RÉDACTION N° 082

COTE: HCR 002

TITRE: PRÉCISIONS ET COMPLÉMENTS À LA THÉORIE DE L'HOMOLOGIE

FONDS: HENRI CARTAN

NOMBRE DE PAGES:

12

NOMBRE DE FEUILLES:

12

HCR 002

Land notant the l'image de tipe dans HE(BO(V):2);

d'algèbres de Hopf, convoie xi en 0 et xi en ti de l'application diagonale de H (BO(V);Z) est donnée par

(59) He (BO(V); Z) est une algèbre de polynômes $L(t_4, \dots, t_{4k}, \dots)$ avec l'application diagonale $\triangle t_{4k} = \bigcirc_{i,j=k} t_{4i} \otimes t_{4j}$ ($t_0 = 1$). Sur On a défini au no 9 un isomorphisme de He (BO(V); Z) xxxx une sous-algèbre B de He (BO(V); Z). On notera t_{4k} l'image de \overline{t}_{4k} par

cet isomorphisme. Kex Ainsi B = L(t₄,...,t_{4k},...) a pour supplémentaire, dans $H_{\bullet}(BO(V);Z)$, le groupe de torsion, formé d'éléments d'ordre 2. L'image de t_{4k} dans $H_{\bullet}(BO(V);Z)$ est $(z_{2k})^2$.

Remarque ala relation (5%) et l'application diagonale dans H'(BO(V):Z₂) (définie par (46)) déterminent l'application diagonale dans H'(BO(V):Z), bien que, a priori, ce ne soit pas une algèbre de Hopf:

(5%) $\Delta t_{4k}^{!} = \sum_{i,j=k} t_{4i}^{!} \otimes t_{4j}^{!} + \sum_{i=1}^{2} (z_{2i-1}^{!})^{2} \otimes (z_{2i-1}^{!})^{2} \otimes (z_{2i-1}^{!})^{2}$ en rappelant qu'on a identifié 2m xixxx $(z_{2j-1}^{!})^{2}$ en rappelant qu'on a identifié 2m xix $(z_{2j-1}^{!})^{2}$ en rappelant qu'on a identifié 2m xix (

(59:) $\Delta t_{4k} = \sum_{i \neq j \neq k} t_{4i} \otimes t_{4j} + \sum_{i \neq j} (z_{2i-1})^2 \otimes (z_{2k-2i+1})^2.$ L'application diagognle (59) permet d'expliciter une base des éléments primitifs de $\overline{I_{ik}}(BO(V); \overline{Z})$:

(60) $p_4 = \overline{t}_4$, ..., $p_{4k} = (-1)^{k+1} k \overline{t}_{4k} + \int_{121}^{24} (-1)^{j+1} \overline{t}_{4j} p_{4k-4j}$.

On les notera $p_{4k}(\overline{t})$.

L'assertion (54), et le fait que $\frac{1}{4k+2}$ D'après (56), l'application H'(BU(V_C);Z) $\stackrel{\cdot}{\to}$ H'(BO(V);Z) envoie $\frac{1}{4k}$ en $\frac{1}{4k}$, et $\frac{1}{4k+2}$ en 0, comme on l'a déjà dit. Par dualité; l'application $\stackrel{\cdot}{H}_{*}(BO(V);Z)$ $\stackrel{\cdot}{H}_{*}(BU(V_C);Z)$ envoie (-1) $\stackrel{\cdot}{V}_{*}$ en

to the state of th

- (61) $\overline{H}_{A}(BO(V);Z) \rightarrow H_{A}(BU(V_{C});Z)$ envoie $p_{4k}(\overline{t})$ en $p_{4k}(x)$.

