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INTRODUCTION

These lecture notes develop some results related to the theory and numerical
analysis of the Navier-Stokes equations of viscous incompressible fluids,

We successively consider the linearized stationary case {Chapter I), the
nonlinear stationary case (Chapter II), and the full nonlinear evolution case
(Chapter III).

In Chapter I, after a short presentation of existence and uniqueness
results, we describe the approximation of the Stokes problem by several finite
difference and finite element methods. This is an opportunity to introduce
various methods of approximation of the divergence free vector functions which
are also essential tools for the numerical aspects of the problems studied in
Chapters II and III.

In Chapter II, we introduce compactness tools in both the continuous and
discrete cases. Otherwise this chapter is just an extension to the nonlinear
case of the results obtained for the linear case in the preceding chapter.

Chapter III deals with the full nonlinear evolution case. We first
describe some typlcal results of the present state of the mathematical theory
of the Navier-Stokes equations (existence and uniqueness results). We then give
a brief introduction to the numerical aspects, combining the discretization in
the space variables discussed in Chapter I with the usual discretization
techniques in the time variable. The stability and convergence of the schemes
are studied by energy methods. The numerical analysis of the full Navier-
Stokes equations will be more fully developed in an extended version of this
course to appear. elsewhere,

The material of these Notes was taught at the University of Maryland
during the first semester of 1972-73 as part of a special year on the Navier-
Stokes and nonlinear partial differential equatianssc*)

The author is very grateful to his colleagues of the Department of
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Mathematics and of the Institute of Fluid Dynamiecs and Applied Mathematics who
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his course and by their great interest.

Direct contributions to the preparation of the manuscript are due to
Annett Williamson and Professors J. Osborn, J. Sather,and P, Wolfe. I wish to
thank them for correcting the manuscript of many english mistakes and for their
interesting comments and suggestions which helped improve the manuscript.
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CHAPTER I

THE STATIONARY STOKES EQUATTONS

INTRODUCTION

In this chapter we study the stationary Stokes equations; that is, the
stationary linearized form of the Navier-Stokes equations. The study of the
Stokes equations is useful by itself; it also gives us an opportunity to introduce
several tools necessary for a treatment of the full Navier~Stokes equations.

In Section 1 we consider some function spaces (spaces of divergence free vector
functions with Lz—components). In Section 2 we give the variational formulation of
the Stokes equations and prove existence and uniqueness of solutions by the projection
theorem. In Sectionsg 3 and 4 we recall a few definitions and results on the approximation
of a normed space and of a variational linear equation (Section 3). We propose then
several types of approximation of a certain fundamental space V of divergence free
vector functions; this includes an approximation by the finite differences method
(Section 3), and by conforming and non-conforming finite element methods (Section 4).
In Section 5 we discuss some algorithms of approximation for the Stokes equations and
the corresponding discretized equations. The purpose of these algorithms is to- |
overcome the difficulty caused by the conditicn div u = 0. As it will be shown,
this difficulty, sometimes, is not merely solved by discretization.

Finally in Section 6 we study the linearized equations of slightly compressible
fluids and their asymptotic convergence to the linear eqdations of incompressible

fluids (i.e., Stokes equations).

81, SOME FUNCTION SPACES

In this section we introduce and study some fundamental function spaces. The
results are important for what follows, but the methods used in this section will
not reappear so that the reader can skim through the proofs and retain only the

general notations described in Sec. 1.1 and the results summarized in Remark 1.6.

1.1 Notation

In euclidian space R we write e, = (1,0,°¢°,0), e, = (0,1,0,"f,0),°'*,
e = (0,°++,0,1), the canonical basis, and x = (x;,°°*,x ), ¥y = (y,,°°",7),
z = (zl,°°‘;zn),"°, will denote points of the space.

The differentiation operator 3§~ (L £4i<n), will be written Di‘ and if
.1 ‘
i = <jz"°'jn) is a multi-index, DJ will be the differentiation operator



3 (5]
(lol) Dj ﬂD:zl see nn;-.——‘—-j‘?-—-v-“mi-
ax oooaxn
"1 n
where
(1.2) (] =3, +oot 3

34 .
When ji = 0 for some i, Di1 is the identity operator; in particular if [j] = 0,

Dj is the identity.
The Set @

Let § be an open set of R" with boundary I'. In general we will need some
smoothness property for . Sometimes we will assume that  is smooth in the
following sense:?

. [ The boundary I 1is a (n-1)-dimensional manifold of class e (r > 1
(1.3) {: which must be specified) and & 1is locally located on one side of T,
We will say that a set Q satisfying (1.3) is of class €', However this hypothesis
is too strong for practical situations {such as a flow in a sguare) and all the main
results will be proved under a weaker condition:
(1.4) The boundary of € dis locally Lipschitzian,

This means that in a neighborhood of any point x€I, T admits a representation
as a hypersufface v, = G<y1’.."yn~l> where & is a lipschitzian function, and
(yl,"'yn) are rectangular coordinates in R" in a basis that may be different from
the canonical basis e1,°",en,

Of course if I is of class fl, then £ is locally lipschitzian.

It is useful for the sequel of this section,
to notice that a set r satisfying (1.4) is
"locally star-shaped"  This means that each
point xﬁe I', has an open neighborhood Cg,
such that Q% = Q(\Qé is star-shaped with Fig. 1
respect to one of its points. According to (1.4) we can moreover suppose that the
boundary of @’; is lipschitzian.

If T is bounded, it can be covered by a finite family of such sets 93, JEI:
if ' is not bounded, the family <05)j€§J can be chosen to be locally finite,

It is understood that £ will always satisfy (1.4), unless we mention explicitly

that § is any open set in r® or that some other smoothness property is required,

éf and Sobolev Spaces
Let §© be any open set in R", We denote by Lp(Q), 1 < p < +(resp. Lm(Q))

the space of real functions defined on (I with the pth power absolutely integrable



(resp. essentially bounded real functions) for the Lebesgue measure dx = dxl'°'dxn.

This is a Banach space with the norm

(1.5) i = {[qu(x)lpdx}%

(o)
(resp.

”uHLw(Q$‘= essegsuplu{x)})‘

For p = 2, L2(Q) is a Hilbert gpace with the scalar product

(1.6) (u,v) = j u{x)v(x)dx
‘ Q

The Sobolev space Wm’p(ﬂ) is the space of functions in LP(Q) with derivatives
of order less than or equal to m in LP(Q) (m = integer, 1 < p < +»), This is a
Banach space with the norm
1

e

{7 [Ip3y? 1P,

(1.7) uf =
‘ WP ) l3]<m ()

When p = 2, Wm’z(Q) = Hm(Q) is a Hilbert space‘wiﬁh the scalar product

(1.8) (v = @lu,plv).

H () !j%Sm
Let 9(2) (resp. 2(R)) be the space of €°  functions with compact support
contained in Q (resp. ). The closure of () in Wm’p(ﬂ) is denoted by
Wy 'P(Q) (H(Q) when p = 2).
We will recall when needed the classical properties of these spaces such as the
density or trace theorems (assuming regularity properties for Q).
We wili often he concerned with n-dimensional vector functions with components

in one of these spaces. We will use the notation
Py = P, wmP@ = Pyt
B = W@, e = @l

and we suppose that these product spaces are equipped with the usual product norm
or an equivalent norm (except H(N) and Q) which are not normed spaces.)

The following spaceé will appear very frequently
L3, L@, HN®@), HX@.

on L2 or L2

The scalar product and the norm are denoted by ¢,*) and I’
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(resp. [*,*] and [} on Hé(@} or HQ(Q)).

We recall that if {} is bounded in some direction(l) then the Poincaré inequality
holds:
1 1
(1.9) {quL2<Q) < C(Q)HDuﬂLg(m, YueH, (Q),

where D is the derivative in that direction and ¢(R2) 1is a constant depending only
on f. In this case the norm f[°] on HQ(Q) (resp. ﬁé(ﬂ)} is equivalent to the

norm.:

+

) n
(1.10) Il = (L Iogel®

The space Hg(Q) (resp. Hé(ﬂ)) is also a Hilbert space with the asscciated scalar

product

1
(1.11) ((u,)) = (Dyu,D V).
i=1

o

This scalar product and this norm are denoted by ((*,*)) and on Hé(Q)

and Hé(ﬂ) {2 bounded in some direction).
Let YV be the space (without topology)
(1.12) A = {u€B), div u = 0},

The closure of % in L*(R) and in ﬁ;(ﬂ) are two basic spaces in the study of the
Navier-Stokes equations; we denote them by H and V. The results of this

section will allow us to give a characterization of V and H.

1.2 A Density Theorem

Let E(Q) be the following auxiliary space:
E@Q) = {u€L?(@), divuel?®}.
This is a Hilbert space when equipped with the scalér product
(1.13) ((u,v))E(ﬂ> = (u,v) + (div u, div v).

It is clear that (1.13) is a scalar product on E(R); it is easy to see that E(Q) is

(1)

i.e., §& 18 included in a slab whose boundary is two hyperplanes which are
orthogonal to this directionm.



complete for the associated norm

l}ul = {((u,u)) }%.(1)
E() TR )
OQur goal is to prove a trace theorem: for u€E(R) one can define the value on T
of the normal component u-V, V = the unit vector normal to the boundary. The
method for that is a classical method of Lions-Magenes [1]. We first start by

proving the

Theorem 1.1.

Let Q be a locally lipschitzian open set in R". Then the set of vector functions

in L 240 is dense in E(Q).

Proof.
Let u be some element of E(f)). We have to prove that u is limit in E(Q)

of vector functioms of F(Q).

i) We first approximate u by functions of E(Q) with compact support in .

Let ¢€EIR™, 0<¢ <1, ¢=1 for |x| <1, and ¢ =0 for |x| >2. For
a >0 let ¢a be the restriction to § of the function xk~+¢(§0. It is easy to
check that ¢auEEE(Q) and that ¢au converges to u in this space as a—®,

The functions with compact support are a dense subspace of E(R2) and we can
suppose that u has compact support.

ii) Let us consider first the case § = Rn; hence uGZE(Rn) and u has
compact support.

The result is then proved by regularization. Let pEE@(RF) be a smooth g

function with compact support, such that p > O, n p(x)dx = 1. For €€(0,1], let
2y
Pe denote the function xP+-§ﬁ p(%)o When €-—0, p. converges in the distribution

sense to the Dirac distribution and it is classical that

(1.14) pv—v in LI@ED), Yver2®y. (?

(1

For if u is a Cauchy sequence in E(), then u, is also a Cauchy sequence in L2(R)
and also div u is a Cauchy sequence in LZ(Q); u converges to some limit u
in L2(Q), and "div u, converges to some limit g Tn L2(Q), necessarily g =
div u, and so u€E(2)and u_ converges to u in E(Q).

(2)

* 1is the convolution operator
(fxg) (x) = J o fx=yiely)dy.
R

If fEELl(Rn), gEELp(Rn), 1 <p<w, then fag makes sense and belongs to PR .



Now peﬁu belongs to Q(Rn) since this function has a compact support
(e}
(C(support p€)+ support u) and components which are € . According to (1.14)

. n
O %u  convergas to u in L2(R Y as £—> 0, and
£

div(peﬁu) = pg* div u converges to div u in -&z(Rn),

as €-— 0. Hence u is the limit'in E(R") of functions of OR).
iii) For the general case, { # Rn, we use the remark after (1.4): Q is locally.
star-shapad. The sets Q>(G§)je;J , form an open covering of Q. Let us consider a

partition of unity subordinated to this covering

(1.15) 1=0¢+ ) 6., 0ED, ¢.€9(0,).
: jed ] v 3 N

Wa can write
u = ¢u + z 9. u,
jeg
the sunm 2 is actually finite since the support of u dig compact.

J

Since the function ¢u has compact support in £ 1t can be shown as in ii) that
¢u is limit in E(R) of functions belonging to P(Q) (the function ¢u extended
- by 0 outside § belongs to E(Rﬂ) and for € sufficiently small, pa*(¢u) has
compact support in ).

Let us consider now one of the functions uj = ¢ju not identically equal to
zero. The set (', = (/. " 1is star-shaped with respect to one of its points; after
a translation in é? wi can suppose this point is 0. Let GX’ A # 0, be the linear

(homothetic) transformation x> Ax. It is clear that

C’r'j c“&fjc O)\&’j for A > 1

o, 0" . C 0,8 . C ¥ for 0 < X < 1.
AT A g

3

Let 0,2 denote the function xt—+ V(Gk(x)); because of Proposition 1.1 below,

the restriction to @‘j of the function Gkauj, A > 1, converges to u in E(@Jj)

(or E(Q)) as i+ 1. But if wj€59(0k<043)) and wj = 1 on OJj’ the function
wj(ck°u} clearly belongs to E(R™). Hence we must only approximate in place of the function
uj, a function vjéfﬁ(Q) which is the vestriction to i of a function wje E(Rn)

with compiat support {(take Wj = wj(ckau}). The result follows then from point ii1).



It remains only to prove the Proposition 1.1 giving some results needed before,

and some results we will need later.

Proposition 1.1.

Let (" be an open set which is star-shaped with respect to 0.

(1) 1f p€D' (O is a distribution in ¢, then a distribution Oy°p can be

defined in 3'(0>\0’) by

(1.16) <0,0p,¢>= —A—lﬁ- <p, c_)\l_qd», V¢€3(0A0)(k > 0).

The derivatives of O,op are related to the derivatives of p by the formula

(1.17) Di(O)\op) = XO'}\O (Dip), 1<i<n.

If A >1, XA—1, the restriction to ¢ of Oyep converges in the distribution

sense to p.
(i) If pELOL(@), 1 <o <+, then OXopELa(GXG’). For A > 1, A— 1, the
restriction to ¢ of Oy°P converges to p in L%0).

Proof.
It is clear that the mapping ¢+ i]ﬁ <p,0.0¢> is linear and continuous on
@(0)\@) and hence defines a distribution which is denoted by OAOP'

The formula (1.17) is easy,
< Di(O)\OD) 9> = - <(cyep),Dy$>

1

i)

B A (D.9)>

1
- .__..__..<p D.(o' °¢)>
-1 s e
AR . b\

]

1
+ FI<Dip’q—%\—o¢>

il

A< OAODiP’¢>

When A > 1, A~—1, the functions O,o¢ have compact support in ¢ for A-1
small enough, and converge to ¢ in I(O) Aas A — 1.

(ii) It is clear that

J | (o,p) (¥) Iady = )\nJ lp ) | %ax
OA@’ &



e llo,opll el
G,0P =P
A o
1%(c,& L
It is then sufficient to prove that gy°P restricted to & converge to p,
for the p's belonging to some dense subspace of La(ﬂ). But P(® is dense in

LQ(@j, and the result is cbvious if pE€I(O).

1.3. A Trace Theorem

We suppose here that & is an open bounded set of class €%, It is known that
there exists a linear continuous operator Yoev&(H;(Q), L2(I)) (the trace operator) ,
such that Y, u = the restriction of u to I' for every function uEHl(Q) which is
twice continuously differentiable in Q. The space Hé(Q) is equal to the kernel
of  Yg. Thelimage space Y, @YY 1is a dense subspace of L%(I) denoted H%'(I’);
the space H?*(I) can be equipped with the norm carriid from H'(I) by Y,» There
exists moreover a linear continuous »perator Q,Qe: LE(T) 11 Q) iwhich is called a
lifting operator), such that YﬂoSZ,Q = the identity operator in H*(I'). All these
results are given in Lions [1], Lions-Magenes [1].

We wantﬁ:o prove a similar result foi the vector finctions in E(Q).

Let H “(I) be the dual space 0-3‘1.’~ H3(IY; since H(I)CL*(I) with a stronger
topology, LZ(T) is contained in H‘Z(I’) with a stronger topology. We have the

following trace theorem (which means that one can define u.\)fr when u€E):

Theorem 1.2,

Let § be an open bounded set class €2, Then there exists a linear continuous

-7

operator YVE”&(E(Q),H (IY), such that

(1.18) Y, u = the restriction of u.V to T, for every u€BD).

The following generalized Stokes formula is true, for each u€E(f) and wEH (R

(1.19) (u, grad w) + (div u, w) =<Y\)u, YW

Proof.

Let ¢":“H%—(T) and let wEH(N) with Y = ¢. For u€E(Q), let us set

1

H

Xu(d?) indiv u(x)wix) + u(x) grad w(x)ldx

i

(div u,w) + (u, grad w).



Lemma 1.1,

e eapt— T

Xu(¢) is independent of the choice of w, as long as wEH () and YW = ¢.

Proof.

Let w, and w, belong to H'(Q), with

and let w = WymW, .

One has to prove that
(div u, Wz) + (u, grad w;) = (div u, w,) + (u, grad W,)y

that is to say
(1.20) (div u, w) + (u, grad w) = 0,

But since we€H(Q) and Yw = 0, w belongs to Hé(Q) and is the limit in
B} (Q) of smooth functions with compact support: w = lim LA wm659(ﬂ). It is

obvious that
(div u, w ) + (u, grad w ) = O, Vme Q)

and (1.20) follows as m-—r o,

Let us take now, w = £Q¢ (see above). Then by the Schwarz inequality

]Xu(¢)f j,HUHE<@)Hw”HI(Q)’

and since lﬂeiii(ﬁ%kf)s HY ()

(1.21) lXu(d)) ! = C{)H ’-IHE(Q)H @u H%(T) 3

wvhere c¢y= the norm of the linear operator QQ. .
Therefore the mapping ¢+ Xu(¢) %iia linear continuous mapping from B2 (T)
into R. Thus there exists g = g(u)EH (') such that

(1.22) X (4) =<g,0>
It is clear that the mapping utr— g(u) is linear and, by (1.21),

(1.23) el < collalggys

' L
this proves that the mapping ulb—rg(u) = v is continuous from E(Q) into H 2(I).

u
The last point is to prove (1.18), since (1.19) follows directly from the

definition of yvu.
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Lemma 1,2,

If u€B(Q), then

Y,,cu = the restriction of wu*v on T,

Proof.
For such a smooth u and for any w€H(Q) (or if u and w are twice continuously

differentiable in Q)

it

Xu(YoW) {Q div(u w)dx

(by the Stokes formula)

fw(u'v)df = J (u'v)(Yow)dT.
T T

=<u°v, "{ow>.

+

Since for these functions w, the traces Y,w form a dense subset of H (I, the

formula

%ﬁ@ =<u.v, o>

1
is also true by continuity for every ¢EH*(T). By comparison with (1.22), we get,
P g = u'\)lr.
Remark 1.1.
Theorem 1.1 is not explicitly used in the proof of Theorem 1.2, but the density

theorem combined with Lemma 1.2 shows that the operator Yv is unique since its

value on a dense subset is known.

Remark 1.2.
The operator Yy actually maps E(Q) onto H-ékf).
Let ¢ be given in H “(I'), such that

<$,1>= 0.
Then the Neumann problem

=Ap =0 in
(1.24)

Pog on T

oV

has a generalized solution p = p(¢)€‘H1(Q) which is unique up to an additive
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constant (See Lions-Magenes [1]). For one of these solutions p let
u = grad p.
It is clear that u€E(R) and YU = ¢. In addition it is clear that there

0
for any ¢ in HT(I’), writing

2xists a vector fx;mction u, with components in e Q) such that Yv°u0 = 1. Then

<yP,1> ¢ = lP_<gf,l>

mes I ° mes T

(1.25) Vo= ¢+

s

one can define a u = u(y) such that YU = Y by setting

o <y,1>
(1.26) u = grad p(y) + —==x u,.

M‘oreover the mapping Y rF—u(y) 1is a linear continuous mapping from H%_(I_"-) into
E(R?) (i.e., a lifting operator as JLQ).

Let E (?) be the closure of Q) in E(Q). We have

Theorem 1.3.

The kernel of T is equal to EO(Q).
Proof.

If u€E (), then bv the definition of this space, there exists a sequence

of functions umE@(Q) which converges to u in E(R) as m—>®, Theorem 1.2

implies that Yoo = 0 and hence, YU = 1.1va°um = 0,
m—+x

Conversely let us prove that if u€E(Q) and Yt 0, then u is the limit in
E(Q) of vector functions in D).
Let & be any function in @(Rn), and ¢ the restriction of @ to §. Since

YU = 0, we have <Yv°u, Yo¢>= 0 which means

J [div u*d + uegrad ¢ldx = 0.
Q

Hence
[ n'[d;v\if « d+4+ U - grad ®ldx = 0, Vo € gRr"
R »
and so
(1.27) div &= div

where ¥V denotes the function equal to v in & and to 0 in CQ This implies
that GEE(R").

Following exactly the steps in proving Theorem 1.1 (in particular points 1) and
ii)) it is possible to reduce the general case to the case where the function u has

‘support included in one of the sets (93 Ne.
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For such a function wu, we remark that GGEE(Rn) and that Gk°a has a compact
support in Q”j, for 0 <A< 1 (@“j is supposed star-shaped with respect to 0).
According to Proposition 1.1, ,Gxoa restricted to Gdj (or ) converges to u in
E(G” ) (or E(R)) as A—>1. The problem is then reduced to that of approximating by
elements of HER" ) a function u with compact support in §; this is obvious by

regularization (as in point ii) in the proof of Theovem 1.1).

Remark 1.3,

If the set 8 is unbounded or if its boundary is not smooth, some partial
results remain true: for example, if u€ZE(Q), we can define kvu on each bounded
part FO of T' of class 82, and YquEHI(FO). If € is smooth but unbounded or
if its boundary is the union of a finite number of bounded (n-1) dimensional manifolds
of class fz, then Y, u is defined, in this way, on all I. ©Nevertheless the
generalized Stokes formula (1.19) is not available.

The results will be more precise if we know more about the trace of functions
in H'(Q). Let us. suppose that the following results are available:

- there exists Y& 3{H ), L 2(I')) such that YOU“UIF for every uEE@(Q). We
denote YO(H I by aﬂg(F)

-~ there exists a lifting operator Q E:ﬁ(%@(f) H'(2)), such that Yooﬁg = the
identity; “W(I') is equipped with the norm carried by Y,

- § 1is a locally lipschitzian set.

Then all the preceding results can be extended to this case. Theorems 1.1 and
1.3 ar? trve. The proof of iheorem 1.2 leads to a definition of Y U as an element

of ¥ *(I') = the dual space of ‘ﬂgff) The generalized Stokes formyla (1.19) is wvalid.

1.4 Characterization of the Space H.

We recall the notation introduced at the end of Section 1.1:

UVv

H
v

l

{uEB), div u = 0},
the closure of T in L2(Q),
the closure of ‘U in ﬁé(ﬂ),

We can give now the foliowing characterization of H and H™ (the orthogonal complement
of L2(Q)).

Theorem 1.4.

Let Q be a locally lipschitzian, ospen bounded set in R", Then:
(1.28) B = {u€L?*®), u = grad p, pcH' (N}

(1.29) B o= {u€L?(Q), divu =0, v, = 0},
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Proof of (1.28),
i) Let wu - belong to the space in the right-hand member of (1.28). Then for
each v€Y, ‘

(1.30) - (u,v) = (grad p, v) = -(p, div v) = O,

Hence u€Hh

ii) We will prove conversely that H™ is contained in the space in the right-
hand member of (1.28), but this inclusion is less easy to show. |

Let u be an element of H41 We write first that u is orthogonal to some
particular elements of U for every 1i,j, 1 <1i, j <n, for each vedE),
let vEYN be defined by

(1.31) v, = Djw, vj =~Di¢, Vo = 0 if a# i, o # 3.
Writing that (u,v) = 0, we obtain
(u,v) = (ui;DjW) - (uj,Dill)) =0, YYEID,
which means that
(1.32) Dju. = D,u,

in the‘diStribution sense, If u1;°"&n, were smooth functions, it would follow from
a classical result that (1.32) implies that u is the gradient of some function g on
each simply connected open subset of {l. The same result is true for distributioné by
the duality theorem of de Rham [1]; u is the gradient of some distribution p on
every simply connected open subset of £,

Of course if § 1is simply connected, u = grad p in all &, and it follows from
a result of Deny-Lions [1] (see Proposition 1.2 in Section 1.5) that pEL*(R); (1.28)
is proved in this case. ‘

iii) When £ is not simply connected, let us make some smooth cuts in a2,
Q= Z\JQ, where § is open, simply connected,
and locally lipschitziany I is a CZ, (n~-1)~
dimensional manifold and QN = ¢.(1?

~ Applying point ii) u = grad p in Q,

.where p belongs to Lz(é). Hence

: Fig. 2
(1)

We assume that we can make such smooth cuts, but this is a very weak hypothesis on
f2; in practice it is always satisfied.
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p has the same trace on both sides of I,

in all §.

pEEHl(Q) and we can define the traces of p on both sides of I, but these traces
of I.

If we prove that
u = grad p

may be different.
then p will be a single valued function and
on the two sides Z+ and %_

and Y p be the traces of p
it is sufficient to show that

Let Y,P
In order to show that YP = Y_P,

fzcb(nrp - y_p)dl' = 0,

(1.33)
for every smooth function ¢ defined on £, with support contained in a "small"
ball centered on Z.
By Lemma 1,3 which will follow, for each function ¢ there exists w&H,
div w = 0, with compact support in £ such that
(1.34) vow=¢ D,
V
+
We write now that
0 = (u,w) = J u.w dx
Q

(by Stokes formula (1.19))

]

f. grad p.w dx
Q
(2)

<YW Y0P>5’ - f. pcdiv w dx

=<Y, Ws Y,P = Y P = fz (v,p - v_p)¢dl,
-

and (1.33) follows.
and

Lemma 1.3.
Let ¢ be a smooth function on X, with compact support in ZOCZEBC:Z.
with compact support in § such that divw =0,

There exists w&H,
Y,w=4¢ on I.
Yk
(l)If w&EH, divw = 0, ther w&€E(R) and we can define Yv¥w = the trace of LAMN
stands for the unit normal to I pointing in the direction of I_.
an extended form of (1.19) is wvalid
is of class ¥€2).

on X; here vy
Since w has a compact support in ),

without needing any regularity property for 82 (but I

(2)
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Proof.
Let ¢ be an open tube in £ with
a smooth lateral boundary and cross sections

Ei and E;; we suppose that the latersl

boundary of ¢ matches Zt and Z; smoothly
so that the whole boundary of & is of class €2, Fig. 3
Let g be the solution of the following Neumann problem in ¢

Ag = 0 in &

o )

(1.35) =& =0 on 00-I,
S8 . 38 - -
3Y+ ¢ on I,, 3v_ ¢ on Zo‘

Since the necessary condition J %%‘df = 0 1is satisfied, the problem (1.35)
a0
has an infinity of solutions, any two of them differing by a constant. Let then w

be the vector defined almost everywhere in @ (or ) by

_ ) grad g in 0O
(1.36) v <:O in 0-0.

We will prove that w satisfies all the conditions.

It is clear that w€LZ?(Q) and wéEE(Q); let us show that w&E(R) and moreover
(1.37) divw =0 in .
Let Y be any test function in £(R); by definition,

<divw, P> =~ (w, grad ¥)
- - J w « grad ¥ dx = (by (1.19))
¢
=»__<'Yvw’ ll)>ao + JO div W.Il)dx

The last integral equals O since divw = Ag =0 in Y= %% vanishes on
the lateral boundary of (¢ and with (1.35), the sum of the integrals on Zt and Z;

vanishes. There remains

<div w, y>= 0, YYEI(Q),
and (1.37) follows.
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In order to prove that w 1is the limit in LZ(Q) of functions in U, let us

consider a regularization of w, W = PRV, where as usual pg(x) = —glﬁ-p (-}—é),
peﬁ(an), 0<p<1, p(x) =0 for |x| > 1, np(x)dx = 1, For € less than the

. R ,
distance between & and T, LA has compact support in £ and thus WEE@(Q);

we have also
div W = dlv(,oE X W) = pe % div w = 0,

so that WSEQT.

It is clear that, for ¢-—0, w, converges to W in L2%(Q), thus wEH.

Proof of (1.29).
Let H® be the space in the right-hand member of (1.29) and let us prove that

HCH'. If u€H, then u = lim u s umEQf'; this convergence in L*(R) implies
m-—>co

convergence in the distribution sensej then since differentiation is a continuous
operator in the distribution space and div u = 0, we see that div u = 0. Since

div w, = div u = 0, u and u belong to E(R) and

I

S
E(Q L)
so that u ~converges to u in E(Q), and YU = lim Yol = 0 (Y\)um = um'\)lr = 0,
m—>co

VumE V). Hence ucH".
Let us suppose that H is not the whole space H® and let H®® be the orthogonal
complement of H din H'. By (1.28), every u€H'* is the gradient of some pE€H'(Q);

other properties of p are:
(1.37) Ap - div u = 0, u.v|_ = X} | =0,
and this implies that p is a constant and u = 0; therefore H°® = {0} and H = H®

Remark 1.4,
If Q 4is any open set in IRn, the proof of (1.28) with very slight modifications

shows that

(1.38) B = {u€L*(Q), u = grad p, pelL? OC(Q)}.

1

If  dis unbounded but satisfies the condition (1.4) then
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(1.39) Hl'='{u€3&2(ﬂ), u = grad p, pESLleC(Q)}-

Theorem 1.5,

Let § be an open bounded set of class ©€°. Then

(1.40) L) =H®H ©H,

where H, H,, H, are mutually orthogonal spaces

(1.41) H, {uer?@), u = grad p, pEEHl(Q?, Ap = 0},

{uer*(Q), u = grad p, pEH (W},

]
]

(1.42) H,

Proof.. ‘
It is clear that H; and H, are included in H“L,; and that the intersection

of any two of the spaces H, H,, H,, reduces to {0}.

The spaces H, and H, are orthogonal; if u = grad p€H,, v = grad q€H,, then
WE€EE(R) and by using the generalized Stokes formula (1.19),

i

(u,v) =-(u, grad q) =<y u, Yyq>~ (div u, q)

0 and div u = Ap = 0.

and this vanishes since Y.q
It remains to prove that any element u of L2() can be written as the sum of

elements ug, U, U, in H, H;, H,. For such a u let p be the unique solution of.

the Dirichlet problem
Ap = div u€HTHO), PpEHN).

We take
(1.43) ‘u, = grad p.

Let then ¢ be the solution of the Neumann problem

(1.48) Ag = 0, & |

ey = Y, (u - grad p).

r

We notice that div(u - grad p) = 0, so that u — grad pEE(R), and Yv(u -~ grad p) 1is
defined as an element of H “(I'), and by the Stokes fromula (1.19)

<Yv(u ~ grad p), 1>= J div({u - grad p)dx = 0.
2

According to a result of Lions-Magenes [1], the Neuman problem (1.44) possesses a
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solution which is unique up to some additive constant.

We take
(1.45) u, = grad ¢
(1.46) U, = u - uy = U,

It remains to see that u € H. But div uy = div(u ~ u; - u,) =divu -~ 4p = 0,

~ )
and Ybo = Yv(u—ulvuz) = Yv(u - grad p) —*5% = 0.

1.5 Characterization of the Space V.

For the sake of completeness we recall first the following result:

Lemma 1.4.
If LEA™HQ) (i.e., the dual space of Hg(Q)), then there exists (n+l)

functions fg,°°°,fn, belonging to L%*(2) such that

n
(1.47) L= £, - izlnifi,
that is to say
n
(1.48) <Lyu>= (f,,u) + .2 (£;,D,u), VugH (D).

i=1

The functions fo>'°'fn satisfying (1.47) are not unique.

Proof,

The linear operator ur—uu = (u,Dlu,'°°,Dnu) is an isomorphism of Hé(Q) into

LZ(Q)n+1 The linear form 206"1 is continuous on the image space of Hé(Q); by
the Hahn~Banach theorem this form can be extended as a linear continuous form on all
the space LZ(Q)n+l; of course the extended form can be written as
n+1 s
gr(f,e) = ] (f;,8), f£,€LUD),
1=0 *

and (1.48) follows.

Before giving the characterization of V we will state two propositions containing

results interesting in themselves.

Proposition 1.2,

Let Q Dbe a bounded locally lipschitzian open set in R".

(1) 1If a distribution p has all its first order derivatives Dip, 1 <i<m,

in L%(Q), then pE€L*(Q) and
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(1.49) ”P"LZ(Q)/R‘i () ”grad puLZ(Q).

IA
P
IA
B

(ii) If a distribution p has all its first order derivatives Dip, 1

in H'(Q), then peL*(Q) and

In both cases, if  is any open set in R", p€L’ (D).

Proof.

Point (i) and (1.49) are proved in Deny-Lions [1] for a bounded star-shaped open
set §2. In our case because of this result, p is L? on every ball contained in
2 with its closure, and on all the sets 63 defined after (1.4). Since a finite number
of these balls and sets (', covers § the result follows.

When 0 is a set of class €2, a proof of point (ii) due to Lions is partly
reported in Magenes-Stampacchia [1]. For § satisfying only (1.4), the proof of
(ii) is given in Temam [1] but is too long and technical to be reproduced here.

For a set §{ without any regularity property we apply the preceding results on

Q).

each ball contained in @ with its closure, and we get pEELzloc

Proposition 1.3.

. n g ;
Let & be any open set in R, let u-= (ul,'°',un) be a vector distribution

with components ug belonging to H1(R) such that

(1.51) <u,v>=0, Yvell

oc® I 8 is

Then u 1s the gradient of some function p belonging to L?

locally star-shaped and bounded, p&L*(Q).

Proof.
According to Lemma 1.4, for each i = 1l,°**,n,

. i 2 2
(1.52) u, = fi div gys fiE L), giEEL Q).

Let pE be a sequence of regularizing functions (as in Lemma 1.3 for instance);
then for every we'V, pe*w is a vector with components in @(Rn); if € 1is strictly
less than the distance between [' and the support of w, pw belongs to P(N) and

moreover to ar since

div(pg*w) = P ¥ div w = 0.
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Let us suppose that support wCZQ'C?SGC:Q, Q' bounded and € < d(Q',I), so
that w_ = ps*we"?f.
By (1.51) and (1.52)

<thw€>= 0.

e~

<fi - div gi, pe*wi>= 0

i=1

i o~

n
(£, pw,) + Z (g;» grad(p_sw,)) = 0.

i=1 i=1

n n
’2 (fi’ pskwi) + .X (gi, O grad wi) =0,
i=1 i=1

where Ei(x) =£,(x), x€Q, and =0 x¢Q (same definition for éi).
It is easy to see that
v .1
(£, p_#g) = (p_xf, g), VE,g€L*(R)

where
P () = p_(-x), Vx.

We then have

o v . B g
'2 (pg*fi, wi) + .2 (pg*gi, grad wi) = 0,
l=l l=l
1.53 RCIE: div g )= 10
(1.53) .Z (pe*(fi - div g,), w) = 0.
i=1
Vo~ ~
i i ! — 1 3 e o e .
Let Oy be the restriction to Q' of pe*(fi div gi), and 08 (Gsl‘ gen)

By (1.53), (Oe’w) = 0, Vw€EV with support in '. Hence O belongs to the space Bt
corresponding to ' and by (1.28) and Remark 1.5,

= . 1 2,091
(1.54) 0. = grad p. in Qr, pSE'L @n.

As e—0, 0. converges to u in H™'(Q') and using again the de Rham theorem

[1] and (1.54), we see that u is the gradient of some distribution p:
(1.55) u=grad p in 0'.

Since ' is an arbitrary bounded subset of £, with Q'CQ'CQ, it is clear
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that u is the gradient of some distribution p in all .
Since the derivatives of p are in H7N(Q), it follows from Proposition 1.2
2
that pgl‘loc

lipschitzian,

() in the general case and pEL?(2) if O is bounded and locally

It is clear that the proof of Proposition 1.3 can be extended to more general vector
distributiogﬁ ur it sugfices for &zis proof that the u, are of type (1.52)
with fiG L (), giE’L (WxeeexL (), where 1 < aj, j = 0,°**,n. Moreover, the
uj need not be the same for different components uy of u, and each u, can be
the sum of terms fi - div»gi of preceding type with different aj for each term.

Of course we can only show in this case that u is the gradient of some
distribution p, and with regularity results similar to those of Proposition 1.2,

. . . 1
that p is a function in L loc(Q).

The space V can now be characterized as follows:

Theorem 1.6.

Let Q be n'open bounded set which is locally lipschitzian. Then

(1.56) V= {uea;(sz), div u = 0}.

Proof. v
Let V° be the space in the right~hand member of (1.56). It is clear that
vCvVv*, for if u€V, u= lim U ume“l/’. This convergence in E;(Q) implies that
m =0
div u, converges to divu as m~—, and since div u, = 0, divu = 0,
To prove that V = V', we will show that any continuous linear form L on V°
which vanishes on V dis identically equal to 0. With almost exactly the same proof

as in Lemma 1.4, noticing that V° is a closed subspace of Hé(@), one can prove that

I admits a (non unique) representation of type

n
(1.57) L(v) = ) <%,,v.>, L.E€EHT(D.
faq 1 x 1

The vector distribution & = (Qi,°°',2n) belongs to H'(Q), and <&,v>= 0,
VvED. Proposition 1.3 is applicable and shows that

% = grad p, pEL*(®),
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thus
- o 1
< R,i,vi> = <Dip, Vi> (p’DiVi) § \/vie Hy ().

For VvE€V®,

L(v) =
i

e~

l(li,vi>= -(p, div v) = 0,

and L vanishes on all of V°

Remark 1.6.

We can give a more direct and much simpler proof of (1.56) for a set @ which
is globally star-shaped with respect to one of its points.

