XIII: 38, 443-452, LNM 721 (1979)
EL KAROUI, Nicole
Temps local et balayage des semimartingales (
General theory of processes)
This paper is the first one in a series of reports on the balayage of semimartingales, and the following description is common to all of them. \par Let $H$ be a right-closed optional set, and let $g_t=\sup\{s<t, s\in H\}$ and $D_t=\inf\{s>t,s\in H\}$. Put $L=g_{\infty}$. Let also $G$ be the set of all left-endpoints of intervals contiguous to $H$, i.e., of all points $g_t$ for $t\notin H$. For simplicity we assume here that $D_0=0$ and that $H=\{X=0\}$, where $X$ is a semimartingale with decomposition $X=M+V$, though for a few results (including the balayage formula itself) it is sufficient that $X=0$ on $H$. \par One of the starting points of this paper is the
balayage formula (see Azéma-Yor, introduction to
Temps Locaux ,
Astérisque ,
52-53): if $Z$ is a locally bounded previsible process, then $$Z_{g_t}X_t=\int_0^t Z_{g_s}dX_s$$ and therefore $Y_t=Z_{g_t}X_t$ is a semimartingale. The main problem of the series of reports is: what can be said if $Z$ is not previsible, but optional, or even progressive?\par This particular paper is devoted to the study of the non-adapted process $$K_t=\sum_{g\in G,g\le t } (M_{D_g}-M_g)$$ which turns out to have finite variation
Comment: This paper is completed by
1357Keywords: Local times,
Balayage,
Balayage formulaNature: Original Retrieve article from Numdam
XIII: 39, 453-471, LNM 721 (1979)
YOR, Marc
Sur le balayage des semi-martingales continues (
General theory of processes)
For the general notation, see
1338. This paper is independent from the preceding one
1338, and some overlap occurs. The balayage formula is extended to processes $Z$ which are not locally bounded, and the local time of the semimartingale $Y$ is computed. The class of continuous semimartingales $X$ with canonical decomposition $X=M+V$ such that $dV$ is carried by $H=\{X=0\}$ is introduced and studied. It turns out to be an important class, closely related to ``relative martingales'' (Azéma, Meyer and Yor
2623). A number of results are given, too technical to be stated here. Stopping previsible, optional and progressive processes at the last exit time $L$ from $H$ leads to three $\sigma$-fields, ${\cal F}_L^p$, ${\cal F}_L^o$, ${\cal F}_L^{\pi}$, and it was considered surprising that the last two could be different (see
1240). Here it is shown that if $X$ is a continuous uniformly integrable martingale with $X_0=0$, $E[X_{\infty}|{\cal F}_L^o]=0\neq E[X_{\infty}|{\cal F}_L^{\pi}]$
Comment: See
1357Keywords: Local times,
Balayage,
Balayage formulaNature: Original Retrieve article from Numdam
XIII: 41, 478-487, LNM 721 (1979)
MEYER, Paul-André;
STRICKER, Christophe;
YOR, Marc
Sur une formule de la théorie du balayage (
General theory of processes)
For the notation, see the review of
1340. It is shown here that under the same hypotheses, the semimartingale $Z_{g_t}X_t$ is a sum of three terms: the stochastic integral $\int_0^t \zeta_s dX_s$, where $\zeta$ is the previsible projection of $Z$, an explicit sum of jumps involving $Z-\zeta$, and a mysterious continuous process with finite variation $(R_t)$ such that $dR_t$ is carried by $H$, equal to $0$ if $Z$ was optional
Comment: See
1351,
1357Keywords: Balayage,
Balayage formulaNature: Original Retrieve article from Numdam
XIII: 55, 624-624, LNM 721 (1979)
YOR, Marc
Un exemple de J. Pitman (
General theory of processes)
The balayage formula allows the construction of many martingales vanishing on the zeros of a given continuous martingale $X$, namely martingales of the form $Z_{g_t}X_t$ where $Z$ is previsible. Taking $X$ to be Brownian motion, an example is given of a martingale vanishing on its zeros which is not of the above form
Comment: The general problem of finding all martingales which vanish on the zeros of a given continuous martingale is discussed by Azéma and Yor in
2622Keywords: Balayage,
Balayage formulaNature: Exposition Retrieve article from Numdam
XIII: 57, 634-641, LNM 721 (1979)
EL KAROUI, Nicole
A propos de la formule d'Azéma-Yor (
General theory of processes)
For the problem and notation, see the review of
1340. The problem is completely solved here, the process $Z_{g_t}X_t$ being represented as the sum of $\int_0^t Z_{g_s}dX_s$ interpreted in a generalized sense ($Z$ being progressive!) and a remainder which can be explicitly written (using optional dual projections of non-adapted processes)
Comment: This paper ends happily the whole series of papers on balayage in this volume
Keywords: Balayage,
Balayage formulaNature: Original Retrieve article from Numdam