 De là on déduit, comme pour (16):
- (60) H. (BO(V):Z) \rightarrow H. (BU(V_C):Z) envoie (-1)^k t_{4k} en $\sum_{i\neq j=1}^{k}$ (-1)ⁱ x_{2i} z_j En raisonnant comme dans la démonstration de (20), on montre que l'application composée

envoie chaque élément primitif dans le double de ce même élément. Ainsi gef envoie $p_{4k}(\bar{t})$ en $2p_{4k}(\bar{t})$. Or, d'après (61), f envoie $p_{4k}(\bar{t})$ en $p_{4k}(\bar{$

(62) H. Bu(V); Z) H. (BØ(V); ZV envoie Z. dans) (-1) Z. (et 2002)

Ce résultat, qu'on vient de montrer pour l'espace complexe Vg., vaut pour tout espace complexe X de dimension inifinie. Ainsi:

(63) $H_{\mathbf{A}}(\mathrm{BU}(\mathrm{X}); \mathbb{Z}) \hookrightarrow \overline{\mathrm{H}_{\mathbf{A}}}(\mathrm{BO}(\mathrm{X}); \mathbb{Z})$ envoie $\mathrm{p}_{4\mathrm{k}}(\mathrm{x})$ en 2 $\mathrm{p}_{4\mathrm{k}}(\mathrm{t})$.

On a vu (n° 1) que la suspension $F_{\mathcal{X}}: H_{\mathcal{B}}(U(X); Z) \to H_{\mathcal{B}}(BU(X); Z)$ envoie a_{4k-1} en $p_{4k}(x)$; on sait d'autre part par (45) que l'injection $U(X) \subset SO(X)$ envoie a_{4k-1} en $e_{4k-1} \in H_{\mathcal{B}}(SO(X); Z)$. En comparant a (63), on obtient $f_{\mathcal{A}}(SO(X); Z) = f_{\mathcal{A}}(SO(X); Z)$ on obtient $f_{\mathcal{A}}(SO(X); Z) = f_{\mathcal{A}}(SO(X); Z)$ on obtient $f_{\mathcal{A}}(SO(X); Z) = f_{\mathcal{A}}(SO(X); Z)$ on obtient:

- (64) La suspension \overline{E} : $\overline{H}_{\bullet}(SO(X); Z) \rightarrow \overline{H}_{\bullet}(B(SO(X)); Z)$ envoie \overline{e}_{4k-1} en $2 p_{4k}(\overline{t})$; par dualité:
- (64:) La suspension (60: $\overline{H}^*(B(SO(X));Z) \rightarrow \overline{H}^*(SO(X);Z)$ envoie \overline{t}_{4k}^{i} en $2 \overline{t}_{4k-1}^{i}$

(63) $H_{\chi}(BU(X); \mathbb{Z}) \rightarrow H_{\chi}(BO(X); \mathbb{Z})$ envoie X_{4k} en $(-1)^k$ t_{4k} .

propriété La **xelutium** (63) montre, en explicitant $p_{4k}(x)$ et $p_{4k}(t)$, et en raisonnant par récurrence sur k:

(63') $\xrightarrow{\text{$kkk}}$ $\xrightarrow{\text{$kkk}}$ $\xrightarrow{\text{$k$k}}$ (BU(X):Z) $\xrightarrow{\text{$kkk}}$ BO(X):Z) envoie x_{4k} en $(-1)^k$ $\xrightarrow{\text{$tkk}}$ et x_{4k+2} en 0.

De là on déduit, en raisonnant comme pour (21) et (22):

- (65) $H^{\bullet}(BO(X);Z) \hookrightarrow H^{\bullet}(BU(X);Z)$ envoie $t_{4k}^{!}$ en $(-1)^{1}x_{2i}^{!}x_{2j}^{!}$ On va preciser la relation (631), comme suit:
- (66) $H_{*}(BU(X);Z) \longrightarrow H_{*}(BO(X);Z)$ envoie x_{4k} en $(-1)^{k}$ t_{4k} .

 La relation (66) va résulter de (631) et de ceci:
- (67) $H_{\bullet}(BU(X);Z_{\bullet}) \to H_{\bullet}(BO(X);Z_{\bullet})$ envoie $H_{\bullet}(X_{\bullet}) \times H_{\bullet}(SO(X);Z_{\bullet})$ Démonstration de (67): l'application $H_{\bullet}(U(X);Z_{\bullet}) \to H_{\bullet}(SO(X);Z_{\bullet})$ induit, en chaque degré impair, un isomorphisme des espaces d'"éléments indécomposables"; comme les suspensions

définissent un isomorphisme des indécomposables sur les primitifs (cf. Exposé 7, \$7, théorème III; ce théorème est applicable en caractéristique 2 même lorsque le module A de l'énoncé n'est pas pair, pourvu que L(A) ait même rang, en chaque degré, que l'homologie de la fibre), il s'ensuit que l'application (6%) induit un isomorphisme des espaces d'éléments primitifs, en chaque degré pair. Or ce fait détermine entièrement l'application, et la propriété (6%) en découle par récurrence sur k.

