Browse by: Author name - Classification - Keywords - Nature

3 matches found
XXIX: 26, 266-289, LNM 1613 (1995)
EISENBAUM, Nathalie
Une version sans conditionnement du théorème d'isomorphisme de Dynkin (Limit theorems)
After establishing an unconditional version of Dynkin's isomorphism theorem, the author applies this theorem to give a new proof of Ray-Knight theorems for Brownian local times, and also to give another proof to limit theorems due to Rosen 2533 concerning the increments of the local times of a symmetric $\beta$-stable process for $\beta>1$. Some results by Marcus-Rosen (Proc. Conf. Probability in Banach Spaces~8, Birkhäuser 1992) on Laplace transforms of the increments of local time are extended
Comment: A general reference on the subject is Marcus-Rosen, Markov Processes, Gaussian Processes, and Local Times, Cambridge University Press (2006)
Keywords: Stable processes, Local times, Central limit theorem, Dynkin isomorphism, Fractional Brownian motion, Brownian sheet
Nature: Original
Retrieve article from Numdam
XXXI: 20, 216-224, LNM 1655 (1997)
EISENBAUM, Nathalie
Théorèmes limites pour les temps locaux d'un processus stable symétrique (Limit theorems)
Using Dynkin's isomorphism, a central-limit type theorem is derived for the local times of a stable symmetric process of index $\beta$ at a finite number $n$ of levels. The limiting process is expressed in terms of a fractional, $n$-dimensional Brownian sheet with Hurst index $\beta-1$. The case when $n=1$ is due to Rosen 2533, and, for Brownian local times, to Yor 1709
Comment: This kind of result is now understood as a weak form of theorems à la Ray-Knight, describing the local times of a stable symmetric process: see Eisenbaum-Kaspi-Marcus-Rosen-Shi Ann. Prob. 28 (2000) for a Ray-Knight theorem involving fractional Brownian motion. Marcus-Rosen, Markov Processes, Gaussian Processes, and Local Times, Cambridge University Press (2006) is a general reference on the subject
Keywords: Stable processes, Local times, Central limit theorem, Dynkin isomorphism, Fractional Brownian motion, Brownian sheet
Nature: Original
Retrieve article from Numdam
XLIV: 10, 207-213, LNM 2046 (2012)
EISENBAUM, Nathalie
Another failure in the analogy between Gaussian and semicircle laws (Non commutative probability theory)
Keywords: Gaussian law, Semicircle law, Free Poisson distribution, Free probability, Free convolution, $R$-transform, Dynkin isomorphism
Nature: Original