Browse by: Author name - Classification - Keywords - Nature

7 matches found
XX: 13, 162-185, LNM 1204 (1986)
BOULEAU, Nicolas; LAMBERTON, Damien
Théorie de Littlewood-Paley et processus stables (Applications of martingale theory, Markov processes)
Meyer' probabilistic approach to Littlewood-Paley inequalities (1010, 1510) is extended by replacing the underlying Brownian motion with a stable process. The following spectral multiplicator theorem is obtained: If $(P_t)_{t\geq 0}$ is a symmetric Markov semigroup with spectral representation $P_t=\int_{[0,\infty)}e^{-t\lambda} dE_{\lambda}$, and if $M$ is a function on $R_+$ defined by $M(\lambda)=\lambda\int_0^\infty r(y)e^{-y\lambda}dy,$ where $r(y)$ is bounded and Borel on $R_+$, then the operator $T_M=\int_{[0,\infty)}M(\lambda)dE_{\lambda},$ which is obviously bounded on $L^2$, is actually bounded on all $L^p$ spaces of the invariant measure, $1<p<\infty$. The method also leads to new Littlewood-Paley inequalities for semigroups admitting a carré du champ operator
Keywords: Littlewood-Paley theory, Semigroup theory, Riesz transforms, Stable processes, Inequalities, Singular integrals, Carré du champ
Nature: Original
Retrieve article from Numdam
XXV: 33, 407-424, LNM 1485 (1991)
ROSEN, Jay S.
Second order limit laws for the local times of stable processes (Limit theorems)
Using the method of moments, a central limit theorem is established for the increments $L^x_t-L^0_t$ of the local times of a symmetric $\beta$-stable process ($\beta>1$). The limit law is that of a fractional Brownian sheet, with Hurst index $\beta-1$, time-changed via $L_t^0$ in its time variable
Comment: Another proof due to Eisenbaum 3120 uses Dynkin's isomorphism. Ray-Knight theorems for these local times can be found in Eisenbaum-Kaspi-Marcus-Rosen-Shi Ann. Prob. 28 (2000). A good reference on this subject is Marcus-Rosen, Markov Processes, Gaussian Processes, and Local Times, Cambridge University Press (2006)
Keywords: Local times, Stable processes, Method of moments, Fractional Brownian motion, Brownian sheet
Nature: Original
Retrieve article from Numdam
XXIX: 26, 266-289, LNM 1613 (1995)
EISENBAUM, Nathalie
Une version sans conditionnement du théorème d'isomorphisme de Dynkin (Limit theorems)
After establishing an unconditional version of Dynkin's isomorphism theorem, the author applies this theorem to give a new proof of Ray-Knight theorems for Brownian local times, and also to give another proof to limit theorems due to Rosen 2533 concerning the increments of the local times of a symmetric $\beta$-stable process for $\beta>1$. Some results by Marcus-Rosen (Proc. Conf. Probability in Banach Spaces~8, Birkhäuser 1992) on Laplace transforms of the increments of local time are extended
Comment: A general reference on the subject is Marcus-Rosen, Markov Processes, Gaussian Processes, and Local Times, Cambridge University Press (2006)
Keywords: Stable processes, Local times, Central limit theorem, Dynkin isomorphism, Fractional Brownian motion, Brownian sheet
Nature: Original
Retrieve article from Numdam
XXXI: 20, 216-224, LNM 1655 (1997)
EISENBAUM, Nathalie
Théorèmes limites pour les temps locaux d'un processus stable symétrique (Limit theorems)
Using Dynkin's isomorphism, a central-limit type theorem is derived for the local times of a stable symmetric process of index $\beta$ at a finite number $n$ of levels. The limiting process is expressed in terms of a fractional, $n$-dimensional Brownian sheet with Hurst index $\beta-1$. The case when $n=1$ is due to Rosen 2533, and, for Brownian local times, to Yor 1709
Comment: This kind of result is now understood as a weak form of theorems à la Ray-Knight, describing the local times of a stable symmetric process: see Eisenbaum-Kaspi-Marcus-Rosen-Shi Ann. Prob. 28 (2000) for a Ray-Knight theorem involving fractional Brownian motion. Marcus-Rosen, Markov Processes, Gaussian Processes, and Local Times, Cambridge University Press (2006) is a general reference on the subject
Keywords: Stable processes, Local times, Central limit theorem, Dynkin isomorphism, Fractional Brownian motion, Brownian sheet
Nature: Original
Retrieve article from Numdam
XLIII: 09, 221-239, LNM 2006 (2011)
MAROUBY, Matthieu
Simulation of a Local Time Fractional Stable Motion (Theory of processes)
Keywords: Stable processes, Self-similar processes, Shot noise series, Local times, Fractional Brownian motion, Simulation
Nature: Original
XLV: 07, 181-199, LNM 2078 (2013)
HASHIMOTO, Hiroya
Approximation and Stability of Solutions of SDEs Driven by a Symmetric $\alpha$-Stable Process with Non-Lipschitz Coefficients (Theory of processes)
Keywords: $\alpha$-stable processes, Euler-Maruyama approximation, stability of solution
Nature: Original
XLV: 10, 277-300, LNM 2078 (2013)
DONEY, R. A.; VAKEROUDIS, S.
Windings of Planar Stable Processes (Theory of processes)
Keywords: Stable processes, Lévy processes, Brownian motion, windings, exit time from a cone, Spitzer's Theorem, skew-product representation, Lamperti's relation, Law of the Iterated Logarithm for small times
Nature: Original