Quick search | Browse volumes | |

XV: 39, 587-589, LNM 850 (1981)

**ÉMERY, Michel**

Non-confluence des solutions d'une équation stochastique lipschitzienne (Stochastic calculus)

This paper proves that the solutions of a stochastic differential equation $dX_t=f(., t,X_t)\,dM_t$ driven by a continuous semimartingale $M$, where $f(\omega,t,x)$ is as usual previsible in $\omega$ and Lipschitz in $x$, are non-confluent, i.e., the solutions starting at different points never meet

Comment: See also 1506, 1507 (for less general s.d.e.'s), and 1624

Keywords: Stochastic differential equations, Flow of a s.d.e.

Nature: Original

Retrieve article from Numdam

Non-confluence des solutions d'une équation stochastique lipschitzienne (Stochastic calculus)

This paper proves that the solutions of a stochastic differential equation $dX_t=f(., t,X_t)\,dM_t$ driven by a continuous semimartingale $M$, where $f(\omega,t,x)$ is as usual previsible in $\omega$ and Lipschitz in $x$, are non-confluent, i.e., the solutions starting at different points never meet

Comment: See also 1506, 1507 (for less general s.d.e.'s), and 1624

Keywords: Stochastic differential equations, Flow of a s.d.e.

Nature: Original

Retrieve article from Numdam