Quick search | Browse volumes | |

I: 01, 3-17, LNM 39 (1967)

**AVANISSIAN, Vazgain**

Sur l'harmonicité des fonctions séparément harmoniques (Potential theory)

This paper proves a harmonic version of Hartogs' theorem: separately harmonic functions are jointly harmonic (without any boundedness assumption) using a complex extension procedure. The talk is an extract from the author's original work in*Ann. ENS,* **178**, 1961

Comment: This talk was justified by the current interest of the seminar in doubly excessive functions, see Cairoli 102 in the same volume

Keywords: Doubly harmonic functions

Nature: Exposition

Retrieve article from Numdam

X: 10, 125-183, LNM 511 (1976)

**MEYER, Paul-André**

Démonstration probabiliste de certaines inégalités de Littlewood-Paley (4 talks) (Applications of martingale theory, Markov processes)

This long paper consists of four talks, suggested by E.M.~Stein's book*Topics in Harmonic Analysis related to the Littlewood-Paley theory,* Princeton 1970. The classical Littlewood-Paley theory shows that the $L^p$ norm ($1<p<\infty$) of a function $f$ on $**R**^n$ is equivalent to that of several kinds of non-linear functionals of $f$ called Littlewood-Paley functions, which are square roots of quadratic expressions involving the harmonic extension of $f$ to the half-space $**R**^n\times **R**_+$, and its derivatives. Using these equivalences, it is easy to prove that the Riesz transforms are bounded in~$L^p$. The classical theory is given a probabilistic interpretation, the L-P functions appearing as conditional expectations of functionals of a Brownian motion on the half-space, given its final position on the limit hyperplane, and then the L-P inequalities follow from the Burkholder inequalities of martingale theory. The original L-P theory concerned the unit disk; Stein had extended it to $**R**^n$ and had started extending it to symmetric semigroups. Here a new tool is introduced, the squared-field operator (carré du champ) introduced by J.P.~Roth (*CRAS Paris,* **278A**, 1974, p.1103) in potential theory and by Kunita (*Nagoya M. J.*, **36**, 1969) in probability. This paper consists of 4 talks, and in the last one theorems 1' and 3 are false

Comment: This paper was rediscovered by Varopoulos (*J. Funct. Anal.*, **38**, 1980), and was then rewritten by Meyer in 1510 in a simpler form. Its main application has been to the Ornstein-Uhlenbeck semigroup in 1816. It has been superseded by the theory of $\Gamma_2$ due to Bakry 1910, see also Bakry-Émery 1912, and Meyer 1908 reporting on Cowling's extension of Stein's work. An erratum is given in 1253

Keywords: Littlewood-Paley theory, Riesz transforms, Brownian motion, Inequalities, Harmonic functions, Singular integrals, Carré du champ, Infinitesimal generators, Semigroup theory

Nature: Original

Retrieve article from Numdam

XI: 01, 1-20, LNM 581 (1977)

**AVANISSIAN, Vazgain**

Fonctions harmoniques d'ordre infini et l'harmonicité réelle liée à l'opérateur laplacien itéré (Potential theory, Miscellanea)

This paper studies two classes of functions in (an open set of) $**R**^n$, $n\ge1$: 1) Harmonic functions of infinite order (see Avanissian and Fernique, *Ann. Inst. Fourier,* **18-2**, 1968), which are $C^\infty$ functions satisfying a growth condition on their iterated laplacians, and are shown to be real analytic. 2) Infinitely differentiable functions (or distributions) similar to completely monotonic functions on the line, i.e., whose iterated laplacians are alternatively positive and negative (they were introduced by Lelong). Among the results is the fact that the second class is included in the first

Keywords: Harmonic functions, Real analytic functions, Completely monotonic functions

Nature: Original

Retrieve article from Numdam

XI: 12, 132-195, LNM 581 (1977)

**MEYER, Paul-André**

Le dual de $H^1({\bf R}^\nu)$~: démonstrations probabilistes (Potential theory, Applications of martingale theory)

This is a self-contained exposition and proof of the celebrated (Fefferman-Stein) result that the dual of $H^1(**R**^n)$ is $BMO$, using methods adapted from the probabilistic Littlewood-Paley theory (of which this is a kind of limiting case). Some details of the proof are interesting in their own right

Comment: Though the proof is complete, it misses an essential point in the Fefferman-Stein theorem, namely, it depends on the Cauchy (Poisson) semigroup while the original result the convolution with quite general smooth functions in its definition of $H^1$. Similar methods were used by Bakry in the case of spheres, see 1818. The reasoning around (3.1) p.178 needs to be corrected

Keywords: Harmonic functions, Hardy spaces, Poisson kernel, Carleson measures, $BMO$, Riesz transforms

Nature: Exposition, Original additions

Retrieve article from Numdam

XII: 26, 378-397, LNM 649 (1978)

**BROSSARD, Jean**

Comportement non-tangentiel et comportement brownien des fonctions harmoniques dans un demi-espace. Démonstration probabiliste d'un théorème de Calderon et Stein (Potential theory, Real analysis)

