Quick search | Browse volumes | |

XIII: 48, 557-569, LNM 721 (1979)

**CARMONA, René**

Processus de diffusion gouverné par la forme de Dirichlet de l'opérateur de Schrödinger (Diffusion theory)

Standard conditions on the potential $V$ imply that the Schrödinger operator $-(1/2)ėlta+V$ (when suitably interpreted) is essentially self-adjoint on $L^2(**R**^n,dx)$. Assume it has a ground state $\psi$. Then transferring everything on the Hilbert space $L^2(\mu)$ where $\mu$ has the density $\psi^2$ the operator becomes formally $Df=(-1/2)ėlta f + \nabla h.\nabla f$ where $h=-log\psi$. A problem which has aroused some excitement ( due in part to Nelson's ``stochastic mechanics'') was to construct true diffusions governed by this generator, whose meaning is not even clearly defined unless $\psi$ satisfies regularity conditions, unnatural in this problem. Here a reasonable positive answer is given

Comment: This problem, though difficult, is but the simplest case in Nelson's theory. In this seminar, see 1901, 1902, 2019. Seemingly definitive results on this subject are due to E.~Carlen,*Comm. Math. Phys.*, **94**, 1984. A recent reference is Aebi, *Schrödinger Diffusion Processes,* Birkhäuser 1995

Keywords: Nelson's stochastic mechanics, Schrödinger operators

Nature: Original

Retrieve article from Numdam

XVI-S: 57, 165-207, LNM 921 (1982)

**MEYER, Paul-André**

Géométrie différentielle stochastique (bis) (Stochastic differential geometry)

A sequel to 1505. The main theme is that an ordinary differential equation has a non unique extension as a stochastic differential equation: besides the Stratonovich one, given by the ``transfer principle'', there are other possibilities: choosing among them requires some additional, connection-like, structure. The most striking application is the Dohrn-Guerra correction to the parallel transport along a semimartingale

Comment: For complements, see Émery 1658, Hakim-Dowek-Lépingle 2023, Émery's monography*Stochastic Calculus in Manifolds* (Springer, 1989) and article 2428, and Arnaudon-Thalmaier 3214

Keywords: Semimartingales in manifolds, Stochastic differential equations, Local characteristics, Nelson's stochastic mechanics, Transfer principle

Nature: Original

Retrieve article from Numdam

Processus de diffusion gouverné par la forme de Dirichlet de l'opérateur de Schrödinger (Diffusion theory)

Standard conditions on the potential $V$ imply that the Schrödinger operator $-(1/2)ėlta+V$ (when suitably interpreted) is essentially self-adjoint on $L^2(

Comment: This problem, though difficult, is but the simplest case in Nelson's theory. In this seminar, see 1901, 1902, 2019. Seemingly definitive results on this subject are due to E.~Carlen,

Keywords: Nelson's stochastic mechanics, Schrödinger operators

Nature: Original

Retrieve article from Numdam

XVI-S: 57, 165-207, LNM 921 (1982)

Géométrie différentielle stochastique (bis) (Stochastic differential geometry)

A sequel to 1505. The main theme is that an ordinary differential equation has a non unique extension as a stochastic differential equation: besides the Stratonovich one, given by the ``transfer principle'', there are other possibilities: choosing among them requires some additional, connection-like, structure. The most striking application is the Dohrn-Guerra correction to the parallel transport along a semimartingale

Comment: For complements, see Émery 1658, Hakim-Dowek-Lépingle 2023, Émery's monography

Keywords: Semimartingales in manifolds, Stochastic differential equations, Local characteristics, Nelson's stochastic mechanics, Transfer principle

Nature: Original

Retrieve article from Numdam