Browse by: Author name - Classification - Keywords - Nature

1 matches found
XIII: 26, 294-306, LNM 721 (1979)
BONAMI, Aline; LÉPINGLE, Dominique
Fonction maximale et variation quadratique des martingales en présence d'un poids (Martingale theory)
Weighted norm inequalities in martingale theory assert that a martingale inequality---relating under the law $P$ two functionals of a $P$-martingale---remains true, possibly with new constants, when $P$ is replaced by an equivalent law $Z.P$. To this order, the ``weight'' $Z$ must satisfy special conditions, among which a probabilistic version of Muckenhoupt's (1972) $(A_p)$ condition and a condition of multiplicative boundedness on the jumps of the martingale $E[Z\,|\,{\cal F}_t]$. This volume contains three papers on weighted norms inequalities, 1326, 1327, 1328, with considerable overlap. Here the main topic is the weighted-norm extension of the Burkholder-Gundy inequalities
Comment: Recently (1997) weighted norm inequalities have proved useful in mathematical finance
Keywords: Weighted norm inequalities, Burkholder inequalities
Nature: Original
Retrieve article from Numdam