Let us suppose that § 1is star-shaped with respect to 0 and let 9y denote

as before the linear transformation xF—*AX.
0. The

Let u€V’ Then the function 0)\011 belongs to IHCI)(OAQ)and div GAu
function uy equal to Oyou in UXQ and to 0 in Q—G)\Q (0-< A <1) is in
!Hé(Q) and div Uy equals AO}\(div u) in G}\Q and 0 in §2~GAQ; hence div iy 0,
u}\E V®' and has a compact support in . In this case it is easy to check by
regularization that u)\C—ZV and since u, converges to u in Hé(Q) as A—1,

u€V, and V =1V°,

Remark 1.7,
The results which will be used in the sequel are all the results given in this

Section 1.5: Lemma 1.4, Propositions 1.2 and 1.3, Theorem 1.6.
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§2. EXISTENCE AND UNIQUENESS FQR THE STOKES EQUATIONS

The Stokes equations are the linearized stationary form of the full Navier-
Stokes equations. We give here the variational formulation of Stokes problem, an
existence and uniqueness result using the projection theorem, and some other remarks

concerning the case of an unbounded domain and the regularity of solutionms.

2.1 Variational Formulation of the Problem.

Let I be an open bounded set in R with boundary I', and let fEL*(Q) be
a given vector function in §l. We seek a vector function u = (ul,'°°,un) representing
the velocity of the fluid, and a scalar function p representing the pressure, which
are defined in 0 and satisfy the following equations and boundary conditions (Vv 1is

the coefficient of kinematic viscosity, a constant):

(2.1) -VAu+grad p=£f in §, (v>0)
(2.2) divu =0 in 8,
(2.3) u =0 on T.

If f, u, p are smooth functions satisfying (2.1) - (2.3), then taking the

scalar product of (2.1) with a function VE?%Z we obtain,
(-vAu + grad p, v) = (£, v)
and, integrating by parts, the term (-Au, v) gives
n

(2.4) 2 (grad u,, grad v.) = ((u,v)) (1)
i=1 * *

and the term (grad p,v) gives
;(p, divv) =0
and there results
(2.5) v ((u,v) = (£,v), YveEW

Since each side of (2.5) depends linearly and continuously on v for the

Hé(Q) topology, the equality (2.5) is still valid by continuity for each vE&€V,

(€H)

See the notation at the end of Section 1l.1.
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the closure of U in Hé(Q). If the set @ 1is of class @2, then due to (2.3)
the (smooth) function wu belongs to ‘Hé(ﬂ), and because of (2.2) and Theorem 1.6,

u€V. We arrive then at the following conclusion:

u belongs to V and satisfies

(2.6) \5((11, v)) = (fs Vy),VVGV.

Conversely, let us suppose that u satisfies (2,6), and let us then show that u
satisfies (2.1) - (2.3) in some sense. Since u belongs only to Hé(Q), we have
less regularity than before and we can only expect u to satisfy (2.1) - (2.3) in
a sense weaker than the classical sense. Actually, uGEHz(Q) implies that the traces
You; of its components are zero in H&YF); u€V implies (using Theorem 1.6)

that. div u = 0 in the distribution sense; and using (2.6) we have
<-vAu - £, v>=0, WweV

where, according to Lemma 1.4, -VAu-f belongs to H™1(). Then because of

Proposition 1.3, there exists some distribution pEELz(Q), such that
~-VAy - £ = -~ grad p

in the distribution sense in &,

We have thus proved

Lemma 2.1.

Let © be an open bounded set of class €2,

The following conditions are equivalent

i) u€V and satisfies (2.6)

ii) u belongs to H'(Q) and satisfies (2.1) - {2.3) in the following weak sense:

there exists péELZ(Q) such that
(2.7) -VAu + grad p = £

in the distribution sense in 0

(2.8) divu = 0 in distribution sense in Q

(2.9) You = 0,

Definition 2.1.

The problem: find u€V satisfying (2.6) is called the variational formulation
of problem (2.1) ~ (2.3).
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Remark 2.1.

Before studying existence and uniqueness problems for (2.6), let us make
some remarks.

(i) The variational formulation of problem (2.1 ) - (2.3) was introduced by
J. Leray [1][21[3]. It recuces the classical problem (2.1) - (2.3) to the problem
of finding only u; then the existence of p 1s a consequence of Lemma 1.5.

(ii) When the set § is not smooth, wWe have two spaces which we called V

and V*® in the proof of Theorem 1.6 and which may be differnt:

V = the closure of U in H(Q)
v'= {u€H (), div u = 0}

vCV,

We can then pose two (perhaps different) variational formulations: either (2.6)
exactly, or the same problem with V replaced by V.

Sets §{ such that V # V' are not known and, a fortiori, the relation between
these two problems is not known. For technical reasons, particularly important in
the non linear case, we will always work with the space V and consider only the
variational problem (2.6).

Let us remark as a complement of Lemma 2.1, that for any set £, 1if u satisfies
(2.6) (or (2.6) with V replaced by V"), then it satisfies (2.7) with the restriction

that p€L? () only; it satisfies (2.8) without any modification; and it satisfies

loc
(2.9) in the sense that uEEEé(Q), a more precise meaning depends on the trace

theorems available for Q.

2.2. The Projection Theorem.

Let £ be any open set of R such that
(2.10) £ is bounded in some direction.

According to (1.10), Hé(Q) is a Hilbert space for the scalar product (2.4); WV is
defined in (1.12) and V is the closure of Y in Hé(Q).

For any open set NCR" which is bounded in some direction, and for every

fEL*(Q), the problem (2.6) has a unique solution u.

Moreover, there exists a function pEELiOC(Q) such that (2.7) - (2.8) are

satisfied,.
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If € is an open bounded set of class €%, then p€L?(®) and (2.7) - (2.9)

are satisfied by u and p.

This theorem is a very easy consequence of the preceding lemma and the following

classical projection thesorem.

‘Let W be a separable real Hilbert space (norm Hpﬁ) and let afu,v) be a

bilinear continuous form on WxW, which is coercive, i.e., there exists a > 0

such that
(2.11) a(a,u) > oe,ﬂuué, Vu€Ew,

Then for each L in W', the dual space of W, there exists one and only one

u&W such that
(2.12) alu,v) =<8,v>, Vve&EW.

Of course to apply this theorem to (2.6), we take W = the space V equipped
with the norm associated with (2.4), a(u,v) = v((u,v)), and for vF—><L,v> the
form v¥~+(f,v)v which is obviously linear and continuous on V. The space V is

separable as a closed subspace of the separable space ﬁé{@).

Proof of theorem 2.2.

Uniqueness. Let u; and u, be two solutions of (2.12) and let u = u,-u,.

We have

alu,,v) = a(u,,v) =<L,v>, VYveEW,
and

a(u,~u,,v) = 0 YvEW.
Taking v = u in this equaliﬁy, we see with (2.11) that

ofuf ? < atu,u) = 0,
and hence u = 0,
Existence. Since W dis separable, there exists a sequence of elements w1,°~°wm,‘*',
of W which is free and total in W. Let Wm be the space spanned by WitttV For
each fixed integer m we define an approximate solution of (2.12) in Wm; that is, a

vector u €W
m m

m

(2.13) u = Z

E, w £, _€ER,
i l L7

i i i,m
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gsatisfying
(2.14) : a(um,v) =<L,v>, Vvek’m‘

Let us show that there exists one and only one u such that (2.14) holds. Equation

(2.14) is equivalent to the set of m equations
(2.15) a(um,wj) n'<2,wj>, = 1,%°¢,m,

and (2.15) is a linear system of m equations for the m components Si o of um:
>

m
(2.16) ,Z E_;i,m a(Wi,W'j) "—°<2,9§-]j>9 j = l’oao’m.

The existence and uniqueness of u will be proved if we show that the linear
system (2.16) is regular. In order to show that it is sufficient to prove that the
homogeneous linear system associated with (2.16), i.e.,

I3

m
(2-17) ”Z Ei a(Wi,‘(qj) =z O’ j= l’eocsm’

i=1

has only one solution gl = see = gm =, But if £1,°*°,€m, satisfy (2.17), then by
multiplying each equation (2.17) by the corresponding gj and adding these equations,

we obtain

or, because of the bilinearity of a,

m m
aciaz*1 E\Vys 321 Ew,) = 03
using (2.11) we‘find
m
izl A

and finally &, = ste = £ = 0 gince w,,°°*,w are linearly independent.
1 m 12 Y

Passage to the Limit.

When we put v = u cin (2.14), we obtain

‘ - >
(2.18) a(um,um) ‘<2,um‘
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from which, by (2.11), it follows that

c41umn; <Sale,u) =<ty ><| zuw,n o |
(2.19) o | <22
BEg = &7 Ty

which proves that the sequence u is bounded independently of m in W. Since
the closed balls of a Hilbert space are weakly compact, there exists an element

u of W and a sequence U m'—>0, extracted from U such that
(2.20) u T in the weak topology of W, as m'-—>w,

Let v be a fixed element of wj for some j. As soon as m' 2 i, VGEWm,,

and according to (2.14) we have
a(um,,v) =<g,v>

By using the following lemma, we can take the limit in this equality as m'—> o,

and we obtain:

(2.21) a(u,v) =<2,v>
(o]
Equality (2.21) holds for each v €U Wj, and since this set is dense in W,
j=1

equality (2.21) still holds by continuity for v in W. This proves that u is
solution of (2.12).

Let a(u,v) be a bilinear continuous form on a Hilbert space W.

Let ¢m (resp. wm) be a sequence of elements of W which converges to ¢

(resp. 1Y) 1in the weak (resp. strong) tcpology of W. Then

(2.22) lim a(wm»¢m) = a(y,9)
m— 0

(2.23) lim a(¢m,wm) = a(d,V).
m ~— 00

Proof,

We write

a<wma¢m) - a(¢,¢) = a(wm”w,¢m) + 3(w9¢m“¢)'
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Since the form a 1is continuous and the sequence ¢m is bounded,

laqp =w,0 01 < cly vl To | < ellv-ul ,
m m m T m
and this term converges to 0 as mn—«w,
We notice next that the linear operator vr>a(y,v) is continucus on W
and hence there exists some element of W', depending on Y and denoted by A({),

such that
(2.24) a(P,v) =<A),v> VveEW.

We can now write

a(h,0,-9) = <AW),0,~9>

and this converges to 0 as m—>®, as a consequence of the weak convergence of ¢m,

This proves (2.22). TFor (2.23) we only have to apply (2.22) to the bilinear form
a*(u,v) = a(v,u).

Remark 2.2,
(i) Theorem 2.1 is also true if f 1is given B .
(ii) It can be proved that the sequence {um} constructed in the proof of
Theorem 2.2, as a whole, converges to the solution u of (2.12) in the strong topology
of W. We do not prove this result here; it will appear as a consequence of Theorem 3.1.
(iii) Using the form A(Y) introduced in the proof of Lemma 2.2 (cf, (2.24)), one

can write equation (2.12) in the form
<A(),v>=<L,v>
which is equivalent to
(2.25) Alu) = 2L iﬁ w'.

An alternate classical proof of the projection theorem is to show that the

operator ut+>A(u) is an isomorphism from W onto W'; see for instance Temam

[21.
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A Variational Property.

Proposition 2.1.

The solution u of (2.6) is also the unique element of V such that

(2.26) E(u) < E(v), VveEV
where

(2.27) E(v) = Vv]? - 2(F,v).

Proof.

Let u be the solution of (2.6). Then as

“u - V"z 2.0, \/VEEV,
we have
(2.28) Mlul 2 + v - 2v((u,v)) > 0.

Because of (2.6), we have
“Vuf? = V] ? - 25,0 = E(w,
-ZV((U,V)) = —2(f,V)

and thus (2.28) gives exactly (2.26).
Conversely, if u€V satisfies (2.26), then for any v€V and AE€R, one has

E(u) £ E(utiv).
After working this out and simplifying, one finds
(2.29) VAPVl + 200((u,v)) =~ 20(£,v) > 0, VAER,

This inequality can hold for each A€R only if
v((u,v)) = (f,v),
and thus u 1is indeed a solution of (2.6).

Remark 2.3,
If the spaces V and V' of Remark 2.1 are different, Theorem 2.2 gives as well

the existence and uniqueness of a uU€V’ such that

(2.30) v((u,v)) = (f,v), YveV:
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Proposition 2.1 is also valid with u and V replaced by u and V'.

2.3 The Unbounded Case. ‘
We consider here the case where { is unbounded, without satisfying (2.10).

If 0 ds of class Y¥?, problem (2.1) - (2.3) is not equivalent to (2.6) as

in Lemma 2.1l. The reason is that if u is a classical solution of (2.1) - (2.3),
it is not clear without further information about the behavior of u at infinity,
that u€H'(Q); hence perhaps uEfV and equation (2.5) cannot be extended by
continuity to the closure V of W, Besides that, if one would try to solve
directly problem (2.6), using Theorem 2.2, the difficulty is that hypothesis

(2.11) is not satisfied: V is a Hilbert space for the norm
[ull = Yul? + |u]?,

which is not equivalent to the norm Huﬁ since we lose the Poincar€ inequality.
In order to pose and solve a variational problem in the general case, let us

introduce the space

-

(2.31) W = the completion of ‘V under the norm

It is clear, since ”u” < full, that W is a larger space than V

(2.32) Ve,
Lemma 2,3.
(2.33) WC{uer(@; Duer’(®, 1<i<n)

with a continuous injection, where

o = = if n > 3.

(2.34) {0‘ is any number, 1 < a <+, if n = 2
n-2 °

Proof.

This is a consequence of Sobloev inequality {(see Sobolev [1], Lions [1], or

also Chapter II):

(2.35) { o o Sclo,n) [lgrad ¢f , YoeEI(,
Lo() L2(Q)

where o is given by (2.34).

If u€W, there exists a sequence of elements ume‘qr converging to u; by (2.35)
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llu

m—upﬂ f.C'(@an)ﬂum‘ﬁpﬂ

L3

and

(2.36) | llum-upltY < eu -]

where Y stands for the space on the right-hand side of inclusion (2.33) and

I

{Y is the natural norm of Y

bl =0l o+l
Y L)
As m and p tend to infinity, the right side of (2.36) converges to 0. Thus

u is a Cauchy sequence in Y; its limit u Dbelongs to Y. It is clear also that

lul < "yl
Y

with the same c¢" as in (2.36) (c" = <"(o,n)).

Theoren 2.3,

Let § be any open set in R, and let f be given in W', the dual of the

space W in (2.31).

Then, there exists a unique u€W such that

(2.37) v({u,v)) =<£f,v> VvEW.

There exists péiLzloc(Q), such that (2.7) is satisfied, and (2.8) is true.

We apply Theorem 2.2 with the space W, alu,v) = v({u,v)), and 2
replaced by £ we get a unique u satisfying (2.37).

After that, Proposition 1.3 shows the existence of some pEELleC(Q) such
that (2.7) is satisfied; (2.8) is of course easily verified. Finally, (2.9) is
satisfied in some sense depanding on the trace theorem available for W (or
for the space bY on the right-hand side of inclusion (2.33)).

If Q is locally lipschitzian, Proposition 1.2 shows that pEELZlOC(Q)

Rematrk 2.4,

1
By Lemma 2.3, for fei¥ (Q)( - +-&3:,~m D,

Q |

(2.38) A e f f.v dx
Q
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is a linear continuous form on W. Thus one can take in Theorem 2.3, any
]
fer® ().

2.4 Regularity Results.

A classical result is that the solution uffﬁg(ﬁ) of the Dirichlet problem
~Autu = £ belongs to Hmfz(ﬂ) whenever fEEHm(Q) (and § is sufficiently
smooth) . One naturally wonders whether similar regularity results exist for

the Stokes problemn,

. +2 ,
If @ 1is an open bounded set of class e , m integer, m > 0 and if £

' belongs to Hm(ﬁ), then the solution u of (2.6} satisfies (2.7) - (2.9) and

1

(2.39) , ved™?@), ped™ ()

(2.40) Il + ol _, < c,m,)| £
B2 (@) @) /r E™ ()

The theorem follows from the next proposition.

Proposition 2.2.

Let § be an open bounded set of class e, r = max(m+2,2), m integer > 0.

Let us suppese that

(2.41) wewH %), perQ), 1< o < o,

are solutions of the generalized Stokes problem.

(2.42) ~-VAu + grad p = £ din §,

(2.43) divu=g in Q,

(2.44) You = ¢5 i.e., u=4¢ on T.

rr e O@), W) and ¢e™PEHry, D then
(2.45) wew™ 2%y, pewmtl %@

(L _L
Wm+2 Oé’a(P) = ngmﬁz’@(Q) and is equipped with the image norm

Hzpﬁwm-*i“‘&s&(r) } yjiipnugwm%‘z’&(ﬂ)
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and there exists a constant «c,(0,v,m,2) such that
= ¢ SHLL R

(2.46) lu] . + | p}
2% 0 w0y R
< e, {] £] + | g + o] 1 + d_J|uf }
— 2 twm’a(ﬂ) Wm+l’a(ﬂ) Wm+2 a’u(T) G fEa(Q)
4, =0 for a>2, d =1 for 1<a<2,
Procf.

This proposition results from the paper of Agmon-Douglis-Nirenberg [2],
hereinafter referred to as A.D.N., giving a priori estimates of solutions of

general elliptic systems.

£ £
: 1
Let Ul T %-p, u = (ul,"°,un+l), f = (+ e ’°°°"K? ,g). Then equations
(2.42) and (2.43) become
nt+1
(2.47) Y &4, .(Du, = £, 1<ic<nHl,
3=1 ij 3 J -

where zij(g), £ = (El,°°-,£n)€1Rn, is the matrix

2@ = [gl%,,, 1245 <0,

bopy, g &) = %y ) =&, 1<3%n

(2.48)
2n+l,n+l(€) =0,
2 e 2 ® D 2
]2 = gt +£n°
We take (see p. 38), 5, = 0, Ly = 2, 1<1iZ<m, Sl -1, Corr = 1.

As requested, éegrea’ zij(g) ﬁ-si+tj’ 1<14,3 f.n+i,2 and we have Q'ij(g) =
zij(g). We easily compute L{§) = det R’ij(ﬁ) = lEI n’ so that L(E) # 0 for
real & # 0, and this ensures the ellipticity of the system (Condition (1.5),
p. 39). It is clear that (1.7) on p. 39 holds with m = n. The Supplementary
Condition on L is satisfied: L(&+TE') = 0 has exactly n roots with positive

imaginary part and these roots are all equal to

TE,EYY = -5-2' + /e[ ]e [2-[E-£1|2.

Concerning the boundary conditicns (see p. 42), there are m boundary

conditions and

th = Shj (the Kronecker symbol) for 1 <h <n, 1< j<ntl,
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We take rh = =2 for h = 1l,¢**,n. Then, as requested, degree th‘i r

< ? E--3
and we have B hj th,

It remains to check the Complementing Boundary Condition. It is easy to

h+i:j

verify that

+ + o
M) = (t-1EN?
+ + g ik
where T (£) = 7 (§,v). The matrix with elements Z B‘hj(E)L (§) 1is simply
3=1
the matrix w1t§ elemegts zhk(g), 1 <h,k <n, ~£h’n+1(£), 1<h<n. A
combination )} C_ ! B' ,ij is then equal to
he1 M ge1 M

n
z veoe 2 )
(Cy (B+Tv)?, e ee,C (E4TV)®, izl G, (B,+Tv.))

and this is zero modulo M* only if Cl m o = Cn = 0, and the Complementing
Condition helds.

We then apply Theorem 2.5, page 78 of A.D.N. in order to get (2.45) and
(2.46) @itﬁ da = 1 for all o. According to the remark after Theorem 2.5,
one can take d = 0 for a > 2 since the solutions u and p of (2.41) -
(2.44) are necessarily unique (p 1is unique up to an additive constant): if
(ugsPy)s (u**,p**) are two solutions, then u = u,-u,,, P = py~Py, are solutions
of (2.7) - €2.9) with £ = 0 and hence u =10 and p = constant.

Remark 2.5.

For a =2 and m€R, m > -1, one has results similar td those in Theorems

2.4 and 2.5 by using the interpolation techniques of Lions-Magenes [1].

Proposition 2.2 does not assert the existence of wu,p satisfying (2.42) =
(2.46) (for given £,g,$) but gives only a result on the regularity of an
eventual solution. The existence is ensured by the variational method if o = 2,
g=0, and ¢ = 0, The following proposition gives a general existence result
for n =2 or 3.

Propositien 2.3.

Let § Dbe an open set of clasgs Er, r = max(m+2,2), m integer > -1, and let

fewm’a(ﬁ), g€ wm-i-l,oz(m, ¢Ewm+2"&~’a(1"), be given satisfying the compatibility
condition
(2.49) j gdx. = J ¢evdl.
Q r

Then there exist unique functions u and p (p is unique up to a constant)

which are solutions of (2.42) ~7(2,44) and satisfy (2.45) and (2.46) with da =0
for any «. ‘
Proof.

This is precisely the result‘pfoved in Cattabriga [1] when n=3 (and even for m=-1).
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For n = 2 one can reduce the problem to a classical biharmonic problem.

There exists Vv&W 2’a(Q), such that

(2.50) divv=g

(2.51) | Y, v = ¢ -

Such v can be defined by

80]

- 90 _ 99
(2.52) v = grad 8 + {3 Tl

X2
where 6f§Wm+3’a(Q) is soclution of the Neumann problem

(2.53) AB =g in 9

a6 _ ..
(2.54) Ty ¢+v on T

and 065wm+3’a(9) will be chosen later.
The Neumann problem (2.53) - (2.54) has a solution © because of (2.49),
and -8£5Wm+3’a(9) by the usual regularity results for the Neumann problem.

The conditions on O are only boundary conditions on T and these are

%% = the tangential derivative of ¢ = 0,
Cls) - 26
Y the normal derivative of 0 = ¢.T T
9 - -
Since ¢.1T —-%{Efwm+2 OL’a(I’), there exists a 063Wm+3’a(T) with v,0 =0,

Y0 = ¢.7T - %g. With these definitions of ¢ and 6, the vector v in (2.52)
belongs to Wm+2’a(Q) and satsifies (2.50) - (2.51). Moreover, the mapping
{g,¢} v 1is linear and continuous.

Setting w = u-v, the problem (2.42) - (2.44) reduces to the problem of
finding WEWm.*-Z’OL(Q), pGVIIn+1’OL(Q) such that

(2.55) -VAw + grad p = £', f' = £ + VAv,
(2.56) div w = 0,
(2.57) YoV = 0.

If @ 4is simply connected then, because of (2.56), there exists a function

such that

(2.58) v = (D0, ~D,p).
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Condition (2.57) amounts to saying that p = %% =0 on I and (2.55) gives

after differentiation
- -— == L, !
\)A(Dzw1 Dlwz) sz . le 2

Thus we obtain

(2.59) VA% = D, f',-D, £ €W > %(Q)
3
(2.60) p =0, -5% =0 on T.

The biharmonic problem (2.59)(2.60) has a unique solution péfwm+3’a(ﬂ), and the
function w defined by (2.58) is a solution of (2.55) - (2.57) and belongs to
W%y,

If Q 4is not simply connected we first obtain an existence and uniqueness
result for (2.55) - (2.57) by the variational method (Theorem 2.1). We notice
that f'GEWm’a(Q), i.e., f'€ La(Q) at least, and La(Q)C!H—l(Q) since by
the Sobolev inclusion theorem H;(Q)CILB(Q),\/B, 1 < B < +», in the two dimensional
case.  The solution w belongs to. Hé(ﬂ) and pELIQ). If 1< < 2, the
proof is achieved using Proposition 2.2, If o > 2, we obtain more regularity
on w by introducing locally the function p and recalling that the regularity
property for an elliptic equation is a local property (if p satisfies (2.60)
and AZpEWm—l’a(G‘), 0CQ, then pewm+3’uloc(ﬁ') for &' = QUONT);

for this see, for instance, the synthesis presentation of Agmon-Douglis~Nirenberg

[1], Lions-Magenes [1]).
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§3. DISCRETIZATION OF THE STOKES EQUATIONS

Section 3.1 deals with the general concept of approximation of a normed
space and Section 3.2 contains a general convergence theorem for the approximation
of a general variaticnal problem. In the last section and throughout all of
Section 4 we then describe some particular approximations of the basic space V
of the Navier-Stokes equations, We give the corresponding numerical scheme for
the Stokes equations and then apply the general convergence thecrem to this case.

In Section 3.3 we consider the finite difference method. The finite

element methods will be treated in the next section (Section 4; 4.1 to 4.5).

The approximations of the space V introduced here will be used throughout

subsequent chapters, and they will be referred to by (APX1l), (APX2),**-.

3.1 Approximation of a Normed Space.

When computaticnal methods are involved, a normed space W must be a

approximated by a family (WhHQE?t of normed spaces Wh. The set H of indexes

depends on the type of approximation considered: we will consider in the following

the main situations for H, i.e., H=N (= positive integers) for the Galerkin
# _

method, H = I! (O,hg] for finite differences, and f = a set of triangulations of
i=1

the domain Q for finite element methods. The precise form of H need not be
known; we need only to know the existence of a filter on H, and we are concerned
with passing to the limit through this filter. For the sake of simplicity we
will always speak about passage to the limit as '"h—-0", which is strictly
speaking the correct terminology for finite differences; definitions and results

can be easily adapted to the other cases.

Definition 3.1.

An internal approximation of a normed vector space W is a set consisting

of a family of triples {Wh,ph,rh , hEHN, where

i) Wh is a normed vector space;

ii) Py is a linear continuous operator from W_  into W;

h
iii) ry is a (perhaps nonlinear) operator from W into Wh.
The natural way to compare an element u€W and an element uhEEWh is
either to compare PpYy and u in W or to compare Uy and r,u in Wh' The

first point of view is certainly more interesting as we make comparisons in a fixed

space, Nevertheless comparisons in Wh can also be useful.
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Another way to compare an element u€W and an element uhE’wh is to
compare a certain image Wu of u in some other space F, with a certain image
PLYy of Uy in F, This leads to the concept of external approximation of a
space W, which contains the concept of internal approximation as a particular
case. | '

[

v
Fx}

Fig. 4

Definition 3.2.

An external approximation of a normed spacer W is a set consisting of

i) a normed space F and an isomorphism w of W into F.

ii) a family of triples {W_,p, ,r. } , in which; for each h,
- o AR R Y ey T

h is a normed space

- P, 2 linear continuous mapping of Wh into F

{o

(perhaps nonlinear) mapping of W into Wh

When F =W and W = identity, we get of course an internal approximation
of W. It is easy to specialize what follows to internal approximations. ‘

In most cases, Wh are finite dimensional spaces; rather often the operators

p, are injective. In some cases the operators Ty

on some subspace of W, but there is no need to impose this condition in the

are linear, or only linear

general case; also, no continuity property of the Ty is required,

The operators Py and ry are called prolongation and restriction operators,

respectively. When the spaces W and F are Hilbert spacés, and when the spaces

Wh are likewise Hilbert spaces, the apprbximation is said to be a Hilbert approximation.

befinition 3.3.

For given h, u€W, uhe Wh’  we say that

1) ||Wu-pyu |, is the error between u and wu,

ii) "uh~rhuu is the discrete error between u and U

¥h

iid) Eﬂm~phrhun is the truncation error of u.
F :
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We define now stable and convergent approximations.

Definition 3.4. Stable Approximation.

The prolongation operators P, 2are éaid_gg_hg stable if their norms

le, I = thugh thuhllF
nuhnwh =1

can be majorized independently of h.

The approximation of the space W 1is said to be stable if the prolongation

operators are stable,

Let us now consider what happens when '"h—>0".

Definition 3.5.

We will say that a family converges strongly (or weakly) to u if
2L = o, Of weakly) Lo =2

PLY, converges to Wu when h—>0 in the strong (or weak) topology of F.

We will say that the family wu_ converges discretely to u if

h

i -r. uj, = 0.
i o,

Definition 3.6.

We will say that an external approximation of a normed space W is convergent

if the two following conditions hold:

(c1) for all u€w,

lim phr = Wu

u
p—s 0N

in the strong topology of F.

(C2) for each sequence U
converges to some element ¢ in the weak topology of F, we have

of elements of W _,, (h'—0), such that

thuhv
dEWW; i.e., ¢ = Wu for some u€EW.

Remark 3.1.

Condition (C2) disappears in the case of internal approximations.

The following proposition shows that condition (Cl) can be in some sense

weakened for internal and external approximations.
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Propogition 3.1.
Let there be given a stable external approximation of a space W which is

convergent in the following restrictive sense: the operators r, 2are only defined

on a dense subset W of W and condition Cl) }__r_}' Definition 3.6 holds only for

the u belonging to W (condition (C2) remains unchauged).

Then it is possible to extend the definition of the restriction opérators

r, to the whole space W so-that condition (Cl) is valid for each u€W and
hence the approximation of W is stable and convergent without any restriction.

Let u€W, u¢“W“, we must define in some way rhuhe Wh,Vh, so that
phrhuwmu as h—+0, This element u can be approximated by elements in U~,
and these elements in turn can be approximated by elements in the phWh; we only

have to combine suitably these two approximations.

For each integer =n > 1, there exists une‘ur such that Hun-unw _<__3’1
and hence
‘ c
; e 0
(3.1) " wun—wuﬂF f_-a‘ 3
where ¢, is the norm of the isomorphism .,

0
For each fixed integer n, PyTLY, converges to &un in F as h—0,

Thus there exists some nn > 0, such that lhl < nn implies
- 1
”Phrhun“wunnl’*‘ A

We can suppose that n, is less than both nn—l and %x- so that the nn form

a strictly decreasing sequence converging to 0O:

0 < Mgy <00 <My ny0.

Let us define ¥, u by

h
hun for nn%-l < fhl inn.

It is clear that for N < In| <N
" ™ - 1+
I wu-phrhuﬂF < Iru')u-wunﬂF + | wun—phrhun"F + | phrhun”phrhunl«‘ < L_QQ)_

n

and consequently



42

I+c,
n

[Gu-p, r u] <
"%

for Ih! inn. This implies the convergence of Ppru to wu as h >0 and

completes the proof.

Remark 3.2.

If the mappings r, are defined‘;on the whole space W and condition (Ci)
holds for all u€W, Proposition 3.1 shows us that we can modify the value of ru
on the complement of U so that condition (C1) is satisfied for all u€W.

Galerkin Approximation of a Normed Space.

As a very easy example we can define a Galerkin approximation of any separable
normed space W. '
Let Wh R
of W whose union is dense in W. For each h, let Py be the canonical injection

h€N = H, be an increasing sequence of finite dimensional subspaces

of Wh ‘into W, and for any u€W .’ let ru = 0 1if h < hy, r,u=u if
h > h,. It is clear that p r u—u as h-—, for any u€ {J W . The
- h™h h
henN
operator N is only defined on W= U Wh which is dense in W. Since the

hel
_prolongation operators have norm one they are stable and according to Proposition

3.1 the definition of the operators r, can be extended in some way (which does not

h
matter) to the whole space W so that we get a stable convergent internal

approximation of W; this is a Galerkin approximation of W,

3.2 A General Convergence Theorem.

Let us discuss now the approximation of the general variational problem (2.12) :

W 1is a Hilbert space, a(u,v) is a coercive bilinear continuous form on WXW,

(3.2) a(u,u) > ofuff, Yuew, (a>0),

and £ is a linear continuocus form on W.

Let u denote the unique solution in W of
(3.3) a(u,v) =<%,v>, VYveEW.

With respect to the approximation of this element u, let there be given an
external stable and convergent Hilbert approximation of the space W, say

{Wh,ph,rh}heew Likewise, for each hE‘H, let there be given
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i) a continuous bilinear form ah(uh,vh) on wh><wh which is coercive and

which, more precisely, satisfies

3@0 > 0, independent of h, such that

(3.4)
a (upsu) 2 0 [l Ve €w

where ”.”h stands for the norm in Wh,

ii) a continuous linear form on wh,zhezw'h, such that:
(3.5) 2l < 8

stands for the norm in W' and in which B dis independent of h.

in which l l*h h?
We associate now with equation (3.3) the following family of approximate
equations:

For fixed h€H, find uhe Wh such that

(3.6) ah(uh,vh) =<5?,h,vh>, \/va Wh.

By the preceding hypotheses, Theorem 2.2 (in which W,W',a,%, are replaced
by Wh,W'h,ah,Rh) asserts now that equation (3.6) has a unique solution; we will
say that Uy, is the approximate solution of equation (3.3).

A general theorem on the convergence of the approximate solutions uy to the
exact solution will be given after making precise the manner in which the forms a,

and &, are consistent with the forms a and £. We make the following consistency

hypochSes:
(3.7) If the family v, converges weakly to v as h—0, and if
the family w, ~ converges strongly to w as h—0,
%ifo ay (vh,wh) = a(v,w)
%izo ay (wh,vh) = a(w,v).
(3.8) If tﬁe family v, converges weakly to v. as h—0, then
;Eo <!Lh,vh> =<L,v

The general convergence theorem is then
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Theorem 3.1.
Under the hypotheses (3.2), (3.4), (3.5), (3.7) and (3.8), the solution
U, of (3.6) converges strongly to the solution u of (3.3), as h—>0.

Proof,

Putting v, = ﬁh in (3.6) and using (3.4) and (3.5), we find
(3‘9) ah(uhsuh) = <2'h3uh>!
aalu 2 < 12 Ml < ol Bys

hence
(3.10) lu Iy, < 8704,

As the operators are stable, there exists a constant ¢, which

Ph
majorizes the norm of these operators

Gay Io,l = Ip,|

2 ¢y
W, F
and hence
- c.8
. Puk ¢}
(3.12) lequylp < 3,

Under these conditions, there exists some ¢€F and a sequence h' converging
to 0, such that
lim p v, = ¢
n'—o BB
in the weak topology of F; according to hypothesis (C2) in Definition 3.6,

$EWW, whence ¢ = wup for some ukEW:

(3.13) lim Pty = Wu,, (weak topology of F).
h*—0
Let us show that u, = u. For a fixed vEW, we write (3.6) with vy =‘rhvV

and then take the limit with the sequence h' which givés, by using (3.7), (3.8),
and (3.13):
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ah(uﬁrhv) = <2h,rhv>

i a9 = sl

lim <& ,,r

‘ h y v2=<L,v>
h'—0

h

Finally ;
a(u,,v) =<2,v>,

and because VvE&W is arbitrary, u, 1is a solution of (3.3) and thus u, = u.
One may show in exactly the same way, that from every subsequence of PpYy,

one can extract a subsequence which converges in the weak topology of F to

wWu. This proves that the family Py, asa whole converges to u, din the

weak topology, as h—0,

Proof of the Strong Convergence.

Let us consider the expression

Xp = ap(y-rpu, w om0,
or-

X = o ooy = o (o mpe) = &y () o+ oy G mpw).
By (3.7), (3.8), and (3.9),

lim ah(uh,uh) =<L,u”>

R0
lim (u_,r,u) = lim (r,u,u, ) = lim (r,u,r,u) = alu,u).
i She N An S A A L N
Finally
(3.14) lim Xb = ~a(u,u) +<L,u>= 0,

h—0
according to (3.3) (when v = u).
With (3.4) and (3.11) we get now

0 < 010" uh—-rhuﬂ 2 < Xh’ whence

2
c
0 < ﬂphuh~phrhuué S.a% XH—~+0.

Using now condition (Cl) of Definition 3.6 and

” phuh"mu” F < " Phuh‘Phrhun T + " phrhu—mull o
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we see that this converges to 0 as h—0,

The theorem is proved.

Remark 3,3.

As announced in Remark 2.2, point (ii), Theorem 3.1 is applicable to
the Galerkin approximation of (3.3) used in the proof of Theorem 2.2, One
takes Wh = Wm,\/h =mEH, H =N, and one gets as in the example at the end

of Section 3.2 a Galerkin approximation of W. With
ah(v,w) = a(v,w), <£h,v>= <L&,v>, V¥v,wEW,

Theorem 3.1 is applicable and shows that u ~converges to u in the strong

topology of W as m—*o,

Remark 3.4.

If Wh is a finite dimensional space and {Wih}lsiSN(h)ls a basis of

Wh’ then the approximate problem (3.6) is equivalent to a regular linear system

for the components of U in this basis; i.e., if

N(h)
U T izl 107 in
N (h)
=< > 1
(3.15) izl Sin®n Pin V) T vy 123 SRM).

The solution of (3.15) is effected by the usual methods for algebraic
linear systems.
When no basis of W can be easily constructed (and this happens sometimes

h
for the Stokes problem), some special method must be found to actually solve

(3.6).

3.3 Approximation by Fiuite Differences.

We study the approximation by finite differences of the space H;(Q), then
the same for the space V, and finally the approximation of Stokes problem by
the corresponding scheme. The approximation of V considered here will be

denoted by (APX1).
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Notation.
When working with finite differences, h denotes the vector-mesh,

h = (hl,"zhn) where hi is the mesh in the x,

{ direction and thus

0<h, <!,
i=—-— 1
for some strictly positive numbers h;; hence

‘ o
(3.16) fL="T] (0, nil.
i=1 <

We are interested in passing to the limit h-—0.

