Quick search | Browse volumes | |

XV: 13, 191-205, LNM 850 (1981)

**MAISONNEUVE, Bernard**

On Lévy's downcrossing theorem and various extensions (Excursion theory)

Lévy's downcrossing theorem describes the local time $L_t$ of Brownian motion at $0$ as the limit of $\epsilon D_t(\epsilon)$, where $D_t$ denotes the number of downcrossings of the interval $(0,\epsilon)$ up to time $t$. To give a simple proof of this result from excursion theory, easy to generalize, the paper uses the weaker definition of regenerative systems described in 1137. A gap in the related author's paper*Zeit. für W-Theorie,* **52**, 1980 is repaired at the end of the paper

Keywords: Excursions, Lévy's downcrossing theorem, Local times, Regenerative systems

Nature: Original

Retrieve article from Numdam

On Lévy's downcrossing theorem and various extensions (Excursion theory)

Lévy's downcrossing theorem describes the local time $L_t$ of Brownian motion at $0$ as the limit of $\epsilon D_t(\epsilon)$, where $D_t$ denotes the number of downcrossings of the interval $(0,\epsilon)$ up to time $t$. To give a simple proof of this result from excursion theory, easy to generalize, the paper uses the weaker definition of regenerative systems described in 1137. A gap in the related author's paper

Keywords: Excursions, Lévy's downcrossing theorem, Local times, Regenerative systems

Nature: Original

Retrieve article from Numdam