Browse by: Author name - Classification - Keywords - Nature

XIII: 06, 90-115, LNM 721 (1979)
AZÉMA, Jacques; YOR, Marc
Une solution simple au problème de Skorokhod (Brownian motion)
An explicit solution is given to Skorohod's problem: given a distribution $\mu$ with mean $0$ and finite second moment $\sigma^2$, find a (non randomized) stopping time $T$ of a Brownian motion $(X_t)$ such that $X_T$ has the distribution $\mu$ and $E[T]=\sigma^2$. It is shown that if $S_t$ is the one-sided supremum of $X$ at time $t$, $T=\inf\{t:S_t\ge\psi(X_t)\}$ solves the problem, where $\psi(x)$ is the barycenter of $\mu$ restricted to $[x,\infty[$. The paper has several interesting side results, like explicit families of Brownian martingales, and a proof of the Ray-Knight theorem on local times
Comment: The subject is further investigated in 1356 and 1441. See also 1515. A general survey on the Skorohod embedding problem is Ob\lój, Probab. Surv. 1, 2004
Keywords: Skorohod imbedding
Nature: Original
Retrieve article from Numdam