Par dualité, on déduit de (65), en raisonnant comme pour (21) et (22):

De (63) on déduit aussitôt, par dualité:

(68) \longrightarrow (BU(X): \mathbb{Z}_2) \longrightarrow envoie \mathbb{Z}_{2k+1}^i en 0, et \mathbb{Z}_2^i en \mathbb{Z}_2^i

.11. Homologie et cohomologie de SO(X)/U(X).-

Coefficients $O_{\mathbb{C}}$ considérons le fibré en espaces de Hopf: $SO(X)/U(X) \longrightarrow BU(X) \longrightarrow B(SO(X))$.

En homologie, l'application $F_{\bullet}(BU(X); Q_2) \to F_{\bullet}(B(SO(X)); Q_2)$ est surjective d'après (63'); donc $F_{\bullet}(SO(X)/U(X); Q_2)$ s'identifie à la sous-algèbre de Hopf de $F_{\bullet}(BU(X); Q_2)$, "noyau" de l'homomorphisme d'algèbres de Hopf $F_{\bullet}(BU(X); Q_2) \to F_{\bullet}(B(SO(X)); Q_2)$. Le calcul est le même que pour l'homologie $F_{\bullet}(SP(X_H)/U(X); Z)$ (cf. n° 5), et on trouve:

(69) $H_{\bullet}(SO(X)/U(X); \mathbb{Q}_2)$ est une algèbre de polynômes engendrée par les éléments $u_2, u_6, \dots, u_{4k+2}, \dots$ (définis par (24)).

Par dualité (cf. (23)):

**(SO(X)/U(X):2) s'identifie au quotient de H*(BU(X):2) par l'idéal engendré par les éléments (-1) x' x' x'. Puisque la division par 2 est possible (coefficients 2), x' s'exprime (par récurrence sur k) comme polynôme en les x' pour i k, d'où:

(70) $\int \int \frac{1}{4} (SO(X)/U(X); Q_2) = L(x_2, x_1, \dots, x_{4k+2}, \dots)$ (algebre de muxumumum) polynômes par rapport aux classes de Chern de degrés 4k+2).

Coefficients Z_2 : Considérons le fibré en espaces de W Hopf: $U(X) \longrightarrow SO(X) \longrightarrow SO(X)/U(X)$.

On a vu au no 8 que $H_{\mathbb{R}}(\mathbb{U}(\mathbb{X});\mathbb{Z}_2) \to H_{\mathbb{R}}(\mathbb{SO}(\mathbb{X});\mathbb{Z}_2)$ envoie a_{2k+1} en $p_{2k+1}(c);$ c'est donc une injection, et par suite $H_{\mathbb{R}}(\mathbb{SO}(\mathbb{X})/\mathbb{U}(\mathbb{X});\mathbb{Z}_2)$ s'identifie au quotient de $H_{\mathbb{R}}(\mathbb{SO}(\mathbb{X});\mathbb{Z}_2) = \mathbb{E}(c_1,c_2,\ldots,c_k)$ par l'idéal engendré par $p_1(c)$, $p_3(c)$, ..., $p_{2k+1}(c)$, ...; d'après (36), cet idéal est aussi l'idéal engendré par $c_1,c_3,\ldots,c_{2k+1},\ldots,d$ 'où:

(71) $H_{\bullet}(SO(X)/U(X); \mathbb{Z}_{2}) = E(c_{2}, c_{4}, ..., c_{2k}, ...)$ (algèbre extérieure), avec l'application diagonale induite $\triangle c_{2k} = \sum_{k} c_{2k} c_{2k}$.

