of stochastic integrals relative to the Brownian sheet is generalized to cover the case of stochastic integration relative to martingales, or strong martingales

Comment: A note at the end of the paper suggests some improvements

Keywords: Stochastic integrals, Brownian sheet

Nature: Original

Retrieve article from Numdam

XIV: 47, 489-495, LNM 784 (1980)

**CAIROLI, Renzo**

Intégrale stochastique curviligne le long d'une courbe rectifiable (Several parameter processes)

The problem is to define stochastic integrals $\int_{\partial A} \phi\,\partial_1W$ where $W$ is the Brownian sheet, $\phi$ is a suitable process, and $A$ a suitable domain of the plane with rectifiable boundary

Keywords: Stochastic integrals, Brownian sheet

Nature: Original

Retrieve article from Numdam

XXV: 33, 407-424, LNM 1485 (1991)

**ROSEN, Jay S.**

Second order limit laws for the local times of stable processes (Limit theorems)

Using the method of moments, a central limit theorem is established for the increments $L^x_t-L^0_t$ of the local times of a symmetric $\beta$-stable process ($\beta>1$). The limit law is that of a fractional Brownian sheet, with Hurst index $\beta-1$, time-changed via $L_t^0$ in its time variable

Comment: Another proof due to Eisenbaum 3120 uses Dynkin's isomorphism. Ray-Knight theorems for these local times can be found in Eisenbaum-Kaspi-Marcus-Rosen-Shi*Ann. Prob.* **28** (2000). A good reference on this subject is Marcus-Rosen, *Markov Processes, Gaussian Processes, and Local Times*, Cambridge University Press (2006)

Keywords: Local times, Stable processes, Method of moments, Fractional Brownian motion, Brownian sheet

Nature: Original

Retrieve article from Numdam

XXIX: 26, 266-289, LNM 1613 (1995)

**EISENBAUM, Nathalie**

Une version sans conditionnement du théorème d'isomorphisme de Dynkin (Limit theorems)

After establishing an unconditional version of Dynkin's isomorphism theorem, the author applies this theorem to give a new proof of Ray-Knight theorems for Brownian local times, and also to give another proof to limit theorems due to Rosen 2533 concerning the increments of the local times of a symmetric $\beta$-stable process for $\beta>1$. Some results by Marcus-Rosen (*Proc. Conf. Probability in Banach Spaces~8*, Birkhäuser 1992) on Laplace transforms of the increments of local time are extended

Comment: A general reference on the subject is Marcus-Rosen,*Markov Processes, Gaussian Processes, and Local Times*, Cambridge University Press (2006)

Keywords: Stable processes, Local times, Central limit theorem, Dynkin isomorphism, Fractional Brownian motion, Brownian sheet

Nature: Original

Retrieve article from Numdam

XXXI: 20, 216-224, LNM 1655 (1997)

**EISENBAUM, Nathalie**

Théorèmes limites pour les temps locaux d'un processus stable symétrique (Limit theorems)

Using Dynkin's isomorphism, a central-limit type theorem is derived for the local times of a stable symmetric process of index $\beta$ at a finite number $n$ of levels. The limiting process is expressed in terms of a fractional, $n$-dimensional Brownian sheet with Hurst index $\beta-1$. The case when $n=1$ is due to Rosen 2533, and, for Brownian local times, to Yor 1709

Comment: This kind of result is now understood as a weak form of theorems à la Ray-Knight, describing the local times of a stable symmetric process: see Eisenbaum-Kaspi-Marcus-Rosen-Shi*Ann. Prob.* **28** (2000) for a Ray-Knight theorem involving fractional Brownian motion. Marcus-Rosen, *Markov Processes, Gaussian Processes, and Local Times*, Cambridge University Press (2006) is a general reference on the subject

Keywords: Stable processes, Local times, Central limit theorem, Dynkin isomorphism, Fractional Brownian motion, Brownian sheet

Nature: Original

Retrieve article from Numdam

Prolongement de processus holomorphes. Cas ``carré intégrable'' (Several parameter processes)

This paper concerns a class of two-parameter (real) processes adapted to the filtration of the Brownian sheet, and called holomorphic in the seminal paper of the authors in