Given a harmonic function $u$ in a half space, Stein (*Acta Math.* 106, 1961) shows that the boundary points $x$ such that 1) $u$ has a non-tangential limit at $x$, 2) $u$ is ``non tangentially bounded'' near $x$, 3) $\nabla u$ is locally $L^2$ in the non-tangential cones at $x$, are the sames, except for sets of measure $0$. This result is given here a probabilistic proof using conditional Brownian motion

Keywords: Harmonic functions in a half-space, Non-tangential limits

Nature: Original

Retrieve article from Numdam

XV: 10, 151-166, LNM 850 (1981)

**MEYER, Paul-André**

Retour sur la théorie de Littlewood-Paley (Applications of martingale theory, Markov processes)

The word ``original'' may be considered misleading, since this paper is essentially a re-issue of 1010 (see the corresponding review), with a slightly better pedagogy, and the correction of a mistake. Meanwhile, Varopoulos had independently rediscovered the subject (*J. Funct. Anal.*, 38, 1980)

Comment: See an application to the Ornstein-Uhlenbeck semigroup 1816, see 1818 for a related topic, and the report 1908 on Cowling's extension of Stein's work. Bouleau-Lamberton 2013 replace the auxiliary Brownian motion by a stable process to obtain further inequalities. In another direction, the subject is developed in the theory of $\Gamma_2$ due to Bakry 1910, see also Bakry-Émery 1912; a general account of this point of view in semigroup theory is given by Bakry in his 1992 Saint-Flour lectures (LN 1581)

Keywords: Littlewood-Paley theory, Semigroup theory, Riesz transforms, Brownian motion, Inequalities, Harmonic functions, Singular integrals, Carré du champ

Nature: Original

Retrieve article from Numdam

Sur l'harmonicité des fonctions séparément harmoniques (Potential theory)

This paper proves a harmonic version of Hartogs' theorem: separately harmonic functions are jointly harmonic (without any boundedness assumption) using a complex extension procedure. The talk is an extract from the author's original work in

Comment: This talk was justified by the current interest of the seminar in doubly excessive functions, see Cairoli 102 in the same volume

Keywords: Doubly harmonic functions

Nature: Exposition

Retrieve article from Numdam

X: 10, 125-183, LNM 511 (1976)

Démonstration probabiliste de certaines inégalités de Littlewood-Paley (4 talks) (Applications of martingale theory, Markov processes)

This long paper consists of four talks, suggested by E.M.~Stein's book

Comment: This paper was rediscovered by Varopoulos (

Keywords: Littlewood-Paley theory, Riesz transforms, Brownian motion, Inequalities, Harmonic functions, Singular integrals, Carré du champ, Infinitesimal generators, Semigroup theory

Nature: Original

Retrieve article from Numdam

XI: 01, 1-20, LNM 581 (1977)

Fonctions harmoniques d'ordre infini et l'harmonicité réelle liée à l'opérateur laplacien itéré (Potential theory, Miscellanea)

This paper studies two classes of functions in (an open set of) $

Keywords: Harmonic functions, Real analytic functions, Completely monotonic functions

Nature: Original

Retrieve article from Numdam

XI: 12, 132-195, LNM 581 (1977)

Le dual de $H^1({\bf R}^\nu)$~: démonstrations probabilistes (Potential theory, Applications of martingale theory)

This is a self-contained exposition and proof of the celebrated (Fefferman-Stein) result that the dual of $H^1(

Comment: Though the proof is complete, it misses an essential point in the Fefferman-Stein theorem, namely, it depends on the Cauchy (Poisson) semigroup while the original result the convolution with quite general smooth functions in its definition of $H^1$. Similar methods were used by Bakry in the case of spheres, see 1818. The reasoning around (3.1) p.178 needs to be corrected

Keywords: Harmonic functions, Hardy spaces, Poisson kernel, Carleson measures, $BMO$, Riesz transforms

Nature: Exposition, Original additions

Retrieve article from Numdam

XII: 26, 378-397, LNM 649 (1978)

Comportement non-tangentiel et comportement brownien des fonctions harmoniques dans un demi-espace. Démonstration probabiliste d'un théorème de Calderon et Stein (Potential theory, Real analysis)

Given a harmonic function $u$ in a half space, Stein (

Keywords: Harmonic functions in a half-space, Non-tangential limits

Nature: Original

Retrieve article from Numdam

XV: 10, 151-166, LNM 850 (1981)

Retour sur la théorie de Littlewood-Paley (Applications of martingale theory, Markov processes)

The word ``original'' may be considered misleading, since this paper is essentially a re-issue of 1010 (see the corresponding review), with a slightly better pedagogy, and the correction of a mistake. Meanwhile, Varopoulos had independently rediscovered the subject (

Comment: See an application to the Ornstein-Uhlenbeck semigroup 1816, see 1818 for a related topic, and the report 1908 on Cowling's extension of Stein's work. Bouleau-Lamberton 2013 replace the auxiliary Brownian motion by a stable process to obtain further inequalities. In another direction, the subject is developed in the theory of $\Gamma_2$ due to Bakry 1910, see also Bakry-Émery 1912; a general account of this point of view in semigroup theory is given by Bakry in his 1992 Saint-Flour lectures (LN 1581)

Keywords: Littlewood-Paley theory, Semigroup theory, Riesz transforms, Brownian motion, Inequalities, Harmonic functions, Singular integrals, Carré du champ

Nature: Original

Retrieve article from Numdam