RÉDACTION N° 119

COTE : NBR 026

TITRE : Functional Notation and General Associativity

ASSOCIATION DES COLLABORATEURS DE NICOLAS BOURBAKI

NOMBRE DE PAGES : 3
NOMBRE DE FEUILLES : 3
Functional notation and general associativity. (Eilenberg)

Let E, A_1, A_2, \ldots be mutually disjoint sets. The elements of E will be denoted by x, y, \ldots; the elements of A_n by F^n. Using the elements of these sets we define words. The product W_1W_2 of two words is defined by juxtaposition.

Meaningful words are defined recursively as follows. The word w for $x \in E$ is meaningful. If W_1, \ldots, W_n are meaningful and $F^n \in A_n$ then $F^nW_1\ldots W_n$ is meaningful.

The **weight** $p(W)$ is defined as follows

$$p(x) = -1, \quad p(F^n) = n^{-1}, \quad p(W_1W_2) = p(W_1) + p(W_2)$$

Theorem. A word W is meaningful if and only if the following three conditions hold

1. the last letter of W is in E
2. $p(W) = -1$
3. if $W = W_1W_2$ with W_2 non-empty then $p(W_1) \geq 0$.

Corollary. If W_1, \ldots, W_n, V_1, \ldots, V_n are meaningful and $F^nW_1\ldots W_n = F^nV_1\ldots V_n$ then $W_i = V_i$ for $i = 1, \ldots, n$.

Now specialize to the case when A_n is a subset of the set of all functions of n-variables in E with values in E

$$F^n : E^n \to E.$$

Then we may define the **value** $v(W)$ of a meaningful word W as follows

$$v(x) = x, \quad v(F^nW_1\ldots W_n) = F^n(v(W_1), \ldots, v(W_n))$$

It follows from the corollary that $v(W)$ is a uniquely defined element of E.

Let now E be a set with an internal law of composition defined for all pairs

$$F : E^2 \to E$$
Let the set \(A_2 \) consist of \(F \) alone while \(A_n = 0 \) for \(n \neq 2 \). Each meaningful word \(W \) has then a value \(v(W) \) in \(E \).

We shall say that two words are similar if they become equal after all \(F \)'s are omitted.

General associativity theorem. If the composition law \(F \) is associative

\[
F(F(x,y),z) = F(x,F(y,z))
\]

then any two similar meaningful words have the same value.

Proof. Define normal words as follows: \(x \) is normal, if \(W \) is normal then \(FxW \) is normal. Clearly every meaningful word \(W \) is similar to a unique normal word \(W^n \). It therefore suffices to prove that \(W \) and \(W^n \) have the same value. Suppose that this has been proved for shorter words. Let \(W = FW_1W_2 \) with \(W_1 \) and \(W_2 \) meaningful. Then \(W \) has the same value and is similar to \(V = FW_1W_2^n \). If \(W_1 \) is a single symbol \(x \) then \(V \) is normal and \(V = W^n \). Therefore assume \(W_1 = FxW_3 \) with \(W_3 \) normal. Then \(V = FW_1W_2^n \) and \(V \) is similar to \(V' = FW_3W_2^n \). By the ordinary associativity \(V \) and \(V' \) have the same value. Let \(W_4 \) be the normal word similar to \(FW_3W_2^n \); then \(W_4 \) has the same value as \(FW_3W_2^n \) since \(FW_3W_2^n \) is shorter than \(W \). Thus \(W \) is similar to and has the same value as \(FxW_4 \), which is a normal word.