VII: 23, 223-247, LNM 321 (1973)
MEYER, Paul-André
        Sur un problème de filtration (
General theory of processes)
This is an attempt to present, in the usual language of the seminar, a a simple case from filtering theory (additive white noise in one dimension). The results proved are the Kallianpur-Striebel formula (
Ann. Math. Stat., 
39, 1968) and a theorem of Clark
Keywords:  Filtering theory, 
InnovationNature:  Exposition
 Retrieve article from Numdam
X: 01, 1-18, LNM 511 (1976)
BRÉMAUD, Pierre
        La méthode des semi-martingales en filtrage quand l'observation est un processus ponctuel marqué (
Martingale theory, 
Point processes)
This paper discusses martingale methods (as developed by Jacod, 
Z. für W-theorie, 31, 1975) in the filtering theory of point processes
Comment: The author has greatly developed this topic in his book 
Poisson Processes and Queues, Springer 1981
Keywords:  Point processes, 
Previsible representation, 
Filtering theoryNature:  Original
 Retrieve article from Numdam
XI: 14, 257-297, LNM 581 (1977)
YOR, Marc
        Sur les théories du filtrage et de la prédiction (
General theory of processes, 
Markov processes)
To be completed
Comment: MR 57, 10801
Keywords:  Filtering theory, 
Prediction theoryNature:  Original
 Retrieve article from Numdam
XIII: 32, 378-384, LNM 721 (1979)
SZPIRGLAS, Jacques; 
MAZZIOTTO, Gérald
        Théorème de séparation dans le problème d'arrêt optimal (
General theory of processes)
Let $({\cal G}_t)$ be an enlargement of a filtration $({\cal F}_t)$ with the property that for every $t$, if $X$ is ${\cal G}_t$-measurable, then $E[X\,|\,{\cal F}_t]=E[X\,|\,{\cal F}_\infty]$. Then if $(X_t)$ is a ${\cal F}$-optional process, its Snell envelope is the same in both filtrations. Applications are given to filtering theory
Keywords:  Optimal stopping, 
Snell's envelope, 
Filtering theoryNature:  Original
 Retrieve article from Numdam