Browse by: Author name - Classification - Keywords - Nature

XII: 36, 489-490, LNM 649 (1978)
MOKOBODZKI, Gabriel
Domination d'une mesure par une capacité (Measure theory)
A bounded measure $\mu$ is said to be dominated by a capacity $C$ (countably subadditive, continuous along increasing sequences; neither strong subadditivity nor decreasing sequences are mentioned) if all sets of capacity $0$ have also measure $0$. The main result then states that the space can be decomposed into a set $A_0$ of capacity $0$, and disjoint sets $A_n$ on each of which $\mu$ is smaller than a multiple of $C$
Keywords: Radon-Nikodym theorem, Capacities
Nature: Original
Retrieve article from Numdam