Browse by: Author name - Classification - Keywords - Nature

X: 25, 521-531, LNM 511 (1976)
Séparabilité optionnelle, d'après Doob (General theory of processes)
A real valued function $f(t)$ admits a countable set $D$ as a separating set if the graph of $f$ is contained in the closure of its restriction to $D$. Doob's well known theorem asserts that every process $X$ has a modification all sample functions of which admit a common separating set $D$ (deterministic). It is shown that if $D$ is allowed to consist of (the values of) countably many stopping times, then every optional process is separable without modification. Applications are given
Comment: Doob's original paper appeared in Ann. Inst. Fourier, 25, 1975. See also 1105
Keywords: Optional processes, Separability, Section theorems
Nature: Exposition, Original additions
Retrieve article from Numdam