Par dualité:

Tak+2 (...) (72) $\int \int (SO(X)/U(X); Z_2) = L(c_2, c_5, ..., c_{4k+2}, ...), algèbre de polynômes$ engendrée par des éléments wxxxxxxxxxx primitifs c: = (c:)2. Par comparaison de (70) et (72), et en xxxxixxx appliquant

le co rollaire du théorème 4 de l'Exposé 4, on voit que:

(73) SO(X)/U(X):Z) est une algèbre de polynômes En fait, on verra plus loin (& (%)) qu'on peut prendre comme générateurs de cette algèbre les moitiés des classes de Chern x^* du fibré SO(X), de groupe U(X), de base SO(X)/U(X).

12. Homologie et cohomologie de U(Vc)/O(V) et de SU(Vc)/SO(V). Rappelons (cf. Exposé 16, proposition 1) qu'on peut considérer $SU(V_C)/O(V)$ comme le revêtement universel de $U(V_C)/O(V)$, dont le groupe fondamental est Zi.

Coefficients 2, considérons le fibre en espaces de Hopf: $so(v) \longrightarrow U(v_c) \longrightarrow U(v_c)/so(v)$.

In Explication Extended the Holy Solving 2 H Auto Holy to 20 L'application $H_{\infty}(SO(V); \Omega_2) \longrightarrow H_{\infty}(U(V_C); \Omega_2)$ est injective, d'après (55); donc $H_{\infty}(U(V_{\mathbb{C}})/O(V); \mathbb{Q}_{2}) = H_{\infty}(U(V_{\mathbb{C}})/SO(V); \mathbb{Q}_{2})$ stidentifie au quotient de $H_{\infty}(U(V_{\mathbb{C}}); \mathbb{Q}_{2})$ par l'idéal engendré par les éléments a_{4k-7}; ainsi:

(74) $H_{\infty}(U(V_{\mathbb{C}})/O(V); Q_{\mathbb{C}}) = E(a_1, a_5, \dots, a_{4k+1}, \dots), \text{ algèbre extérieure}$ engendrée par des éléments primitifs. Par dualité:

 $H^{\bullet}(U(V_{C})/O(V);Q_{2}) = E(a_{1}^{\bullet},a_{5}^{\bullet},...,a_{4k+1}^{\bullet},...)$ (s'identifie à une (741)sous-algebre de H*(U(Vg);Qg)).

de Hopf:

 $U(V_{G})/O(V) \longrightarrow BO(V) \longrightarrow BU(V_{G}).$

On a vu (no 10) que φ : $H_{\mathcal{L}}(BO(V); Z_2) \rightarrow H_{\mathcal{L}}(BU(V_C); Z_2)$ envoie z_{2k} en x_{2k} , et z_{2k+1} en 0; elle est donc surjective, et par suite $H_{\mathcal{L}}(U(V_{C})/O(V);Z_{Q})$ s'identifie à la sous-algèbre de Hopf de $F_{*}(BO(V); Z_2) = L(z_1, z_2, \dots, z_k, \dots), "noyau" de \varphi \cdot D'où:$

(75) $T = H_{*}(V_{C})/O(V):Z_{2} = L(p_{1}(z), p_{3}(z), ..., p_{2k+1}(z), ...), algebre de$ polynômes engendrée par des éléments primitifs, avec

> $\beta p_{2k+1}(z) = (p_k(z))^2$. Par dualité, $H^*(U(V_c)/O(V); Z_2)$ s'identifie au quotient de $H^{\bullet}(BO(V); Z_{2}) = L(z_{1}^{\bullet}, z_{2}^{\bullet}, \dots, z_{k}^{\bullet}, \dots)$ par l'idéal engendré par les

 $(U(V_G)/O(V);Z_2) = E(z_1,z_2,...,z_k,...)$, algebre extérieure xxx (76)avec application diagonale \(\Delta z = \ \ z \ \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ \ z \ \ \ z \ \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ z \ \ z \ \ z \ z \ \ z \ \ z \ \ z \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \ z \ \

 $(z_1^*)^2$ (cf. (57)); **XNXXXXXX** autrement dit:

tifs Bockstein étant donné par (52).

