Quick search | Browse volumes | |

X: 28, 540-543, LNM 511 (1976)

**MOKOBODZKI, Gabriel**

Démonstration élémentaire d'un théorème de Novikov (Descriptive set theory)

Novikov's theorem asserts that any sequence of analytic subsets of a compact metric space with empty intersection can be enclosed in a sequence of Borel sets with empty intersection. This result has important consequences in descriptive set theory (see Dellacherie 915). A fairly simple proof of this theorem is given, which relates it to the first separation theorem (rather than the second separation theorem as it used to be)

Comment: Dellacherie in this volume (1032) further simplifies the proof. For a presentation in book form, see Dellacherie-Meyer,*Probabilités et Potentiel C,* chapter XI **9**

Keywords: Analytic sets

Nature: Original

Retrieve article from Numdam

Démonstration élémentaire d'un théorème de Novikov (Descriptive set theory)

Novikov's theorem asserts that any sequence of analytic subsets of a compact metric space with empty intersection can be enclosed in a sequence of Borel sets with empty intersection. This result has important consequences in descriptive set theory (see Dellacherie 915). A fairly simple proof of this theorem is given, which relates it to the first separation theorem (rather than the second separation theorem as it used to be)

Comment: Dellacherie in this volume (1032) further simplifies the proof. For a presentation in book form, see Dellacherie-Meyer,

Keywords: Analytic sets

Nature: Original

Retrieve article from Numdam