Browse by: Author name - Classification - Keywords - Nature

13 matches found
X: 14, 216-234, LNM 511 (1976)
WILLIAMS, David
The Q-matrix problem (Markov processes)
This paper completely solves the Q-matrix problem (find necessary and sufficient conditions for an infinite matrix $q_{ij}$ to be the pointwise derivative at $0$ of a transition matrix) in the case when all states are instantaneous. Though the statement of the problem and the two conditions given are elementary and simple, the proof uses sophisticated ``modern'' methods. The necessity of the conditions is proved using the Ray-Knight compactification method, the converse is a clever construction which is merely sketched
Comment: This paper crowns nearly 20 years of investigations of this problem by the English school. It contains a promise of a detailed proof which apparently was never published. See the section of Markov chains in Rogers-Williams Diffusions, Markov Processes and Martingales, vol. 1 (second edition), Wiley 1994. See also 1024
Keywords: Markov chains, Ray compactification, Local times, Excursions
Nature: Original
Retrieve article from Numdam
X: 15, 235-239, LNM 511 (1976)
WILLIAMS, David
On a stopped Brownian motion formula of H.M.~Taylor (Brownian motion)
This formula gives the joint distribution of $X_T$ and $T$, where $X$ is standard Brownian motion and $T$ is the first time $M_T-X_T=a$, $M_t$ denoting the supremum of $X$ up to time $t$. Two different new proofs are given
Comment: For the original proof of Taylor see Ann. Prob. 3, 1975. For modern references, we should ask Yor
Keywords: Stopping times, Local times, Ray-Knight theorems, Cameron-Martin formula
Nature: Original
Retrieve article from Numdam
X: 24, 505-520, LNM 511 (1976)
WILLIAMS, David
The Q-matrix problem 2: Kolmogorov backward equations (Markov processes)
This is an addition to 1014, the problem being now of constructing a chain whose transition probabilities satisfy the Kolmogorov backward equations, as defined in a precise way in the paper. A different construction is required
Keywords: Markov chains
Nature: Original
Retrieve article from Numdam
XII: 22, 310-331, LNM 649 (1978)
WILLIAMS, David
The Q-matrix problem 3: The Lévy-kernel problem for chains (Markov processes)
After solving the Q-matrix problem in 1014, the author constructs here a Markov chain from a Q-matrix on a countable space $I$ which satisfies several desirable conditions. Among them, the following: though the process is defined on a (Ray) compactification of $I$, the Q-matrix should describe the full Lévy kernel. Otherwise stated, whenever the process jumps, it does so from a point of $I$ to a point of $I$. The construction is extremely delicate
Keywords: Markov chains
Nature: Original
Retrieve article from Numdam
XIII: 43, 490-494, LNM 721 (1979)
WILLIAMS, David
Conditional excursion theory (Brownian motion, Markov processes)
To be completed
Keywords: Excursions
Nature: Original
Retrieve article from Numdam
XIV: 36, 324-331, LNM 784 (1980)
BARLOW, Martin T.; ROGERS, L.C.G.; WILLIAMS, David
Wiener-Hopf factorization for matrices (Markov processes)
Let $(X_t)$ be a continuous-time Markov chain with a finite state space $E$, and a transition semigroup $\exp(tQ)$. Consider the fluctuating additive functional $\phi_t=\int_0^t v(X_s)\,ds$ ($v$ is a function on $E$ which may assume negative values) and the corresponding change of time $\tau_t= \inf\{s:\phi_s>t\}$. The problem is to find the joint distribution of $\tau_t$ and $X(\tau_t)$. This is solved using martingale methods, and implies a purely algebraic result on the structure of the Q-matrix
Comment: A mistake is pointed out by the authors at the end of the paper, and is corrected in 1437
Keywords: Wiener-Hopf factorizations, Additive functionals, Changes of time, Markov chains
Nature: Original
Retrieve article from Numdam
XIV: 37, 332-342, LNM 784 (1980)
ROGERS, L.C.G.; WILLIAMS, David
Time-substitution based on fluctuating additive functionals (Wiener-Hopf factorization for infinitesimal generators) (Markov processes)
This is a first step towards the extension of 1436 to Markov processes with a general state space
Keywords: Wiener-Hopf factorizations, Additive functionals, Changes of time
Nature: Original
Retrieve article from Numdam
XVI: 04, 41-90, LNM 920 (1982)
LONDON, R.R.; McKEAN, Henry P.; ROGERS, L.C.G.; WILLIAMS, David
A martingale approach to some Wiener-Hopf problems (two parts)
Retrieve article from Numdam
XVI: 05, 91-94, LNM 920 (1982)
WILLIAMS, David
A potential-theoretic note on the quadratic Wiener-Hopf equation for Q-matrices
Retrieve article from Numdam
XVII: 21, 194-197, LNM 986 (1983)
PRICE, Gareth C.; WILLIAMS, David
Rolling with `slipping': I (Stochastic calculus, Stochastic differential geometry)
If $Z$ and $\tilde Z$ are two Brownian motions on the unit sphere for the filtration of $Z$, there differentials $\partial Y=(\partial Z) \times Z$ (Stratonovich differentials and vector product) and $\partial\tilde Y$ (similarly defined) are related by $d\tilde Y = H dY$, where $H$ is a previsible, orthogonal transformation such that $HZ=\tilde Z$
Keywords: Brownian motion in a manifold, Previsible representation
Nature: Original
Retrieve article from Numdam
XXIX: 14, 155-161, LNM 1613 (1995)
WILLIAMS, David
Non-linear Wiener-Hopf theory, 1: an appetizer
Retrieve article from Numdam
XLI: 16, 349-369, LNM 1934 (2008)
WILLIAMS, David
A new look at `Markovian' Wiener-Hopf theory
Nature: Original
XLVII: 01, xi-xxxi, LNM 2137 (2015)
AZÉMA, Jacques; BARRIEU, Pauline; BERTOIN, Jean; CABALLERO, Maria Emilia; DONATI-MARTIN, Catherine; ÉMERY, Michel; HIRSCH, Francis; HU, Yueyun; LEDOUX, Michel; NAJNUDEL, Joseph; MANSUY, Roger; MICLO, Laurent; SHI, Zhan; WILLIAMS, David
Témoignages
Nature: Tribute