XXI: 15, 230-245, LNM 1247 (1987)
SONG, Shiqi;
YOR, Marc
Inégalités pour les processus self-similaires arrêtés à un temps quelconque Retrieve article from Numdam
XXVII: 25, 276-301, LNM 1557 (1993)
SONG, Shiqi
Inégalités relatives aux processus d'Ornstein-Uhlenbeck à $n$ paramètres et capacité gaussienne $c_{n,2}$ Retrieve article from Numdam
XXIX: 28, 297-326, LNM 1613 (1995)
SONG, Shiqi
C-semigroups on Banach spaces and functional inequalities Retrieve article from Numdam
XXXII: 19, 264-305, LNM 1686 (1998)
BARLOW, Martin T.;
ÉMERY, Michel;
KNIGHT, Frank B.;
SONG, Shiqi;
YOR, Marc
Autour d'un théorème de Tsirelson sur des filtrations browniennes et non browniennes (
Brownian motion,
Filtrations)
Tsirelson has shown that no Walsh's Brownian motion with three rays or more can live in a Brownian filtration (GAFA
7, 1997). Using his methods, the result is extended to spider martingales. A conjecture of M. Barlow is also proved: if $L$ is an honest time in a (possibly multidimensional) Brownian filtration, then ${\cal F}_{L+}$ is generated by ${\cal F}_{L}$ and at most one event. Last, it is shown that a Walsh's Brownian motion can live in the filtration generated by another Walsh's Brownian motion only if the former is obtained from the latter by aggregating rays
Comment: On Tsirelson's theorem, see also Tsirelson, ICM 1998 vol. III, and M. Émery,
Astérisque 282 (2002). A simplified proof of Barlow's conjecture is given in
3304. For more on Théorème 1 (Slutsky's lemma), see
3221 and
3325Keywords: Filtrations,
Spider martingales,
Walsh's Brownian motion,
Cosiness,
Slutsky's lemmaNature: New exposition of known results,
Original additions Retrieve article from Numdam