Comment: See also 1119

Keywords: Holomorphic processes, Brownian sheet

Nature: Original

Retrieve article from Numdam

XI: 19, 340-348, LNM 581 (1977)

Some examples of holomorphic processes (Several parameter processes)

This is a sequel to the preceding paper 1118. It also extends the definition to processes defined on a random domain

Comment: See the author's paper in

Keywords: Holomorphic processes, Brownian sheet

Nature: Original

Retrieve article from Numdam

XI: 20, 349-355, LNM 581 (1977)

On changing time (Several parameter processes)

The analogue of the well-known result that any continuous martingale can be time changed into a Brownian motion using its own quadratic variation process is answered negatively for two-parameter martingales (even strong ones) in the filtration of the Brownian sheet

Keywords: Brownian sheet

Nature: Original

Retrieve article from Numdam

XII: 18, 162-169, LNM 649 (1978)

Une représentation intégrale pour les martingales fortes (Several parameter processes)

This paper uses the results of Cairoli-Walsh,

Keywords: Strong martingales, Brownian sheet

Nature: Original

Retrieve article from Numdam

XIV: 03, 18-25, LNM 784 (1980)

Sur l'extension de la définition d'intégrale stochastique (Several parameter processes)

A result of Wong-Zakai (

Comment: A note at the end of the paper suggests some improvements

Keywords: Stochastic integrals, Brownian sheet

Nature: Original

Retrieve article from Numdam

XIV: 47, 489-495, LNM 784 (1980)

Intégrale stochastique curviligne le long d'une courbe rectifiable (Several parameter processes)

The problem is to define stochastic integrals $\int_{\partial A} \phi\,\partial_1W$ where $W$ is the Brownian sheet, $\phi$ is a suitable process, and $A$ a suitable domain of the plane with rectifiable boundary

Keywords: Stochastic integrals, Brownian sheet

Nature: Original

Retrieve article from Numdam

XXV: 33, 407-424, LNM 1485 (1991)

Second order limit laws for the local times of stable processes (Limit theorems)

Using the method of moments, a central limit theorem is established for the increments $L^x_t-L^0_t$ of the local times of a symmetric $\beta$-stable process ($\beta>1$). The limit law is that of a fractional Brownian sheet, with Hurst index $\beta-1$, time-changed via $L_t^0$ in its time variable

Comment: Another proof due to Eisenbaum 3120 uses Dynkin's isomorphism. Ray-Knight theorems for these local times can be found in Eisenbaum-Kaspi-Marcus-Rosen-Shi

Keywords: Local times, Stable processes, Method of moments, Fractional Brownian motion, Brownian sheet

Nature: Original

Retrieve article from Numdam

XXIX: 26, 266-289, LNM 1613 (1995)

Une version sans conditionnement du théorème d'isomorphisme de Dynkin (Limit theorems)

After establishing an unconditional version of Dynkin's isomorphism theorem, the author applies this theorem to give a new proof of Ray-Knight theorems for Brownian local times, and also to give another proof to limit theorems due to Rosen 2533 concerning the increments of the local times of a symmetric $\beta$-stable process for $\beta>1$. Some results by Marcus-Rosen (

Comment: A general reference on the subject is Marcus-Rosen,

Keywords: Stable processes, Local times, Central limit theorem, Dynkin isomorphism, Fractional Brownian motion, Brownian sheet

Nature: Original

Retrieve article from Numdam

XXXI: 20, 216-224, LNM 1655 (1997)

Théorèmes limites pour les temps locaux d'un processus stable symétrique (Limit theorems)

Using Dynkin's isomorphism, a central-limit type theorem is derived for the local times of a stable symmetric process of index $\beta$ at a finite number $n$ of levels. The limiting process is expressed in terms of a fractional, $n$-dimensional Brownian sheet with Hurst index $\beta-1$. The case when $n=1$ is due to Rosen 2533, and, for Brownian local times, to Yor 1709

Comment: This kind of result is now understood as a weak form of theorems à la Ray-Knight, describing the local times of a stable symmetric process: see Eisenbaum-Kaspi-Marcus-Rosen-Shi

Keywords: Stable processes, Local times, Central limit theorem, Dynkin isomorphism, Fractional Brownian motion, Brownian sheet

Nature: Original

Retrieve article from Numdam