Browse by: Author name - Classification - Keywords - Nature

2 matches found
V: 10, 87-102, LNM 191 (1971)
DELLACHERIE, Claude
Les théorèmes de Mazurkiewicz-Sierpinski et de Lusin (Descriptive set theory)
Synthetic presentation of (then) little known results on the perfect kernels of closed random sets and uniformization of random sets with countable sections
Comment: See Dellacherie-Meyer, Probabilités et Potentiel, Chap. XI
Keywords: Analytic sets, Random sets, Section theorems
Nature: New exposition of known results
Retrieve article from Numdam
XV: 31, 490-492, LNM 850 (1981)
STRICKER, Christophe
Sur deux questions posées par Schwartz (Stochastic calculus)
Schwartz studied semimartingales in random open sets, and raised two questions: Given a semimartingale $X$ and a random open set $A$, 1) Assume $X$ is increasing in every subinterval of $A$; then is $X$ equal on $A$ to an increasing adapted process on the whole line? 2) Same statement with ``increasing'' replaced by ``continuous''. Schwartz could prove statement 1) assuming $X$ was continuous. It is proved here that 1) is false if $X$ is only cadlag, and that 2) is false in general, though it is true if $A$ is previsible, or only accessible
Keywords: Random sets, Semimartingales in a random open set
Nature: Original
Retrieve article from Numdam