Quick search | Browse volumes | |

XI: 34, 493-501, LNM 581 (1977)

**YOR, Marc**

A propos d'un lemme de Ch. Yoeurp (General theory of processes, Martingale theory)

Yoeurp's lemma is the following: if $A$ is a previsible process of bounded variation, its square bracket $[A,L]$ with any local martingale $L$ is a local martingale. This useful result was not easily accessible, thus a complete proof is given, with several new applications---in particular, this characterizes previsible processes of bounded variation among semimartingales

Keywords: Yoeurp's lemma, Square bracket

Nature: Original

Retrieve article from Numdam

A propos d'un lemme de Ch. Yoeurp (General theory of processes, Martingale theory)

Yoeurp's lemma is the following: if $A$ is a previsible process of bounded variation, its square bracket $[A,L]$ with any local martingale $L$ is a local martingale. This useful result was not easily accessible, thus a complete proof is given, with several new applications---in particular, this characterizes previsible processes of bounded variation among semimartingales

Keywords: Yoeurp's lemma, Square bracket

Nature: Original

Retrieve article from Numdam