I: 03, 34-51, LNM 39 (1967)
COURRÈGE, Philippe
Noyaux de convolution singuliers opérant sur les fonctions höldériennes et noyaux de convolution régularisants (
Potential theory)
The Poisson equation $ėlta\,(Uf)=-f$, where $U$ is the Newtonian potential is proved to be true in the strictest sense when $f$ is a Hölder function (while it is not for mere continuous functions). This involves an exposition of singular integral kernels on Hölder spaces
Comment: This talk was a by-product of the extensive work of Courrège, Bony and Priouret on Feller semi-groups on manifolds with boundary (
Ann. Inst. Fourier, 16, 1968)
Keywords: Newtonian potentialNature: Exposition Retrieve article from Numdam