Quick search
Browse volumes
Author
Anywhere
I - LNM 39 (1967)
II - LNM 51 (1968)
III - LNM 88 (1969)
IV - LNM 124 (1970)
V - LNM 191 (1971)
VI - LNM 258 (1972)
VII - LNM 321 (1973)
VIII - LNM 381 (1974)
IX - LNM 465 (1975)
X - LNM 511 (1976)
XI - LNM 581 (1977)
XII - LNM 649 (1978)
XIII - LNM 721 (1979)
XIV - LNM 784 (1980)
XV - LNM 850 (1981)
XVI - LNM 920 (1982)
XVI-Suppl. - LNM 921 (1982)
XVII - LNM 986 (1983)
XVIII - LNM 1059 (1984)
XIX - LNM 1123 (1985)
XX - LNM 1204 (1986)
XXI - LNM 1247 (1987)
XXII - LNM 1321 (1988)
XXIII - LNM 1372 (1989)
XXIV - LNM 1426 (1990)
XXV - LNM 1485 (1991)
XXVI - LNM 1526 (1992)
XXVII - LNM 1557 (1993)
XXVIII - LNM 1583 (1994)
XXIX - LNM 1613 (1995)
XXX - LNM 1626 (1996)
XXXI - LNM 1655 (1997)
XXXII - LNM 1686 (1998)
XXXIII - LNM 1709 (1999)
XXXIV - LNM 1729 (2000)
XXXV - LNM 1755 (2001)
XXXVI - LNM 1801 (2003)
XXXVII - LNM 1832 (2003)
XXXVIII - LNM 1857 (2005)
XXXIX - LNM 1874 (2006)
XL - LNM 1899 (2007)
XLI - LNM 1934 (2008)
XLII - LNM 1979 (2009)
XLIII - LNM 2006 (2011)
XLIV - LNM 2046 (2012)
XLV - LNM 2078 (2013)
XLVI - LNM 2123 (2014)
XLVII - LNM 2137 (2015)
Browse by:
Author name
-
Classification
-
Keywords
-
Nature
XVI
: 10, 151-152, LNM 920 (1982)
MEYER, Paul-André
Sur une inégalité de Stein
(
Applications of martingale theory
)
In his book
Topics in harmonic analysis related to the Littlewood-Paley theory
(1970) Stein uses interpolation between two results, one of which is a discrete martingale inequality deduced from the Burkholder inequalities, whose precise statement we omit. This note states and proves directly the continuous time analogue of this inequality---a mere exercise in translation
Keywords:
Littlewood-Paley theory
,
Martingale inequalities
Nature:
Exposition
,
Original additions
Retrieve article from
Numdam