XVI: 20, 234-237, LNM 920 (1982)
YOEURP, Chantha
Une décomposition multiplicative de la valeur absolue d'un mouvement brownien (
Brownian motion,
Stochastic calculus)
A positive submartingale like $X_t=|B_t|$ vanishes too often to be represented as a product of a local martingale and an increasing process. Still, one may look for a kind of additive decomposition of $\log X$, from which the required multiplicative decomposition would follow by taking exponentials. Here the (Ito-Tanaka) additive decomposition of $\log(X\lor\epsilon)$ is studied, as well as its limiting behaviour as $\epsilon\rightarrow0$
Comment: See
1023,
1321Keywords: Multiplicative decomposition,
Change of variable formula,
Local timesNature: Original Retrieve article from Numdam