Calculons la β -cohomologie de $\Pi^*(U(V_G)/O(V); Z_2)$: comme 6 -algèbre différentielle graduée, elle admet une sous-algèbre est $E(z_1, ..., z_k^1, ...)$, avec le Bockstein $\beta z_k^1 = z_{2k+1}^1, \beta z_{2k+1}^1 = z_{2k+1}^1$ De là résulte que les éléments

Zig Zizi..., Zi Zi 2k 2k+l, engendrent une sous-algèbre extérieure de F (U(Vg)/0(V);Z2), contenue dans Ker B:, et zama ayant comme supplémentaire Im B: Observons que Al est aussi // l'algèbre extérieure Testiments pripilities?

Rar comparaison avec (741), on voit que H"(U(VC)/O(V); Z2) a, en chaque degré, Ana Re-pang Anamo Hay 22-rang de H" (U(Ve)/0(Or les éléments primitifs de H (U(V)/O(V);Z) sont donnés par des formules analogues à (36); les éléments

 $N_1 = Z_1^2, \dots, Z_{2k+1}^2 + Z_1^2 Z_1^2 + Z_2^2 Z_1^2 Z_2^2 + Z_2^2 Z$

contenue dans Ker B, et avant pour supplémentaire Im B.

D'après l'appendice, (les éléments de H (U(V_C)/O(V):Z) dont l'image dans KX(W(XX)/XXXX H (U(V_C)/O(V):Z₂) appartient à A' forment (une sous-algèbre de Hopf B', isomorphe à H (U(V_C)/O(V);Z) (quotient de l'algèbre de cohomologie à coefficients entiers par la torsion).

L'algèbre B' est une algèbre extérieure engendrée par des éléments primitifs, que nous noterons (X)_{4k+1} (ces éléments sont, jusqu'à nouvel ordre, bien déterminés au signe près). L'image de (X)_{4k+1} dans H (U(V_C)/O(V);Z₂) est p'_{4k+1}.

On se propose maintenant de chercher l'image de (V_{4k+1}) dans l'application $H^{2}(U(V_{C})/O(V);Z) \longrightarrow H^{2}(U(V_{C});Z)$. Pour cela, considérons la spectrale de cohomologie, à coefficients Z_{2} , du fibré

 $U(V_C) \longrightarrow U(V_C)/O(V) \longrightarrow BO(V)$.

Le terme E2 de cette suite spectrale est

 $E_2 = E(a_1, \ldots, a_{2k+1}, \ldots) \otimes L(z_1, \ldots, z_k, \ldots),$

les algèbres extérieure et polynomiale étant prises à coefficients dans \mathbb{Z}_2 . De plus, d'après (76), le terme \mathbb{E}_2 est

 $\mathbb{E}_{\mathbf{z}} = \mathbb{E}(\mathbf{z}_{1}^{1}, \dots, \mathbf{z}_{k}^{1}, \dots).$

Il faut donc que, dans le passage de \mathbb{E}_2 à \mathbb{E}_{∞} , les carrés $(z_k^i)^2$ soient "tués". Un raisonnement facile de suite spectrale montre, par récurrence sur k, que les a $\frac{1}{2k}$ $(\mathbb{U}(\mathbb{V}_C);\mathbb{Z}_2)$ sont transgressifs

et que la différentielle de convoie a en (z:)2. Or, dans la cohomologie de la base H (BO(V); Z2), on a :

(2)2-81213 J21 12 31(2) 21 $\beta p_{4k+1}^{i} = (z_{2k+1}^{i})^{2} pour k \geqslant 0.$

De là nous allons déduire:

(77) $U(V_C)/O(V);Z) \longrightarrow HU(V_C);Z)$ envoie $(V_C)_{4k+1}$ en $\pm 2a_{4k+1}$. Démonstration (on vient de voir que d_{4k+2} $a_{4k+1}^* = \beta^* p_{4k+1}^*$. Donc cochaine) il existe une $\ell \not = \ell \not =$ U(V_C)) dons (la classe de cohomologie at at et dont le cobord delta δu = v est un cocycle de la base, danaxiaxerameximizaxe dont l'image dans H (BO(V); Z) est (B)p: ... En ajoutant au besoin à u un cocycle de la base, on peut supposer que (en muinnique notant t une cochaîne de la base dont la classe de cohomologie mod 2 soit p: $\delta u - \frac{1}{2} \delta t = 2 w,$