For all h€H we define:

i) %i is the vector hiei’ where e has for j h coordinate
Sij = the symbol of Kronecker.

ii) ?h is the set of points of R® of the form Jihy et jnhn’ in
which the ji are integers of arbitrary sign (jiEEZ).

iii) Gh(M), M= (ul,"°,un), is the set

and is called a block.

iv) o, (M,r) is the set LJ o, {4+ g-ga)'
h g h 2 i
1<i<n
~-rostr

of course Gh(M,O) = Gh(M)‘

v) Vim is the characteristic function of the block Gh(M).
vi) aih (or Gi if no confusion can arise) is the finite difference
operator .
¢ (x +f%%i) - $lx - %%i)
(3.17) (5i¢)(x) = o

i
If j= (jl,"‘,jn)EENn is a multi-index, then Sg (or simply 9y witl
denote the operator
-
‘ ... gin
(3.18) &7 = 61 6n .
vii) With each open set  of R? and each non-negative integer r  we

associate the following point sets
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Do
3]
i

(3.19) {Meﬁh, Gh(M,r)CQ}

(3.20) Y]

it

’ {ME’I%, O‘h(M,r)ﬂQ #.0}.

oo

—— e fuu
Lweqy - L

————— - : -
-M : : M 1 M j
: ! e

L___] POV,

Examples of:Sets Gh(M,r) in the Plane..

viii) Sometimes we will use other finite difference operators such as Vih
and gih (also denoted Vi and Vi);

$Gethy) - $(0)

i
$Gx) - ¢(x-h))

h,
i

(3.22) V00 =

External Approximation of Hé(ﬂ)&

Let 8 be a lipschitzian open bounded set in R®, Let W= Hé{ﬂ},
F o= LE(Q)n+1 equipped with the natural hilbertian scalar product, and let © be
the mapping

(3.23) uk— Gy = (u,Diu,'°°,Dnu)
from W dinto ¥. It is clear that
Tull
F Ho(Q)

so that © 4is an isomorphism from W into F,

§g§§§’ Wh: With the preceding notation, Wh will be the space of step functions

(3.24) w G = L w0 GO ,u (DER
Mefzh
The functions VLM for MEE&Q are linearly independent and span the whole space
Wh; they form a basis of Wh’ The dimension of Wh is n times the number N()
- o

of points Méfﬁgg wh ig finite dimensional. This space is provided with the

scalar product
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n
(3.25) [u ,v. 1 =[ u (x)v, (x)dx + ) f §,u (x)8,v, (x)dx.
AL P N E g 1P

which makes it a Hilbert space.

The functions u_ and §,u , 1 <i < n, have compact supports in &, by
h i o - ?

the definition of Wh and the set Qﬁ. Hence they will be considered as vector

functions defined on Q or on RE,

Operators The prolongation operators p are the discrete analog of &:
YPELators py h g

(3.26) PRy = (uh,ﬁluh, e, Shuh), \JuhESWh.
The norm of Py is exactly one,
Iyl = Loy,

