Browse by: Author name - Classification - Keywords - Nature

2 matches found
XV: 36, 529-546, LNM 850 (1981)
JACOD, Jean; MÉMIN, Jean
Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité (Measure theory)
For simplicity we consider only real valued r.v.'s, but it is essential that the paper considers general Polish spaces instead of $R$. Let us define a fuzzy r.v. $X$ on $(\Omega, {\cal F},P)$ as a probability measure on $\Omega\timesR$ whose projection on $\Omega$ is $P$. In particular, a standard r.v. $X$ defines such a measure as the image of $P$ under the map $\omega\mapsto (\omega,X(\omega))$. The space of fuzzy r.v.'s is provided with a weak topology, associated with the bounded functions $f(\omega,x)$ which are continuous in $x$ for every $\omega$, or equivalently with the functions $I_A(\omega)\,f(x)$ with $f$ bounded continuous. The main topic of this paper is the study of this topology
Comment: From this description, it is clear that this paper extends to general Polish spaces the topology of Baxter-Chacon (forgetting about the filtration), for which see 1228
Keywords: Fuzzy random variables, Convergence in law
Nature: Original
Retrieve article from Numdam
XV: 38, 561-586, LNM 850 (1981)
PELLAUMAIL, Jean
Solutions faibles et semi-martingales (Stochastic calculus, General theory of processes)
From the author's summary: ``we consider a stochastic differential equation $dX=a(X)\,dZ$ where $Z$ is a semimartingale and $a$ is a previsible functional which is continuous for the uniform norm. We prove the existence of a weak solution for such an equation''. The important point is the definition of a weak solution: it turns out to be a ``fuzzy process'' in the sense of 1536, i.e., a fuzzy r.v. taking values in the Polish space of cadlag sample functions
Keywords: Stochastic differential equations, Weak solutions, Fuzzy random variables
Nature: Original
Retrieve article from Numdam