> w étant un cocycle de la base. Ainsi (2u-t) = 4 w; donc la classe de cohomologie entière de dw est nulle, et puisque la torsion de H (BO(X); Z) est d'ordre 2, 2 w est un cobord s (s: cochaîne de la base); en retranchant s de u, on se ramène au cas où s = 0. Alors 2u-t est un Z-cocycle du fibré; ce cocycle induit sur la fibre la classe de Z-cohomologie de 2ai, , et sa réduction mod 2 est l'image de t dans $H^{*}(U(V_{G})/O(V); \mathbb{Z}_{2})$. En d'autres termes, 2u - t a pour classe de cohomologie entière un multiple impair de $(V_C)/0(V)$ et par suite l'application $H^*(U(V_C)/0(V);Z)$ $H^{\bullet}(U(V_{C});Z)$ envoie un multiple impair de \otimes_{4k+1}^{\bullet} en l'élément 2 at . Ceci exige que ce multiple impair soit 101, et (77) est ainsi démontrée.

On achèvera donc de fixer le choix du signe des 4k+l convenant que $(U(V_C)/O(V);Z) \rightarrow H(U(V_C);Z)$ envoi $(V_C)/O(V);Z$ 2 a 4k+1

Passons maintenant à $SU(V_C)/SO(V)$, revêtement universel de $U(V_C)/O(V)$. Considérons le fibré en espaces de Hopf: $SU(V_C)/SO(V) \longrightarrow U(V_C)/O(V) \longrightarrow K(Z,1).$ En cohomologie à coefficients $Z_{2^{j}}$ $K(Z,1):Z_{2^{j}}$ est une algèbre extérieure dont le générateur s'envoie sur $Z_{1^{j}}$ $U(V_C)/O(V):Z_{2^{j}}$;

(78) | donc he (SU(Vg)/nkw) SO(V); Zp) s'identifie à kexementation de le (U(Vg)/O(V); Zp) par l'idéal engendré par zj. De plus:

(78') $H^{2}(SU(V_{G})/SO(V);Z)$ sidentifie à la sous-algèbre extérieure $E(\otimes_{5}^{1},...,\otimes_{4k+1}^{1},...)$ de $H^{2}(SU(V_{G})/SO(V);Z)$, en appelant encore A_{4k+1} (pour A_{k+1}) A_{k+1} (pour A_{k+

13. Homologie ************************* des espaces de lacets des groupes SU(X), Sp(Y) et Spin(V).

On se propose d'expliciter les algèbres d'homologie, sans recher cher encore l'application diagonale.

H.(\O(SU(X);Z) est zne algèbre de polynômez dont les générateurs sont de degrés *** 2, 4, ..., 2k, ...

Cela résulte d'un calcul direct, par récurrence sur n, de $H_{x}(\Omega(x);Z)$, en utilisant le fibré

 $\mathbb{R}(SU(n)) \longrightarrow \mathbb{R}(SU(n+1)) \longrightarrow \mathbb{R}(SU(n+1))$

et le fait munxumun que H. (S (37); Z) est une algèbre de polynômes a un générateur de degré Au. 2n.

H_{*}(Ω(Sp(Y));Z) est une algèbre de polynômes dont les générateurs sont de degrés 2, 6, ..., 4k+2, ... (démonstration * analogue).

 $H_{n}(\Omega_{N}(Spin(V));Z)$ est sans torsion, et on a $H_{n}(\Omega_{N}(Spin(V));Q_{2})$ = algèbre de polynômes à générateurs de $\Omega_{N}(Spin(V));Q_{2}$

μ(Ω (Spin(V)); Z2) = algèbre extérieure à générateurs de degrés)
(pairs 2k.

Sent 1

(80)

(81)

213. Homologie des espaces de lacets des groupes SU(X), Sp(Y) et Spin(V).

On ne s'intéresse ici qu'aux <u>algèbres</u> d'homologie (on laisse de côté la détermination de l'application diagonale). On appliquera systématiquement les théorèmes du 7 de l'Exposé 7; les références se rapporteront toujours à ce paragraphe.