- and they are stable.

~~~~~~~ x As a consequence of Proposition 3.1 we need only define the

operator 1, on W= PAQ) which is a dense subspace of H;(Q);
we put
(3.27) (r,w) () = u(), VMEQ, YueQ)

which completely defines rhuéfwh.

Proposition 3.2.

The preceding external approximation of H;(Q) is stable and convergent.

Proof.

The approximation is stable since the prolnngation operators are stable.

We must check now conditions (Cl) and (C2) of Definition 3.6.

Lemma 3.1.

Condition (Cl) is satisfied: Yu€®B(Q),
(3.28) ' r,u—u in L%(Q),
(3.29) | §;r,u—D.u in L),

as h—0,
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Proof.

Let u€P(Q) and let h be sufficiently small so that the support of u

is included in .the set

(3.30) ow = U, o 00
\ MEQ!
h
For any MESQ;, for any xGEGh(M}, the Taylor formula gives (with u
[uh(x)-u(x}l = i) -u(x) | j_cl(u)}M-x] f_Eiégl{hi
where
(3.31) c,(u) = Sup lgrad u(x)]|
x&Q
; n 3
(3.32) In| = (I b=
: i=1
Then
(3.33) o, -ut | < o [l
3.33 Sup x)-ulx)| < .
% ¢ (h) “h -2 '
On the set -Q(h),
lux)] < e, (Wdx,D ,
(3.34) lu, )-uG) | < ¢ (WaOm),r).
Hence
(3.35) < Sup tuh(x)~u<x>] < cl(u){i%y‘4~d(9(h>,r)}
x€f

. o
which converges to 0 as h-—03 v, converges to u in L () and then in

L2(Q) since £ is bounded.

To prove (3.29), we use again Taylor's formula: \‘/MEQ;, VxEGh(M),
(3.36) ]Siuh(x)—Diu(x)l

= |52 fu, 0t + 48 )-u 0 - 3D 1-DuG0| < ey () |n],
i

where c¢,(u) depends only on the maximum norm of the second derivatives of u.

On the set Q-0(h),
]Diu(x)f.i e’ (wa@m),mn

and then on the whole set {

rhn)
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(3.37) [8,u, G)-DuG)| £ e, [n] + ', (waD).

This converges to 0 as h-—*0, and shows the convergence of Giu to D.u

h

in the uniform and L? norms.

Lemma 3.2.

Condition (€2) is satisfied.

i

Proof. ‘
Let there be given a sequence uh,EEWh,, h'—+0, such that Py ¢ converges
“to ¢ in the weak topology of F, as h'=>0. This means
h'l—iino UL
im = < i<
h'ii?o Sih,u ' ¢i, 1<i<n
in the weak topoiogy of L2(N); ¢‘x (¢0;"°,¢n). As the functions Y e Giuh'
have compact support in {, we also have ' ‘
,lim uy = d,
h'—0
(3.39) '
ot U Bp 121z,
in the weak topology of mz(mﬁ); here g means the function equal to g in @

and equal to O in the complement of .

A discrete integration by parts formula gives

(3.40) JR? Sihuh,(x)ﬁ(x)dx = - f&? uh,(x)éihc(x)dx,

for each 063@((&“)

As h'-—0, the left-hand side of (3.40) converges to

fn $, ()0 (x)dx;
R

the right-hand side converges to

_fRn éo(x)DiU(x)dx,
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since Gihg converges to D0 in L*(R™) as shown in Lemma 3.1. Then

L{n §, (M0(x)dx = - [Rn 3,(x)D,0(x)dx, Vc?@(an)

which amounts saying that
(3.41) ¢, =D.8,, 1<i<n,

in the distribution sense.
It is clear now that $9€ !Eil(Rn), and since iﬁe vanishes in the complement
of Q, ¢, belongs to &13(52). Thus ¢ € WW;

(3.42) | o = Uy, ¢ EH (D).

Discrete Poincaré Inequality.

The following discrete Poincaré inequality (see (1.9)) will allow us to

h
discrete analog of scalar product ((+,*)) (see (1.11)).

equip the space W,_ in (3.24) with another scalar product ((','))h, the

Proposition 3.3.

Let @ be a set bounded in the %, direction, and let wu  be a scalar

step function of type (3.24) (with uh(M)E R). Then

(3.43) lu | <22]6, v, |

where & is the width of 0 in this direction.

Proof.
For the sake of simplicity we take 1 = 1. Since u has a compact support,
for any ME‘Rh,

o (0 = 3 Alu, GregR) 1% - [y (DR T
3=0
™ - > >
=h, } 8, (=GR Ilu, (jh) + u (M-(G+DR)T,
3=0

At o > ‘ >
(3.44) uh(M)2 <I=h ) ialhuh(m-<j+%_)hl)l Huh(M—jhl)[+|uh(M—(j’+l)h1)]].

j:-oo

A
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-)._.
The sums are actually finite. Now for any 1€Z, uh(M+ih1)2 is majorized by

exactly the same expression I. There are less than P values of i such that
1

uh(M-i-i'];l) # 0 since the x,-width of  is less than £. Hence

o , 9
(3.45) L u (i) ® < =T
§ =00 1
oo
o ] o+ =
Let j‘h(M) denote the tube U Uh<M+lh1). We can interpret {(3.453) as follows:
f 2 '*g:o > 2
u, {(x)%dx = (h,***h ) (M+ih,)
£ (M) h 1 L Yy 1
h
I
< Q,Chl hn) 'ﬂ'*;
=2 16w ()| {]u (=30, |+]u_(x=3h,) | }d
F, (00

We take summations of the last inequality for all tubes ?h(M) and obtain
(%) 2dx < % 18, u ()| {]u, Gerbh ) [+]u, (x40, | dax
gt b =" Jgn "in%h “n 1 h T )
Applying Schwarz's inequality, we obtain-

I'd
§

|uhi2 = f 0 uh(x) Zax < ,Q,!Glhuh{"{ZJ n [‘uh(xi-gﬁl)!2+!uh(x-§gl)lz}dx}%
R R :

< Zﬁ,iﬁlhuhl'Iuh]
and (3.43) follows.

Proposition 3.4.

“Let  be a bounded lipschitzian set. If we equip the space Wh with the

scalar product

n

(3.46) (Cup v )y = izl JQ 8 4, up 85, vy A,

we get again a stable convergent approximation of Hé(ﬂ).
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Proof.
The prolongation operators are stable as a consequence of Proposition 3.3.

Using the difference operators vih’ or ﬁih’s or even any ''reasonable"
approximation of the differentiation operator | Be. » one can define many other
similar approximations of the space Hé(ﬂ). The~mod;ficatio§s arise then in (3.25)
where aih is replaced by Vih,‘°°; in the set of points Qé which must be
suitably defined, and in some points'of the proof of Lemmas 3,1 and 3.2.

The same Poincaré inequality is valid for the operators vih and §£h but

not for more general operators.

Remark 3.6.
When § is unbounded, one can define an external approximation of Hé(@) with

a space W, consisting of either:

- step functions Z o AMWhM’ which have .compact support (we restrict the sum
MER
h

o
sum to a finite number of points MESQS),

. o
- or step functions ) A for the M in the intersection of ,Qé with some

M'hM
“1arge" ball: |x| < p(h), where p(h)—+» as h—>0,

In the‘second case Wh is‘finiée dimensional but not in the first case.
Without any modification for the other elements of the approximation, one can
see that we get a stable convergent approximation of H;(Q) for an unbounded locally
lipschitzian set Q.
The discrete Poincaré inequality is available if  is bounded in one of the

directions X,,***,X .
n

Approximation,gg the Space V (APX1).

Let { be a lipschitzian bounded set in R" and let 1 be the usual space
(1.12) and V its closure in M (D). |

We define now an approximation of V wusing finite differences (which will be
denoted by (APX1)).

Let F = LZ(Q)n+l equipped with the natufal hilbertian scalar product and let

us define the mapping weX(V,F):

u—riu = (u,Dlu,'°;Dnu).

It is clear that
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Bl = [u
so that ® 1is an isomorphism from V into F.

Space Vh. We take the following space ~Vh as the space Wh: Vh is the space

v — ¢ —t

of step functions

n
(3.47) u (x) = M&Z% up (M, (), w CDERT,

which are discretely divergence free in the following sense:

#l

n °
1
(3.48) gz V., (0 =0, Vmegh

i=1

which amounts to saying

’ n
(3.49) izl Vou (x) =0, Vx€Q(n).

No basis of Vh is available; it is clear that Vh is a finite dimensional
space with dimension less than or equal to nN(h)-N(h) = (p~-1)N(h) since all the
functions in (3.47) form a space of dimension nN(h) and there are at most
N(h) independent linear constraints in (3.48); it is not clear whether the
constraints (3.48) are always linearly independent so that V

of dimension (n~1)N(h).

h is not necessarily

The space Vh “is eqﬁipped with one of the scalar products

n

(3.50) (Cay»v,))y = N j §,u, (x).8,u (x)dx
i=1/Q ©

(3.51) [uhgvhﬂﬁ = f@ uh(x)vh(X)dx +7((uh,vh))h.

Because of Proposition 3.3 (discrete Poincaré inequality), vy equipped with

either one of these scalar products is a Hilbert space.

Operators These are the discrete analog of @:

UPErators Pye

(3.52) Py, = {uh’Diuh"°°’Dnuh}

These operators are stable since by (3.43)
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(3.53) ”phuhnF = [ul < C““h“h’ Vi€ e

We only define r.u for u€%, a dense subspace of V;

_____________ o h
VM = (mlhl,'f',mﬁhn)e Qb (rhu)(M) = uh(M) is defined by

Operator ¢

(3.54) uih<M) = ith component of u

the average value of u;, on the face

- 21
x; = (mi z)hi of GB(M)'

This complicated definition of ru is necessary if we want U to belong to

Vh; actually

Lemma 3.3.

For each u€V; rhuEVh

Proof,
One has
V.. u,, (M) = -1 g u, (x)dx - u, (x)dx}
in“ih h,**°h i , i
n ‘L, L',
i i
. 1 . 1
where X, and L', respectively are the faces x, = (m, + 5)h, and
i i i i 2774

- -5

This gives also

1

m u,vdTl,

vV, u, (M) = [
ihih aly ur,
i i

where Vv stands for the unit vector normal to the boundary of Gh(M) and pointing
]

in the outward direction. Then, for each MEQ!

h!
1
z V..u, (M) = ““::-*:-*"-J u.vdl
j=y 1hib Byeechy 30, (1)

it

(by Stokes formula)

1

T J div u dx = 0, since div u = O,
1 n Oh(M)

it

Conditions {3.48) are met.

Proposition 3.5.

The preceding external approximation of V 1is stable and convergent.
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Proof.
Stability has been shown already.
The proof of comdition (C1l) is very similar to the proof of Lemma 3.1 and

we do not repeat all the details; for example, for: xézoh(M), MEEQQ,

oy G mu G| = fuy, ()-u, G0,

where £ is some point of the face x, = (mi - %th of Oh(M), and hence

lu,, ) -u, (x)| <e (u)|x-E] < ¢ (u,)|n]
and (3.35) is replaced by ih i —_—1d - G\

(3.55) Sup ]uh(x)—u(x)f;i c;(u){lhl + a(),ml.
x€EQR '

The proof for condition (C2) is similar to the proof of Lemma 3.2; more
precisely, the same proof as for Lemma 3.2 shows that if

ph,uhr_-+¢ in the weak topology of F,

as h'—0, then ¢ = Wu = (u,Dlu,"~,Dnu}, where uEiHé(Q). Because of Theorem 1.6,
proving that u€V amounts now to proving that div u = 0, This follows from (3.49)

as we now show. Let O be any test function in H(Q), and let us suppose that

h is small enough that the support of o is included in Q(Ch); then (3.49)

shows that ‘

n
Jﬂ(izl (V58540 BN o(x)dx = 0

or
n
(3.56) JRF (izl (Vihuih)(x))G(x)dx = 0,

It is easy to check the discrete integration by parts formula

(3.57) f o (T8 (®) .o(x)dx = -f n@(x)(§£h0)(x)dx;
R R

then (3.56) becomes
n —
(3.58) { a ,2 [uy, (). (7, 0) (x) 1dx = 0.
R i=l

With a proof similar to that of Lemma 3.1 (based on Taylor's formula) we see that
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(3.59) Viho"*+~DiG, as h—0,
in the (uniform and) L? norm. Since u,, couverges to u, for the weak

topology of LZ(@®R™), letting. h~—0 in (3.58) gives the result

n
(3.60) [ n [.2 u; (x).D,0(x) Jdx = 0.
R di=1
The equality (3.60), true for any O0E€P(N), implies that div u = 0 and then
¢ = Wu, with u€V. ‘

Remark 3.7.

The Remaik 3.5 can be extended to the present casé with, however, one
restriction: condition (3.48) - (3.49) in the definition of the spaces Vhb‘canﬁot
be replaced by similar relations involving other finite difference operators; for

example, it seems impossible to replace (3.49) by

n
(3.61) Y S.u,, (x) =0,
N . l
. i=1
since (3.61) requires many more algebraic relations than (3.49) and probably too

many relations.

Remark 3.8.
When £ is unbounded one can define, by using the methods mentioned in
Remark 3.5, a stable and convergent external approximation of the space W

introducéd in (2.31).

Approximation of Stokes Problem.

Using the preceding approximation of V and the results of Section 3.2,
we can propose a finite difference scheme for the approximation of Stokes problem.

Let us take, for (3.6),
(3.62) ah(uh,vh) = v((uh,vh))h

- (3.63) <2h’vh> = (f,vh),

where Vh and ((',°))h are the space and scalar product just defined, and VvV and
f are given as in Section 2.1.

The approximate problem corresponding to (2.6) is then:
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Proof.
Stability has been shown already. ,
The proof of condition (Cl) is very similar to the proof of Lemma 3.1 and

o
we do not repeat all the details; for example, - for xESOh(M), VMEEQg,

o O=u, )| = Juyy (©)-u, (0],

where £ 1is some point of the face X, = (mi - %Dhi of Gh(M), and hence

lugy )-u, | <e (u) [x-E] < ¢ (u)|n]
and (3.35) is replaced by ih + - 171 ~ T1374

(3.55) Sup \uh(x)~u(x)l_i i {|n] + a@m),n}.
xE€ER
The proof for condition (C2) is similar to the proof of Lemma 3.2; more

precisely, the same proof as for Lemma 3.2 shows that if
I 7=>¢ in the weak topology of F,

as h'—0, then ¢ = Tu = (ugniu’.ae,Dnu}, where uéiHé(Q).b Because of Théorem 1.6,
proving that u€V amounts now to proving that div u = 0. This follows from (3.49)

as we now show. Let O be any test function in (), and let us suppose that

h is small enough that the support of ¢ dis included ih 2(h); then (3.49)

- shows that

n .
fﬂcizl (Vipup) (2))o(x)dx = 0
or

n
(3.56) f ) (V;puyq) R0 (x)dx = 0.
R~ i=1

It is easy to check the discrete integration by parts formula

(3.57) fﬁn (V1,0 () .0(x)dx = —LRnG(x)(§£hO)(x)dx;
then (3.56) becomes
n —
(3.58) f ) [u,; (). (7, 0) (x)1dx = 0.

R i=1

With a proof similar to that of Lemma 3.1 (based on Taylor's formula) we see that
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oo

(3.59) Vi g-—-D,0, as h—0,

h

in the (uniform and) L? norm. Since ugy converges.to u, for the weak

topology of L2(®™, letting h—>0 in (3.58) gives the result

n
(3.60) J o {.z ui(x),BiU{X}}dx = {,
R i=l
The equality (3.60), true for any 0E€PQ), implies that div u = C and then
¢ = Wu, with u€V,

Remark 3.7.

The Remark 3.5 can be extended to the present case with, however, oae
restriction: condition (3.48) - (3.49) in the definition of the spaces Vh cannot
be replaced by similar relations involving other finite difference operators; for
example, it seems impossible to replace (3.49) by

n
(3.61) 12 S =0,
i=] :
since (3.61) requires many more algebraic relations than (3.49) and probably too

many relations.

Remark 3.8.
When § is unbounded one can define, by using the methods mentioned in
Remark 3.5, a stable and convergent external approximation of the space W

introduced in {2.31).

Approximation of Stokes Problem.

Using the preceding approximation of ¥ and the results of Section 3.2,
we can propose a finite difference scheme for the approximation of Stokes problem..

Let us take, for (3.6},
(3.62) ah(uh,vh) = V((uh,vh))h

(3.63) < ghavh:)' = (fsvh) s

where Vh and (("‘})h‘ are the space and scalar product just defined, and VvV and
f are given as in Section 2.1. v

The approximate problem corresponding to (2.6) is then:
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: To find u, € Vh such that
(3.64) ‘
V((up v ), = (£, Vv ev,.

Proposition 3.56.
For all h€H, the solution vy of (3.64) exists and is unique; moreover

as h—0 the solution v of (3.64) converges to the solution u of (2.6) in

the following sense:

(3.65) u,—ru in L2(Q),

. 2
(3.66) aihuHM~+Diu in L.
Proof.

We only haVE‘té check that Theorem 3.1 is applicable. Condition (3.4) is
obvious (a, = 1); for (3.5) we notice that
<>l = lEwd | < Te] v |

< (by the discrete Poincaré inequality)

A

C(Q)Iinvh!Ih, Vv, € Ve

Hence
(3.67) Il < e@le],

and (3.53) is satisfied.
For (3.7) - (3.8) we notice that

pth"*+&V weakly (resp. phwh-+mw strongly)
means
VTV and Gihv5~w¢Div in L%(R) weakly,
(resp.
’ w, W, and §£hwh—~+Diw in L%*(2) strongly),

and it is clear that this implies,

(S 8, wh)-*(DiV,Diw}

ih'h’°ih
((vh,wh))h—-** ((v,w)),

(f,vh) — (f,v).
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Approximation of the Pressure.

We want to present the "approximate" pressure which is implicitly contained in
(3.64) as the exact pressure p is implicitly contained in (2.6).
The space V,ﬂ in (3.47) is a subspace of the space W,_ in (3.24); namely,

h
the space of v, €W, satisfying the linear constraint (3.68).

h~ 'h
The form vhw\)’((uh,vh))h - (f’svh) appears as a linear form defined on Wh
which vanishes on Vh. Hence introducing the Lagrange multipliers corresponding
to the linear constraints (3.48) we find, with the aid of a classical theorem of

<]
linear algebra, that there exist numbers )ME R, MEQ!, such that the equation

(3.68)  V((u,,v))y = (£,v,) = AM (7,7, 00,

Meszl

holds for each va Wh..

Let us now introduce the operator DhEK(Wb,Lz(Q)):

n

(3.69) thh(x) = 121 vihvih(X)’ Vvhe W,
its adjoint DiEX{Lz(Q) ,Wh) is defined by
% - e 2
(3.70) (Df8,v) = (8,Dv,) Vv, € wh,VGeL ).
Let T be the step function which vanishes outside Qh) = UO Gh(M), and which
MEQR
satisfies h
. )\M o)
(3.71) m (%) = m () = M, VYx€o, (), MEQ, .

Then (3.68) can be written as
\)((uh’vh))h‘(f’vh) = (Trh $thh) 3
or equivalently,
- * -
(3.72) \)((uh,vh))h (Dhﬁh,vh) (f,vh), Vvh€ Wh.

Taking successively v, = WhMej for MEQI j = 1y°°°,n, we can interpret

h h?
(3.72) as

‘ n ) °
_ 2 & A 1
(3.73) v izl 8, G0 + W m)On = £ (0, MeQ
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where Wh(ﬂh(M) is the vector (Vlhﬂh(M),°'3Vnhﬂh(M)) and

(3.74) fh(M) = 'ﬁ——:%*:‘ﬁ*j f(x)dx.
1 n ‘g, (M)
h
The equations (3.73), and
n o
(3.75) izl (Viug ) @D =0, MEQ,

are the discrete form of the equations (2.7) - (2.8);-D§ is the "approximation"

of p, —Dﬁ is a discrete gradient operator.

Remark 3.9.

As indicated in Remark 3.4, the solution of (3.64) is not easy since we do
not know any simple basis of Vh. One possiblility for solving (3.64) would be
to solve the system (3.73),(3.75), which is a linear system with unknowns

°
u (M), ce,u L D5 M (), MEQ,
This  system has a unique solution up to an additive constant for the Wh(M); this
non-uniqueness makes the resolution of this linear system difficult; moreover, the
matrix of the system is ill~conditionned.

More efficient ways for actually computing the approximate solution will be

given in Section 5.

The Error.
Let us suppose that the exact solution satisfies u€€%(Q) and pEC ().

Then by using Taylor's formula, we have

0 ‘
2 S -
(3.76) -vizl (CIprpW D = (U, p) ) = £(0) + g (M)
where ru is the function of Vh defined by (3.54) and where eh(M) is a "small"
vector:
(3.77) le, ] < eu,p) |n],

c(u,p) depending only on the maximum norms of third derivatives of u and second

the function E p(M)w, ... Then,
1 hM
ME h

derivatives of p. Let us denote by ﬂ‘h

the equality (3.76) is equivalent to
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' =
(3.78) \)((rhu,vh))h + (7 h’Dth) (f+8h,vh)
for each VL EW, (space (3.24)) and implies
(3'79) vc(rhu’vh>)h = (f+€h3vh)9

for each V€ Vh.
Subtracting this equality from (3.64) we get

(3.80) \)((uh*rhu°vh))h = <gh,vh),

and then taking vy =y -tu, we see that

Voy-rely = (oo
f,C(@,usP)th“ﬂh“rhuHh~
Hence we find the following estimates for the discrete error:

C(Qausp}thx

< fi

(3.81) ﬂuhwrhunh.i

(3.82) lu -zl < 2 et @,u,p) 0]
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© §4. DISCRETIZATION OF STOKES EQUATIONS (II)

We study here the discretization of Stokes equations by means of finite element
methods. The results are less general here than in the previous section and vary
according to the dimension. We successively consider conforming finite elements
which are first plecewise polynomials of degree two in the two-dimensional case
(Section 4.2), next pilecewise polynomials of degree three in the three-dimensional
case (Section 4.3), and thén piecewise polynomials of degree four in the two-
dimensional case (Section 4.4). TFinally we consider an external approximation

by non-conforming finite elements (any dimension) in Section 4.5.

4,1 Preliminary Results.

We will have to work with peicewise polynomial functions defined on
n~-gimplices. For that purpose, we recall here some definitions and introduce some
notations adapted to the situation.

Barycentric Coordinates.

(1)

Let there be given in R, (n+l) points Apyers, with coordinates

, A1
aq 42t tsA 4o 1 < i <ntl, which do not lie in the same hyperplane; this amounts
3 9

saying that the n vectors A A,,***,A A are independent, or that the matrix
ying 140 P

Pyl
B 1,2 7" %1 an
33,1 %22 """ %
.y = . :
an,l an,z an,n+l
1 1 1

. . ; n . ;
is non-singular. Given any point PER", with coordinates x

AR there exists

{(n+l) real numbers

Ai = ki(?}, 1 <ix<ntl

such that
: ntl
(4.2) oP = ‘2’ A{0A,,
i=1
n+1
(4.3) Y oA, =1,
. i
: ‘ i=1
(I>In this section dealing with finite elements, the capital letters A,B,M,P ¢+,

(sometimes with subscripts) will denote points of the affine space R, Couples
of such letters, like AB,++<, denote the vector of R® with origin A and
terminal point B.
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. - n
where O is the origir of R,

To see this it suffices to remark that (4.2)(4.3) are equivalent to the

linear system

! x

(4. 8) Q ; = E
A X
n n

An+l 1

which has a unique solution since the matrix (L is non-singular, by hypothesis.

The quantities Ai are called the barycentric coordinates of P, with respect to

the (nt+l) points Al,"°',Ah+l. As a consequence of (4.4), the numbers Ki appear

as linear, generally nonhomogeneous functions of the coordinates Xpst X of P:

n
(4.5) Ay= L b 1<1i<ntl,
j=1

1,5%5 T P4 nk1

where the matrix B = (bi j) is the inverse of the matrix . It is easy to see
]

that the point O in (4.2) can be replaced by another point of R" without

changing the value of the barycentric coordinates; hence

ntl
(4.6) 02 A;PA; = 0.
i=1
The barycentric coordinates are also clearly independent of the choice of basis
n
in R,

The convex hull of the (ntl) points Ai ig exactly the set of points of

n . , . . . -
R with barycentric coordinates satisfying the conditions:

(4.7) 0 < A,

i <1, 1-<i <ol

This convex hull & is the n-simplex generated by the points Ai’ which are

called the vertices of the np-simplex. The barycenter G of D is the point of

- whose barycentric coordinates are all equal and hence equal =T An m-

dimensional face of -0 is any m-simplex (1 < m < n-1) generated by m+l of

the vertices of 0 (of course these vertices do not lie in a (m-1)-dimensional

n w , .
subspace of R). A i-dimensiomnal face is an edge.

In the two-dimensional case (n=2) the 2-simplices are triangles; the
vertices and edges of the simplex are simply the vertices and edges of the triangle.

In the three dimensional case, the 3-simplices are tetrahedrons, the two-faces
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are the four triangles which form its boundary.

An Interpolation Result.

Proposition 4.1.
Let A19""Ah+l be (ot+l) points of R" which are not included in a
hyperplane. Given (nt+l) real numbers oy ,°0c,0

there exists one and only

otl?
linear function u such that u(Ai) =a., 1< 1iZgntl, and
ntl )
(4.8) uw(®) = J a,A,(P), VPERY,
i=1 ‘

where’the ki{P) are the barycentric coordinates of P with respect to
A

l’... ’An.‘}-l'
Proof. Let
n :

u(x) = z B.x, + B ;
j=1 i3 nt+l

be this function. The unknowns are B8 ‘..’8n+l which satisfy the following

l’
equations asserting that u(Ai) =0,
n
= < i < ntl,
Z Bjaj,i + Bn+1 oy 1 <i<ntl
j=1
The matrix of the system is the transposed matrix %2, of & and thus the function
u exists and is unique.

It remains to see that (4.8) is the required function; actually
u(Aj) = mj, 123 2ok,

since Ai(A ) = Sij = the Kronecker symbol, for each 1 and j.

3

Remark 4.1. _ :
Higher order interpolation formulas using the barycentric coordinates will be

given later (see Sections 4.2, 4.3, 4.4).

Differential Properties.

We give some differential properties of the Ai considered as functions of
the cartesian coordinates Xpstt sy of P; here we denote by D the gradient

operator D = (Dl,'“,Dn)°
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Lemma 4.1. bl
(4.9) Y} DA=0
, i
i=1
(4.10) Dki(P) -PA.j = 6ij - Ai(P), 1 <4,j < ntl,
Proof.,

The identity (4.3) immediately implies (4.9). Accoxrding to (4.5)
Ei-i-'—‘b 1<i<ntl, 1<kc<
axk B T
and then

Dki(P) *PA, = Dki(P) 'OAj - Dki(P) * OP

n

I
[ e o T 41

b, .- Y b, *k
k=1 1,kak,3 kel i,k
kel
= kzl I L P
= Gij - Ai;

for the last equality we note that @& = Q71

Lemma 4.2.

Let O be an n-simplex with vertices A and let p' be the

1’-00’An+l
least upper bound of the diameters of all balls included in A. Then

(4.11) DA, | :;fr » 121 2nH,

where !Dkil is the euclidian norm of the constant vector Dki.

Proof.

We have

(4.12) oA | = xi§§F D, *x.
|x[=1

Any vector x, with norm 1, can be written as

1
X:E‘TPQQ

where P and Q belong to -D; denoting by Ups®®® the barycentric

Mor1e



A

coordinates 1

of Q@ with respect to

PQ

Then

1
DAi'x o (DA

1

)

j=1

1

1

]

it

and Q belong to <,

and then -1< ui—)\i <1,

Since P

so that

and {4.11) follows.

Norms of Some Linear Transformations.

Let » and & be two n-simplic

coe A ]
Al’ ’An+ We denote by p (resp.

1
containing O (resp. the diameter of

similar meaning for op, p'.

We can suppose that, up to a translation,

j-_-
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e e

1

,An+l,

n+l

T

j=1

we have because of (4.2)~(4.3),

PA,
I

n+l

2 U 1.
1 3

n+l

i)'(jzlxﬁ PAj)

LDA, PA,
uJ L3

(according to (4.10))

i, 1 <1 <n¥l,

es with vertices A ,**°,A and

1 n+l’
o') the diameter of the smallest ball
largest bdll contained in )3 with a

Ay

A

. . n
1 the origin in R,

= 0,

and we denote then by A the linear mapping in R® such that

(4.13)
The norms of A and Aﬂl

Lemma 4.3.

ol

Iaf <

w—-

¥

(4.148)

©

2 <1 < ntl,

can be majorized as follows in terms of p,p',EZETE

L

IS
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Proof.

As in the proof of Lemma 4.2, let x be any vector in R with norm 1.

1
X = ET‘PQs

where P and Q belong to D, It is clear thdt

l =
Ax = '{3‘-;' PQ,
where P = AP, Q= AQ. But P and Q belong to Y too,
n+1’
oP = }] 04, O0<A <1,
i=1
implies bl
AOP = .2 Ay OA,,
i=1

so that the barycentric coordinates of P with respect to .Kl"

the same as the barycentric coordinates of P with respect to Al’

Hence |PQ] 5‘5, and

[} < 5

since

"An+l’
') ’A‘n+l'

Then

The first inequality (4.14) is proved. The second inequality is obvious when

interchanging the role of X and .

When handling divergence free vector functions, the following lemma will be

ugeful:

Lemma 4.4.

: . . n
Let x+ru(x) be a divergence free vector function defined on A (or on Rx)

and let x+>u(x) be defined on b by
(4.15) TR = AR, YXEXor m;:).

Then u is a divergence free vector function too.

vy

Proof.

Let (uij) and (R, ) denote the elements of A -and

k&

AL,

Then



Buz 1
= Y,%k 1£Bkj Bxk (A%
and _
@iy D = ] &= a8 2y (h~1%)
i 8351 1,k,8 i27kj 3Xk |

3 Ju
=1 = u® =o.
k

Regular Triangulations of an Open Set Q.

Let Q be an open bounded set in R™.

9

Let 4 be a family of n~simplices; such a family will be called g_g_

admissible triangulation of @ if the following conditions are satisfied:

(4.16) Q(h) w\A}LEJ?;bCQ
h
(4.17) 1If D and VNE%, then DN = (f), (where A is the interior of
\,bsn) and, either DN.L  is empty or M0’ is exactly a whole
m-face for both > and X (any m, 0 <m < n-1),

We will denote by ‘{S‘h}hfi% ‘the family of all admissible triangulations of

with each admissible triangulation ?’h we associate the following three numbers

(4.18) p(h) = Sup pup
Seq,
h
{(4.19) p'(h) = Inf »p'
| ey Y
h
Py
(4.20) ‘ o(h) = Sup =4
ste‘i;’h P

(1)Vi.e. s the points of v with barycentric coordinates, with respect to the
- vertices of )y satisfying 0 < Ai <1, 1 <i<ntl,
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where, as before, o = p,, is the diameter of the smallest ball containing .y
and p' = p', is the diameter of the greatest ball contained in -,

For finite element methods, we are concerned with passage to the limit
p(h)—>0, It will appear later that some restrictions on o(h) are necessary

to get convergent approximations,

A subfamily of the family of admissible triangulations Aﬁ?%}hE“N‘ will be

called a regular triangulation of @ if o(h) remains bounded as p(h)—0,
(4.21) o(h) < a <+, p(h)~—0
and Q(h) converges to £ in the following sense:

(4.22) For eachkgompact set KCQ, there exists 6 = &(K) > 0 such that
p(h) < §(XK)=>Q(h) D K.

5%& will denote the set of admissible triangulations of Q satsifying (4.21)
and (4.22),

Remark 4.2,

In the two dimensional case the 2-simplex is a triangle and it is known that

where © is the smallest angle of M

The condition (4.21) amounts then to saying that the smallest angle of all
the triangles Jh@frh remains bounded from below

(4.23) : 6> 8, > 0.

Our purpose now will be to associate to a regular family of triangulations

{3£}hegw of @, various types of approximations of the function spaces we are
Q
concerned with.

4.2 Finite Elements of Degree 2(n=2).

Let @ be a lipschitzian open bounded set in R”. We describe an internal
approximation of Mé(ﬂ) (any n) and then an external approximation of V

(n=2 only). The approximate functions are piecewise polynomials of degree 2.
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' Approximation of Hé(ﬁ).

Let f?% be any admissible triangulation of Q.

e e .

This is the space of continuous vector functions, which vanish outside Q(h)

- U N
(4.24) Q(h) vbe‘:_,ad,h

(1

and whose components are polynomials of degree two on each simplex Qbeﬁrh.

This space W, 1is a finite dimensional subspace of Hé(ﬂ). We equip it

with the scalar product induced by mé(ﬂ):
(4.25) (Cupsv)dy = (v Vo ,v €W, .

A Basis of Waa

o If D 18 an n-simplex we denote as before by Al,*e' the vertices

’An+1’
of O we denote also by Aij the mid-point of AiAj'

We first have

Lemma 4.5.

A polynomial of degree less than or equal to two is uniquely defined by its

values at the points Ai’Aij’ 1 <i,j £ ntl (the vertices and the mid-points

of the edges of an n-simplex .

Moreover, this polynomial is given in terms of the barycentric coordinates

with respect to A, ,***,A by the formula:

1 n+l’?
n+l
(4.26) $G0) = ] (20 () Z=r ) (A))
~ i=1
n+l .
+ 2 i§j=l )‘iCX)}‘j(XW(AijL
1#]

Proof.
Let us show first that (4.26) satisfies the requirements. The function on
the right-hand side of (4.26) is a polynomial of degree two since the Ai(x) are

linear nonhomogeneous functions of x AT {(see (4.5)). Besides, if Y(x)

15
denotes this function,

(1

Roughly speaking, a polynomial of degree two means a polynomial of degree less
than or equal to two.
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w(Ak) = ¢(Ak) since Ai(Ak) = aik

ity
P(a ) = 0(A ) since A (4 ) = ——

Thus ¢ 1s as required.

Now, a'polynomial of degree two has the form

n n
- 2
(4.27) ${x) o, + .z (aixi+8ixi) + . 2 Gijxixj'
i=1 i,3=1
i<
and ¢ 1is defined by Lﬂil%éﬁt%l unknown coefficients aO;ai’Bi’aij‘ There
: . n(at+l) ; -
are (n+l) points Ai’ —5—= points Aij’ and hence the conditions on ¢:
(4.28) ¢(Ai) = given, ¢(Aij) = given,
are ﬁﬂiﬁ%fﬁizl linear equations for the unknown coefficients. According to

(4.26) this system has a solution for any set of data in (4.28); then the linear
1

system is a regular system s and the solution found in (4.26) is unique.

Now let us denote by ”Jh the set of vertices and mid-edges of the n-
simplices »héf?h, We denote also by “ﬁh those points of QUB which belong to
the interior of Q(h). According to the preceding lemma there is at most one
function u in Wh which takes given values at the points AET&B, Actually
we have more.

Lemma 4.6.

There exists one and only one function uy in Wﬁ which takes given

values at the points Méfﬁh.

Proof.

We saw that such a function is necessarily unique. Now, by Lemma 4.5,
there exists a function uy whose components are piecewise polynomials of
degree two, which takes given values at the points ME?ﬁh, and vanish at the
points MEQﬁ;ﬁ%l and outside Q(h). We just have to check that this function

is continuous. On each (n-1)~face A of a simplex DeJ., each component up

@

We use the well-known property that, in finite dimensional spaces, the linear
operators which are onto, are one-to~one and onto.
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of u, is a polynomial of degree two which has two (perhaps different) values

Yin and Uy But Uiy and u,, are polynomials of degree less than or equal

to two in (n~1l) wvariables, which are equal at the vertices and the mid-points
of the edges of ); then Lemma 4.5 applied to a (n-1) dimensional simplex

+ - ; .
shows that u,, = u, on . Therefore u, ~is continuous, and uy belongs

ih ih
to Wh.
Repeating the argument of the preceding proof, we see that there exists
a unique scalar continuous function, which is a polynomial of degree two on

each simplex ~£%53%} and which takes on given values at the points Médl

h’
and vanishes outside Q(h). Let us denote by VoM the function of this type
defined by

.
(4.29) v = 1, w o () =0, veed,, ? # ¥, (Mey) .

Finally, we have

Lemma 4.7.

The functions thei,

dimension of Wh is nN(h) where N(h) 1is the number of points in Q&h'

Me , i = 1,°++,n, form a basis of W,, and the
h = —— Y e—— e

Proof.
These functions are linearly independent, and, clearly, each function

uhEZWh can be written

EXCENp)

11
Vou, Mew (%)
LTS P E A 4
or
(4.30) up o= Lo (MDw,.
ME A

Operator p,. The prolongation operator p, is the identity,
Yl Py h

(4.31) PR, T Yo VuhE W .

The ph's have norm one and thus are stable.

Operator r_ . We define ru for uEDQ); we set:

(4.32) (rhu) My = u(M), VME“&h‘
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The preceding internal approximation of Hé(ﬂ) is stable and convergent,

provided h belongs to a regular triangulation ”N& of Q.

Proof.

We only have to prove that for each u€®(Q),
pprpu > u in !Hé 0,
as p(h)—0, hE”H&.
If h 1is sufficiently small, Q(h) contains the support of wu, and then

the next lemma will show that
(4.33) oz umull < e(wo?(h)so(n) < e(wap?(n),
and the result follows.

Lemma 4.8.

Let & be an n-simplex, ¢ a scalar function in €3(3), and let 3 be

the interpolating polynomial of degree two such that,

for 1 <1i,j < n+l.

Then, we have

(4.34) Sup [(x)- $(x)| < c(4)pl
<€D '
30 3 QL
4,35 S e (R) - = (%) -
(.35 xED | oxy * ox; 2o LY

where ¢(¢) depends on the maximum norm of the third derivatives of b,

This lemma is a particular case of general theorems concerning polynomial

interpolation on a simplex in connection with finite elements.

Polynomial Interpolation on. a Simplex.

Let & be an n-simplex and let & be a finite set of points having the
YME R, MEE, there exists

a unique polynomial p of degree less than or equal to k such that

following property: for any family of given numbers

(4.36) p(M) = Yy VMet,
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Such a set & 1is called k-unisolvent by Ciarlet-Raviart [1]; for example,

according to Proposition 4.1 and Lemma 4.5, the vertices A of & are

LR ’An-f'l
l-unisolvent, the points Ai’ Aij’ 1 <i,j < ntl, are 2-unisolvent.

Let us denote by 1 the polynomial of degree k such that
(4.37) py (M) =1, p (L) =0, MM, MEE
Then the polynomial p in (4.36) can be written as

(4.38) p= Yy Py
M.EE i
i
"Now let us suppose that a function ¢ is given, ¢e‘€kﬂ‘€b), and let ¢
be the interpolating polynomial of degree k defined by

- (4.39) | §an = ¢0n, VMEG

il.e., ‘
(4.40) " ¢ = 1 e0)p,.

M€ e

Using Taylor's formula it is proved that for any multi~index j = (jz,'“,jn)

with [j] = jl-{-"--lrj’nf_ k, one has
(4.41)  DIF (@) = DIg(p)

1 S, ) 2.3
+ o ) L DTeR) M PV IDp, (P,
(k+1){Mi€% [2]=k+1 if i i

where P, is some point of the open interval M, ,P),

L 2 -4 A
DY =Dt eee D P MPY = g ) ees g D
1 n i 1ii ni

for MiP = (8113“*98ni>& ‘Q" = (le...b’qﬂn)u

The error between ¢ and § is majorized on A by

| <51
k| - iv oy e
(4.42) Se ID?6(2)-D°¢ (®)] < en,, (9 Sk

(1)

for [j] = §1+“-jn =m < k, where p,, and p'y, are defined in Section 4.1°77.

(l;) ny (¢) = Sup Sup {Ipde x|,
x [jl=k

~ The supremum in x is taken on L} elsewhere when using this notation, the
supremum is understood on the whole support of ¢.
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This is a consequencz of (4.41) and the following estimation of P;

(4.43) Sup §Djpi(x)} ﬁ»“%ﬁ‘ for [j] = m < k.
XEM 8N

For the proofs of (4,41) and (4.43), the reader is referred to Ciarlet-

Raviart [1]; for the particular case of Lemma 4.8, see also Ciarlet-Wagshall [1].

Approximation of V (APX

Here Q 1is an open bounded set in RZ; we shall define an external
approximation of the space V.
Space F, Operator G.

The space F is Eé{ﬁ) and @ 1is the identity

]

(4.44) Wu = u, Vu€V;
% 1is an isomorphism from V into F.

Let'ﬁ'h be any admisgible triangulation of Q.

h is a subspace of the space Wh previously defined. It is the space of

continuous vector functices which vanish outside

(4.45) em = U o
e
h
and whose components are polynomials of degree two on each simplex JME?;I
such that
(4. 46) [ div u dx = 0, \7’@63;;
v

The condition (4.46} is a discrete form of the condition div u = 0. The
functions u € Vh belong to Hé(Q), but not to V, Vh¢ V. We do not have a
simple basis of Vh; according to Lemma 4.7, any function .uhE Vh can be

written as

u, = Z Mw,
h Meﬂh“h hM
but the functions th do not belong to Vh, Lemma 4.7 and (4.46) shows also that
dim V, < 2N(h) - N'(h),
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where N(h) is the number of points in ﬂ&h and Nf(h) is the number of
triangles~i&€3}v
We provide the space Vh, with the scalar product of Hé(&) (as Wh):

(4.47) (o v )y = (o v )

Operator Py

The operator p, is the identity (recall that VhC!H%(Q)).‘ The proiongation

operators have norm one and are thus stable.
Operator r,.
The restriction operateors are more difficult to define because of condition

(4.46) which must be satisfied by u.

T
Let u be an element of 1P; we set

" (4.48) nu=u = ué + uﬁ,

1 2
0 and uh

(4. 49) ué(M) = u(M), \fmeﬁlh.

where u belong separately to W _; ué is defined like in (4.32) by

There is no reason for uﬁ to belong to Vh, and actually uﬁ will be a
"small corrector'" so that ué+u§€EVh. We define uﬁ by its values at the points
ME?&ﬁ; if M=4, is the vertex of a triangle then uﬁ(Ai) =0; 1if M= Aij
is the mid-point of an edge, then, letting vij denote one of the two unit

vectors orthogonal to AiAj’ we set:
uZ(A,,)eA A, =0
h*"ij i

2 ®
(4.50) uh<Aij) Vij

1
o R R _:i _ )
" {uh(A ) 4 - uh(A y = uh(Aj)}v 2 [0 u(tAi+(l t)Aj)vijdt
Lemma 4.9. o _
u defined by (4.48)(4.49)(4.50) belongs to Vh'
Proof.,
The main idea in (4.50) was to choose uﬁ so that
Aj Aj
(4.51) UV, ds = usv,,de.
Ai ij A ij
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If we show that (4.51) is satisfied, we will then have for any triangle M

[ div u, dx = j uh'vdi = j usvdl = f div u dx = 0,
A ERY . &
since u€Y* (v = unit vector normal to JXv pointing outward with respect to D),

Let us prove (4.51), The function uzh is equal to

hA, hM

ij

preceding sum which is not identically equal te 0. By the definition of

2 . 2
(4.52) ul b, ul(0w
Méﬂﬁi
M=,
On the segment AiAj, the function w is the only function w in the

Vi one easily checks that
ij

(4.53) (tAi+(l-t)Aj) = 4t(l-t), O <t < 1.

Yha, |
13

Likewise

ul = Y Cul (MW
u
h‘ ME?&E % hM

