Browse by: Author name - Classification - Keywords - Nature

2 matches found
XIII: 59, 646-646, LNM 721 (1979)
BARLOW, Martin T.
On the left endpoints of Brownian excursions (Brownian motion, Excursion theory)
It is shown that no expansion of the Brownian filtration can be found such that $B_t$ remains a semimartingale, and the set of left endpoints of Brownian excursions becomes optional
Keywords: Progressive sets
Nature: Original
Retrieve article from Numdam
XV: 13, 191-205, LNM 850 (1981)
MAISONNEUVE, Bernard
On Lévy's downcrossing theorem and various extensions (Excursion theory)
Lévy's downcrossing theorem describes the local time $L_t$ of Brownian motion at $0$ as the limit of $\epsilon D_t(\epsilon)$, where $D_t$ denotes the number of downcrossings of the interval $(0,\epsilon)$ up to time $t$. To give a simple proof of this result from excursion theory, easy to generalize, the paper uses the weaker definition of regenerative systems described in 1137. A gap in the related author's paper Zeit. für W-Theorie, 52, 1980 is repaired at the end of the paper
Keywords: Excursions, Lévy's downcrossing theorem, Local times, Regenerative systems
Nature: Original
Retrieve article from Numdam