Hathaway A.-S. [1895] Elementary proof of the quaternion asociative principle (S. M. N. Y., 2, 43-45; 1895-1896). S.M.N.Y. 2, 43-45.
Article | JFM 26.0107.01
Hathaway A.-S. [1897] Quaternions as numbers of four dimensional space (S. M. N. Y., 4, 54-57; 1897-1898). S.M.N.Y. 4, 54-57.
Article | JFM 28.0502.03
Hyde E.-W. [1880] Mechanics by quaternions (A., 7, 137-144, 177-184; 1880. -- 8, 17-24, 49-55; 1881). A. 7, 137-144.
JFM 12.0654.03
Ladd C. [1877] Quaternions. A. 4, 172-174.
JFM 09.0411.01
Miller G.-A. [1898] Sur les groupes hamiltoniens. C.R. 126, 1406-1408.
Article | JFM 29.0107.01
Molenbroek P. [1897] [Application de la théorie des vecteurs à la géométrie de la droite] M.P.M. 6, 220-223.
Peirce J.-Mills [1898] Determinants of quaternions (S. M. N. Y., 5, 335-337; 1898-1899). S.M.N.Y. 5, 335-337.
Article | JFM 30.0157.03
Romer [1866] [Principes généraux de la méthode des quaternions] (A. K. U., 11, 1-24,; 12, 25-56; 1, 57-88; 2, 89-120; 3, 121-146, 147-170; 4, 171-194; 5, 195-215; 1866, 1867, 1868). A.K.U. 11, 1-24.
Shunkichi Kimura [1895] On the nabla of quaternions (A. of M., 10, 127-155; 1895-1896). A.ofM. 10, 127-155.
JFM 27.0059.04
Stringham W.-I. [1879] The quaternion formulae for quantification of curves, surfaces and solids, and for barycentres. A.J.M. 2, 205-210.
JFM 11.0480.03
Stringham W.-I. [1881] Determination of the finite quaternion groups. A.J.M. 4, 345-357.
JFM 14.0320.01