where the only functions Yy which do not vanish on AiAj are whAi’whAj’WhAig'

3
It is easily shown that

[

whAi(tAi+(l~t)Aj) (t-1) (2t~1)

(4.54)

1

whAj(tAi+(1—t)Aj) t(2t-1).

Then
1

1 [y - .
TKEX;T [:' uh(&) vijdl = [0 uh(tAi+(1~t}Aj} Vijdt
1

i

2 2 . 2z 1 1 .
3 Un(Big) Vpg T T (At g T (A (A0 D,

i

(by (4.50))

1 .
e — . = l . [y
_{0 u(tAi+(1 t)Aj) vijdt TEZKgT IA u{x) vijdﬁ.
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The lemma is proved.

Proposition 4.3.

The preceding external approximation of V is stable and convergent,

- provided h belongs to a regular triangulation cg& of Q.

Proof.
Let us check first the condition (c¢2) of Definition 3.6.
We have to show that if a sequence ph,uh,,uh,éévh., converges weakly to

¢ in F, then ¢ = u€V. According to Theorem 1.6, we need only show that

(4.55) ~ divu =0,

Let € be any function of F(R); by (4.46), we have

{4.56) { {(div uh}shéx = 0,
9]
where 6h is the step function which is equal on each J&GU%I to the average
value of € on »lﬁ and which vanishes outside Q(h). It is easy to see that
when support 6CQqQch),

sup |8, (x) - 8(x)]| < c(®)p,,
X € b b

so that Qh converges to & in the 1° and L2 norms; thus we can pass to the
limit in (4.56) and obtain

I div u+6dx = 0, VoEI(Q)
0

This proves (4.55).
The condition {(cl) of Definition 3.6 is
(4.57) lim p.r.u = wu, YuEd
“h'h ‘
h >0

This is equivalent to

(4.58) lim fu-rul =0, Vuetn
h—0

Let us suppose that % is gufficiently small so that Q(h) contains the
support of u. Because of Lemma 4.8 and (4.42), on each triangle Qﬁiﬁgﬁ
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sup |ux)~ul ()] < eny(w)o},

(4.59) xEN ;
¢

- 1 T

Sup 1D;uG0-Dyuy G| < eny () 52

By the proof of Lemma 4.9,

2 .2 vy, m ot L Y
(4.60) 3 uh(Aij) \)ij = TX]:KJ—[- r; Uh(X) \)ijdl
i
1 -
- —-— l L]
= TKTKTT J [u(x) up (x)] vide.
i7j Ai

i
S
[ew] [l

1 .
(u—uh)(tAi+(l~t)Aj) vijdt

Hence, with (4.60) estimated by (4.59),
2 = 1.2 . 3
(4.61) luh(Aij)I luh(Aij) vijl 2 en (w)o,
Now by (4.43), we obtain

(4.62) Su [w (x)] <c
xEj; hM

Sup |D,w_, (x)] fjJ%- , 1= 1,*s,n
ed i"hM P
Next, combining (4.61) - (4.62) with (4.52), we get

Sup ]uﬁ(x)l_ﬁ cn3(u)qiy

xED

. . p 3
Sup IDiuﬁ(x)[ < eng(u) ¥

XED NS

Finally, combining (4.59) and last inequalities, it follows that

Sup !u(x)~uh(x)l i_cn3(u)p(h)3
x€0N
(4.63)
Sup IDiu(X)-Diuh(X)l i,cna(U)p(h)ZU(h) f_cn3(u)ap(h)2-
xEQN )

The proof is achieved.
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Remark 4.3. »

If @ is a pélygon, it is possible to choose the triangulation fﬁg such
that Q(h) = 2, and this is usually done in practical computations. In this
case we can extend the preceding computation to any uéiﬁé(ﬂ)r3@ﬁ(§} and we find

(4.64) Nuwrhufl < eng(uw)o(h)e(h)?,

Approximation of Stokes Problem.

Using the preceding approximation of V and Section 3.2 we can propose a
finite element scheme for the approximation of a two-dimensional Stokes problem.

Let us take in (3.6)
(4.65) . ah(u-hsvh) = V((Uhsvh))a

(4.66) < S&h’,vh?) =, (fgvh)

where v and f are given as in Secticn 2.1 (see Theorem 2.1).

The approximate problem (3.6) is then

To find uhEth such that

(4"67) v((uh;vh)) = (fsvh) s Vvhe Vh'

The solution uy of (4.67) exists and is unique; moreover, we have-
Proposition 4.4.

If p(h)-—0, with o(h) <a (i.e., hGE@%), the solution w of (4.67)

converges to the solution u of (2.6) in the ﬁé(ﬂ) norm.

Proof.
It is easy to see that Theorem 3.1 is applicable, and the conclusion gives

exactly the convergence result announced.

Approximation of the Pressure.

We introduce the approximation of the pressure, as in Section 3.3.
The form

th~v((uh,vh)) - (£,v)

iz & linear form on W, , which vanishes on V Since Vh is charactevrized

h' ;
by the set of linear constraints (4.46), we know that there exists a family of
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numbers Ay, Q&E<Y£h which are the Lagrange multipliers associated with the

constraints (4.48), such that

vy sv)) = (£,v) ibyez;g“’ )\A(L&div v, dx), Vv, €W, .
h

Let denote the characteristic function of X\ and let ﬂh denote

Xy
the step function

o= ) om x

(4.69)
.S VI

thlQ {meas XN
We then have
(4.69) V((uh,vh)) - (ﬂh, div vh) = (f,vh), ‘VthSWh,

which is the discrete analog of equation

(4.70) v((u,v) = (p, div v) = (£,v), YvEH (D).
Remark 4.4, '
Since no basis of V. is available, the solution of (4.67) is not éasy.

h
The computation can be effected by the algorithms studied in Section 5.

The Ervor betwesn u and uh.

Let us suppese that § has a polygonal boundary (RCR2) and that
u€E3(Q) and pE€CI(R). Then according to Remark 4.3,

(4.71) ”u«—-rhuH < c(u,0)p(h)2.

We can take v = vy = -Tu in (4.69) and‘(4.70); subtracting then (4.70)

from (4.69) there remains
(4.72) v((uh-u,uh~rhu)) = (ﬂh"p, div{uh~rhu)).‘

Let W'h denote the step function

H — W ' )
"h "\Qggyg (meas &) (fgyp(x)dx)xhh;

Then the right-hand side of (4.72) is equal to
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(w'h—p, div(uh—rhu))

and is majorized by

|ty |div (o -ryw | < /2] =plllu -r,ul .

Hence

v( (uh—u,uh—rhu) VRS /2] W'h"? il uh-rhu” ’

Wl < 020w -p Ll urpul Y r ol

(4.73) [l -, ul f,-‘éz 7' [+ -yl

1

It is easy to see that Iﬂ h—pl is majorized by cnl(p)p(h) and then we

‘have at least
(4.74) Huh—rhuﬂ < eny (u,plo(h).

This estimation is perhaps not optimal,
When the boundary of §© 1s not a polygon, an additional error of order

p(h) appears in the right-hand side of (4.74).

4.3 Finite Elements of Degree 3(n = 3).

Let £ be a lipschitzian open bounded set in R3. We describe first an
internal approximation of Hé(Q) and then an external approximation of V. The
approximate functions are piecewise polynomials of degree 3.

Approximation of Mé(Q).

zf',
"h

Let be an admissible triangulation of Q and let

- U
h
If N is a 3-simplex (i.e., a tetrahedron) we denote by Ajseemrhy, the

vertices of Jv and by Bise 3By, the barycenter of the 2-faces .291,--°,434,
We denote by alh the set of vertices of the simplices~§€zyh and by Eiﬁ the
set of barycenters of the 2-faces of the simplices D belonging to ﬁ%;

=t1yt?2
e -1,

We first prove the following result.
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Lemma 4.10.

Apolynomial of degree three in r3 1s uniquely defined by its values at

the points A;,B,, 1 <41 <4, and the values of its first derivatives at the

points Ai' Moreover, the polynomial is given in terms of the barycentric

coordinates with respect to Al""’Au’ by the formula

: 4
(4.76) Gy = ) 200 () 3#3(A (x)) 210CA))
i=1
b A Ax)erod (%) 4
1 1 Y
+= ) [276(B)-7 ) ¢(A)]
6::2-1 A (%) S R
o#l
g 2
+ 1,§=1 (g )22, () [DS(A)) *4,A,]
i#5
A

L) e 0d, (%)
comell IR R

The proof is exactly ihe samé as the proof of Lemma 4.5, The coefficients of ¢
are the solutions of a linz2ar system with as many equations as unknowns; we just
have to check that the polynomial omn the right-hand side of (4.76) fulfills all
the required conditions for any set of given data ¢(Ai), ¢(Bi), D¢(Ai).

It follows from this lemma that a scalar function ¢h which is defined
on (h) and is a polynomial of degree three on each simplex “Aeng is completely
known if the values of ¢h are given at the points Ai€3gé and BfE%?h and
also the values of D¢h are given at the points Ai€f8é. Such a function
¢h is differentiable on sach még@&fgr , but there is no reason for such a
function to be differentiahle or even contindus in all of Q(h). Actually, this
function ¢h is at least continuous: on a two face XN of abtetrahedron
QNEK:}, @h has two, perhaps different, values ¢; and ¢;; but ¢: and ¢;
are polynomials of degree three which take the same values at the vertices
and at the barycenter of ; the first derivatives of ¢: and ¢; at the
vertices of N are also aqual {(these are the derivatives of @h which are
tangential with respect to ~§9). Then it can be proved exactly as in Lemmas 4.5
and 4.6 that @; = ¢;.

We denote then by whﬁ,Mﬁigh, the scalar function which is a pilecewise

polynomial of degree three on QC(h) with
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th(M) = 1, th(P) =0 \;'Pe‘&‘,h P#M

(4.77) 1
Dw((P) = 0, \@eﬁh.

hM
polynomial of degree three on §(h) such that

For M€58h, i=1,2,3; w(l) is the scalar function which is a piecewise

¢ IR o
Wiy () =0, Veet,

(1) py = 1
(4.78) Dwpy’ (B) = 0 V¥PELL, P 4N
(1) vy = =
thM M = ess i=1,2,3.

All of the functions w (1)

we YhMo are continuous on Q(h).

The space Wh is the space of continuous vector functions up from Q

into R3, of type

(1)
hM ?

i} e~100

(4.79) wo= ] ow w + ]
€

D,u, Mw
MEE, M 1%

€l i=1 :
which vanish outside Q(H).

It is clear that uh(M) = 0 for any MGEQhL)3Q(h); but since the tangential
derivatives of uy vanish on the faces of the tetrahedrons J» which are included
in Q(h), the derivatives Diuh<M)’ MGZaéLJSQ(h) are not independent.

The space Wh is a finite dimensional subspace of mé(ﬂ); . we provide

it with the scalar product induced by Hé(ﬂ)
(4.80) ((uh’vh))h = ((Uh,vh)), \fuhavhefwh~

Operator p,.
The prolongation operator Py is the identity; the p,, are stable.

For uG?@XQ), we define U = LU by u, = 0 1if the support of u is

not included in Q(h), and if the support is included in Q(h),
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u 0D = u(), VMe€ ,

(4.81) Du, (1) = Du(M), VMES&.—

Proposition 4.5.
The preceding internal approximation of iHé (@) 1is stable and convergent,

provided h Dbelongs to a regular triangulation G\ﬁa of Q.

Proof.

We only have to prove that for each u€Q),
ES { b 1
u rhu—“+u in ﬂo(ﬁ)

as p(hy——>0, h€ .
‘This is proved like Proposition 4.2. The analog of (4.42) for Hermite

type interpolation polynomials (see Ciarlet-Raviart [1]) shows that

&mlu@%ﬁﬁﬁlicmﬂwp&

(4.82) xEX .,
0
Sup |Du(x)-Du, (x)] —
X;};I u(x)-Du, (x | < en, (v) 0T,
Hence
Sup iuCX)*uhCX)i < c(u)p™(h)
(4.83) xE€EQ
Sup !Du(x)~Duh(X)I < c(w)p3(h)o(n)
XER
and in particular
(4.84) fumu ]l < sc(uw)p3(h)

provided supp uCTQ(h).

Anproximation of V (APX 3).

We recall that 2 d4is a lipschitzian bounded set in R3.

Space F, Operator .
The space F 1is Hé(ﬁ) and W is the identity.

Let ?}1 be an admissible triangulation of Q.

Vb is a subspace of the previous space Wh; it is the space of

U‘h€ Wh
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such that
(4.85) J div udx = 0, Ve,
o h
We provide the space Vh with the scalar product (4.80) induced by Hé(ﬁ)
and Wh.

Operato; Py,

e o e b — b —

This operator is the identity (recali that V CZM%(Q)).

h
Operator 1.

The construction of T, is based on the same principle as in Section 4.2,

Let u be an element of A we set
1 2
(4.86) rhu uy + up

where ué and uﬁ separately belong to Wh; ué is defined exactly as in (4.81)

uﬁ(M} = u(M), vMe‘c‘ih
(4.87)
Dul () = DuW), VME&&

The corrector uﬁ is defined by

(4.88) w20 =0, Du20 =0, VMGgé

and at the points Mffgﬁ, the component of uﬁ(M) which is tangent to the
face X whose M 4is the barycenter, is zero; the normal components uzh(M}-vA

is characterized by the condition that

(4.89) f uh(x)~vdf = f u{x)-vdr
DL s

&)

One can prove that there exists some constant d. such that

2 . = . \ 2 .
[iﬂ uh(x) vdl' = d (area\iv)uh(M) v

and (4.89) means that

1

2 Y R eeem———
(4.920) uh(M) v ETTY)

(u~ul) (%) *vdrl.
[}& U.uhX\)

(1)

‘The principle of the proof is similar to that of Lemma 4.9,
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It is clear then that v, belongs to V, since, for each QE T,

[ div uhdx = J uh‘vdF = [‘ usvdl = [ div udx =0 .
N 3 LB X

Proposition 4.6.

The preceding external approximation of V "is stable and convergent,

provided h belongs to a set of regular triangulations <N& of Q.

The proof of this proposition follows the same lines as the preoof of
Proposition 4,3.
The approximation of Stokes problem can then be studied exactly as in

Section 4.2.

~ 4.4 An Internal Approximation of V.

We suppose here that @& is a bounded and simply-connected cpén subset
of R? with a lipschitzian boundary.

In the two dimensional case, the condition divu =0 is

3u1 Bu2
(4.91) '53-;1'-{“5?:,0’

(4.92) “1='~a§§" w, = - 2L,
the function ¢ exists lccally for any set §, and globally for a simply
connected set Q.

In the present case we can associate to each function u in V the
corresponding stream function Y. The condition u =0 on 30 amounts to
saying that the tangential and normal derivatives of ¢ on 3Q wvanish. Then
y is constant on 3@ and since ¢ is only defined up to an additive constant,
we cén‘suppose that ¢ = 0 on T and hence ¢€EH§(Q).

Therefore the mapping

h¢ 1 - 3'}’:’ - 81}}
(4.93) Yy = { x, 7w }

~is an isomorphism from Hg(ﬁ) onto V. _
Our purpose is now to construct an approximation of H%(Q) by piecewise
polynomial functions of degree 5 and then to obtain with the isomorphism (4.93)

an internal approximation of V.
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Internal Approximation of H%(Q).

Let ﬁ; be an admissible triangulation of &, and let

(4.94) am) = U W\,
MNe 37
h
A 2-simplex is a triangle. Let M be some triangle with vertices
Al’ Az, A3; we denote by Bl’ Bz’ B3, or by A23, A13, Alz’ the mid~-points
of the edges A2A3, A1A39 and A1A2; vij ~denotes one of the unit vectors

normal to the edge AiAj’ 1<4,j <3,

We first notice the following result:

Lemma 4.11.

A polynomial ¢ of degree 5 in R2 ig_uniquely defined by the following

values of ¢ and its derivatives

© (4.95) p%(a), 12123, [0} <2,
(4.96) o (a0, 11, <3, i3,
13

where the Ai are the vertices of a triangle A and the Aij are the mid-

points of the edges.

Principle of the Proof.

We see that there are as many unknowns (21 coefficientz for ¢ ) as linear
equations for these unknowns (the 21 conditions corresponding to (4.95)-(4.96)),
As in Lemmas 4.5 and 4.10 it is then sufficient to show that a solution
does in fact exist for any set of data in (4.95)-(4.96) and this can be proved
by an explicit construction of ¢ leading to a formula similar to (4.26) or
(4.76). We omit the very technical proof of this point which can be found in

A.%enifek [1] or M. Zlamal {l}(l>
It follows from this lemma that.a scalar function wh which is defined
on Q(h) and is a polynomial of degree five on each triangle MBEQCA, ig

completely known if the values of wh are given at the points AiEEgﬁ, Bi€?€2,

(1)

The principle of the construction is the following: let AI,X ,R3 denote
the barycentric coordinates with respect to AysAy,A . The af%ine mapping
~
xtry = (A (x),2,(x)), maps the triangle <@,  on the tyiangle SR
. — = < 2:“ +
v, = Al > 0, Y, = lz >0, 0 _‘y1+y2 1+A2 <1
The construction of ¢(x(y)) on & is elementary; then using the inverse
mapping ytH+x, we obtain the function ¢(x).
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and if also the values of the first and second derivatives are given at the

points AiESQI, where

gé = set of vertices of the triangles »bezzf

(4.97) Cﬁ = set of nid-points of the edges of the triangles vheixf
© = Q1 2
En = Ut

Such a function ¢h is ipfinitely differentiable on each :ﬁg JBET?L’ but there
is no reason for such a furction to be so smooth in all of Q(h). Actually, the
function ¢h is continuously differentiable in Q(h). Let ¢; and ¢; denote
the values of ¢h on two sides of the edge AlA2 of a triangle JSEZT£; _

¢;, ¢; are polynomials of degree less than or equal to 5 on A1A2 and they are
equal together with their first and second derivatives at the points A, and A,
(six independent conditions) and hence ¢; = ¢;. The tangential derivatives

a¢: % AL,

TS and S0 UF TK;XZT are also necessarily equal. Let us show then that

4 -
the normal derivatives a¢h and 8¢h are equal on A1A2. These derivatives are

aVlz 3V12
polynomials of degree less than or equal to 4 on A A,; they are equal at A; and

A, together with their first derivatives, and they are equal at Ai,. Therefore
they are equal on A1A2' This shows that ¢h is continuously‘differentiable on
QCh). '

To each point M€5€§ we associate the function ng which is a piecewise

polynomial of degree 5 on £(h) and such that,

240 - .
5o Yy =1 and all the other nodal values of Yy

are zZero, i.e.,

(4.98) 0y
) 5v (®) = 0, VPESZ, P # M,
pM0 (@) = 0, VPEEL!, [a] < 2.

To each point Mffgl, we associate the six functions defined as

|
th ? H th
follows: they are pilecewise polynomials of degree 5 on (h) and

(4.99) {}gM(M) = 1, all the other nodal values of wﬁM are zero

(46.100)(for i =1 or 2, D,y t

5 ¥ o™ = Gij’ and all the other nodal values

of w;Ml are zero
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2.4 = 5 = 24,6 =
D1¢hM(M) 1, DlDzth(M) 1, DZ&hM(M) 1,
(4,101) and all the other nodal values of wﬁM
S 6
(resp. th’ resp. \phM) are zero,

All these fﬂunctions are continuously differentiable on f(h).

Space X .
The space Xh -1is the space of continuously differentiable scalar functions
on § (or R2) of type:
6
i i i
(4.102) o=y g0yl 4+ ¥ Y Voo, EIER.
h Megﬁ M"hM 1=1 Mefl thM. M
These functions vanish outside Q(h), and since they are continuously

differentiable in Q,

#

D%y, () = 0, VMEE Nsa(n), [a] <1,

A(4.103) 3
_h - 2
5y D =0, Yuel naa(n).

The space Xh is a finite dimensional subspace of Hg(Q); we provide it

with the scalar product induced by H%(Q)

2
H 0 ()
Operator p, .

Py = the identity, as th H%(Q).-

Operator 1z, . : .
For YEP(R) (a dense subspace of H%(Q)}, we define rhv,{) = \ph by its

nodal values

D%, () = DY), VMEEL, [a] < 2

(4.105) 5
1

h o oy : 2

avij(Aij) Bvij (Aij)’ VAi‘ngh’

Proposition 4.7,

(Xh’ph’rh) defines a stable and convergent internal approximation of

Hg(ﬂ}, provided h belongs to a regular triangualtion OP% of Q.
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Proof.

We only have to prove that, for each YEJ(Q),
(4.106) r -y in Hgm), as p(h)—>0,

This follows from an analog of (4.42) and (4.82) for Hermite type polynomial
interpolation (see Ciarlet~Raviart [1], G. Strang and G. Fix [1], A.éenféek{l},
M. Zlémal {1]):

(4.107) Sup |9, (X)-¥(x)| < en, (@)o3
xeghy! h 6 SV
5
, P\ -
(4.108) xi;g»[Diwh(x)—DiW(x)l j_cne(W) FIE i=1,2
5
(4.109) sup [D%, ()-DW(x) | < en (W) % la] = 2.
XEN P
Therefore.
(4.110) Hgbh-wll : iC(ﬂ))azp(h)3
| HZ(2(h)) ,
and it is clear by (4.22) that
(4.111) llv] —0 as p(h)—0.

H2(2-2(h))

- Internal Approximation of V (APX 4)

We recall that Q is a bounded simply connected set of R%., We define an
internal approximation of V, wusing the preceding approximation of H%(Q) and
the isomorphism (4.93).

Let there be given an admissible triangulation 3. of Q. We associate

‘ h
with’?%, the space Vh, and the coperators PysTys 3S follows.

Space Yh'
It is the space of continuous vector functions Uy defined on Q (or ﬁz),
of type
Y P
- h h ;
(4.112) u = { =, ' o 3

‘wh belonging to the previous space Xh'
It is clear that Uy vanishes outside Q(h) and is continuous since
wh is continuously differentiable, and that div u

Vh is a finite dimensional subspace of V, We provide it with the scalar product

h = 0. Therefore uhE‘V, and
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induced by V

(4.113) ((uh,vh»h = ((uh,vh» .

In particular,

(4.114) ey = <[a§=2 !n“wht‘; 2(9)}’%3!}%!5}15% o

Operator Pyt the identity.

QR%E?EQE_;Ih‘
Let u belong to Y, and let ¢ denote the ccrresponding stream function
(see (4.93)); clearly, VEP(Q) and we can define whEEXh by (4.105). Then we

set

(4.115) uhzrhu-—‘{m,—-*—;{——}év.

Proposition 4.8.

The preceding internal approximation of V is stable and convergent if

p(h)—~=0, with h belonging to a regular triangulation G&; of Q.

Proof,

We just have to show that
(4.116) u =ru—u in V, Yu sy,
According to (4.93),(4.114),(4.115), we have

luy-ull <l wh—wﬁﬁ 2 )

The convergence (4.116) follows then from (4.110) and (4.111).

Approximation of Stokes Problem.
We take for (3.6),

(4‘117) ah(uh,vh) = \)((uh’vh).)h = \’((uh,vh))

(4.118) <&y v > =<£,v 2,

where v and f are given as in Section 2.1 (see Theorem 2.1).

The approximate problem associated with (2.6) is
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To find uHE_Vh such that
(4.119)

VU%&Q)=<&w?,V%EWV

The solution u, of (4.119) exists and is unique and, according to Theorem 3.1

and Proposition 4.8,

(4.120) et in V strongly if b(h)**+0, hEE%g.

The Error between u and .

Let us suppose that § has a polygonal boundary, so that we can choose
triangualtions 35 such that Q(h) = Q. Let us suppose that the solution u
of Stokes problem is so smooth that uER@?(Q); then, by (4.110) and (4.114), (1

(4.121) Hu—rhuH ﬁ_c(u,&}p(h)a.

The equations
V((u,v)) =<£,v> Vve&v,

v( (uh,vh)) =< f,vh>, \;’vhe v,
give

v((u*uh,rhu—uh)) = (.,
Therefore,
o] ? = CCumt pumr0)) < Jumu | foer, o

(4.122) luu |l < flu-r o]

and by (4.121), we obtain

(4.123) A ey < c(u,0)p(h)?

Remark 4.5.
(1) An internal approximation of V with piecewise polynomials of degree
6 1is constructed in F. Thomasset [1].
(ii) 1Internal approximations of V are not available if n =3 or if  is

not simply connected.

(1)

For the sake of simplicity (4.110) was proved for Y&€D(Q); the proof is valid
for any vwéiﬁsﬁﬁ)rlﬁg(ﬁ).
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4.5 Non-Conforming Finite Elements,

Because of the condition div u = 0, it is not possible to approximate V
by the most simple finite elements, the piecewise linear continuous functions. This
was shown by M. Fortin [2]. Our purpose here is to describe an approximation of V
by linear, non-conforming finite elements, which means in this case, piecewisé
linear but discontinuous functions. This leads to the approximation of V denoted
by (APX 5). Then we associate with this approximation of V a new approximation

scheme for Stokes problem.

Approximation of Eé(ﬂ).

We suppose that & 1is a bounded lipschitzian open set in R" and in this
section we will approximate Hé(ﬂ) by non~conforming piecewise linear finite
elements.

Let ‘KL denote an admissible triangulation of Q. If \ngﬁi, we - denote by
At Ao
by Bi. the barycenter of the face \Lén If G denotes the barycenter of -, then

its vertices, by -éi the (n-1)-face which does not contain Ai’ and

since the barycentric coordinates of Bi with respect to the Aj’ j #1i, are

equal to 1/n, we have

GA, ntl GA, GAi
(4.124) GBi = Z —l = Z —1, —t
5. n . n n
i j=1
or
(4.125) @B, = -+ ca
' i n i’
n+l
since z GAj = (0 (the barycentric coordinates of G with respect to Al"‘.’An+l’
3=1

are equal to E%I . We deduce from this, that

(4.126) : nB.B, = n(GB,-GB,) = GA_~GA, = -A A,,
13 J i i j l_J

and therefore the vectors BlBj’ j=2,¢¢°,ntl, are linearly independent like the
vectors AlAj’ j = 2,**,n+l. Because of this, the barycentric coordinates of a

point P, with respect to Bl,"' can be defined, and we denote by

’Bn+l’

Hys®tt sl Lo these coordinates. We remark also that for each given set of (ntl)

numbers B°*° .8 there exists one and only one linear function taking on at the

n+l’

and is function u is
nt+l’ th

points By,***,B the values B;,***,B

n+l

(4.127) u®) = ] B (®);
i=1

ntl’

(see Proposition 4.1).
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W, is the space of vector-functions Uy which are linear on each \iﬁfgu,

(1)

vanish outside &(h) and such that the wvalue of uy at the barycenter Bi of
some (n-1) dimensional face ii of a simplex Qhé;gg is zero, if this face belongs
to the boundary of Q(h); if this face intersects the interior of Q(h) then the

values of uy at Bi are the same when Bi is considered as a point of the two

different adjacent simplices.
Let “Uh dencte the set of points Bi which are barycenters of an (n-1)
dimensional face of a simplex \hﬁEﬂ; and which belong to the interior of Q¢h).
A function uhEZWh is completely characterized by its wvalues at the points BiE‘mh.
We denote by;vth
each simplex QNE‘Sh;
functions of Wh satisfy and, moreover,

» B a point of %%, the scalar function which is linear on

satisfies the same boundary and matching condition that the

(4.128) th(B) =1, th(M) =0 VME“UE, M # B.
Such a function LI has a support equal to the two simplices which are adjacent to
B. = A}
A
A3 = A;
Two adjacent triangles (n=2).
Lemma 4.12.
The functions v, g8 of W s where BEQHI and 1 <1i<n, form a basis of
Wh' Hence the dimension of Wh is nN(h), N(h) being the number of points in %Hf

Proof.
It is clear that these functions are linearly independent and that they span the

whole space Wh: by Proposition 4.1, any uhE:Wh can be written as

(4.129) uy uh(B)th°

- 1
BGQHI

(l)As before, Q(h) = U W,
aeh
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The space Wﬁ is not included in Hé(ﬂ); actually the derivative Diuh of
some function uhGEW5 is the sum of Dirac distributions located on the faces of the

simplices and of a step function Dihuh defined almost everywhere by

(4.130) Dy, (®) = Dyuy (x), VxEy \/‘.Iyeﬁgl.

Since uy is linear on \l% Dihuh is constant on each simplex.

We equip Wﬁ with the following scalar product :

n
(4.131) Moy vyl = Cupovy) + izl (D4 Uy 2D ph)

which is the discrete analog of the scalar product of Hé(Q):

n
(4.132) Fu, vl = (u,v) + ) (D;u,D;v).
i=1

Space F, Operators W, p.
' ' o+l

L2(n) , and for ® the isomorphism

]

We take, as in Section 3.3, F

]

(4.133) u em; (@)+*Bu = (u,Dyu,***,D u) & F.
Similarly, the operator Py is defined by
(4.134) w € Wthuh, = (“h’Dlh“h" . ,Dnhuh)e: F.

The operatdrs ph each have norm equal to 1 and are stable.

Operator Tye
We define U ow, for u€PQ), by

(4.135) u, (B) = u(B), Vaemh.

Proposition 4.9.
If h belongs to a regular triangulation %ﬁ of Q, the preceding,approximation

of Mé(ﬂ) is stable and convergent.

Proof.
We have to check the conditions (cl) and (c2) of the Definition 3.6.

For condition (c2) we have to prove that, for each 116@%9),
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(4.136) w—u in L%(@) as p(h)—0,
(4.137) D;pu,—D;u in L2(R) as p(h)-—0.

On each simplex D we can apply the result (4.42) to each component of wuj:

this gives:

sup |u(x)-u, ()] < en,(u)eg,

xEN
(4.138) : N
ii;bp’DiU(X) - Diuh(x)l < eny(w ET;; .
Therefore
(4.139) Iy, ~@ul g < eCwop h) + [ull

. mé(Q-Q(h))

and this goes to 0 as p(h)—0.
To prove the condition {(cl) let us suppose that P11 converges weakly in F

to ¢ = (¢o,"',¢n); this means that

(4.140) ——¢, in L2(Q) weakly,

uh,

(4.141) D%, in L2(Q) weakly, 1 <1 <n.

Since the functions have compact supports included in @, (4.140) and (4.141)

amount to saying that:

(4.142) i ,—¢. in LZ@"Y) weakly,

h' 0

(4.143) D, & ,—=$. in LZKRF) weakly,. 1 <4i<n,
1huh i —_— -

(¢ 1is the function equal to g in 2 and to 0 in QQ).
If we show that ‘

(4.144) §, = D¢y, 121<n,

it will follow that éoe&ﬂ(aﬁ> and hence ¢Oeemé(9) with ¢. = D.¢_, which

i ive?
amounts to saying that ¢ = wu, u = ¢0.

Let 6 be any test function in <B(Rn); then:
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fon ﬁh,(Di6)d}£-—+ ann 5,(D,6)dx,

J (D.. 0 ,)6'dx-—->J ¢, 8dx.
Rn ih™h [Rn i

The equality (4.144) is proved if we show that

. . : n
JR“ 5,0dx = - [Rn‘dio(Die)dx, Veco®™,

or that

(4.145) %;h' = Jn ﬁh,(DiS)dx + Jn (Dih,ﬁh,)eax —*0, as p(h')—0,
R R

for each GEﬁ(fRn).
The ptoof’ of (4.145) is the goal of the next three lemmas.
Lemma 4,13

(4.146) ‘a—h =\be2% ,x,exam[m w89, .,

+ :
where 98 W is the set of the (n-1)-dimensional faces gi\l&(l), and Vi is the

.th . ; ; e
i™" component of the unit vector V), which is normal to N and is pointing

outward with respect to .

Proof.

Since the functions vanish outside R(h), we have

N = [u, (D.8) + (D, u )8ldx = Z f [u, (D.6) 4 (D,u )6ldx
B’h Jﬂ(h) h*'i ih'h \)&e,}h N h™ i ih
= ) J D, (u,6)dx.
»eg p TR
“h
' The Green-Stokes formula gives
J&/Di(uhe)dx =\A!€§+JA,L;/' w8V, dl,

(1)

There are (n+l) such faces.
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and (4.146) follows.

Lemma 4.14.

.247) Yy, = 1 Cu, () -0y, (B)) (B(x)-6(B)) v, 4T,

ey, AE st L{,

where B = By is the barycenter of W\

Proof.

We show first that

4248y Znez‘xh N Lu (o G970y BDBGIV, ypare

To prove this equality we just have to show that

(4.149) Y Y J (BYB(x)v, ,,dT = 0.
~bEﬁha$eﬂ®\mf% Lo |

But for a face .d belonging to the boundary of Q(h), uh(B) = 0 and
the contribution of this face in the sum is zero. If )' belongs to the
boundary of two adjacent simplices, this face contributes to the sum two opposite

terms: the uh(B) and 6(x) are the same and the v are equal but with

i,
opposite signs when XN 1is considered as part of the boundary of the two
simplices. Hence the sum (4.149) is zero.

The equality (4.147) is then easily deduced from (4.148) if we prove that

(4.150). f (u, (x)-u, (B))E(B)v ar = 0.
DEY, Qbezafb/\ii "0 1,5

But to prove (4.150) we simply note that
L& [“h(x%uh(B)]e‘(B),\’i,\;g,dr = 0,

since 08(B) and -v, are constant on .\ and since

i,

(4.151) f (x)dl' = u,_(B) J dr,.
X “ntE “n WAL

because wu, is linear on A}, and B 1is the barycenter of X!.
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Lemma 4.15.

(4.152) k0 as p(R')-—0, with o(h') < a.

Proof.

Since Ivi,&&’ <1l and
lot-0(B) | < c(®p,, VxeNS,

we get the estimate,
(4.153) IJ Cuy, () -y (B)) (6 () -8B vy, dT|
< e®p f |y, o)y (B) [T
)y R T

Since uh(x)—uh(B) is a linear function on ) which vanishes at x = B,

we can write it on Y as,

n 9
y, (x)-u, (B) = 21 -a-;-i’- © (x-8,),

i=
.where 81,°°',8n, are the coordinates of - B.. Therefore
n Buh

Iuh(X) uh(B)l < p&y z ‘

» YRED,

and ‘ ) n h '
c<e'>pwf lw, G- uhoa)!dr < e® @f ( Z | —a-—l— ) ar
-
= c(S)pz(meas 2
Let us denote by A1,°°',An+l,- the vertices of ); and let us suppose
that N 1is the face containing A2,°",An+l; let & = the distance between
A, and N . The following elementary formula is well known,
(4.154) | meas (l@ = —-E measn_léli)
Hence
(4.155) meas_ (X)) = 2 peas (ig < =—— meas CIQ,
n-1 g piy
since
(4.156) 20’2 &

The reason (4.156) holds is that the largest ball included in & has a diameter
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equal to 291&; and this ball is included in the set bounded by the hyperplane
containing AZ"’.’An+l’ -and the parallel hyperplane issued from A,.

We then have

2

8)n & g
c(®)p f lu, Go)-u, (B)] ar < &828 B oo ()
Up Yy 2 ol o L4

P dx.

| 3
E-t’.‘(e)noz o (h) f g _EE
. i=1 i

Combining this with (4.153) and (4.147) we obtain the following estimates

for }h:
INIPEIGECE SRR S J ;:‘h‘ ®
Aeq, i=1 i
l%hl < c@;n,0)p(h) JQ lugrad uhlax
< (by the Schwarz inequality)
(4.157) ol < c© 00,00 MIu 1, .

According to (4.136)(4.137), the sequence [uh,ﬂ , 1is bounded and therefore

h,~—40 as o(h')—>0,

Discrete Poincaré Inequality.

The following discrete Poincare inequality will allow us to endow the space
Wh described above, with another scalar product ((~,°))h, the discrete analog of the
scalar product ((*,*)) of HSGD) (see (1.11) and Proposition 3.3).

Proposition 4.10.
: . . . n .
Let us suppose that § 1is a bounded set in R. Then there exists a

constant c({,0) depending only on £ and the constant o i& (4.21) such
that the inequality

g 2

(4.158) lu, | < e®)
: “h L2 () i=1 L2 (Q)

holds for any scalar function of type (4.129)

(4.159) u, = ) u (B)w
h = h "/ Yhg
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A similar inequality holds for the vector functions of type (4.129):

(4.160) l“hle(Q) <et@® lull,  Veew
where
v R 3
(4.161) ully = {izl ‘Dihuh‘mz(m}
Proof.

The inequality (4.160) follows immediately from (4.158)., In order to
prove (4.158), we will show that

(4.162) | ol < colel . Tl

for each u, of type (4.159) and for each 6 in $(Q); (4.162) implies
(4.158) since P(0) is dense in L2(Q).
Let us denote by X the solution of the Dirichlet problem

A =6 in @, XEH;(Q).
The function ¥ 1is € on § and

(4.163) I < @]o] @,
HE () L2 (@)

We ther have

and the Green formula implies

. 0
J;yuh Ay dx = Jalyuh 5% ar - ji&grad uh°grad ¥ dx.

Hence

Ifﬂ-uh 0 ax| < (G 00, | + 1% |

(l)Strictly speaking this inequality is true only if § is smooth enough; in
the general case (4.163) is valid if we define ¥ by Ax = 6, XEEH&(Q') where
Q' 1is smooth and R'D>¢. This makes no change in the following.
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[ o end < Il o+ Bl

(4.164)
< (@) 6] lull, + 1% |
where
9
= z f -_.,X dF.
B'h \l‘ﬁt{h aiyuh Y

The next lemmas will glve an estimate for %11 which together with
(4.164) will give (4.162),

Lemma 4.16.
Using the same notations as in Lemma 4.14, we have

%h - izlwl’

Cu () -y (B)) (x; () -%; (B, Y ar,

with
) )

(4.1653) L f
%h A6, MED A

where
= 29X
X< 5%,
i

Proof.

We write
X_ ¥

N 121 X1 V1N

on the face ', and we then proceed exactly as in Lemma &4.14,
Lemma 4,17,
2 oy
Ly (X4 (®)=¥, (B))2dT)

i
(4.166) < c(n) (h) (
M) < e Bm lul, o MML&

We write on the face oA!,

Proof.
The proof is similar to that of Lemma 4.15.
n 9
w, ()= (B) = ] == (x;-8,),
i=1 i

(4.167)
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are the coordinates of B. Hence

where B,,*°",B ,
(4.168) ‘uh(x)—uh(B)l < p\ugrad “h" VXEV&

and

IJN (1, ()=t (B)) (¢, ()= (B))v, |

< pubgL\Jlgrad uhlzdrff (Lm (xg (x)=x (B)) *dT *,

But, since grad Uy is contant on \23,

L& (grad uh) 24T = measn_l(ﬂy grad uhlz
< (because of (4.155))
< ﬁ&measn(.l) * |grad uhlz
< 2;‘\’!&{ lgrad uhiz dx
and
(4.169) I%i[ <c@m) J N 7-;-'-0“5’ -
h' - deYy wz{,ea":& NN

2 + 2 ’%’
° (L&lgrad uh] dx) ? (LN, IXi(x)—xi(B)l ary <.

We then obtain (4.166) by using (4.20),(4.21) and applying the Schwarz

inequality to (4.169).

Lemma 4,.18.

(4.170) LN, (Xi<x)-xi(B))2dI" < e(m)a® Lk/(grad Xi)zdx s

(4.171) ) ) J (x, (x)-x, (B))%dT
ey, By

< cma? I (grad Xi)z dx < c(n,Ma?|8]? .
Q L% (%)
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The inequalities (4.171) follow directly from (4.170) and (4.164).

The inequality (4.170} is an obvious consequence of the trace theorems
in H'(}) if we replace the constant c(n)a? in the right-hand side of
(4.170) by some constant «()) depending on the particular simplex A;
the interest of (4.170) iz that this inequality is uniformly valid with
respect to the simplices i\ in & -

To prove (4.170) we mzke some transformation in the coordinates which maps &
on a fixed simplex ;E/ and then we apply the trace theorem inequality in :S/ and
come back to .,

For simplicity we supuose that A, = 0, that Q! is contained in the

1
hyperplane x = 0, and that the vertices of N are Al,'°°,An; the referential
simplex is the simplex N with vertices Al,‘°',Ah+l, A, = Oi_ and A1A1+1 =

) i = 1,°**,n. The face corresponding to -&! is the face X! with vertices

1,°",Z£. Let A denote the linear operator in R® which is defined by

> o

A, =ha,, i=2,"°,n+l

and let A' be the linear mapping in Rp—l, which is defined by
1 = 2,°¢*,n,

A change of coordinates for the integral in the left hand side of (4.170)

gives
f 06y = Tome T f T dlg,
N - det A = -
where
(4.172) o(x) = X; (x)-X; (B)
and
(4.173) o(x) = 0(x), x= A"lx.

For the simplex ~I§ the trace theorem inequality and the Poincaré inequality

give (recall that o(B) = 0)

n -
LEZ(';)drf_c@) ) [ 2 () 6.

Dy i=1 3
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We come back to . and the coordinates x We write

i'

B@- a2 d an,
%5 k=1 M 9%

n n
) | <x>|2 < a7 Z I (A x) ]2,
j=1
and hence
_ _ n
[_ G2 (ar < eM|la™? [ () 1= . A0l
D 'y k=1

< @ ldet A2 L&(grad 6)2dx.

We arrive at

[, 00 - x @)% <o AL 117 [ Ggras xp%ax.

In order to prove (4.,170), it remains to show that

det A -
(4.174) *‘ai_cﬁ?tl (A2 < ca?.

Since

det A _ det(A”" _ (D)
det A' det A} nn

and
| < Il
the left-hand side of (4.174) is majorized by

Al A=

Because of Lemma 4.3, this term is majorized by

(l)Ann is the (n,n) element of A; note that Ain =0, 1<i<n-1, due

to our choice of the coordinate axes.
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P, Px -
D
("T“B%Z < ecya?
PaPS
and (4.174) follows.

The proof of Lemma 4.18 is complete.
Lemma 4.19.

3
(4.175) Ful < c@VB® o lull,lo]
L

The proof of this lemma is now obvious. As mentioned agbove, this finishes

the proof of (4.158) and, more precisely, shows that

%. %_
(4.176) lul < (e + c@o? p)?) full. s
L2 = Yallh

p(h) 1is bounded by the diameter of § and actually goes to 0 as h—>0,

Proposition 4.11.

Let {2 be a bounded lipschitzian set. Let us suppose that we equip the

space Wh with the scalar product

e~

(4-177) ((uh’vh))h = L (Dihuh’Dith)’

and leave the other unchanged in the statement of Proposition 4.9. Then this

approximation of Hé(ﬂ) is again stable and convergent.

Proof.
The only difference between this and Proposition 4.9 comes from the

stability of the operators and this difficulty is completely overcome

j%
h
by Proposition 4.10 and (4.160), which give

(4.178) Togly < Tk < e@lul,, Yyew.

Approximation of V (APX 3)

Let § be a lipschitzian bounded set in R" and let N be the usual space
(1,12) and V its closure in Hé(Q).

We now define an approximation of V similar to the preceding approximation
of HJ(Q).
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As previously we take F = LZ(Q)n+l, and WEEL(V,F) as the linear
operator
(4.179) WEV —>pu = {u,D u,**+,D _ul.
Space V.
We take as space Vh a subspace of the preceding space Wh
n
(4.180) v, = {y€w | 121 D;puyy, = 0}

The condition in (4.180) concerning the divergence of u is equivalent to
(4.181) divu =0 in \/J\\,etsh.

We equip the space Vh with the scalar product ((uh,vh))h induced by Wh.

Operator p,.

As before,
(4.181) Pty = (o Dyps e tsDypty )

The operators are stable because of the inequality (4.160) (or (4.178)).

Ph
QR%??E?EN_Fh'

We have to define ru = uhG?Vh, for u€l% Since U, must satisfy the
condition (4.181), the operator 2 used for the approximation of M;(Q) does
not satisfy all the requirements. We choose instead the following operator r,:
w, = ru is characterized by the values of uh(B), Bﬁf%%; if Bﬁyﬂh, B 1is

the barycenter of some (n-l)-face N of some n—simplex»vhﬁfﬁh; we set

1
(4.182) uh(B) = wJ ' u dl'.

Let us show that uhE'Vh; since div U, is constant on each simplex \ﬁa

the condition (4.181) is equivalent to

[lydiv w, dx = 0, VQfoJh.

Applying the Green formula, we get
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uh'YA)dF

div dx = 2 J
LN *n \A;ea*lb R\

= (by (4.182))

= u*v, . dl'
@*eZaJSL\,fAL N

= J urvdl = J div u dx,
0D, A

and this last integral is zero since div u= 0.

Proposition 4.12.

The previous external approximation of V 1is stable and convergent,

provided h belongs to a regular triangulation ‘%g of Q.

Proof.

We noticed already that the P, are stable. Let us check the condition
(C2) of Definition 3.6, For that, let us suppose that

(4.183) ph,uh,—~dr¢ in F, weakly.
Exactly as in Proposition 4.9 we see that

(4.184) ¢ = Wu, uEH,(Q)

Here, we must prove moreover that u€V, i.e., div u = 0. But (4.183) means

in particular n
z Dih,uih.~——+div u in LZ(Q), weakly,
i=1

n
and since 2 Dih'uih' is identically zero, div u 1is zero,
i=1

