Quick search | Browse volumes | |

XI: 12, 132-195, LNM 581 (1977)

**MEYER, Paul-André**

Le dual de $H^1({\bf R}^\nu)$~: démonstrations probabilistes (Potential theory, Applications of martingale theory)

This is a self-contained exposition and proof of the celebrated (Fefferman-Stein) result that the dual of $H^1(**R**^n)$ is $BMO$, using methods adapted from the probabilistic Littlewood-Paley theory (of which this is a kind of limiting case). Some details of the proof are interesting in their own right

Comment: Though the proof is complete, it misses an essential point in the Fefferman-Stein theorem, namely, it depends on the Cauchy (Poisson) semigroup while the original result the convolution with quite general smooth functions in its definition of $H^1$. Similar methods were used by Bakry in the case of spheres, see 1818. The reasoning around (3.1) p.178 needs to be corrected

Keywords: Harmonic functions, Hardy spaces, Poisson kernel, Carleson measures, $BMO$, Riesz transforms

Nature: Exposition, Original additions

Retrieve article from Numdam

Le dual de $H^1({\bf R}^\nu)$~: démonstrations probabilistes (Potential theory, Applications of martingale theory)

This is a self-contained exposition and proof of the celebrated (Fefferman-Stein) result that the dual of $H^1(

Comment: Though the proof is complete, it misses an essential point in the Fefferman-Stein theorem, namely, it depends on the Cauchy (Poisson) semigroup while the original result the convolution with quite general smooth functions in its definition of $H^1$. Similar methods were used by Bakry in the case of spheres, see 1818. The reasoning around (3.1) p.178 needs to be corrected

Keywords: Harmonic functions, Hardy spaces, Poisson kernel, Carleson measures, $BMO$, Riesz transforms

Nature: Exposition, Original additions

Retrieve article from Numdam