XIII: 45, 521-532, LNM 721 (1979)
JEULIN, Thierry
Un théorème de J.W. Pitman (
Brownian motion,
Diffusion theory)
This paper contains an appendix by M. Yor. Let $(B_t)$ and $(Z_t)$ be a Brownian motion and a Bes$_3$ process both starting at $0$. Put $S_t=\sup_{s\le t} B_t$ and $J_t=\inf_{s\ge t}Z_t$. Then Pitman's theorem asserts that, in law, $2S-B=Z$ and $2J-Z=B$ (both statements being in fact equivalent). A complete proof of the theorem is given, using techniques from the general theory of processes. The appendix shows that, granted that $2S-B$ is Markov, it is easy to see that it is a Bes$_3$
Keywords: Bessel processesNature: New proof of known results Retrieve article from Numdam