Let us check the condition (Cl); if u€ V" we denote by N the function

ru and by vy the function of W_  defined by

h

v, (8) = u(B), Vseuh.

It was proved i Proposition 4.9 that

(4.185) lp, v, ~wull. < c(u)apCh) + [ul
hh F 1! (-Q(h))

1t suffices now to show that
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(4.186) ”phuh--phvh“F = iuh~vhﬂh—~—+0, as p(h)—0
Because of the inequality (4.178), it suffices to prove that

uuh‘vhuh"'"‘”*oy as p(h)—0.

Each B of ¢, 1s the barycenter of some face D' of some simplex D;

we can write

n
— au L]
(4.187) ux) = u(B) + ] 5 (B)(x;-8) + 0(x),
i=1 i
where (Bl,"',Bn) are the coordinates of B and

(4.188) lo)| < c(up?, Vxelk

Integrating (4.187) on A, we find

u (B) = v, (B) + ({iu 0 (x) dx) ([AJ @)™

since J (x,-B.) dx = 0, Because of (4.188),
\A, 1 1

(4.189) w (B) - v (B) = ¢ (B),
with

(4.190) le, ®)] < clw)o}.

Inside the simplex .\ with faces A ,°**

1

ntl
u, ) - v &) = izl e, (B)u; (%)

where ul,'°',un, are the barycentric coordinates of x with respect to

B ,***,B Therefore, in A,

1 n+1’

ntl
lgrad(uh—vh)l.i c(u)gi,"Zl |grad uil
f=

and by Lemma 4.2 and (4.21),
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lgrad(u, ~v) | < c(w) gii .
Therefore in all €,
(4.191) anih(uh—vh) (x)]| < clwaph)
and this implies
(4.192) I uh—vhﬂh < eu,0,2)p(h)
so that
(4.193) Ipu, Bl < e(waph) + [[unH1 .

Approximation of the Stokes Problem

Using the preceding approximation of V and the general results of
Section 3.2, we can propose another approximation scheme of the Stokes problem.

Let f belong to L*(Q), and Vv > 0. We set, with the preceding notations,
(4.194) ap (up,v) = v((y,v)), s Vv €V,

(4.195) <hv = (E,v), Vv E V.

The approximation problem is

To find €V, , such that
(4.196) T

V((uh,vh))h = (f,vh), Vvhe-vh.

The solution u of (4.196) exists and is unique., If p(h)—0, with h
belonging to a regular triangulation (%a, “then the following convergence

results hold

u T in L2(Q) strongly,
(4.197) . 2 ,
Dihuhm——*Diu in L°(Q) strongly, 1 <1i <m.
This follows of course from Theorem 3.1.
We can, as in Section 3.3 and as for the other approximations, introduce the

discrete pressure. It is a step function m of the type
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(4.198) o= ) T %
Boaey, PORY

where ﬂhﬁhg ig the value of m, oon ~ig ﬂh@k)GSR, and Xhi» is the characteristic

function of \. This function ™ is such that
where
n
(4.200) div,v, = izl Dy Vip®

The error between u and A the solutions of (2.6) and (4.199)
respectively, can be estimated as in Section 3.3. Let us suppose that { has
a polygonal boundary, that Q(h) =, and that u€@’@), pEH Q). Wwe
can define an approximation ru by a formula similar to (4.182), and it is not

difficult to see that the estimation (4.193) still holds:

(4.,201) I Py T U - EuHF < e(u,a)pch).

We will prove later the following lemma,

Lemma 4.20.
Let u,p denote the exact solution of (2.6)~(2.8) and let us suppose that

wEC @), pel'E). Then,

(4,202) ah(u,vh) = (f,vh) + Qh(vh), \/th-Vh,
where
(4.203) |2, )] < etupdo ) vl
If we admit this lemma temporarily, we see that
ah(uh—u,vh) =—2h(vh), Vth Vh’
ah(uh—rhu,vh) = ah(u—rhu,vh) ”-Qh(vh).

Taking Vp T YU and using (4.195) we obtain
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Wumrgl? < Murl Jugrgl + 14 G0 .
The estimates (4.201) and (4.203) then give
| (4.204) Vo -r vl < elu,p,0,2)0m).

More precisely, the constant c¢ in (4,204) depends only on the norms of u in
@) and of p in B*(D.

Proof of Lemma 4,20,

We take the scalar product, in LZ(Q), of the equation
(4.205) ~VAu + grad p = £,

with v

h since £ = Q(h), we find

d»é;gh {-V(Au,vhzi&+ (grad p,VhiA/“ (f,thA} = 0,

The Green formula applied in each simplex ), gives

\&é’yh {—\)(Au,vh)A/+ (grad p,vh) - (f,vh)i»}

= ah(u,vh) - (f,Vh) "/QJh(Vh> = O’
where

b(v) = ] I v &y —pv, Dyar P
Qe ‘0N 9y
The estimate (4.203) of ih is then proved exactly as in Lemmas 4.13,

4,14 and 4.15.

Remark 4.6,

A simple basis for Vi is available in the two-dimensional case. See the
work of Crouzeix [1].
Non-~conforming finite elements which are piecewise polynomials of degree

oY)

s
The unit vector normal to 3.\ is denoted Vv in this formula, to avoid any
confusion with the constant v > 0,
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k > 1 have also been studied for the approximation of, either H;(Q), or
the space V.

M. Fortin [2] has pointed out that the space V cannot be approximated by
conforming finite elements of degree one (i.e., piecewise linear functions).
For this reason the approximation studied in this section is certainly very

useful.



116

§5. NUMERICAL ALGORITHMS

We saw that discretization of the Stokes equations does not solve completely
the problem of numerical approximation of these equations; for the actual
computation of the solution, we must have a basis of the space Vh such that the
analog of (3.6) leads to an algebraic linear system for the components of U s
with a sufficiently sparse matrix. This occurs only with the schemes corresponding
to (APX 4) and (APX 5); for the discrete problem associated with (APX 1) --
(APX 3) we do not even have a basis of Vh'

In Sections 5.1 to 5.3 we will study two algorithms which are very useful
for the practical solution of the discretized equations. 1In Sections 5.1 and 5.2
we consider the continuocus case and in Section 5.3 we show rapidly how they can
be adapted to the discrete prcblems,

The results proved in Section 5.4 are related to this problem but they also
show how incompressible fluids can be considered as the limit of "slightly"

compressible fluids,

5,1 Uzawa Algorithm

We interpreted in Proposition 2.1 the Stokes problem as a variational problem,
an optimization problem with linear constraints. The algorithms described in
this section and the next are classical algorithms of optimization. We will
present these algorithms and study their convergence without any direct reference
to optimization theory, although the idea of the algorithm and the proof of the
convergence result from optimization theory.

Let us consider the functions u and p defined by Theorem 2.1; we will
obtain u,p as limits of sequences um,pm which are much easier to compute
than u and p.

We start the algorithm with an arbitrary element po,

(5.1) pleL2(@).

When pm is known, we define um+l and pm+l (m > 0), by the conditions

leul @ and
(5.2) m+1 m
v((u V)) — (p, div v) = (£f,v), VVEH;(Q),
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pm+le L%2(Q) and
(5.3)

mtl

.+.
(p -pm,q) + p(div o 1,q) =0, VYqeL?(®).

We suppose that ¢ > 0 is a fixed number; a condition that p must satisfy
will be given later.

The existence and uniqueness of the solution um+1 of (5.2) is very easy,
because of the projection theorem (Theorem 2.2). Actually um+l is simply a

solution of the Dirichlet problem

um“em; )

(5.4)
—\)Aum+1 = grad pm + fea Q).
When um+l is known, pm+l is explicitly given by (5.3) which is equivalent to

(5.5) p™ Lo P L b div ez,

Convergence of the Algorithm

Theorem 5.1.

Eﬁ the number p satisfies

2
(5.6) 0<p<=2,

m+1 . 1 m+1
then as m—»°, u converges to u in H () and »p converges to p
weakly in L3(Q) /R.

Proof.

The equation (2.7) which is satisfied by u and p 1is equivalent to

(5.7 V((U’V)) - (Ps div v) = (f’v)9 \V/VE]Hé(Q)-

Let us take v = um+l—u in equations (5.2) and (5.7) and then let us

subtract the resulting equations; this gives:

Vo™ - d)? = ™p, div ™
or
(5.8) W = (™, aiv v,

where we have set

(5.9) v =y - u.



m m
(5.10) q =p - p.
+
Taking q = pm 1. p in (5.3), we get:
+1 m+l , +1 +1
(qm —qm, q ) + p(le Vm [ qm ) = 0’

or equivalently

+ + +
qm llz N lqmlz m l_qmlz m l,qm+l
I

(5.11) + |q = -2p(div v ).

We next multiply equation (5.8) by 2p, and then add equation (5.11),

obtaining

lqm+ll2 _ lqmlz m+l_qm12 m+l”2

(5.12) + |q + 2pv”v

, -+l mtl
= -2p(div v ,qm —qm).

We majorize the right-hand side of (5.12) by

20|div Vm+1! ]qm+l_qml

which is less than or equal to

207V 1q™ g™
since
(5.13) ldiv v| < valv], Vvewn, (@.
We can then majorize the last expression by
8™ hog™ 2 + B2 VY2,
where 0 < § < 1 1is arbitrary at the present time. Hence
(5.18) g™ 2 = [q"]2 + (1-6)[q" -2 + pl2v - BV 2 < o,

If we add the inequalities (5.14) for m = 0,*°*,N, we find

N N
(5.15) "2+ (1-8) § g2+ av- By T IVTHIZ < 1902
m=0 n=0

Because of condition (5.6), there exists some & such that

on :
0 < 55 <§<1,

and hence
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(2v -%‘—‘-) > 0.

With such a & fixed, the inequality (5.15) shows that

1™ g2 = [P 20 a5 me—e,

(5.16)

“vm+l”2 ”um+l—u“z——~+0 as m—%,

The convergence of um+l to u 1is thereby proved. Now by (5.14) we

m o, ,
see also that the sequence p 1is bounded in L?*(Q). We can then extract
mt

from pm a subsequence p converging weakly in LZ(Q) to some element Pye

The equation (5.2) gives in the limit
V((u,v)) = (py, div v) = (£,v), VvEH (D),
and by comparison with (5.7), we get
(p-py, div v) = 0, VVEH;(Q),
whence

grad(p-p,) = 0, p, = p + const.

m . .

From any subsequence of p , we can extract a subsequence converging weakly in
L?(Q) to p + c¢; hence the sequence pm converges as a whole to p for the

weak topology of L%*(Q)/R.

Remark 5.1.

Let us choose p by demanding the condition
f p(x)dx = 0.
2
Let us suppose that p? in L%*(Q) is chosen so that
0 =
J p (x)dx = 0,
Q
Then clearly we have

f p(x)dx = ¢, VYm>1
Q

and the whole sequernce pm converges to p, weakly, in the space LE(Q).
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5.2 Arrow~Hurwicz Algorithm,

In this case too, the functions u and p are the limits of two sequences
um,p which are recursively defined.

We start the algorithm with arbitrary elements uo,po,

(5.17) Wer (), »p'el?@).

+
When pm and " are known, we define pm+l and " 1 as the solutions of

um+l€ Hg () and
(5.18) mtl m m m
((u” "=u,v)) + pv((u ,v)) - p(p , div v)
= (f,v), Vv GH; ),
w1 2
P € L°(Q) and
(5.19)

mtl m . mt+1 .
olp” T-p ,q) + o(div u ,q) = 0, Vq&LZ(Q).
We suppose that 0 and O are two striclty positive numbers; conditions on p
and O will appear later.

. . mt1
The existence and uniqueness of u

€lH; () satisfying (5.18) is easily
established with the projection theorem; um+l is the solution of the Dirichlet

problem

m+1
u

(5.20) -A = A" + pvad™ -p grad po 4+ f

-+
e m @),

Then pm+1 is explicitly given by (5.19) which is equivalent to
(5.21) P o B £ aiv e 2@,

Convergence of the Algorithm,

Theorem 5.2.

If the numbers o and p satisfy

20V
(5.22) 0 <p<=orm

then, as m—®, u™ converges to u in H;(Q) and p" converges to p
weakly in L2 /R,
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Proof.

Let

(5.23) Vo= " - u,
(5.24) qm = pm - P

Equations (5.18) and (5.7) give

() + (W) = p(®, v v, Vveri@,
and taking v = vm+l we obtain
(.25 IV - R TR 2eu Y
= 200((v m+1 m+l m)) " ZQ(q , div vm+l)
< 2w 20 2 (g, ary D,
where § > 0 is arbitrary at the present time.
Equation (5.19), with q = qm+l can be written as
a]qm+llz - alqmlz + @lqm+l~qmlz - —2p(qm+l, div um+l)
= -20(q , div v ) 2p( m+l_qm’ div vm+1)
j_—ZQ(q , div o ) + 2p|q mtl qml |div vm+l|
< (by (5.13))

+1 +1
S P

jA

—Zp(q , div v ) + 2pva|q

Finally, with the same & as before,

m+l m m+1

(5.26) alqm+ll2 - ulqm|2 + olq q |? < —2p(q , div v 7)

+1 m+1
+ as|q™HhogP|2 4 R [,

Adding inequalities (5.25) and (5.26), we get

m+ll 2

(5.27)  alq + 1™ 2 - g2 - VU2 + a@-8) | g™ g2

+ =8V + p(av - %1— - &™) 2 < o,
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If condition (5.22) holds, then

2 On
2v > ov +—a—,

and for some 0 < 6 < 1 sufficiently close to 1, we have again

Ligy? 4 O
2v > 6(p\) + 0L)
so that
2
pv_ _ fn

By adding inequalities (5.27) for m = 0,*+*+,N, we obtain an inequality of the

same type as (5.15), and the proof is completed as for Theorem 5.1,

Remark 5.2.

It is easy to extend the Remark 5.1 to this algorithm,

5.3 Discrete Form of these Algorithms

We describe the discrete form of these algorithms in the case of finite
differences (approximation APX 1).

In order to actually compute the step functions v, and nh which are
solutions of (3.64), (3.71), (3.73), we define two sequences of step functions

u:, ﬂg, of the type

m _ n . m
(5.29) w = ) D Vae R (e, wEW)
ME D
h
m
° = (S
(5.30) m ME¥°1 M M€ R

which are recursively defined by the analog of one of the preceding algorithms,

Uzawa Algorithm

We start with an arbitrary 7 of type (5.30). When ﬂg is known, we
m+l

0
h
define ug+l and ﬂh by

mt+l
EEWh and

VR v ), - (LD, ) = €L, Vv €W

(5.31)



123

(5.32) w0 = men - e 0

where D, is the discrete divergence operator defined by (3.69).
If p satisfies the same condition (5.6), a repetition of the proof of

Theorem 5.1 shows that, as m—

(5.33) ug"—*uh in W,

(5.34) ‘ﬂ:-——+ﬂh up to a constant;

the convergence holds for any norm on the finite dimensional spaces considered.

Arrow-Hurwicz Algorithm

We start with arbitrary uﬁ,ﬂﬁ of type (5.29) and (5.30) respectively.

When uﬁ,ﬂg are known, we define u§+l,ﬂg+l by

(5.35) u‘;““e W, and

(-l v, + vl v ),

m -
-p(m, Do) = (£, v), Vvhe W .
m+l _.m _p m+1 21
(5.36) M) = Q) - 2D, \/MEQh.

If p satisfies the condition (5.22), an extension of the proof of

Theorem 5.2 gives the convergence (5.33) - (5.34).

Discrete Arrow-Hurwicz Algorithm

The problems (5.31) and (5.35) are discrete Dirichlet problems and their
solution 1is easy and quite standard. Nevertheless, it is interesting to
notice that in the finite dimensional case, we can use another form of Arrow-
Hurwicz algorithm, for which we do not have any boundary value problem to solve

during the iteration process.

When ug, ﬂ: are known, we define u:+l by
mtl
(5.37) u, €W, and,
mtl m m m
- - = =
(' T=u, vp) o+ Ve, V) - e(m, Dyv) = (£,v), Vv €W,
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and then ﬂg+l is again defined by (5.36). The variational equation (5.37)

is equivalent to the following equations

n

(5.38) Jan = ulon + ey § (82, u ()
i=1

@ Ty () + £, 0D, VMER,

where Vg and fh were defined in (3.74)

The proof of Theorem 5.2 can be extended to this situation as follows.

Since Wh is a finite dimensional space, all the norms defined on Wh are

equivalent, and hence there exists some constant S(h) depending on h,

such that
(5.39) Tl 2 s lwl, Ve &w
We wjll compute S(h), and use this remark extensively in Chapter III (S(h) =
1
z(Z Ly,
i=1 h Now we have: 1if p satisfies
20V
(5.40) 0 <pc«< RO

then the convergences (5.33) - (5.34) are also true for the algorithm (5.36) -
(5.37).

The proof is the same as for Theorem 5.2. The inequality (5.25) is just
replaced by

(5.41) (vﬁ = u: - W KE = WE - ﬂh):
i R R EA R BT i
= 200(T, VI -+ 206, thf:H)
< 2ol o Ul TP - i, + 2006T, D v
< 2ovs() IVEL I - B+ 20067, D v
< 6L L (Bje g BVS )

m m+1
+ ZD(Kh, Dvip .
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The inequality (5.27) is accordingly changed to

m+l +1
(5.42) aly 12+ vy 12 - alkg]? - el

m+l m» m+l m2
+a(1-<s)|Kh —Khl + (1-6)[vh —vhl

2s2(x +
+pGay - 5@ _gn,y 2 ¢ g

and because of (5.40), inequality (5.42) leads to the same conclusion as (5.27).
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§6. SLIGHTLY COMPRESSIBLE FLUIDS

The stationary linezrized equations of slightly compressible fluids are
(6.1) ~Vhu - = grad divu_=£f in @
) € € € ’

(6.2) u. =0 on df,

where € > 0 is "small". Equations (6.1) - (6.2) are also the stationary
Lamé equations of elasticity.
We will show that equations (6.1} - (6.2) have a unique solution u.

for € > 0 fixed, and that u_ converges to the solution u of the Stokes

€
equations as ¢€-—0,

At first, equations (6.1) - (6.2) were used as "approximate" equations
for Stokes equations -- one way to overcome the difficulty "div u = 0", was
to solve equations (6.1) - (6.2) with € sufficiently small in place of
solving the Stokes equations. Nowadays, since many efficient algorithms are
known for solving Stokes equations, and since the discretization of (6.1)-
(6.2) leads to a very ill-conditioned matrix for very small €, one can try
to do the converse: compute u, for small € by using Stokes equations.

In Section 6.1 we show the relation between uo and u and in Section 6.2
we give an asymptotic development of u_. as €=—>0, Then in Section 6.3 we

€

show how one can proceed to compute u for small €, using this asymptotic

ED
development.

6.1 Convergence of u. to u.
Theorem 6.1.

Let ! be a bounded lipschitzian domain in R".

For € > 0 fixed, there exists a unique ueéfﬁé(ﬂ) which satisfies (6.1).

When £—0,

(6.3) u-u in the norm of H;(Q),
div u
(6.4) - ——— P in the norm of L2,

where u and p are defined by (2.6) - (2.9) and moreover

(6.5) J p(x) dx = 0.
Q
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Proof.
It is easy to show that the problem (6.1) - (6.2) is equivalent to the
following variational problem:

To find uEEIH;(SB) such that
6.6)  V((u,v)) + = (@ivu, divv) = (£,v), VveEH,®.

Actually, if u_ satisfies (6.1) = (6.2) then u & H;(Q) and satisfies
(6.6) for each vE€ED(Q). By a continuity argument, it satisfies (6.6) too,
for each VE[H; (). Conversely, if uselﬂé () 1is a solution of (6.6) then
ue satisfies (6.1) in the distribution sense and (6.2) in the sense of trace
theorems.

The existence and uniqueness of U satisfying (6.6) results from the

projection theorem: we apply Theorem 2.2 with
W= Hé ), a(u,v) = v((u,v)) +% (div u, div v),
<&,v> = (f,v).

The coercivity of a and the continuity of a and £ are obvious.

To prove (6.3) let us substract (2.7) from (6.1); this gives

6.7) -\)A(us-—u) - %- grad div U = + grad p
and thus

(6.8) \)((ue-u, v)) +%~ (div U, div v) = -(p, div v), VVEIH;(Q).

Equation (6.8) follows easily from (6.7) for vE®DXQ); by a continuity argument,
(6.8) is satisfied for each veﬁé Q).

Let us put v = u.-u in (6.8); we obtain

\)”u --u”2 +}- [div u IZ
£ € €

= -(p, div ue) < Ip| |div u€]

A

1 .
e |d1v u€[2 +%— lp]2
so that

1 .
(6.9) \)"us—uﬂ2 + o= |div u€|2 <-§- lp]2.

This proves (6.3). Consequently, (6.7) shows that



(6.10)

e}
~
¥
i
Q>
i
-

in the norm of H7Y(R), for 1= 1,°+*,n (A(ue—u) converges to O in
H™ (), because of (6.3)).
According to the following lemma,

div u. div u

n
a3 £
(6.11) lp+"_§'—‘|_<_z ”a—x"(P"*—'g——')n
i=1 i
since, because u, vanishes on 3 and (6.5) holds,
div u.
[ (p + — Ydx = 0
Q
The convergence (6.4) is proved.

Lemma 6.1,

Let §2 be a bounded lipschitzian domain in R". Then there exists a

constant c¢ = c(2) depending only on §I, such that

n
61 fol | ce@ ] e+ 3N,
L2(Q) Q i=1 %1 wE@)

for every ¢ in L.

Proof.
Let us denote by [0] the expression between the brackets on the right-
hand side of (6.12); [c] 4is a norm on L2(Q): it is obviously a semi-norm

and, if {[o] = 0, then ¢ is a constant since 9. 0, 4 = 1,°°*,n, and

Bxi
this constant is zero since J g dx = 0.
Q
It is clear that there exists a constant c¢' = ¢'(2) such that
(6.13) [0] < c'(@)]o] , Yo€12(@).

L2 ()
If we show that L2(Q) is complete for the norm [0] then, by the closed
graph theorem, [0] and IO] will be two equivalent norms on L%(Q) and
(6.12) will be proved.
In order to show that L2(Q) is complete for the norm [0], let us

consider a sequence N which is a Cauchy sequence for this norm. Then the
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&
5

integrals J Gmdx form a Cauchy sequence in R and the derivatives
9/

Qo
b
iy

are Cauchy sequences in H ™' (Q):

(6.14) J 0 dx—>*A as m—,
Q &
acm
(6.15) Xy as mTe, in BTN, 1 <i<n.
i

Because of (6.15) and the de Rham [1] theorem, there exists some distribution

0 such that

Proposition 1.2 shows that G€L?(Q). We can then choose 0 so that

f odx = A
Q

and it is easy to see that the sequence Om converges to this element 0 of
'L%(Q) in the norm [o].

Remark 6.1,
If i 1is not connected, (6.12) is true if we replace ]J o dx‘ by
Q

Zl[ o dx]|
39,

where the Qj are the connected components of . For extending Theorem 6.1

to this case we just have to define p by

(6.16) I pdx = 0, V0Q,.
Q. J
hj

6.2 Asymptotic Development gﬁ u .

From now on we denote by u’ and p0 the solution of Stokes problem (2.6) -
(2.9) which satisfies (6.5) (in place of u and p).

We will show that u. has an asymptotic development

(6.17) ug = u’ +eu + eu’ heeet N oo

where all the u" belong to the space Hé(Q).
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. i . . i ..
The functions u and some auxiliary functions p are recursively

defined as follows:

(6.18) u’, p?, are already known;

when um—l, pm_l are known (m > 1), we define " and pm as the solutions

of the nonhomogeneous Stokes problem

(6.19) drenl@ , preLi(@),
(6.20) ~vhu™ + grad pm = 0
(6.21) div o = —p™ 1
(6.22) J p(x) dx = O,

Q

The existence and uniqueness of u"  and pm follow Proposition 2.3 in
the two and three-dimensional cases (see also Remark 2.6). The condition (6.22)
is useful in two ways: it ensures the complete uniqueness of pm which is
otherwise only unique up to an additive constant; it also ensures the compatibility

condition necessary for the level m + 1l:

(6.23) f div o™ ax = J ey ar = o-.uu-.f p" dx.
Q T Q
N N —
We denote by ue, Pos N Z_l, the quantities
N
(6.24) w = ) e,
€
m=0
N
(6.25) pN = X €mpm,
€
m=0

Theorem 6.2,

Let  be a bounded domain of class €? in R* or RP.

Then for each m > 1, there exist functions um, pm, uniquely defined
by (6.19) - (6.22).

For each N >0, as e—0,

(6.26)

N€ — >0 in the H;(Q) norm,
€

div ug N

6.27) 2 (- ——2_ M0 in the L?2(R) norm.
N € € =n khe norm
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Proof.

The existence and uniqueness results have been established as previously

remarked.

We multiply (6.20) by €" and add these equations for m = 1,*++,N. We
then add the resulting equation to the equation satisfied by v’ and p?

(formerly denoted by u and p)
~-VAu® + grad p° = f.

After expanding we cbtain
—vAug - %-grad div uz = f-eN grad pN.

By comparison with (6.3) we find
(6.28) w-uieml @, pELi@,
N, 1 . N, _, N N
(6.29) —vA(uE—ug) - E-grad dlv(ue—ue) =4 € grad p .
As done for (6.8), we show that (6.29) is equivalent to
(6.30) V((u-ul, v)) + 2 (div(u-uy), div v)= - € (', div v), VvEH!(@).
. N
Putting v = u-u.  in (6.30) we get
Ny2 , 1., _ N2
\JHu€ ue” + 2 |d1v(u€ ue)l

N, N . N
=-€ (p, dlv(ue—ue))

Ny N . N
< & oty |
2N+1
1 . N € N
5-52 ]dlv(ue-ue)l2 + 5 !P lz
so that
2N+1
N 1 . N € N
(6.31) Vv ”ue—uen2 + 52 Idlv(ue—ue)l2 E-__f—_ IP lz.

The inequality (6.31) clearly implies (6.26). This, in turn, implies that

Q%-A(us—ug)-—+0 in H(Q) and hence (6.29) shows that
€
(6.32) L8 div( —uN)———+ §R§_ in H™HQ) 1<i<n
¢ €N+l 8xi civiv~ue axi ? —_ =
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But
1 X m m
= Z € grad div u
€

m=]1

1 . N
-3 grad div ue

I e~12

)
O | s

el grad pm—l = grad(pz—eNpN),

m=1

which along with (6.32) implies that
3 div u

1
= (-
€N Bxi

£ - p—0 in HTI(®)

€

as €—0. Finally (6.27) results from (6.22), (6.25),and Lemma 6.1.

Remark 6,2,
Remark 6,1 can be easily adapted to Theorem 6.2: this theorem holds

for non-connected sets §, provided we replace condition (6.22) by the conditions

(6.33) f p" dx = 0
Q

on each connected component &, of .

k|
Remark 6.3.

Theorem 6.2 can be extended to higher dimensions, provided one proves the
existence of um, pm, satisfying (6.19) - (6.22),

It suffices to show that the divergence operator maps H;(Q) onto L2(Q)/R
and this is most probably true although unproved (except for n = 2,3). See

also Remark 2.6.

6.3 Numerical Algorithms.

Let us show rapidly how one can extend the algorithms described in Section
5 to algorithms for solving the nonhomogeneous Stokes problems (6,19) - (6.22)
which is, at this point, the only difficulty for practical computation of the
asymptotic development (6,17) of u_-.

We only describe the adaptation of the Uzawa algorithm,

Changing our notation, we write problem (6.19) - (6.22) as the problem:
to find wv,p such that

(6.34) VEH (Q), pELX(Q)

(6.35) -VAv + grad p = 0,
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(6.36) div v = ¢,

i

(6.37) I p(x) dx = 0,
Q
where ¢ is given with

0.

(6.38) I o(x) dx
Q

The existence and uniqueness of v and p are known.

We start the algorithm with any

(6.39) p’€L2(Q), such that JQ pl(x) dx = 0.
When pm is known, we define vm+l and pm+l (m > 0) by
(6.40) VHleml (@) and

V™ ) - @F, divw) = 0, Ywer! (@)

6.41) | p™re1n2(@) and

]

" -p", 0) + plaiv v™1og, 8) = 0, VYeeLr(2).

The equation (6.40) is a Dirichlet problem for vm+l:
(6.42) vlea! @
™ = grad ptenT Q)

and (6.41) gives pm+1 directly as

(6.43) p™L - Pty V) € L2 ().
We notice that
(6.44) J pm dx = 0, Vm_>_ 0.

Q

Exactly as for Theorem 5.1 (see also Remark 5.1), one can prove the

following result.
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Theorem 6.3.

If the number © satisfies

(6.45) 0<p< %:i

wmt+l . mt+l
then, as m—>®°, v converges to Vv in the norm of ﬁ;(ﬂ) and p converges

to p in L2(R) weakly.
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CHAPTER 11

Stationary Navier~Stokes Equations

INTRODUCTION

In this chapter we will be concerned with the stationary Navier-Stokes
equations from the same point of view as in the previous chapter, i.e.,
existence, uniqueness, and numerical approximation of the solution., However,
there are three important differences from the linear case; these are:

~ The introduction of the compactness methods. For passing to the limit in

the nonlinear term we need strong convergence results; these are obtained by
compactness arguments,

~ Some technical difficulties related to the nonlinear term and connected
with the Sobolev inequalities. Their consequence is a treatment of the equation
which varies slightly according to the dimension of the space.

- The non-uniqueness of solutions, in general. Uniqueness occurs only when

"the data are small enough, or the viscosity is large enough.'

In Section 1 we describe some existence,uniqueness,and regularity results in
various situations (f bounded or not, homogeneous or inhomogeneous equationsje®**).
In Section 2 we prove a discrete Scbolev inequality and a discrete compactness
theorem for step function spaces considered in the approximation (APX 1) of V
(approximation of V by finite differences). The similar results for the
approximations (APX 2),+*+,(APX 4), are already available as consequences of the

(1)

theorem in the continuous case. Section 3 deals with the approximation of the

stationary problem: discretization and resolution of the discretized problems.

6y

For the approximation (APX 5), such results are not proved yet.
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§1, EXISTENCE AND UNIQUENESS THEOREMS.

In this section we study some existence and uniqueness results for the
stationary (nonlinear) Navier-Stokes equations. The existence results are obtained
by constructing approximate solutions to the equation by the Galerkin Method, and
then passing to the limit, as in the linear case. As we already said, for passing
to the limit, we need, in the nonlinear case, some strong convergence properties of
the sequence and these are obtained by compactness methods.

In Section 1.1 we recall the Sobolev inequalities and a compactness theorem
for the Sobolev spaces; this theorem is of course the basic tool for the compactness
method, In Section 1.2 we give a variational formulation of the homogeneous
Navier-Stokes equations (i.e., the Navier-Stokes equations with homogeneous
boundary conditions); we study some properties of a nonlinear (trilinear) form
which occurs in the variational formulation. We then give a general existence
theorem and a rather restricted uniqueness result. In Section 1.3 we consider the
case where the set  1s unbounded and we give regularity results for solutions.

Section 1.4 deals with inhomogeneous Navier-Stokes equatioms.

1.1 Sobolev Inequalities and Compactness Theorems.

Imbedding Theorems.

We recall the Sobolev imbedding theorems which will be used frequently from
now on, Let m be an integer and p any finite number greater than or equal to

one, p > 1; then, if = - —===>0 the space Wm’p(Rn) is included in
Lq(Rn) and the injection is continuous. If ufiwm’p(ﬁp) and %-— %-= 0 then

u belongs to L4® for any bounded set ¢° and any q, 1 <q <, If

m . o n .
% ey < 0 then a function in Wm’p(R ) 1is almost everywhere equal to a
continuous function; such a function has also some HSlder or Lipschitz continuity

properties but such properties will not be used here; if a function belongs to
Wm’p(Rn) with %-— %-< 0 then the derivatives of order o belong to
wm—a,p(Rn) and some imbedding results of preceding type hold for these

m-0,

derivatives if L _no > 0.
P n

For u€W P®RY, m>1, 1<p<w
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g L.om_ 1
( if P n q > 09 luqu( n _<_ C(m’p’n)”u"wm,P(Rn)’
1 m
if — === 0, ‘U' < C(mapsn’q’&) “U”
P n q - 3Pl
.y ﬁ 14 WP @Y
V bounded set OCR™,Vq, 1 <q <>,
\
l m
if =~-=<20, [u < c(m’n3PsG) ”u” *
P n leo(@) - WP R™)

\/ bounded set ¢, OCR".

If @ 1is any open set of Rn, results similar to (1.1) can usually be

obtained if § dis sufficiently smooth so that

(1.2) There exists a continuous linear prolongation operator

nesw™ P, weP®eh).

Property (1.2) is satisfied by a locally lipschitzian set §. When (1.2) is
satisfied, the properties (1.1) applied to Ilu, uéiwm’p(ﬂ) give in particular,
assuming that uﬂEwm’P(Q), m>1, 1<p<® and (1.2) holds:

if == == => 0, |ul < c(m,p,n,Q) ”u" ’
( P n ¢ @) ~ WP Q)

1 m
if =-220, |u < c(m,p,n,q,0:2) ||y ,
P & 13 ~ WP (@)

any ¢, 1<q <>, any bounded set 6CQ,

< e(m,p,n,q,2,8 [
W

|u ;
eN(» P

any bounded set O, OCQ.

When uEE%m’p(Q), the function u which is equal to u in 2 and to O
in CQ, belongs to Wm’p(ﬁp) and hence the properties (1.3) are valid without
any hypothesis on {.

The case of particular interest for us is the case p =2, m=1, 1i.e.,

the case Hé(Q). Without any regularity property required for { we have for
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u€Hy ()
n=2, fof o 2eq,0,0) |4
LE() H;
( V/ bounded set 0CQR, Yq, 1< q<
n=3, Juf <@ [d
(1.4) { L () a1 (@)
n=4, Iu] < c() Hu“
L* () H) ()
\
n>3, Jul 500 2@ fu
Lmnmfzv(g) Hy ()

Compactness Theorems.

Theoren: 1.1.

Let { be any bounded open set of R? satisfying (1.2). Then the imbedding

(1.5) WP @y Lt @)

is compact for any q;, 1 <4q, <%, if p2>mn; and for any q,, 1<gq, <gq

(@ given by =- === if 1 <p <n.

With the same values of p and q,, the imbedding

(1.6) Py 1 @)

is compact for any bounded open set .

As a particular case of Theorem 1.1 we notice that for any unbounded set £,
if uEEWl’p(Q), then the restriction of u to ¢, 6CGCQ, & bounded, belongs

to L '(® and this restriction mapping is compact
q
(1.7 WP @) — 1@

(same values of p and q,).

For all the preceding properties of Sobolev spaces, the reader is referred to
the references mentioned in the first section of Chapter I (see also at the end

the comments on Chapter I).
1.2 The Homogeneous Navier-Stokes Equations.

Let § be a lipschitzian, bounded open set in R” with boundary I', 1let

fEZLZ(Q) be a given vector function. We are looking for a vector function
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u = (ul,"',un) and a scalar function p, representing the velocity and the
pressure of the fluid, which are defined in {1 and satisfy the following equations

and boundary conditions:

n

(1.8) -vAu + uD,u+grad p=f in Q
i=1

(1.9) divu=0 din

(1.10) u=0 on T,

Exactly as in Section 2.1 of Chapter I, if f,u,p are smooth functions

satisfying (1.8) - (1.10) then u€V and, for each ve&Qf

(1.11) V{((u,v)) + b(u,u,v) = (£f,v)
where
n
(1.12) b(u,v,w) ='i’jzl JQ ui(DiVj)wj dx.

A continuity argument shows moreover that equation (1.11) is satisfied by any
vCV. Conversely, if u is a smooth function in V such that (1.11) holds for
each véfmk then because of Proposition 1.3, Chapter I, there exists a
distribution p such that (1.8) is satisfied, and (1.9)-(1.10) are satisfied
since u€V,

For u and v in V, the expression b(u,u,v) does not necessarily make
sense and then the variational formulation of (1.8) - (1.10) is not exactly:
"to find u€V such that (1.11) holds for each v€&€V.," The variational
formulation will be slightly different, and this will be stated after studying
some properties of the form b(u,v,w).

Let us introduce first the following space:
(1.13) 6 = the closure of U in ﬁ;(ﬂ)flmn(ﬂ);

of course Hé(Q)fILn(Q) and V are equipped with the norm

(1.14) Jull +Ju] .
HE () L (%)

~

In general V is a subspace of V, different from V but, because of (1.4),

~

V=V for n=2,3, or 4 (and £ bounded).
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(1.15) v, = the closure of U in H;(Q)r\m?(ﬂ), (s > 1);

it is understood again that Bé(Q)F\HS(Q) and Vé are equipped with the

hilbertian norm

i

E

(1.16) IS
H, H7()

Vé is included in V.

The Trilinear Form b,

The form b is trilinear and continuous on various spaces among the spaces
v, Vv, Vg. The most convenient result concerning b 1s the following result which

is independent of any property of .

Lemma 1.1.
The form b 1is defined and trilinear continuous on

H;(Q)><H;(Q)><(H;(Q)F\Ln(ﬂ)),  bounded or unbounded, any dimension of space r".

Proof,
If u,vEV and w€\7, then because of (1.4) (n > 3):
2n
WS @), DivjeLz(Q), wjeLn(Q), 1<i,i <n.

By the HOlder inequality, ui(DiVj)Wj belongs to LY(Q) and

(1.17) lfg uiDivjwj x| §.|uil - lDiv ILZ(Q)lean(Q).
L' (@)
Then b(u,v,w) 1is well defined and
(1.18) b, v, < et ful - vl ]l a
Ho () (@  H NLYD)

The form b 1is obviously trilinear and (1.18) ensures the continuity of b,
When n = 2, we have the same result, (Hé(Q)F\LZ(Q) = H;(Q)), but
(1.17) must be replaced by
(1.19) lJQ uiDiijj ax| j_]ui[

|ov,]

ij[ .
LY () L2 ° L'
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In particular one has

Lemma 1.2.

For any open set {,b is a trilinear continuous form on VXVxV, If

2 is bounded and n < 4, b 1is trilinear continuous on VXVXV,

We will prove, when needed, other properties of b similar to those given
before; the proof will be always the same as in Lemma 1.1 (use of H8lder's
inequality and the imbedding theorem (1.4)).

We denote by B(u,v), u,vﬁimé(ﬂ), the linear continuous form on V

defined by
(1.20) <B(u,v),w> = b(u,v,w), u,vCHI (), VwEV,

For u = v, we write
(1.21) B(u) = B(u,u), u€H Q).
Another fundamental property of b is the following

Lemma 1.3.

For any cpen set (1,

(1.22) b(u,v,v) = 0, YuGV, vEH(®)NL"(EQ)

(1.23) b(u,v,w) = -b(u,w,v), Vu€V, v,w,G]I{;(Q)ﬁ]Ln(Q).

Property (1.23) is a consequence of (1.22) when we replace v by v + w,
and we use the multilinear properties of b.

In order to prove (1.22), it suffices to show this equality for u€ W
and vCP(Q). But for such u and v

]

(v.)?
I u, D, —_—l ax
Q i 7i 2

D.v, v, dx
Igui i3 3

1 2
-5 IQ Diui(vj) dx ,

(1.24) b(u,v,v) = - %
b

e~

J div u(v,)? dx = 0.
170 J
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Variational Formulation.

For & bounded, and n arbitrary, we associate with (1.8) - (1.10) the

problem
(1.25) To find u%V such that
V((u,v)) + blu,u,v) = (£,v), VveEV,
(f given in TL*(Q)). It is clear from (1.11) and (1.13) that if u and p

are smooth functions satisfying (1.8) -~ (1.10), then u satisfies (1.25).

Conversely if u€V satisfies (1.25), then

(1.26) <-vAu + 2 uiDiu—-f, v> =0, VYveifs
i 2n_
AuG]}{"l(Q), fEL2(R), and uiDiuC]Ln' ) (-I—},— =1 - %—), since uiE [Ln-z(ﬂ) by
(1.4) and Di
Chapter I, there exists a distribution p& L1 (Q), such that (1.8) is

uGL?*(Q). According then to Proposition 1.3 and Remark 1.5 of

satisfied in the distribution sense; then (1.9) and (1.10) are satisfied

respectively in the distribution and the trace theorem senses.

Theorem 1.2.
Let & be a bounded set EH.:R and let f Dbe given in HTHR).

Then Problem (1.25) has at least one solution u€V and there exists a
() such that (1.8)-(1.9) are satisfied.

, . . 1
distribution p€& Lloc

We have only to prove the existence of u; the existence of p and the
interpretation of (1.8)~(1.2) have already been shown.

The existence of u 1is proved by the Galerkin method: we construct an
approximate solution of (1.25) and then pass to the limit.

The space vV is separable as a subspace of iHé(Q). Because of (1.13) there
15*°0sW 0, of elements of % which is free and total in
V. This sequence is also free and total in V.

exists a sequence w

For each fixed integer m > 1, we would like to define an approximate solution
u, of (1.25) by

m
(1.27) u = Z gi’m s gi’mem

(1.28) v((u s W )) + b(u s U, W <f, w

k) = s k>’ k = l’o-o’m.
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The equations (1.27)-(1.28) are a system of nonlinear equations for El m’h..’gm o’
s Yy
and the existence of a solution of this system is not obvious, but follows from

the next lemma.

Lemma 1l.4.

Let X be a finite dimensional Hilbert space with scalar product [-,°]

and norm [+] and let P be a continuous map from X into itself such that

(1.29) [P(E),E] > 0 for [E] =k > 0.

Then there exists £€X, [E] <k, such that

(1.30) P(g) = 0.

The proof of Lemma 1.4 follows the proof of Theorem 1.2. We apply this
lemma for proving the existence of us as follows:

X = the space spanned by w TUTWS the scalar product on X is the

l’
scalar product ((*,*)) induced by V, and P = Pm is defined by

2 (u),v] = ((P (u),v)) = v((u,v)) + b(u,u,v) - (f,v), Vu,vE€X.

The continuity of the mapping P is obvious; let us show (1.29).

[Pm(u),u] = Ju]? + b(u,u,u) - <f,u>
= (by (1.22))
=l - <t,00
> Vul® = el ol
(1.31) [e_(u),ul > [u] Ofuf - f£],0.
it follows that [Pmu,u] >0 for nun = k, and k large enough; more

precisely, k > %-“f” The hypotheses of Lemma 1.4 are satisfied and there

Ve
exists a solutlon u of (1.27)-(1,28).

Passage ‘to the Limit.
We multiply (1.28) by Ek o and add the corresponding equalities for
$

k = 1,°**,m; this gives
Vul? + bu_,u_,u) = <f,u>
m m’ m’ m m

or, because of (1.24),
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Jul? = <> < Tely fu ]

We obtain then the a priori estimate:

(1.32) IR T

Since the sequence u, remains bounded in. V, there exists some u in
and a subsequence m'—>> guch that

(1.33) u for the weak topology of V.

The compactness theorem 1.1 shows in particular that the injection of V into

L2(2) is compact, so we have also

(1.34) um.*—+ uw in the norm of L2(Q).

Let us admit for a short time the following lemma .

Lemma 1.5.

If u, comverges to u in V weakly and in TL%*(R) strongly, then

(1.35) b(uu,uu,v)"’M**b(u,u,v), Vv &W

Then we can pass to the limit in (1.28) with the subsequence m'—», TFrom
(1.33), (1.34), (1.35) we find that
(1.36) v((u,v)) + b(u,u,v) = <f,v>

for any v = Wys Tt aW ottt Equation (1.36) is also true for any v which is
a linear combination of LATRARPL AR Since these combinations are dense in
