XVI: 21, 238-247, LNM 920 (1982)
YOR, Marc
Sur la transformée de Hilbert des temps locaux browniens et une extension de la formule d'Itô (
Brownian motion)
This paper is about the application to the function $(x-a)\log|x-a|-(x-a)$ (whose second derivative is $1/x-a$) of the Ito-Tanaka formula; the last term then involves a formal Hilbert transform $\tilde L^a_t$ of the local time process $L^a_t$. Such processes had been defined by Ito and McKean, and studied by Yamada as examples of Fukushima's ``additive functionals of zero energy''. Here it is proved, as a consequence of a general theorem, that this process has a jointly continuous version---more precisely, Hölder continuous of all orders $<1/2$ in $a$ and in $t$
Comment: For a modern version with references see Yor,
Some Aspects of Brownian Motion II, Birkhäuser 1997
Keywords: Local times,
Hilbert transform,
Ito formulaNature: Original Retrieve article from Numdam