XIII: 11, 138-141, LNM 721 (1979)
REBOLLEDO, Rolando
Décomposition des martingales locales et raréfaction des sauts (
Martingale theory)
The general topic underlying this paper is that of convergence in law of a sequence of local martingales $M^n$ to a continuous Gaussian local martingale, i.e., a result analogue to the Central Limit Theorem in the Skorohod topology. This rests on three properties: tightness, convergence of the processes $<M^n,M^n>_t$ to a deterministic process, and a property of ``rarefaction of jumps''. The paper is devoted to a general discussion of the latter property
Comment: A correction is given as
1430Keywords: Convergence in law,
TightnessNature: Original Retrieve article from Numdam
XIV: 27, 227-248, LNM 784 (1980)
JACOD, Jean;
MÉMIN, Jean
Sur la convergence des semimartingales vers un processus à accroissements indépendants (
General theory of processes,
Stochastic calculus,
Martingale theory)
A method of Kabanov, Liptzer and Shiryaev is adapted to study the convergence of a sequence of semimartingales to a process with independent increments (to be completed)
Keywords: Convergence in law,
TightnessNature: Original Retrieve article from Numdam
XV: 02, 6-10, LNM 850 (1981)
FERNIQUE, Xavier
Sur le théorème de Kantorovitch-Rubinstein dans les espaces polonais (
Measure theory)
The theorem asserts the existence, given two probability measures $\mu,\nu$ on a complete separable metric space $(S,d)$, of a measure $\pi$ on $S\times S$ with marginals $\mu$ and $\nu$ such that $\int d(x,y)\,\pi(dx,dy)$ realizes a suitable distance between $\mu$ and $\nu$. An elementary proof is given here by reduction to the compact case
Keywords: Convergence in lawNature: New proof of known results Retrieve article from Numdam
XV: 36, 529-546, LNM 850 (1981)
JACOD, Jean;
MÉMIN, Jean
Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité (
Measure theory)
For simplicity we consider only real valued r.v.'s, but it is essential that the paper considers general Polish spaces instead of $
R$. Let us define a fuzzy r.v. $X$ on $(\Omega, {\cal F},P)$ as a probability measure on $\Omega\times
R$ whose projection on $\Omega$ is $P$. In particular, a standard r.v. $X$ defines such a measure as the image of $P$ under the map $\omega\mapsto (\omega,X(\omega))$. The space of fuzzy r.v.'s is provided with a weak topology, associated with the bounded functions $f(\omega,x)$ which are continuous in $x$ for every $\omega$, or equivalently with the functions $I_A(\omega)\,f(x)$ with $f$ bounded continuous. The main topic of this paper is the study of this topology
Comment: From this description, it is clear that this paper extends to general Polish spaces the topology of Baxter-Chacon (forgetting about the filtration), for which see
1228Keywords: Fuzzy random variables,
Convergence in lawNature: Original Retrieve article from Numdam
XV: 37, 547-560, LNM 850 (1981)
JACOD, Jean
Convergence en loi de semimartingales et variation quadratique (
General theory of processes,
Stochastic calculus)
The convergence in law of cadlag processes to a cadlag process being understood in the sense of Skorohod, the problem is to find sufficient conditions under which, given semimartingales $X^n$ and $X$ such that $X^n\rightarrow X$ in law, one may deduce that $[X^n,X^n]$ converges in law to $[X,X]$. This is achieved assuming a uniform bound on the expectations of the supremum of the jumps. A version of the theorem applied to processes which are not semimartingales, but are equal to semimartingales on large sets
Keywords: Semimartingales,
Skorohod topology,
Convergence in lawNature: Original Retrieve article from Numdam