On a vu que $H_{k}(SU(X);Z) = E(a_{3},a_{5},...,a_{2k+1},...)$ comme coalgèbre (et on a précisé le choix des générateurs a_{2k+1}). D'après le théorème I (loc cit.), on obtient:

(79) $H_{\mathfrak{S}}(SU(X));Z) = L(\mathfrak{F}_2,\mathfrak{F}_4,\ldots,\mathfrak{F}_{2k},\ldots)$ comme algèbre, la suspension envoyant \mathfrak{F}_{2k} en \mathfrak{a}_{2k+1} (ceci fixe les \mathfrak{F}_{2k} modulo les décomposables).

o weda

De même, utilisant (8) et le théorème \mathbb{H} , on trouve: (80) $\mathbb{H}(\Omega)(\operatorname{Sp}(Y)) : \mathbb{Z}) = \mathbb{L}(\Omega)(\mathbb{F}(Y)) : \mathbb{Z} = \mathbb{L}(\Omega)(\mathbb{F}(Y)) : \mathbb{L}(\Omega)(\mathbb{$

D'après (29), on a He (Spin(V); $) = E(\overline{e_3}, \dots, \overline{e_{4k-1}}, \dots)$ comme algèbre, compte tenu du fait que Spin(V), revêtement universel de SO(V), a même cohomologie à coefficients). Appliquant alors le théorème on trouve:

- (81) $H_{\bullet}(\mathfrak{I})$ (Spin(V)): \mathfrak{L}_{2}) = $L(\mathfrak{B}_{2},\mathfrak{B}_{6},\ldots,\mathfrak{B}_{4k+2},\ldots)$.

 De même, d'après (42), \mathfrak{I} (Spin(V): \mathfrak{L}_{2}) = $L(\mathfrak{c}_{3}^{!},\ldots,\mathfrak{c}_{2k-1}^{!},\ldots)$; en appliquant le théorème \mathfrak{V} (loca cità), on obtient:
- (81') $H_{\bullet}(\Omega(\operatorname{Spin}(V)); \mathbb{Z}_{2}) = E(Y_{2}, Y_{4}, \dots, Y_{2k}, \dots).$ Comparons (81) et (81'): le Ω_{2} -rang de $H_{\bullet}(\Omega(\operatorname{Spin}(V)); \Omega_{2})$ et le \mathbb{Z}_{2} -rang de $H_{\bullet}(\Omega(\operatorname{Spin}(V)); \mathbb{Z}_{2})$ sont égaux dans chaque degré.

 Donc (Exposé 5, Appendice):
- (82) MANAMA (Spin(V)); Z) est sans torsion (on verra dans l'Exposé se suivant que c'est une algèbre de polynômes dont les générateurs sont de degrés 2, 6, ..., 47 = 2, ...).

sé suivant que l'algèbre de cohomologie $\mathbb{P}(\Omega(\operatorname{Spin}(V));\mathbb{Z})$ est une algèbre de polynômes dont les générateurs sont de degrés $\mathbb{Z},6,\ldots,$

Sp(XH)/U(X), SO(X)/U(X), SU(VG)/SO(V).

D'après (17), $H_{\bullet}(SU(Y)/Sp(Y);Z)$ est, comme coalgèbre, une algèbre extérieure $E(a_5,\ldots,a_{4k+1},\ldots)$ engendrée par des éléments primitifs. Appliquant le théorème $I_{\bullet}(I)$ (les références se rapportent toujours au I7 de l'exposé 7), on obtient:

(83) ktakgamage $\Omega(SU(Y)/Sp(Y));Z) = L(\S_4,...,\S_{4k},...)$ comme algèbre (on note \S_{4k} les générateurs, car ce sont les images des générateurs de même nom de $\Pi(SU(Y));Z$).

(84) L'algèbre $H_{\infty}(\Omega)(\operatorname{Sp}(X_{H})/\operatorname{U}(X)); Q_{2})$ est une algèbre extérieure $E(\mathcal{O}_{1},\mathcal{O}_{5},\ldots,\mathcal{O}_{4k+1},\ldots)$. (Cela résulterait aussi de la considération du fibré

 $\mathbb{O}(\operatorname{Sp}(X_{H})/\operatorname{U}(X))$ \mathbb{Z} $\operatorname{U}(X)$ $\mathbb{O}(X_{H})$, compte tenu de (19)).