a continuity argument shows finally that (1.36) holds for each vEV and that

u is a solution of (1.25).

Proof of Lemma 1.4.

This is an easy consequence of the Brouwer fixed point theorem.
Suppose that P has no zero in the ball D of X centered at 0 and

with radius k. Then the following application

> S(E) = - k S8l
S 80 = -k (T

maps D into itself and is continuous. The Brouwer theorem implies then that

S has a fixed point in D: there exists £ €D, such that

v

’
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_ R
R TREST T &

If we take the norm of both sides of this equation we see that [EO] =k,

and if we take the scalar product of each side with §&;, we find

e o [P(E,) ,E,]
S l7 = k" = - kST -

This equality contradicts (1.29) and thus P(f) must vanish at some point of D.

Proof of Lemma 1.5.

It is easy to show, as for (1.22)-(1.23), that

b(uu,uu,v) = - b(uu,v,uu)
n
=- 3} I u Y Divj dx.
1,5-1 Jg MM
But u,y converges to u, in L2%(Q) strongly; since DivjéfLm(Q), it is

easy to check that

J u ,u D,v, dx — ! u.u, D,v, dx.
Q *

g HL M 13 i']
Hence b(uu,v,uu) converges to b(u,v,u) = - b(u,u,v).
Uniqueness.

For uniqueness we only have the following result:

Theorem 1.3.

If n<4 and if v 1is sufficiently large or £ "sufficiently small" so that

(1.37) Vi > e) |l£]

then there exists a unique solution u of (1.25).

The constant c¢(n) din (1.37) is the constant c(n) din (1.18); its
estimation is connected with the estimation of the constants in (1.4) and this

is given for instance in Lions [1].

Proof of Theorem 1.3.

We can take v =u in (1.25) since V=V for n < 4; we obtain with (1.22)

(1.38) \Y " U”2 = <f,u> i ” f”v' "u“
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so that any solution u of (1.25) satisfies

(1.39) [ IR F

Now let u, and Uy be two different solutions of (1.25) and let

u = u We substract the equations (1.25) corresponding to wu, and u,,

x 7 Uaxt
and we obtain

(1.40) v((u,v)) + vlug,u,v) + blu,u,,v) =0, VYveEV,
We take v = u in (1.40) and use again (1.22); hence:
Vo[ ® = - blu,uy,w).
With (1.18) and (1.39) (for wu = u,) this gives

Vol ® < e) Jul® Ju,l

i T Y

- g Jdl? <0

Because of (1.37) this inequality implies |[u] = 0, which means U, = U,

Remark 1.1.

The solution of (L1.25) is probably not unique if (1.37) is not satisfied or
at least for Vv small enough (f fixed).

Using the bifurcation theory, it has been proven for problems very similar to
(1.25) that for Vv greater than some critical value V,, the solution is unique
and, for Vv smaller than this value there exist several solutions. This was
proved by P. Rabinowitz for the stationary convection problem and by Velte for
stationary inhomogeneous Navier-Stokes equations. See Remark 1.7 and the

references cited in the "Comments and Bibliography'.

Remark 1.2,
For n > 4, Theorem 1.2 shows the existence of solutions u of (1.25)

satisfying (1.39): the majoration (1.32) and (1.33) give indeed:

(1.41) Il < 1im Juo <314

'l
m'——-)oo v

Nevertheless, the proof of Theorem 1.3 cannot be extended to this case; (1.40)

holds for each v&V and it is not possible to take v = u.
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1.3 The Homogeneous Navier-Stokes Equations (continued).

The Unbounded Case.
We can study the case for § unbounded by introducing the same spaces as in

Section 2.3, Chapter I. Let us recall that

Y

(1.42) Y = the completed space of U for the norm

Let us consider also the space Y

(1.43) Y = the closure of U~ in the space YOL™ () equipped with the norm

(1.44) bl + Il P,
L)

We recall that because of Lemma 2.3, Chapter I, we have the continuous injection
(1.45) ¥ C (ueL? (@), D€L (@), 1 <1 <n}

for n > 3, where

_ 2n
(1.46) o= =
Since §! is unbounded the spaces LY(Q) are not decreasing with increasing
Y as in the bounded case and Y # Y even for n < 4. Lemma 1.2 cannot be

extended to the unbounded case; however, we have:

For n > 3, the form b 1is defined and trilinear continuous on YXYXY and

(1.47) b(u,v,v) = 0, Yuey, v€§,
(1.48) blu,v,w) = - b(u,w,v), Vu€Y, v,w&Y.
Proof.

The inequality (1.17) (n > 3) is valid; for u,v&y, wEY we then have

| wgpgeyey axl < el Ioly 1915
so that

(1.49) [bCuyvy) ] < e@) fuly Dvly Il

(l)For a smooth open set , Y is probably equal to Yrvmn(Q), but this result
is not proved.
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The relations (1.47) and (1.48) are proved exactly as (1.22) and (1.23): we

prove them for u,v,wC 7/ and then pass to the limit.

The variational formulation of Problem (1.8) - (1.10) for £ unbounded and

n > 3 1s set as follows:

(1.50) To £ind uw€Y such that -

v((u,v)) + blu,u,v) = <f,v>, Vvey,

Theorem 1.4.

Let & Dbe any open sat ig_ﬁRp, n >3, and let f be given in Y', the

dual space of Y.
Then there exists at least cne u 1n Y which satisfies (1.50).

The proof is very similar to the proof of Theorem 1.2 (the bounded case).
There exists a sequence WisttTSW 5T of elements of  which is free and
total in § and hence in Y; this sequence is not perhaps the same sequence

as before.
We define an approximate solution u by

m

(1.51) u = )

w, ., ER
™ i l Ei,m 1’ g H

i,m
(1.52) v((um,wk)) + b(um’um’wk> = <f,w.>, k= 1,v°+,m.

The existence of u satisfying (1.51)-(1.52) is proved exactly as before, using

Lemma 1l.4. We have then an a priori estimate analogous to (1.32):
1 .
(1.53) ”um” f_;-"f”Y, (| ] = the norm in ¥Y).
There exists therefore a subsequence m'——+© and an element u€Y such that
(1.54) um,"** u weakly in Y.

The proof finishes as in the bounded case, except for the passage to the limit
in the nonlinear term b(um,,um,,v); it is not true that u « converges to u
in L2*(Q) strongly since u does not even belong to L2(), in general

(YEI2(R)). Nevertheless, we have
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Lemma 1.7.

If u, gonverges to u in Y weakly, then,

(1.55) b(uu,uu,v)—‘-*b(u,u,v), Vv el

Proof.
We can show that

, 2
(1.56) uu-—+u in Lloc(Q) strongly,

which means that

(1.57) uu-—”*u in L%2(®,

for each bounded set 0CQ,

Actually, let wEEQGRn), ¢=1 on O and let ' be a bounded subset of
2 containing the support of Y. Then the functions wuu belong to Hé(ﬂ') and
since uu converges to u weakly in Y,

wuu-——*Wu, weakly in H;(Q').

Hence wuu—““*wu strongly in L?(Q'); in particular
f lu —u|%dx < J wzlu —ulde'-—+O,
9, M - Ql U

and (1.57) follows.
Since u, converges to u for the L2 norm, on the support of v, the
convergence (1.55) is now proved as in the bounded case:

b(uu,uu,v) = -b(uu,v,uu)—“+ -k (u,v,u) = b(u,u,v).

Remark 1.3.

For n = 2, an element u of, Y does not belong in general to any space
LB(Q). For this reason the proof of Lemma 1.6 fails and b dis not defined on
YXYXY,

We can replace (1.50) by the problem: to find u€Y such that

V((u,v)) + b(u,u,v) = <f,v>, VVE%

The same proof as for Theorem 1.4 shows that such-a u always exists

provided f is given in Y'.
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Remark 1.4.

Since Y ¢ Y (for any n), we cannot put v = u

in (1.50). Therefore

the proof of Theorem 1.2 cannot be extended to the unbounded case even for n < 4,

Regularity of the Solutiocn,

If the dimension n of the space is less than or equal to three, we can obtain

some information about any solution u of (1.25) or

(1.50) by reiterating the

following simple procedure: the information we have on

property of the nonlinear term

)
u, D,u.
i=1 * 1
We then write (1.8) - (1.10) as
n
(1.58) -VAu 4+ grad p = £ - z u, D,u,
. I |
i=1
(1.59) divu=20, in Q,
(1.60) u=0 on T

in

u gives us some regularity

using the available regularity properties of f and Proposition 2.2 and Theorem 2.4

of Chapter I we obtain new information on the regularity of wu. If the properties

of u thus obtained are better than before, we can reiterate the procedure.

Let us show, for example, the following result:

Proposition 1,.1.

’el

0
Let § be an open set of class C in R? 93'2R3 and let f be given

in &@.

Then any solution {u,p} of (1.8),(1.25) belongs to & xe7 @ .

Proof.

Let us start first with the case where ! 1s bounded.

n
The nonlinear term z uiDiu is also equal to
i=1

n
‘z Di(uiu), because of
i=1

(1.59). If n =2, uy belongs to La(Q) for any a,

1 <ac<+ (by (1.4)),

and then wu,u, belongs to Lq(Q) for any such 0o, and Di(uiuj) belongs to

i]

W_l’a(Q) for any such o. Proposition 2.2, Chapter I,shows us that u belongs

then to Wl’a(Q), and p belongs to LQ(Q), for any a. For a > 2,
Wl’a(Q)CSLm(Q) because of (1l.3)3 hence uiDquELa(Q) for any «. Then,
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Proposition I.2.2 shows us that uE\WZ’OL(Q), pewl’a(Q) for any o, It 1is easy
to check that uiDquIWl’OL(Q), so that uGWS’u(Q). Repeating this procedure

we find in particular that
(1.61) ué]Hm(Q), p'EHm(Q), for any m > 1.

The same properties hold for any derivative of u or p; (1.3) implies therefore
that any derivative of u or p belongs to €(%), and this is the property
announced,

For n = 3, we notice that uiE-L‘5 ) (by (L.4)) and then

uiDiuj € L%(Q).
Proposition I.2.2 implies that uE‘WZ’%(Q); but (1.3) shows us that uE]LOL(SZ) for
any @, l<a<+e (p =-§-, m=2, n= 3), Therefore
D, (u.u,) € W@,
iv7ig

for any o, and at this point we only need to repeat the proof given for n = 2.

If @ is unbounded, we obtain the same regularity on any compact subset of
Q by applying the preceding technique to Yu where ¢ is a cut-off function,
YE@®™Y), ¥ =1 on the compact subset of Q.

Remark 1.4.

(i) It is clear that we can assume less regularity for f and obtain less
regularity for u and p.

(1i) The same technique gives nothing for =n > 4. For instance, for @
bounded and n = 4, 1if we write the nonlinear term as Di(uiu), we just have

uu €L, Di(uiu) €y (), so that u€ &{3 s if welt“write the nonlinear

h| N |
terms as uiDiu, we have uiDiuG L (), so that u-G\WZ’g(Q) ;3 but this gives

nothing more than uié'f LY (), Diqu L%(Q), which was known before.

1.4 The Inhomogeneous Navier-Stokes Equations.

Let {2 be an open bounded set in R". We consider here the following
inhomogenecus Navier-Stokes problem: let there be given two vector functions
f and ¢ defined respectively on  and T and satisfying some conditions which
will be specified later; to find u and p such that

n
(1.62) ~vAu + z u,D.u+ grad p = £, in Q,
jop i



(1.63) divu=20, in 1,

(1.64) u=¢, on T,

We will suppose that § 1is of class ©%, that f is given in H '(Q) and

that ¢ 1s given in the following slightly restrictive way:
(1.65) ¢ = rot ¢

where
(1.66) eW (@, DIELY(®), e’ (Q),

and rot denotes the usual rotational operator for n = 2,3; and for n > 4,

rot denotes a linear differential operator with constant coefficients, such that
, - 1
div(rot ) =0 ( ).

Theorem 1.5.

Under the above hypotheses, there exists at least one uelﬁ(ﬂ), and a

distribution p on £, such that (1.62) - (1.64) hold.

Proof.

Let ¢ be any vector function belonging to H(Q) m:mn(ﬂ) such that

(1.67) pEHYQ) NLNQ), divy=0
Let us set

Then u belongs to H!(Q) and satisfies (1.63): (1.64) amounts to saying that

(1.68) i€ Vs

Equation (1.62) is equivalent to

n
(1.69) -VAG + .2 ;0.8 +

n
. uiDiw + .2 wiDiu + grad p = £
i=1 i

1 i=1

N e~19

1
(1) rot ¢ = (RIC,"°,Rn§), Ric = '2 aijijCk; it suffices that

= 0’
jsk

)

a, .,
1=1 ijk
Vik, 1<3,k<n.
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where
n n
£=f+ VA - .2 ;D Y.
i=1
We remark that
fent®),

which we show as follows. It is clear that £ + vAWElfq(Q); we notice moreover

\]
that D, € L% (@), 1/0' + 1/o = 1, o=-=% if n>3, any o> 2 if
n = 2; since iH;(Q)CIma(Q), wiDiw belongs to H™'(R) too.
As in Section 1.2 we can show that Problem (1.68)~(1.69) is solved if we

find a § in V such that
(1.70)  v((&,v)) + b({,8,v) + b(@,p,v) + bW,3,v) = <£,v>, Vverv.

The existence of a UEV satisfying (1.70) can be proved

exactly as in Theorem 1.2, provided there exists some B > 0, such that
\)”VHZ + b(v,v,v) + b(v,¥,v) + b,v,v) > B”v”z Vvev,

or because of (1.22)
(1,70 \)“v”2 + b(v,y,v) > BHV”Z, Vvev.
Now (1.71) will certainly be satisfied if we can find Y which satisfies (1.67)
and
v _ ~
(1.72) [b(v,p,v | <5 lv]|2, Vvev.
In order to show this, we will prove the following lemma:

Lemma 1.8.

For any Y > 0, there exists some Y = Y(y) satisfying (1.67) and

(1.73) Ib(v, 0,9 < v]v]?, Vvev.

Before this we prove two other lemmas.

Lemma 1.9.

Let p(x) = d(%,T) = the distance from x to T. For any € > 0, there

exists a function eee‘ez(ib such that
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(1.74) 66 = 1 1in some neighborhood of T (which depends on €),
(1.75) 8. =0 if 0() > 28(e), 8(e) = exp(~ 2)

£ s
(1.76) Ip 6 ()| < oy Lf oG <28(8), k= 1,0,

Proof.
Let us consider with E. Hopf [2], the function k——*ig(l) defined for A >0

by
1 if X < 8(e)?

(1.77) .0 =(e 108(5(;‘) y 1f 8(e)? < A < 8(e)

0 if A > &8(e)
and let us denote by Xe the function

(1.78) X (%) = Ee(o(x)>-

Since the function p belongs to 'Ez(ﬁﬁ, the function Xe satisfies (1.74) -

(1.76) and 68 is obtained by regularization of X

Lemma 1.10.

There exists a positive constant c, depending only on { such that

1
(1.79) |= v| < c |lv] , VYveERND).

e T Y @ °
Proof.

By using a partition of unity subordinated to a covering of I, and local
coordinates near the boundary, we reduce the problem to the same problem with
n—l}‘ In this

Q = a half-space = {x = (x ,x"), x >0, x' = (Xl""’xn_l)EJR

case p(x) = Xy and it is sufficient to check that

2
(1.80) J -LY—(-??)Z—L dx < ¢, [ [D v(x)|? dx, VYVvEI(®).
f n - o "

This inequality is obvious if one proves the following one dimensional inequality:

(1.81) rm]y‘gf‘)“lz ds < 2 J”m lvi(s)|? ds, VYvEP(0, +).
0 0
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This is a classical Hardy inequality. In order to prove it, we write s =

t = eT and

_ s
v(s) = é-J w(t)dt, vi o=,
s S 0
l (w)lz -0 e’
f+m 7572 ds = {+w ¢ (I w0 &0
0 —0 0

o-T

}c0 - —
fyn (f 6‘»Ql(o-r) e 2 w(eT)e’}ar)2 do,

where qé, stands for the Heaviside function, ?4(0) =1, for 0 >0 and
%%(0) = 0 for O < 0. By the usual convolution inequality we majorize the last

quantity by

+o0 '_%% o0 T - +00
(J qé(c) e * do)? - J |[we )|? e'dt = 4 f |w(e)|? dt,
—c0 oo 0

and (1.81) follows.

Proof of Lemma 1.8.

Let us now show that
¥ = rot(8. %)
satisfies (1.67) and (1.73); (1.67) is obvious because of (1.65) and (1.74),
mj(x) =0 4if p(x) > 26(e)
and
(1.82) 0,0 < e, Gy [Tl + ozl 1 p@) < 28¢e)
where

n 1
Ipzeay| =€ 1 ozl ®3
1 J

i, 3=

As we supposed that CiE'ﬂ”(Q), we deduce from (1.82) that

v G| < c3<5—(§5-+ lDp() ), Vi) < 26(e).
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We have therefore

) v
<o, el + v? |oz]? a0t

(1.83) |v.v.] [
R A (%) L 0<268 ()

But, using H8lder's inequality, we see that

1
(J v2 |pg|? dx)? < ue)|v,|
p<28(e) - @

1
u(e) = {f Dz () | ax}?;
0 (x)<28 ()

()0 as €0 since DL ELT®), 1<1,i <.

With this last majorization, (1.4), and Lemma 1,10, (1.83) gives
(1.84) AN SesCelvl @yl o) <etetuen v, 124,53 <.
312 @ L™ ()

Now it is easy to check (1.73); for each vel

b(V:w’V) = - b(V,V,‘JJ)
n
(1.85) LICRFON N LR AA N
i,j=1
f_(by (1.84)
< ¢, (e + uee)) |+ 2.

If € dis sufficiently small so that

¢, (e + u(©) < v,

we obtain (1.73) for each v€WY~ and by continuity, for each vEV,

Remark 1,5.

(i) TFor n < 3, the conditions (1.66) reduce to
L€ B (Q),

because of the Sobolev imbedding theorems (see (1.3)).
(ii) It is easy to write the boundary condition in the form (1.65) for the

classical problems of hydrodynamics, such as the cavitation problem, the Taylor

problem .....
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Remark 1.6.

It is easy to extend Proposition 1.1 to inhomogeneous problems.
With the hypotheses of this proposition and moreover assuming that ¢€ﬁ§”(r) the
solution {u,p} of (1.62) - (1.64) belongs to o) Xfw(ﬁb.

To prove this we proceed as in Proposition 1.1, directly on the equations

(1.62) - (1.64) (i.e., without introducing Q).

A uniqueness result similar to Theorem 1.3 holds: for n < 4, v 'large",

and f "small", there is uniqueness:

Theorem 1.6

We suppose that n < 4, that the norm of ¢ in :mn(Q) is sufficiently small

so that

(1.86) b6, <242, Vvev, P

and Vv 1is sufficiently large so that

(1.87) V2 e e [El,

where c¢(n) is the constant in (1.18) and

n
(1.88) B=f+vio- ] ¢.D0.
i=1

Then, there exists a unique solution wu,p of (1.62) - (1.64) (2).

Proof.

It was proved in Lemmas 1.1, 1.2, 1.3 that

b(v,p,v) = -b(v,v,9),
and

v, <ellvl® fol | .
L ()

Therefore condition (1.86) is satisfied if |¢] 0 is small enough: this
L ()

(1
(2)

For n = 2 replace :mn(Q) by Lu(Q) for some o > 2,

As always, p 1is unique wup to a constant.
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means that (1.72) is satisfied with ¢ = ¢ and we do not need in this case the

previous construction of Y. Nevertheless, the proof of existence goes along

the same lines, with ¢ = ¢,
If u; is a solution of (1.62) -~ (1.64), then i, = u, - ¢ is a solution

of (1.70) with ¢ = ¢. Taking v =4, in (1.70) we get

8,02 = -b@,,8,8) + <E,8> <Yla,02 + 13, 18,

by using (1.86), and therefore

(1.89) la,0 < 218,

Let us suppose that u ,u; are two solutions of (1.62) - (L.64); let Go =

u - ¢, U =u ~-¢, @=14d; -4,;; G and §, satisfy (1.70) with P = ¢:

1
kS

A
<f,v>, v V,

!

V((§,,v)) + b(d,,8,,v) + b(,,6,v) + b(b,8,,v)

Fa)
<f,v>, v V.

ii

V((GI,V)) + b(ﬁl,ﬁl,V) + b(ﬁ1,¢,v) + b(¢,al,V)

We take v = {i in these equations, and take the difference between them; after

expanding and using (1.22) we find:
(1.90) v = -b(@,8,,8 -b(4,9,8).
Because of (1.86),
-b(8,9,&) < ¥ |42
By (1.18),
5,80 < el 92,
and because of (1.89), this is majorized by
2 @l 8y 012
v V! :
We finally arrive at the inequality
G- 2 c@llelyo 192 < 0
7 v clnjjl £ V! S Y

and because of (1.87), this implies u = O.
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A A
If u, = u,

py and p; is constant.

it is clear that grad p, = grad p,, so the difference between

Remark 1.7.
Nonuniqueness results for Problem (1.62) - (1.64) have been proved, in the

two-dimensional case, for certain configurations (ef.,Velte [1],[2]).
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§2. DISCRETE INEQUALITIES AND COMPACTNESS THEOREMS.

Before going through the numerical approximation of the stationary Navier-
Stokes equations, we must introduce new tools: the discrete analog, for step functions,.
of the Sobolev inequalities and of the compactness theorem, Theorem 1.1l. These

and some further Sobolev-type inequalities are the goals set for this aection.

2.1 Discrete Sobolev Inequalities.

The notations are those used for finite differences; see Section 3.3, Chapter I.
We recall in particular that Rh is the set of points with coordinates
mlhl,"',mhhn, miEEZ, h = (hl,"°,hn) hi > 0; ViM is the characteristic function
of the block

n hi hi
(2-1) Oh(M) = I I [Hi - _2- ’ Ui +_2_), M= (u1,°",un),
i=1
and 6ih is the difference operator

(2.2) 8,60 = % [0Cx + 3 B)-0(x = 3 7))

> . . .t
where hi is the vector with i h component hi, and all other components O,

Theorem 2.1.

Let p denote some number such that 1 < p <n, and let q be defined by

There exists a constant c¢ = c(n,p) depending only on n and p such that

n
(2.3) |w | <ecp) ) I8, u | ,
Y LqGRn) 1=1 1huh LpGRn)

for each step function v,

(2.4) u, = Mez?h u, MDw,
with compact support.

Proof.

i) Let us consider the scalar function

(n-1L)p

st—rg(s) = [s[ n=p
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Since Sﬂi%%n.z 1, this function is differentiable with derivative

(n—l) E =2

g'(s) = £B§%%R ls|] PP s.

The Taylor formula can be written

g(s,)-g(s,) = (s,-s,)g"(As,;+(1-N)s,), A€ (0,1)

and gives
n(p~1)
|gts1)-80sp)] < 1sy-s, | =R s (105, | 7P
n(p-1)
i_(—r_l;_il);g [sl—szl {lsll-*-lsgl} nep 3
n(p-1) n(p-1)
(2.5) le¢s))-g(s,)| < e (n,p) Isy-s,1{]s,| "P +s,| " 1},

ii) Let M belong to Rh; we apply (2.5) with

-> -
s, = uh(M—rhi), s, = uh(M—(r+l)hi);

. A=l , Anzbp
loy v )| PP - fu (4-GetR)] PP

< ey (@,p) Jup (Mrh)-w (4-(e+1h) |
n(p-1) n(p-1)
. {Iuh(M—rKi)[ P4 luh(M—(r-l-l)_}:i)l Py,

Summing these inequalities for r > 0, we find (the sum is actually finite):

(n-Dp 400
@6 o] TP <o @uhy ] 18, 0ot P
n{p-1) n(p-1)

s {uy (rh )| P 4w (- (et PP

We strengthen inequality (2.6) by replacing the sum on the right-hand side by the

sum for r&Z; we can then interpret the sum as an integral and majorize it by
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o0 1 nlp-1)
x| 160, B 1] T g + 0] PP e,
o=-1
where (ul,"‘,un) are the coordinates of M and ﬁi = (u1,°°',ui_l, ui+l,'°°,un).
In a similar way we denote by ﬁi the vector (xl,'°',xi_l,xi+l,'°',xn) and then

write x = (ﬁi,xi).
For any xGEGh(M), inequality (2.6) gives now

(n-L)p (n-1)p
.7 lo 0| ®P = |o o0l 7P

.<_ 531 (nsp)ra Iaihuh(ﬁi’gi)l

1 n(p-1)
U] lu GLE + =) PP} e,
0 ==1
Let us now set
2
(2.8) wi(x) = wi(ﬁi) = Sup !uh(x)ln-p

xiGIR

Then, ]wi(ﬁi)ln_l is majorized by the tight~hand side of (2.7), hence

J wi(ﬁi)n‘l af,
n-1

R
]Rn
1 n(p-1)
" Z |, (R, +"§£ )P agyag.
O=-1
< (by Holder's inequality)
+1 - q p-l
. ey : o) P,
2 °1<n~P>'51h“h‘LpaRn) <u=§1 [m“ lu, Ry & +oh ) |7 aRyag) Py
therefore
) (p-Lg
(2.9) f v, GOY L g, < c,(n,p)]6,,u P,
aag AT 1 = C2 ih h'LpaRn)luhIanRn)

R

Now we have
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n _2_

According to the inequality given in the next lemma, this is majorized by
1

n ———
TT ¢ [ oy @) [P ag 1Mt
i=1 n-1 '
* R
and, because of (2.9),
1 _n_(p-1)q
- -1
Ju, |® < ca(nyp) {Il 6 P78} fu | P
h
L®™) R I
B L
~1 n-1
EN <c<n,p>{TT|6 l
RPN ih%n )
l
o, | < ey (a,p) {Trla |
LqORn) ih’h LPGR )
™ DR
< ¢, (n,p) S,
Y LqGRn) — T8 ie1 ih%nh LpGRn)
Lemma 2.1.
Let wl,'°',wh, be n measurable bounded functions on R", with compact
supports, and LA independent of X
Then
1
L A LE A n"l A n_-f
(2.10) J CTT vy B9 dxi"z‘l'{f v, (&) dg, } .
Br® i=1 i=1 mn—l

This 1is a particular case of an inequality of E. Gagliardo [1]; see also

Lions [1], page 31.

Remark 2.1.
For p = n, 1f the support of u is included in a bounded set £, then
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n

(2.11) I I i c(n,q,Q) 2 !6 l ’
Yh LqGRn) 1=1 ih%h LpGRn)

for each uy of type (2.4), and for any q, 1 <q < 4o, Actually any such q

p;n

greater than p can be written as with 1 < p, < n. The inequality (2.3)

1
is then applicable, with ¢ = c(n,p)) = c'(n,q):

n

|, | <c'(ma) ] (8wl .
Yn LqGRp) - 121 ih"h LplﬂRn)

The Holder inequality shows us that
1 1

— .y

|8 < (meas @) P1 P |6 u |

1h%h LPIGRn) LpGRn)
where ' contains the support of Gihuh‘ If we suppose that Ihl is bounded
by 1(or by some constant d), (meas Q') is bounded by (meas 2)xConst; then

combining the last two inequalities, we obtain (2.11).

In the two and three dimensional cases, we prove another related inequality

which will be useful.

Proposition 2.1.

Let us suppose that the dimension of the space is two or three.

For any step function v, of type (2.4) with compact support, we have:

(2.12)  Ju| < st uhl“%' - { § |8, 12 }A"L, if n = 2,
L* ®R?) LP®?) i=1 T T 12@?)

(2.13)  Ju, | < AL uhl'%- - { § 16, 12 }”’3" if n = 3,
L* R?) LA@RY =l B Ppzgy T

Proof.

We use the inequality (2.7) with n =2 and p = %; a more precise analysis
of the proof of (2.7) shows tuat cl(n,p) = 2 1in the present case; actually

g(s) = s? and for (2.5) we have clearly
lg(s)-g(s,)| < 2]s,-s,[{]s,| + |s,]}.

We then have, for any xGOh(M), and ME'Rh,
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+1 oh

(2.14) fu,h(x)lzf_ZF-mfGihuh(ﬁi,gi)H ) zuh(ﬁi,gi+-71-)l}dgi.
- o=-1

Since the right-hand side of (2.14) is independent of X;, We obtain

(2.15) Sup |u, (x)[? 5_2‘ |8, w (2;,8)( { E lu, R, .- )i} dg, .
X -0
1

Now we may write, for the two dimensional case,

(2.16) f , lu, )| * ax < J [Sup Iuh(x)}zltsiz lo, O[] ax

R rZ %

o0 +oo0
f_{[ [Sup 'uh(x)lz] dxz}{f [Sup Iuh(x)IZ] dx, }
-0 xl

-00 XZ

< (because of (2.15))
+1

h
_<_ 4{J i(Slhuh(El ,X )l[ 2 lu (E + — ’XZ)!] dE dx }

+1 oh,
{LRz LIRCNR AT luh(xl,i + =511 ax,dg,).

O=-1

By the Schwarz inequality and since

ch
1
(2.17) LRZ lu, (B + ——, x,)|? dE dx, = LRZ |u, () | 2dx, dx, = Iuhlzﬁamz)

H

the last expression is majorized by

36{I61huhl |“hl }{ 62huh| |, |

}
L*@®?*) ~ L*@®%)

_<_1.s|uh;;2 {z laihuhlLOR },

2y
Hence (2.12) is proved.

In the three dimensional case, using (2.12) and (2.15), we write
y ' 2 2 - 2
(2.18) LR3 Iuh(x)| dx f_lSI{[fluhl dx,dx, ][ Z I]@ihuh[ dx;dx,]}dx,

18{s dx dx, H 8 2
< ot [l e, 3 o, .
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< (because of (2.15))
, +1
< 36{ Z lﬁihuhlL ) LRS |84 u (R,x,) | [Q—Z lu, R, %, + )I]dx}
< (by Schwarz's inequality)
2

< 3%2% |u | 165w () 18w l® 3
— uh LzaRg) 3huh LZGR?’) i=1 1huh L GR )

352 2 2 +
< w2yl D leelr . 0

L2@®3?) i=1 L2 ®®)
and (2.13) is proved.

Remark 2.2.
The inequalities (2.3), (2.11), and (2.12) can be extended by continuity to

classes of step functions with unbounded support.

2.2 A Discrete Compactness Theorem.

We give here a discrete analog of Theorem 1.1, more precisely of the fact

that the injection of &l’p(ﬂ) into qu(Q) is compact if

(2.19) 1<p<n and q, is any number, such that
1_1 1
< < E R S
1<q, q, where - P n°
(2.20) p=n and q, 1is any number, 1 < q; < +®,

Theorem 2.2,

3

Let gh be a family, maybe empty, of step functions of type (2.4) and let

(2.21) € = U 8

|h| <e,

Let us suppose that

(2.22) the functions u, of ¢ Thave thelr supports included in some

fixed bounded measurable subset of Rr", say

(2.23) sup {|u| + 2 |8 l } < oo,
ih
wEC LP ™) "
Then if p and q, satisfy conditions (2.19)-(2.20), the family % is
relatively compact in LqIGRn) (or qu(ﬂ)).
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Proof.
According to a theorem of M. Riesz [l1], we must prove the following two
properties:

i) TFor each € > 0, there exists a compact set KCQ, such that

q
(2.24) J |u, | dax < e, VYue€ef.
g.g ' B 4, €T

ii) For each € > 0, there exists-n > 0 such that,

€,

(2.25) lt,u, - w | <
q . —
2% Yh L IGRn)
for any Iﬁfsg and any & = (zl,'--,zn), with ]2] <n; Ty denotes the
translation operator

(2.26) (T,$) (x) = ¢(x + &)

Proof of (i).
Because of the Sobolev inequalities (2.3) and (2.11), the family 8 is
bounded in Lq(Q) where q 1is given by (2.19) if p < n, and q is some fixed

number, gq > q,, otherwise (p = n).

By the Holder inequality, we then get

) 1 9, 4,
q - =1
| |‘dx<<J dx) q(j lu, |? ax) ¢
JQ-x " — Ja-x 0-K “n
( q 1- ‘('1'1‘
(2.27) ’uh‘ !ax < c(meas (-K)) q , Vu_hG 8
/Q-K

The right-hand side of (2.27) (and hence the left-hand side) can be made less

than €, by choosing the compact K sufficiently large; (i) is proved.

Proof of (ii).

First, we show that 2.25 may be replaced by a similar condition on

szuh - uhILp (condition 2.30 below).

q
Case (a): q, < p. For any fELq(Q) we have fE€L Q) as well as fELp(Q)
1 N

since @ is bounded and q, < p < q. Also, 0 j_a—-~ E-< 1. By the Holder
94
inequality,
1 _1
[£] < (meas )t P . [£] = Const.* |f]

i@y ~ P @) P ).
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Case (b): gq, > p. For any function fEELq(Q) we can write, using the Holder

inequality,
I]f|q1 dx = I 151990 (5] T g
1

1 1

| A

where 0€(0,1), © > 1, and as usual S%-+'% =1, We can chose © and p so tha
4,00 =p, q,(1-0)p' = q;

this defines P and © uniquely, and these numbers belong to the specified
intervals, (8q,(q-p) = p(g-q;), and p{(q-q;) = q-p).
Then

1 1
(2.28) jlflql dx 5_([ |£]P ax)P (f [£]9 ax)® .

In particular, for any £ and us

-9 <]
IT u, ~u I < |T - fl i IT u, ~u '
2 =17 %
h k' gy gy “h"Uh LA @™ L
< {lrgu, | + |u | P9t 0 —u, |8
- 9 b2
h anRn) h LqGRn) h "h LpaRn)
1-6 1-6 0
= 2 [u ] lT u, —u |
2
AT h by pgny,
Since the family ¢ is bounded in LI@®™),
)
(2.29) szuh—uh quan) f.?nguh_uh chRn)'

Inequality (2.29) shows us that it suffices to prove condition (ii) with q,

replaced by p:

Ve > o, dn, such that
< e

@™ T

for |2] <n and wel.

(2.30) [ Tguy, -y,



169

The proof of (2.30) follows easily from (2.23) and the next two lemmas.

Lemma 2.2.

n
(2.31) [Tou, - u, | < ) |t u-u|
2°h h 1P GRn) 121 Ii h h Lp(IRn)

-+
where Zi denotes the vector 'Q'ihi'

Proof.

Denoting by I the identity operator, one can check easily the identity

~1103

(2.32) Ty = I= . s ---Tz. (TI.-—I).
i=1 i i-1 i
This identity allows us to majorize the norm iTQuh_uh p. n by
L"®RY)
1| ' |
T **°T (T3 u -u )
LA T A T e P @™

We obtain (2.31) recalling that

(2.33) It f] = |£]
A LP®")

for any O€R" and any function f€LP@®™).

Lemma 2.3. 1
a, < c(la, | + [2,1P) |8

,u] s 1<i_<_n.
lthp(an)

g u v, | - ligue-a |,
Ii“h thCIRn) _?Zi“h th(IRn\

we can suppose that Q'i > 0 and we then set

L, = (OLi+Bi)hi, where 0O, 1is an integer >0,
(2.35)

and 0 <8 <1, 124 <n.

We write
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1
(2.36) T Uy = 520 TJh (2 [ w) + T, I(Tslﬁluh-uh)‘
From (2.36) and (2.33), we get the majoration
o -1
1

(2.37) |t w -u | < ) |t u - + |t, > u ~u |
L%l pgny = g R R peen B,h, “h "h

But

since o h; 5_21, we obtain

(2.38) Irzluh-uhle(Rn) llﬁlhuhl |'r81§1“h"“h|

P @Y PERY

Let us now majorize the norm of TB ﬁ U -, .

For xEEUh(M), X = (xl,'°°,xn), and MGERh, M= (m1h1,°",mnhn), we have
0 if (m,- l&h <x, < (m-B .+ lbh
my; = 70 1 1 P10 27
T i, on (97 ) = ;

h 1 1
h 8w M 1) if  (m-B+ Phy < x; < (m+ Hhy.

Hence
.+
[ ITB Bt u | ax = 8,n] J |81, G 5 1P ax,
o, 4D a, )
and summing these equations for the different points M of ﬁh’ we obtain
1
I uh— l o = Bf h1|Tﬁ Glhuhl b on
P ®™) L P ®")
Since h 1is bounded and 81h1 j_ll, this is less than
1
p
2P 18, u |
|
lhuh LpGRn)

and (2.34) follows for 1 = 1; the proof is the same for 1 = 2,***,n,
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Remark 2.3.
In the most common applications of Theorem 2.2, the family % 1is a sequence of

elements u_ , where h 1is converging to zero. Hence gh =‘{uh } and (ih is
m m m

empty if h is not an h .

Remark 2.4.

Let us suppose that § i1s bounded and that

(2.39) € = [hlL<Jc L, s 6= yew, llul, <1}
0

where Wh is the approximation of IH;(Q) by finite differences, (APX 1). We
infer from Theorem 2.2, that §, 1s a relatively compact set in L2(R). The
following set ¢!, which is a subset of ¢, is also relatively compact in L2(Q):

(2.40) Qr = U AN §L'h = {uhG Vi “uhuhil};

|h|fFo

Vh corresponds to the approximation (APX 1) of V.
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§3, APPROXIMATION OF THE STATIONARY NAVIER~STOKES EQUATIONS.

We discuss here the approximation of the stationary Navier-Stokes equations by
numerical schemes of the same type as those used for the linear Stokes problem. We
give in Section 3.1 a general convergence theorem; we then apply it in Section 3.2
to numerical schemes based on the approximations (APX 1),°*°*,(APX 4) of the space V.
In Section 3.3 we extend to the nonlinear case the numerical algorithms discussed
in Section 5, Chapter I.

All of this section appears to be an extension to the nonlinear case of the
results obtained in the linear case, in Sections 3,4 and 5. Nevertheless, the
results are not as strong here as in the linear case because, in particular, of
the nonuniqueness of solutions of the exact problem, Moreover, the convergence of
numerical schemes based on the approximation (APX 5) of V 1is not known, because
of the lack in this case of a discrete compactness theorem of the type contained in

Section 2, for finite differences.

3.1 A General Convergence Theorem.
Let £ be a bounded lipschitzian open set in R® and let f be given in

L2(Q). By Theorem 1.2 there exists at least one u in V such that
(3.1) V((u,v)) + b(u,u,v) = (f,v), VYvE€V,

Because of Theorem 1.3, this u is unique if n < 4 and if Vv 1is sufficiently
large.

Our purpose here 1s to discuss the approximation of Problem 3,1 .

Let there be given first an external, stable and convergent Hilbert approximation
of the space V, say (4,F), (Vh’ph’rh)héEw3 where the yh are finite dimensional;
at this point this approximation could be, in particular, any of the approximations
(APX 1),***,(APX 5), described in Chapter I.

Let us suppose that we are given some consistent approximation of the
bilinear form Vv((u,v)), and the linear form (f,v), satisfying the same
hypotheses as in Section 3, Chapter I:

(i) for each hE%, ah(uh,vh) is a bilinear continuous form on Vh><Vh,

uniformly coercive in the sense
(3.2) 3(x° > 0 independent of h, such that

ah(uh’uh> Z Cx’() ”uh"fx’ Vuhe Vh,
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where . h stands for the norm in Vh'
(ii) for each hE% SZ,h is a linear continuous form on Vh-’ such that

The required consistency hypotheses are:

(3.4) 1If the family vy

w, converges strongly to w as h—0 (l), then

converges weakly to v as h—*0 and if the family

lin a (v, ) = v((v,w),
ne St nth

lim ah(wh,vh) = v((w,v)).
0

h—

(3.5) 1If the family v, ~converges weakly to v as h-—0, then

lim <% _,v.> = (£,v).
hoho hh

For the approximation of the form b, we suppose that we are given a trilinear

continuous form bh(uh,vh,wh), on Vh’ such that:
(3.6) bh(uh,vh,vh) = 0, Vuh,vhe Vh..

(3.7) if the family Vi,

belongs to 9, then

converges weakly to v, as h—0, and;iﬁif W

lim b, (v _,v, ,r,w) = b(v,v,w).
ro BB 'R Th

Sometimes it will be useful to be more precise about the continuity of bh and

we will require
(3.8) lbh(uh,vh,wh)l < c(n,f) “uh”h ”vh"h "wh”hVuh,vh,whE Vh’

where the constant ¢ = ¢(n,) depends on n and § but not on h: an inequality

(1)

We recall that this means

phvh-———+3v in F weakly,

phwh-——-*-d)-w in. F strongly.
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such as (3.8) with ¢ depending on h 1is obvious, since such an inequality is

equivalent to the continuity of the trilinear form bh'

We can now define an approximate problem for (3.1):

(3.9) To find uhe Vh’ such that
3 (s vp) + by (g vy ) o= <R >
We then have

Proposition 3.1.

For each h, there exists at least one w in V
of (3.9).

If (3.8) holds and if

h? which is a solution

(3.10) aj > c(n,)B,

then, u, is unique.

Proof,
The existence of u follows from Lemma 1.4, We apply this lemma with X = Vh
which is a finite dimensional Hilbert space for the scalar product ((*,'))h. We

define the operator P from Vh into Vh by,

(3.11) ((P(uh),vh))h = ah(uh,vh)+bh(uh,uh,vh) - <2h,v >, \/uh,thEVh.

The operator P 1is continuous and there remains only to check (1.29); but,
with (3.6),

((P(uh) w))y = ah(uh,uh)‘- <2h,uh>

> (by (3.2)-(3.3))
2 el = 1y T,
> el - 8 ful,.
Therefore
(®u),u)), > 0,
provided

”uh"h =k, and k > —O?; .
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Lemma 1.4 gives the existence of at least one uy such that

P(uh) =0
or

(3.12) ((B(u),v)), =0, Yv€EV,

which is exactly equation (3.9).

Let us suppose that (3.8) and (3.10) hold and let us show that v, is unique.

If u*h and u*g are two solutions of (3.9) and if u, = u¥® = ypk* then

h h h’?

E3 *x - *&
ap (s vp) + by (0% yuk ) = by (u

h,u*f‘l,vh) = 0, \/VhEV

h;

taking vp S and using (3.6) we find

ap (o) = by (uy 0% u ).

Because of (3.2) and (3.8), we have

(3.13) oz < durll, a2,

1f we set vy = u*  in equation (3.9) satisfied by u* we find

h h?

ap (uk, uk ) = <8 uk >,

h"

and with (3.2) and (3.3),
aglur |2 < glur ],
g
(3.14) I u*h"h < e

Using this majoration in (3.13) gives,

» cB

(3.15) (0 =5 ) el <05

if (3.10) holds, this shows that w = 0.

Theorem 3.1.

We assume that conditions (3.2) to (3.7) are satisfied; W is some solution
of (3.9).

If n< 4, the family {phuh} contains subsequences which are strongly
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convergent in F. Any such subsequence couverges to Wu, where u is some solution of

(3.{1. If the solution of (3.1) is unique, the whole family {phuh} converges
to Wu.

If n> 5, we have the same conclusions, with only weak convergences in F,

Proof.

We suppose that n 1s arbitrary.

Putting vy = in (3.9), and using (3.2),(3.3) and (3.6) we find
ah(uh’uh) = <2’h9uh> ?
(3.16) 0]l uhuh < B.

Since the p, are stable, the family PLu, is bounded in F; therefore there

exists some subsequence h'—>0, and some ¢EF such that
ph,uh,-~*¢ in F weakly.

The condition (C2) for the approximation of a space shows that, necessarily

¢EW, or ¢ = wu, u€V:

(3.17) ph,uh;-—+ah in F weakly, ht—0.
Let v be an element of V and let us write (3.9) with vy T TVe

(3.18) ah(uh,rhv) + bh(uh,uh,rhv) = <£h,rhy>‘
As h'—*0, according to (3.4),(3.5),(3.7),

a1 (w457 V) >V ((u,v)),
bh,(uh‘,uh,,rh,v)——-+b(u,u,v),
<2h.,rh,§>-——+(f,v).
Hence u belongs to V and satisfies

(3.19) v((u,v)) + b(u,u,v) = (£f,v), VYve

If n <4, equation (3.19) holds, by continuity, for each vE€V; if n > 5,
we find, by continuity, that (3.19) is satisfied for each vE€V. 1In both cases,

u is a solution of the stationary Navier-Stokes equations.
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It can be proved by exactly the same method, that any convergent subsequence
of PLUy,» converges to Wu, where u 1s some solution of (3.1). If this solution
is unique, the whole family Py, converges to wu in F weakly,

Let us show the strong convergence when n X< 4,

In order to prove this strong convergence, we consider as in the linear case

(see Theorem I.3.1) the expression

Xy = oy (u mrpu,u -1, 0).

Expanding this expression and using (3.9) with vy Ty, we find

xh = <£h,uh> - ah(uh,rhu) - ah(rhu,uh) + a(rhu,rhu),
Because of (2.4), (3.5),and (3.17),
Xh,———+<f,u> - a(u,u), as h'—0.
We take v =u in (3.1) and use (1.22); this gives

(1)

<f,u> = a(u,u),
hence

(3.20) Xh,——~+0 as h-—0.

We then finish the proof as in the linear case; the inequality (3.2) shows

that
"uh' - rh}“"hf'"*O'
Since the p, are stable, this implies
”phtu'hv - Ph‘rh'u"F ..<._ "Ph'"oC(VhlﬁF) "uh' - rh'u"h' —
Then we write

”ph'uh' - -USUHF f_ "ph'uh' - ph'rh'u"F + "ph'rh'u - m("'"F’

‘(1)This equation does not hold for n > 5, and this is the reason the proof cannot
be extended to these cases,
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and the two terms on the right-hand side of this inequality converge to 0 as
p—so0, M

3.2 Applications.

In this section we apply the general convergence theorem to approximation

schemes corresponding to the approximations (APX 1)s°+*(APX 4) of V.

Approximation (APX 1)
We choose a, and %, as in the linear case (see I. (3.62) and (3.63)),

h h

(3.21) 2 (v = V(e ,v,)),

(3.22) <lh,vh> = (f,vh).

Before defining bh, we introduce the trilinear form g(u,v,w),

(3.23) g(u,v,w) = b'(u,v,w) + b"(u,v,w)
L 3

(3.24) b'(u,v,w) = = J u, (D.v,)w.dx
24,9=100 T 1373
)

(3.25) b"(u,v,w) = -3 X J uiv,(Diwj)dx.

ij=1/'0 *J
It is not difficult to see that
(3.26) g(u,u,v) = b(u,u,v), Vu€V, Vve%

but g and b are otherwise different.

We now define b as,

h
1 n
1 = -
(3.28) by (s VW) = 3 s §=l JQ ”‘ih(‘Sihvjh)wjhdx
1 n
(3.29) b (V) = = 5 i’gzl JQ UspVyn G gn¥yn) 45

[t 1s clear that bf, bg, and hence bh are trilinear forms on. Vh; since

(1)

We recall that for each u&€V, and each he% there exists r, u€V such that

h h’

phrhu~—*6h, in F strongly, as h—0

(see Proposition 3.1).
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Vh has a finite dimension, these forms are continuous.

We have to check (3.6) and (3.7); (3.6) is obvious with our choice of the form

b, and (3.7) is the purpose of the next lemma.

h’
Lemma 3.1.
If PpUy, Cconverges weakly to Eu, then
(3.30) by (4 54,1 V) —b(u,u,v),  YveW
Proof.
Saying that Phuh converges weakly to Wu means that
(3.31) uh——'*u in L2(Q) weakly
and
2
(3.32) Gihuh-—-*Diu in L°(R2) weakly, 1 <141 <n,

The Compactness Theorem 2.2 is applicable and shows that
(3.33) uh—*u in TL2(Q) strongly.

We know that if ve Y v converges to wv in F strongly; but the

P.r
h'h
proofs of Lemma I.3.1 and of Proposition I.3.5 show actually that

(3.34) r.,v—>v 1in the norm of ]Loo(Q),

h

(o]
(3.35) 6ihrhv—+Div in the norm of 1L ().

If we prove that

(3.36) b}'l(uh,uh,rhv)—-*b'(u,u,v)
(3.37) bﬁ(uﬁ,uh,r}'lv)'-‘—-*b".(u,u,ﬂ ’

then, according to (3.27), the proof of (3.7) will be complete.
For (3.36) we write

n .
Ibt'l(uh,uh,rhv)-b'(u,u,v)l L e . :21—1 IIQ (uihvjh-uivj)c‘iihujhdxl
Jj=

+ ¢, ? IJ uv (6 )dx[.
Q

u, =D
1,31 3 in"jh 4"

3
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All the preceding integrals converge to 0, and (3.36) is proved; the proof of
(3.37) is similar,

The convergence result given by Theorem 3.1 is the following one:
(3.38) uh,-*'u in L2(Q) weakly,
(3.39) Sih.uh,——-*Diu in L*(Q) weakly, 1 <i<n,

Exactly as in the linear case it can be shown that there exists some step

function
(3.40) o= ) T (Mw
b oyegy B M
h
such that
(3.41) \)((uh,vh))h + (Vhﬂh,vh) = (f,vh), Vvh‘EE Wh;

therefore a solution w of (3.9) 1s a step function

(3.42) = Mw
Yn Mezﬁlh uh hM
such that
n
(3.43) ) (Vu,,) (D =0, VMc—zs‘};l
i=1
and
n 1 n
(3.44) -v ) S;huh(M) + 5 ,X uyp D8, v (D
i=1 i=1
_ L If 5., ( YO + V. 1) = £ (1), YMER!
2 L, "1htinth Y T Y h
where
1 ,
(3.45) £ (M) = — J f(x)dx.
h " "h 5, 00

When condition (3.8) and some condition similar to (3.10) are satisfied, u
and u are unique and the error between u and u, can be estimated as in the
linear case, if moreover u€@*() and pEL*(M).

Using the Taylor formula we can write,
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n 1 n
(3.46) ~v 12 (8, 7w @D + 5 121 (r,w), (DS, (z 1) ()
17 -
-5 izl 8, (rpw) 1w G+ (Vp) (D)
FQ) + e 0, VMEQ,
with
(3.47) leh(M)l < c(u,p) |0},

where c(u,p) depends only on the maximum norms of the second and third derivatives

of u, and of the second derivatives of p. Equations (3.46) show that
. ) o
(3.48) \)((rhu,vh))h + b (r U, T, U,V ) CV£W h’vh) = (f + Sh,vh),

for each thEWh where ﬂ'h is the step function

(3.49) o= ) p(Mw
h MEth hM

Subtracting (3.48) from (3.9) gives

\)((1.1h—rhu,vh))h = -bh(uh,uh,vh)+bh(rhu,rhu,vh) + (eh,vh) R Vth Wh.

We take v, =y -oru and ‘use (3.6) to get:
v”uh-r uﬂ -b (uh-r pUsly 5ty = rhu) + (eh yuy - rhu),
and with (3.8) and (3.47),

W -rul? < el lu-rol? + cu,p) lu-rul, |n]

I A

Vg -zl < e@®ful, To -zl + c,p)n]

< by (3.16))

A

-f-%— e, llu,rul, + elu,p)nl.

Finally

(3.50) v - &%- c(m,2)) || uh-rhu"h < c(u,p)|ni.
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If

(3.51) vo, > Be(n,R),
(the constant <¢(n,) in (3.8)), this gives the following majoration of the error
c(u,p)

B
[v- E; c(n,ff)]

(3.52) -zl < |n].

Approximation (APX 2)

In the two dimensional case we can associate to the approximation (APX 2) of V
described in Section I.4.2, a new discretization scheme for the Navier-Stokes
equations.

We recall that Vh is a subspace of IH;(Q) for this approximation, and we

take as in the linear case
(3.53) ah(uh,vh) = \)((uh,vh)) R

(3.54) <£h,vh> = (f,vh),

where ((*,*)) 1is the scalar product in V, and in ZH;(Q).

h

We define the form bh by

(3.55) bh(uh,vh,wh) = b(uh_,vh,wh) , Vuh,vh,whe Vo

b defined by (3.23) - (3.25); since Vh is a space of bounded vector functions,

A
the forms b are defined on V they are trilinear, hence continuous.

h;

Condition (3.6) is obviously satisfied with our choice of b condition (3.7)

h’
is the purpose of the next lemma,

Lemma 3.2.

If P u = v  converges weakly to wu = u, then

(3.56) bh(uh,uh,rhv) +blu,u,v), VYvel

Proof.
We recall that F =ZH;(Q) and @ and p, are the identity. Saying that

Py, converges weakly in F to Bh, amounts to saying that
(3.57) uh-——+u in TH;(Q) weakly,

The Compactness Theorem 1.1 shows then that
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(3.58) w—u in L*(Q) strongly.

The proof of Lemma 3.2 will be the same as that of Lemma 3.1, if we observe that
(3.59) v —* v in the norm of ]LOO(Q)
(3.60) D,r,v—>D,v in the norm of ILOO(Q), 1<i<nm,

which was actually proved in Proposition I.4.3 (see (4.63)).
The weak (or strong) convergence result given by Theorem 3.1 is the following one:

If p(h)—0, with o(h) <o (i.e. hE"H&),

then

(3.61) —>u in ]H(l)(Q) weakly (or strongly).

u
Exactly as in the linear case (see Section I.4.2), we can show that there
exists a step function Trh,

(3.62) oL s

Q\eﬁ"h

(XhA= the characteristic function of the simplex .)), such that

(3.63) \)((uh,vh)) + bh(uh,uh,vh) - (TTh, div vh) = (f,vh), Vvhewh.
This equation is the discrete analog of

(3.64) V((u,v)) + b(u,u,v) - (p, div v) = (£,v), VvEH (DNL ®).

~
Since the dimension of the space is n = 2, the form b is trilinear continuous

on ]Hg () and there exists some constant ¢ such that
(3.65) Beayvawl <dlul Id I, Va,vweni@.
This can be shown by the same method as (1.18); hence (3.8) holds with
c(n,) = c.

We will get an estimation of the error assuming that u €8 @, pELI @),

and an hypothesis similar to (3.51). We take = T u-u in (3.63) and

vh

v = r u-u in (3.64); subtracting these equations we find



184
(3.66) V((u—uh,rhu-uh)) + g(u,u,rhu—uh)—g(uh,uh,rhu—uh)
- (p-7_, diV(rhu-uh)) =0,

Since div(rhu-uh) is a step function which is constant on each simplex .JLEGE,

we have

(p-ﬂ s div(rhu~uh)) = (p—ﬁ'h, div(rhu-uh))

where 7' is defined by

h
. 1
(3.67) ™h —v&€;?h (meas 3) ([Lyp(x)dx)xhii
Hence

(3.68) I(p—ﬂh, div(rhu—uh)l E_lﬂ'h_pl [div(rhu—uh)l j_/f [w'h_pl ”uh-rhu".
We then estimate the difference

b(uh,uh,rhu—u) - b(u,u,rhu—u)

Hi

b(uh—rhu,uh,rhu-uh) + b(rhu,uh,rhu—uh) - b(u,u,rhu-u)

H]

g(uh-rhu,uh,rhu—uh) + g(rhu,rhu—u,rhu—uh) + G(rhu—u,u,rhu-uh).
The absclute value of this sum can be majorized because of (3.65) by
(.69 Syl Irpuu® + & Ul + ul} Trgumsl Truu ]

We recall that

and therefore

lul <5 1€l

Hence the.sum (3.69) is less than or equal to

(.70 L gl Jurpl® + elrul + Jul) Frgueol Druey

With the majorations (3.68) and (3.70), we get from (3.66)
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@ = &1y fuordl® < Mmool Durd + V2100 o] fur

# el + o} fo -z ol luryal,

and finally

[

(3.71) (v - % [£]) “u.h-rhu“ < u—rhu” + /Zlﬂ'-h-pl + & rhu" + |l } u-r, u

Under the assumption
(3.72) v? > ¢glf],

the inequality (3.71) gives a majoration of the error between u and ru and

hence between u and uh.

Approximation (APX 3).

As in the linear case, the method here is very similar to the method used for

the approximation (APX 2).

Approximation (APX 4),

We recall that £ must be a simply connected open set in Rr?,
Since (APX 4) is an internal approximation of V, the simplest scheme (3.9)

associated with this approximation is

(3.73) To find uhE Vh such that
\)((uh,vh)) + b(uh,uh,vh) = <f,v, >, Vth Vh.

Theorem 3.1 is applicable and shows that
(3.74) uh-—Fu in V, as p()—0,

provided o(h) <o (i.e. hew&) .
The error between u and y, ~can be estimated as follows (if we have
uniqueness): we take v = u-u, in the variational equation satisfied by wu:

v((u,v)) + blu,u,v) = (f,v), VvEV.

We then take v = 1:,nu-u1_1 in (3.73); we subtract these equations and find

(3.75) b\)”uh—uﬂz = V{(u-uy ,u-r, u)) + by ,u 7 o) - blu,u,r u-y ).

The difference
h(uh,uh,rhu-uh) -~ b(u,u,rhu-uh)
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is equal to
b(uh-u,uh,rhu-uh) + b(u,uh—u,rhu—uh)

b(uh-u,uh,rhu—u) + b(uh—u,uh,u—uh) + b(u,uh—u,rhu—u)

b(uh-u,uh,rhu—u) + b(uh—u,u,u—uh) + b(u,uh—u,rhu*u).

Because of (1.18) this is majorized by
cllul +lul} ool lr o=l + cful Ju-u|*.

We recall that
Vil ®

lol <5 1€l

<f’u> s

and similarly
ugl? = <60
lo <3 el -
Therefore the last expression is majorized by
el Tagmoll Drguecl + 5 Lel Tomuy ™

We deduce then from (3.75)

=S 15D Ju-ol? < @+ 28 gy fu o] Jr o,

(3.76) @ = &£ fu-ol < 22 12D Tru-dl.
If
2.77) vZ > ¢ "f"V' s

inequality (3.76) shows that the error "uh—u" has the same order as "rhu-u".
Since ¢ 1s the constant c¢(n), n = 2, in (1.18), the inequality (3.77) is
exactly inequality (1.37) which ensures the uniqueness of the solution u of the

exact problem.

Approximation (APX 5).

If we consider the approximation (APX 5) of V, we can set

(3.78) ah(uh,vh) = \)((uh,vh))h

> =
(3.79) <2h,vh (f,vh)
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1§
(3.80) bh(uh,vh,wh) =3 ) J “ih[(Dih"jh)wjh“’jh(nih‘”’jh)]dx’
i,j=1/Q
Proposition 3.1 is applicable and shows the existence of at least one

uhe Vh such that

(3.81) V((uh,vh))h + bh(uh,uh,vh) = (f,vh)g 'Vvhe Vhf

Theorem 3.1 cannot be applied since we do not know if rondition (3.7) is
satisfied, because of the lack of discrete compactness theorems for this type

of approximation.

3.3 Numerical Algorithms.

The following analysis is restricted to the dimensions n < 4. We wish to
extend to the nonlinear case the numerical algorithms described, for the linear case,
in Section 5, Chapter I.

We observe that the stationary Navier~Stokes equations are not the Euler
equations of an optimization problem like the Stokes equations. The following
algorithms are then some extension of the Uzawa and Arrow-Hurwicz algorithms
classically related to optimization problems,

In the sequel of this section we will always use the trilinear form G(u,v,w)
defined by (3.23) - (3.25). This is a trilinear continuous form on

IH;(Q)>CH;(Q)>CH3(Q) and there exists some constant ¢ = ¢(n) such that
(3.82) |bCu,v,w)| <&@ o] vl Ivl, Vu,v,wem!®@), (@< 4).

We already noticed that

(3.83) g(u,v,w) = b(u,v,w) 1if uGV,v,wG]Hg(Q)
(3.84) b(u,v,v) = 0, u,vEH(Q).

Uzava Algorithm.
In order to approximate the solutions of (1.8) - (1.11) we will construct as

in Section I.5, two sequences of elements
(3.85) Jenrl @, preEL@).

This construction is relatively easy because the condition div u =0 will
disappear in the approximate equatiomns.

We start the algorithm with an arbitrary element p°:
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(3.86) p’ € L2(@).
m _ m+l
When p is known (m > 0), we define u as some solution of

um+l € JH; (), and

(3.87) N
vt vy + 5™ Lu™h ) = (7, divv) + (£,v), Vvem!@).

We then define pm+l by

" le 12(2), and

(3.88)
mtl m

, +1
(p™ -p"q) + p(div uT ,q) = 0, VqELZ(®).
Later we will give the conditions that the number p > 0 must satisfy.
The existence of um+l satisfying (3.87) is not obvious, but can be proved
using the Galerkin method, exactly as in Theorem 1.2. Therefore we will skip the
proof. It is not difficult to see that um+l is the solution of the following

nonlinear Dirichlet problem:

e nl@
n
(3.89) T TR TR P YR
1 2
i=1
= - grad p" + FEH"I(Q).
The solution of (3.87)-(3.89) is not unique, in general. When um+l is known,
w1 is explicitly given by (3.88) which is equivalent to
(3.90) ™ = P aty ™ e L2(@).

To investigate convergence we will assume that
c(n) . -
(3.91) V- ”f"V' =V > 03

with (3.82), (3.83) and Theorem 1.3, the condition (3.91) implies the uniqueness
of the solution of (1.8) - (1.11); p is unique up to an additive constant; we
fix this constant by asking that

(3.92) J p(x)dx = 0.
Q
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Proposition 3.2.
We assume that n < 4 and that condition (3.91) holds. We suppose also

that the number 0 satisfies

(3.93) 0<p< 2,
n
Then, as m—®,
(3.94) Wy in the norm of Ii «) ,
(3.95) p—>p in L2(Q), weakly,

where {u,p} 1is the unique solution of (1.8) - (1.11) which satisfies (3.92).

Proof.
We set
m+l mtl
v = u -t
(3.96)
ml m-1

q =P -P
and we proceed as in the proof of Theorem I.5.1.
We subtract equation (3.87) from the equation

(3.97) v((u,v)) + g(u,u,v) - (p,divv)= <f,v>, VvEI—I;(Q)

and we take v = vm+1 to obtain

v"vm+lu2 (q" , div v ) + b(u u, el ) - b( w1 m+1’ m+1)

(@B, v VY - (™, atv B

Ao omkl | mbl

(3.98) +b(v Tu,v )
< (by (3.82) and (1.39))
< —(qm+1-q , div v ) - (q , div-vm+l)
A I Pt B
We take q = qm+1 in (3.88) and we find,

(3.99) lqm+1|2 - Iqmlz +»lqm+1 _ qmlz = - 20(div vm+1’qm+1)
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We multiply the last inequality in (3.98) by 2p and add it to (3.99);
this gives
mtl mtl m
i b |2

e ol
=12+ [ v - S e VY

(3.100)

jg—Zp(qm+l-qm, div vm+1).
This inequality is similar to equation (5.12) in the proof of Theorem I.5.1
with V replaced by V (see (3.91)). The proof can be completed exactly as in
Theorem I.5.1.

Remark 3.1.
In the general case, when uniqueness is not assumed, we can prove weak

convergence results for the average values

m
P .
1

=
2
A

N
—-le “w’

These sequences are bounded in ZH;(Q) .and LZ(Q), and every weakly convergent

subsequence converges to a couple {u,p} which is a solution of (1.8) - (1.11).

Arrow-Hurwicz Algorithm.

We construct a sequence of couples {um,pm} defined as follows.

We start the algorithm with arbitrary elements

(3.101) weH (@), p'eL(@).
When pm,um are known, we define pm+1,um+l, as solutions of
um+1 € ]H; () and
(3.102) { (W™ 1au™ v)) + ov((®,v)) + b@™, ™, v) - p(p%, div v) = 0(f,v),
VvEH]} ()
p™l e 12(Q) and
(3.103)
mt+1 m+1
a(p” -p ,q) + p(div u" T,q) = 0, VYq€LQ).

We suppose that p and o are two strictly positive numbers; conditions on

0 and O will be given later.

The existence and uniqueness of um+l€HH5(Q) satisfying (3.102) is easy with
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the projection theorem; (3.102) is a linear variational equation equivalent to’

the Dirichlet problem

e ul@)
(3.104)

n
—Aum+1+p Z uTDium+l'+ %(div um)um+1 = -Au™ + vaum + p grad pm + f.
i=1

Then pm+1 is explicitly given by (3.103) which is equivalent to

(3.105) me+1 = pm - %’div um+1'e L2 ().

Convergence can be proved under stronger conditions than those used in

Proposition 3.2.

Proposition 3.3.
Ve assume that n < 4, that

28 42
(3.106) v-=lely - 57 lely, = vx >0
and that
(3.107) 0<op ok

< rm—,
2 (n+v2a)

Then, as m—®o,

(3.108) W' —y in the norm of H(R) ,
—_— e 0
(3.109) pi—p in L2(Q) weakly,

where {u,p} is the unique solution of (1.8) - (1.11) which satisfies (3.92).

Proof.

mil

We use again the notation (3.96). We take v = 2v in (3.97) and (3.102)

and subtract these equations; this gives
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(e S R RS it LY e &

m+l m+1 m+l

I
= 20V((v V) + 2p(q", div v )

+ 26 (W, ™ V™) 2b (u,u, v

[ 2 e & i

+ 4pv +20(q", div v

1
2% )

+ 2b(vm—vm+1, ) + 2b(vm+l,-,vm+l)

(3.110) < (because of (3.82) and (1.39)
i_“vm+l_vm“2 mtl

+ ZD(qm, div v

+ 402V2"vm+lﬂz

)

Rl I R I v 2

2A A
el K3 ey

A2 2/\.
<3 IR etV w5 62, e Y2

V')

mtl

+ 2p(qm, div v 7).

We take q = 2qm+l in (3.103):

ol ™2 - alq®|? = -20(q™, div VO

m+l

=-20(q", div V™) - 20(¢™ ", aiv v

(3.111)
< -20(q", aiv V™) + 20417 |V

mtl

L) 4 208 [ gog®, gy v

o
<3 la )

(see (5.13), (5.25), (5.26), Chapter I). We add the last inequality in (3.110) to
the last inequality in (3.111) and obtain

mtl mtl mt+l 1y mbl :
ol ™ %0l g2 + 5 1@ TR - T 3

+ |

(3.112) 2
n mtl

* 200w -2 HfHV. - —%7 Iz, - 200 - 222 )[™2 < 0.
The conditions (3.106)-(3.107) ensure that the coefficient of uvm+1“2 in.
(3.112) is strictly positive; this inequality is then similar to the inequality

(5.27) in the proof of Theorem I.5.2; we finish the proof as in that theorem.
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CHAPTER TITI

The Evolution Navier-Stokes Equations

INTRODUCTION

This final chapter deals with the full Navier-Stokes Equations; i.e., the
evolution nonlinear case. First we describe a few basic results concerning existence
and uniqueness of solutions, and then study the approximation of these equations by
several methods.

In Section 1 we rapidly study the linear evolution equations (evolution Stokes
equations). This section contains some technical lemmas appropriate for the study
of evolution equations. Section 2 gives compactness theorems which will enable
us to obtain strong convergence results in the evolution case, and to pass to the
limit in the nonlinear terms. Section 3 contains the variational formulation of the
problem (weak or turbulent solutions, according to J. Leray [1],[2],[3]; E. Hopf
{2]) and the main results of existence and uniqueness of solution (the dimension of
the space is n = 2 or 3); the existence is based on the construction of an
approximate solution by the Galerkin method. In Section 4 further existence and

vuniqueness results are presented; there existence is obtained by semi-discretization
in time, and is valid for any dimension of the space.

In the final section we study the approximation of the evolution Navier-

Stokes equations, in the two and three dimensional cases. Several schemes are
considered corresponding to a classical discretization in the time variable (implicit,
Cranck-Nicholson, explicit) assoclated with any of the discretizations in the space
variables introduced in Chapter I (finite differences, finite elements). We

conclude with a study of the nonlinear stability of these schemes, establishing
sufficient conditions for stability and proving the convergence of all these

schemes when they are stable.
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§1. THE LINEAR CASE.

In this section we develop some results of existence, uniqueness,and regularity
of the solutions of the linearized Navier-Stokes equations. ~After introduciﬁg some
notation useful in the linear as well as in the nonlinear case (Section 1.1), we
give the classical and variational formulations of the problem and the statement
of the main existence and uniqueness result (Section 1.2); the proofs of the

existence and of the uniqueness are then given in Sections 1.3 and 1.4.

1.1 Notation.

Let £ be an open lipschitzian set in iRp; for simplicity we suppose £
bounded, and we refer to the remarks in Section 1.5 for the unbounded case. We
recall the definition of the spaces % V,H, used in the previous chapters and

which will be the basic spaces in.this chapter. too:

(1.1) W= {uEQ(Q), div u = 0}
(1.2) V = the closure of %k in iH;(Q),
(1.3) H = the closure of 7~ in L2(Q).

The space H is equipped with the scalar product (°*,°) induced by L2(Q); the
space V 1is a Hilbert space with the scalar product

. n
(1.4) ((u,v)) = ¥ (D ,u,D,v),
1=1 i i

since £ is bounded.

The space V 1s contained in H, 1is dense in H  and the injection is
continuous. Let H' and V' denote the dual spaces of H and V, and let i
denote the injection mapping from V into H. The adjoint operator 1' is linear
continuous from H' dinto V', 1is one to one since 1i(V) = V is dense in H
and 1i'(H') 1is dense in V' since ‘1 1is one to one; therefore H' can be
identified with a dense subspace of V'. Moreover, by the Riesz representation

theorem, we can identify H and H', and we arrive at the inclusions
(1.5) VCH=EZH'CV',

where each space is dense in the following one and the injections are continuous.

As a consequence of the previous identifications, the scalar product in H.
of f€H and u€V  1is the same as the scalar product of f and u in the
duality between V' and V:

(1.6) <f,u> = (f,u), VEE€EH, Vu€V,
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For each u 1in V, the form
a.n vE& V> ((u,v)) ER

is linear and continuous on V; therefore, there exists an element of V' which

we denote by Au such that
(1.8) <Au,v> = ((u,v)), Vv EV.

It is easy to see that the mapping u++Au 1is linear and continuous, and by
Theorem I.2.2 and Remark I.2.2,1is an isomorphism from V onto V'.

If @ 4is unbounded, the space V 1is equipped with the scalar product
(1.9) fu,vl = ((u,v)) + (u,v);

the inclusions (1.5) hold. The operator A 1is linear continuous from V into
V' but is not in general an isomorphism; for every € > 0, A+ €I is an isomorphism

from V onto V'.

Let a,b be two extended real numbers, -* La<b<® and let X be a
Banach space. For given a, 1 <o < +®, Lo‘(a,b;X) denotes the space of La—

integrable functions from [a,b] into X, which is a Banach space with the norm

b 1
(1.10) {J [EE] e dae}®.
a

The space Loo(a,b;X) is the space of essentially bounded functions from [a,b]

into X, and is equipped with the Banach norm

(1.11) Ess Sup | f(t)"x.
[a,b]

The space ¥([a,b];X) is the space of continuous functions from [a,b]

into X and if ~» < a3 < b < ©» is equipped with the Banach norm

(1.12) Sup [ £¢e)]| .
tela,b]

Most often the interval [a,b] will be the interval [0,T], T > 0 fixed;

when no confusion can arise, we will use the following more condensed notations,

(1.13) ) = 1%0,T;%), 1< o<+

(1.14) e(x) =€([0,T];X).

The remainder of this Section 1.1 1is devoted to the proof of the following

technical lemma concerning the derivatives of functions with values in a Banach space.
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and let u and g be two

Lemma 1.1.
Let X be a given Banach space with dual X'

functions belonging to Ll(a,b;X). Then, the following three conditions are

= 8

equivalent
(1) u is absolutely continuous and u'
t1 .
g(S)dS, Vto ’tle [a’b];

u(t;) - ulty) = J
ty

(1.15)
(i1) For each test function ¢€F((a,b)),
b b a
(1.16) f u(t)9' (t)de = - f g()p(e)dt (9" = S5 )3
a a

(iii) TFor each ne€EX’,
d
= <u,n> = <g,n>,

(1.17)
(a,b).

in the scalar distribution sense, on
[0,T].

[a,b] is the interval

Proof.
We suppose for simplicity that the interval

A legitimate integration by parts shows that (i) implies (ii) and (iii);-it
remains to check that the property (iii) implies the property (ii) and that (ii)

implies (4i).
If (iii) is satisfied and ¢€9((0,T)), then by definition,
T
- J <g(t),n> ¢(t)dt

T
(1.18) I <u(t),n> ¢'(t)dt =
0 0
or
T T
<{ u(t)d'(t)de + f g(t)d(t)dt,n> = 0, Vne€ X',
0 0

We can reduce the general case to the

so that (1.16) is satisfied,
Let us now prove that (ii) implies (i).
with

To see this, we set Vv = u-u,

u,(t) = JO

is an absolutely continuous function and that u'o =g

t

g ='00
g(s)ds;

case

(1.19)

it is clear that u,
and

hence (1.16) holds with u replaced by u,
T
f v(£)¢'(t)de = 0, V$EH((0,1)).

(1.20)
0
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The proof of (i) will be achieved if we show that (1.20) implies that v is
a constant element of X,

Let ¢, be some function in &((0,T)), such that
T
J ¢, (t)dt = 1.
0

Any function ¢ in #((0,T)) can be written as

T
(1.21) =2, + Y, A= J ¢(t)ae, Ved((0,1);
0

indeed since
T
J (¢(t) - A, (£)dt = 0,
0 ,

the primitive function of ¢—K¢o vanishing at 0, belongs to £((0,T)), and
Y is precisely this primitive function. According to (1.20) and (1.21),

T
(1.21a) I (v(£)-B)¢(t)dt = 0, Vo€H((0,T))
0.

where

T
£ = I v(s)¢0(8)ds.
0

To achieve the proof, it remains to show that (1.21la) implies that
v(t) = & a.e.,

i.e., that a function wELY(X) such that

T
(1.22) J w(t)p(t)de = 0, Y$E€P((0,1)),
0

is zero almost everywhere. This well-known result is proved by regularization: if
w 1is the function equal to w on [0,T] and to O outside this interval, and

if pE is an even regularizing function, then for € small enough, p€*¢ belongs

to 3’)((0,T)), V¢€<9((O:T))’ and

T +oo 400
J w(t) (P xP) (£)de = J ﬁ(t)(p€*¢)(t)dt = J (p#w) (£)4(t)dt = O.
0 -00 -0

Hence, for any n > 0 fixed, pe*ﬁ is equal to 0 on the interval [n,T-n],
for € small enough; as e€—0, ps*a converges to v in Ll(-W,+®;X). Thus
w 1is zero on [n, T-n)]; since n > 0 is arbitrarily small, w is zero on the
whole interval [0,T].
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1.2 The Existence and Uniqueness Theorem.

Let § be a lipschitzian open bounded set in R® and let T > 0 be fixed.
We denote by Q the cylinder % (0,T). The linearized Navier-Stokes equationms,
are the evolution equations corresponding to the Stokes problem:

To find a vector function

u: Qx[0,T]F—RY

and a scalar function

p : 2x[0,T]+—R,

respectively equal to the velocity of the fluid and to its pressure, such that

(1.23) -%% -VAu+gradp=f in Q= Q x (0,T),
(1.24) divu=0 in Q,

(1.25) u=0 on 02 x [0,T],

(1.26) u(x,0) = u (x), in Q,

where the vector functions f and u, are given, f defined on X [0,T], u,

defined on §; the equations (1.25) and (1.26) give respectively the boundary and
initial conditions.

Let us suppose that u and p are classical solutions of (1.23) - (1.26),
say u€®?(Q), pe¥!'(Q). If v denotes any element of 9% it is easily seen that

9
(1.27) (5g »¥) + V() = (£,9).
By continuity, the equality (1.27) holds also for each vE&V; we observe also that
du _d
Gg sV = 3¢ (W)

This leads to the following weak formulation of the problem (1.23) - (1.26):
For £ and u, iven,
(1.28) £ € L2(0,T;V")
(1.29) u, € H,
to find u, satisfying
(1.30) u € L2(0,T;V)

and
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(1.31) E@t_ (u,v) + v((u,v)) = <£,v>, VveEV,

(1.32) u(0) = ug.

If u belongs to LZ(O,T;V) the condition (1.32) does not make sense in
general; its meaning will be explained after the following two remarks:

(1) The spaces in. (1.28) (1.29) (1.30) are the spaces for which existence and
uniqueness will be proved; it is clear at least that a smooth solution u of (1.23) -
(1.26) satisfies (1.30).

(ii) We cannot check right now that a solution of (1.30) - (1.32) is solutionm,
in some weak sense, of (1.23) - (1.26); hence we postpone the investigation of this
point until Section 1.5.

By (1.6) and (1.8), we can write (1.30) as

(1.33) a%- <u,v> = <f-VAu,v>, VYvEV,

Since A is linear and continuous from V into V' and 11€If(V), the function

Au belongs to L2(V'); hence f-VAu€L2(V') and (1.33) and Lemma I.1 show that
(1.34) u' € L2(0,T;V")

and that u is a.e. equal to an absolutely continuous functién from [0,T] into
V'. Any function satisfying (1.30) and (1.31) is, after modification on a set of
measure zero, a continuous function from [0,T] intoe V', and therefore the condition
(1.32) makes sense.

Let us suppose again that f 1s given in L2(V') as in (1.28). If u
satisfies (1.30) and (1.31), then as observed before u satisfies (1.34) and
(1.33). According to Lemma 1.1 the equality (1.33) is itself equivalent to

(1.35) u' + VAu = £,

Conversely if u satisfies (1.30),(1.34),and(1.35), then u clearly satisfies
(1.31), Vvev.
An alternate formulation of the’weak problem is the following:

Given f and u, satisfying (1.28)-(1.29), to find u satisfying

(1.36) u € L%(0,T;V), u'€ L2(0,T;V'"),
(1.37) u' + VAu = £, on (0,T),

(1.38) u(0) = u,.
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Any solution of (1.36) - (1.38) is a solution of (1.30) - (1.32) and conversely
Concerning the existence and uniqueness of solution of these problems, we

will prove the following result,

Theorem 1.1,

For given f and wu, which satisfy (1.28) and (1.29), there exists a

unique function u which satisfies (1.36) - (1.38). Moreover

(1.39) u €¥([0,T];H).

The proof of the existence is given in Section 1.3, that of the uniqueness and
of. (1.39) in Section 1.4,

1.3 Proof of the Existence in Theorem 1.1.

We use the Faedo-Galerkin method. Since V 1s separable there exists a

seqdence- wl,"°,wm3-~-, which is free and total in V. For each m we define

an approximate solution u of (1.37) or (1.31) as follows:

m
(1.40) u = 'Z g, (v,
i=1

and

(1.41) (u'm’wj) + \)((um’wj)> = <f,w,>, §=1,°°*,m,

3

(1.42) um(O)zqu,

where Ui is, for example, the orthogonal projection in H of wu; on the space
(1)

spanned by Wyatt TV

The functions 1<4i<m are scalar functions defined on [0,T], and

8. s
im v
(1.41) is a linear differential system for these functions; indeed we have

m

m
(1.43) 1 Gopwe'y (0 + v ] (Gryw

k >y J=1,0°*,m
i=1 i=1

))gim(t) = <f(t) ,wj

since the elements Wysttt,W 5 are linearly independent, it is well-known that the
matrix with elements (wi,wj) (1 £i,j <m) 1is non-singular; hence by inverting

this matrix we reduce (1.43) to a linear system with constant coefficients

(1

u, - can be any element of the space spanned by LATRRRY N such that

u T in the norm of H, as m—3®,



201

m
(1.44) g' (£) + ]

o <f(t),w
3=1

m
= > 3

where ocij ,Bije R.

The condition (1.42) is equivalent to m equations
- . th
(1.45) gim(O) = the i* component of u

The linear differential system (1.44) together with the initial conditions (1.45)
defines uniquely the gim on the whole interval [0,T].
Since the scalar functions t*‘*<f(t),wj> are square integrable, so are the

functions 8im and therefore, for each m
(1.46) u € L%(0,T;V), u' € L2¢0,T;V).

We will obtain a priori estimates independent of m for the functions u and

then pass to the limit.

A Priori Estimates.

We multiply equation (1.41) by ¢ m(t) and add these equations for

3
j=1,*°*,m. We get

(u'_(£),u () + V]u ()] * = <€(e),u_(£)> .

But, because of (1.46),

2’ (6),u (6)) = = |u (0%,
and this gives
(1.47) L o 02 + 29u (] = 2¢6(0) ,u_(6)>
The right-hand side of (1.47) is majorized by
2ol a1 < vlu 12+ $ el .

Therefore

2

(1.48) -(—1‘-1; lu &) [* + Vu_()]|? i% lecorls,.

Integrating (1.48) from 0 to s, s >0, we obtain in particular

(1.49) Ju (s)]* < Ju

S
N [O leerl2ae < Ju,l? +%f LHOIMLL
) .

Hence:
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T
(1.50) sup  u_(s)]* < uol® +;,1-I f£¢e)]2,ae.
s€[0,T] 0

The right-hand side of (1.50) is finite and independent of m; therefore

(1.51) . The sequence u_. remalns in a bounded set of LQ(O,T;H).
m

—an e  GrAe—————— ity it

We then integrate (1.48) from O to T and get

T
T 2
1 f d
(1.52)  Ju (D]* +v [0 logll?ae < Ju |2+ 2 fo lecolg, dae
T
2 1 2
lul® + 5 JO Iz, at.
This shows that
(1.53) The sequence u remains in a bounded set of LZ(O,T;V).

Passage to the Limit,

The a priori estimate (1.51) shows the existence of an element u in

(o]
L (0,T;H) and a subsequence m'—», such that

(1.54) u , converges to u, for the weak-star topology of Lm(O,T;H);
(1.54) means that for each v€L'(0,T;H),

T
(1.55) J (u_, (£)=u(t),v(t))dt — 0, m'—,
o ™

By (1.53) the subsequence u belongs to a bounded set of L2(0,T;V); therefore
another passage to a subsequence shows the existence of some u, in Lz(O,T;V)

and some subsequence (still denoted um’) such that
(1.56) u ., converges to u,, for the weak topology of L*(0,T;V).

The convergence (1.56) means

T
J <um.(t)-u*(t),v(t)>dt~—+ 0, VYver?co,T;v').
0

In particular, by (1.6),

T T
(1.57) J (u o (£) ,v(t»dt-—*f (u, (v),v())dt,
0 0

for each v in L2(0,T;H). By comparison with (1.55) we see that

T
(1.58) I (u(t)-u, (t),v(t))dt = 0,
0
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for each v in LZ(O,T;H); hence

(1.59) u=u, €L2¢0,T;V) NL (0,T;H).
%

In order to pass to the limit in equations (1.41) and (1.42), let us consider scalar
functions V¥ continuously differentiable on [0,T]

(1.60)

and such that
Y(T) =0

For such a function V¥ we multiply (1.41) by yY(t),

integrate in t and
integrate by parts:

T T
JO (u m(t),wj)W(t)dt = - IO (Uﬁ(t)W'(t),Wj)dt-(um(o),wj)w(O)-

Hence we find,

T T
(1.61) - Jo (um(t),W'(t)wj)dt + v [O ((um(t),w(t)wj))dt
T
= (uOm,Wj)W(O) + JO <f(t),wj>dt.

The passage to the limit for m = m'—® in the integrals on the left-hand

side is easy using (1.54), (1.57), and (1.59); we observe also that

(1.62) uoﬁ——ﬂ'uo, in H, strongly.
Hence we find in the limit

T T .
(1.63) - J (u(e) ,¥'"(t)w,)dt + Vv J (Cut),¥(t)w,))de

0 J 0 J

T
= (ug,w )P(0) + J <f(t),w,>P(t)dt.
3 0 N

The equality (1.63) which holds for each j, allows us to write by a linearity
argument that

T T
(1.64) - J (u(e) ,vIP'(e)de + v J (Cu(t),v))P(t)dt
0 0

T

= (ug,vIYP(0) + J <£(t) ,v>Y(t)de,
0
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for each v which is a finite linear combination of the Wj' Since each term of
(1.64) depends linearly and continuously on v, for the norm of V, the
equality (1.64) is still valid, By continuity, for each v in V.

Now, writing in particular (1.64) with ¢ = ¢€F((0,T)), we find the following
equality which is valid in the distribution sense on (0,T):

(1.65) :igt—:' (u,v) + v{{u,v)) = <f,v>, VYveEV;

this is exactly (1.31). As proved before the statement of the Theorem 1.1, this
equality and (1.59) imply that u' belongs to L2(0,T;V') and

(1.66) u' + VAu = f,

Finally, it remains to check that u(0) = u, (the continuity of u is proved
in Section 1.4). For this, we multiply (1.65) by ¢(t), (the same Y as before),

integrate in t, and integrate by parts:

T T
J —édfg.(u(t),v)w(t)dt = - [ (ule) , VP (£)dt + (u(0),v)Y(0).
0 0
We get
T T
(1.67) - [ (u(t) ,MP'(e)de + v J ((u(t),v))yP(t)dt
0 0
T
= (u(0),v)¥Y(0) + I <E£(t),v>P(t)dt.
0

By comparison with (1.64), we see that
(UD-U(O) ’V)W(O) = 0,

for each veV, and for each function Y of the type considered. We can choose
such that Y(0) # 0, and therefore

(u(0)=uy,v) = 0, Yvev,

This equality implies that

u(0) = u,

and achleves the proof of the existence.



205

1.4 Proof of the Continuity and Uniqueness.

This proof is based on the following lemma which is a particular case of a
general theorem of interpolation of Lions-Magenes [1]:
Lemma 1.2.

Let- V,H,V' be three Hilbert spaces, each space included in the following one

as in (1.5), V' being the dual of V. If a function 4 belongs to LZ(O,T;V)

1

and its derivative u' belongs to L2(0,T;V'), then u is almost everywhere

equal to a function continuous from [0,T] into H and we have the following

equality, which holds in the scalar distribution sense on (0,T)

(1.68) é%-lu]z = 2<u',w> .

The equality (1.68) is meaningful since the functions
t— |u(e)]?, trF=><u'(t),ult)>

are both integrable on [0,T].

An alternate elementary proof of the lemma is given below.

If we assume this lemma, (1.39) becomes obvious and it only remains to check
the uniqueness. Let us assume that u and v are two solutions of (1.36) -

(1.38) and let w = u-v., Then w belongs to the same spaces as u and v, and
(1.69) w' + VAw = 0, w(0) =0,
Taking the scalar product of the first equality (1.69) with w(t), we find
<w'(v),w(t)> + \)“w(t)“2 =0 a.e.

Using then (1.68) with u replaced by w, we obtain
L )] + 2w ? = 0
lw(e)|? < [w(@]* =0, telo,1],

and hence u(t) = v(t) for each ¢t.

Proof of Lemma 1.2,

The elementary proof of Lemma 1.2 which was announced before, is now given

in the two following lemmas.

Lemma 1.3.

Under the assumptions of Lemma 1.2, the equality (1.68) is satisfied.
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Proof.
By regularizing the function u from R dinto V, which is equal to u on
[0,7] and to O outside this interval, we easily obtain a sequence of functions

u such that
m
(1.70) Vm, u is infinitely differentiable from [0,T] into V,

(1.71) as m ==,

u —ru in L C(O,T;V)

2
lo
u'm—*—+u' in Lioc(O,T;V‘).

Because of (1.6) and (1.70), the equality (1.68) for u s obvious:
d
(1.72) 3= lu ()] = 200" (8,0 (£)) = 2<u'_(£),u (£)>, V.
As m—», it follows from (1.71) that

2 2 1
[uml —>|ul? in Lloc(O’T)
<u' >—+<y' 0> 1 ! .
u' su u',u> in Lloc(O,T)
These convergences also hold in the distribution sense; therefore we are allowed to

pass to the limit in (1.72) in the distribution sense; in the limit we find precisely

(1.68).
Since the function
t <y’ (t),ult)>

is integrable on [0,T], the equality (1.68) shows us that the function u of
Lemma 1.3 satisfies

(1.73) w € L (0,T;H),

In the particular case of the function u satisfying (1.36) - (1.38), this
was proved directly in Section 1.3.

According to Lemma 1.1, u 1is continuous from [0,T] into V', Therefore,
with this and (1.73), the following Lemma 1.4 shows us that u is weakly continuous

from [0,T] dinto H, i.e.,

(1.74) Vv € H, the function ¢t +— (u(t),v) is continuous.
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Admitting temporarily this point we can achieve the proof of Lemma 1.2. We

must prove that for each t, &€ [0,T],
(1.75) lu(e) - ule))|?~—0, as t—¢ .

Expanding this term, we find
luCe) | + JuCe ) |? - 2¢ue) ,ule D).

When t——t, ]u(t)lz——'*lu(to)l2 since by (1.68),

t
iu(t)lz = ]u(to)lz + 2 J <u'(s) ’u(s)>ds;

ty

because of (1.74)
(u(t) ,ule N—lult )|,
and (1.75) is proved.

The proof of Lemma 1.2 is achieved as soon as we prove the next lemma. This

lemma is stated in a slightly more general form.

Lemma l.4.

Let X and Y be two Banach spaces, such that

(1.76) XCy

with a continuous injection.

o«
If a function ¢ belongs to L (0,T;X) and is weakly continuous with values

in Y, then ¢ is weakly continuous with values in X.

Proof.
Perhaps replacing Y by the closure of X in Y, we can suppose that X is
dense in Y. Hence the dense continuous imbedding of X into Y gives by duality

a dense continuous imbedding of Y' (dual of Y) into Xf (dual of X):
(1.77) Y'c X',
By assumption, for each n&€Y',
(1.78) <Ple) > > <P(eg),n>, as t—t , Vi,

and we must prove that (1.78) is also true for each nE€EX',

We first prove that d(t)EX for each t and that
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(1.79) Toely < ¢l , Vee[o,1].
L (0,T;X)

Indeed, by regularizing the function ® equal to ¢ on [0,T] and to O outside

this interval, we find a sequence of smocth functions rbm from [0,T] dinto X

such that
lo. ), <ffol . » Vm, Vee[o,T]
m X = (%)
and
<p_(£),n>—><p(t),n>, m—e, Vnex',
Since

<o &), <ol . Inl,vs Vm, Ve,
m — l 1 (x) X

we obtain in the limit

|<¢(t),n>] = I9] - Hﬂﬂxn Veelo,r], VYney',
L (X))

This inequality shows that ¢(t)&€ X and that (1.79) holds.
Finally let us prove (1.78) for mn in X', Since Y' is dense in X',

exists, for each € > 0, some nEEEY' such that
- <
Innll o < e
We then write

<Qle)-d(t ) ,n> = <Pp(e)-d(cy),n-n_> + <¢(£)-¢(c),n>

[<oe)-0Ce)om>] < 2eldll ,  + [<oCe)-0(t ), n >
L (X

As £, since nEGEY', the continuity assumption implies that

<@ (e)-9(ty),n>—>0

and hence

Tin [<o(e)-0Ce )] < 2efel
L (X)

there

Since € > 0 is arbitrarily small, the preceding upper limit is zero, and (1.78)

is proved.

1.5 Miscellaneous Remarks.

We give in this section some remarks and complements to Theorem 1.1,
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An Extension of Theorem 1.1.

Theorem 1.1 is a particular case of an abstract theorem, involving abstract
spaces V,H, and an sbstract operator A; see Lions-Magenes [1].

If instead of (1.28) we assume that
(1.80) £=£ +£, £€L7(0,T;V), f,€L'(0,T;H),

then all the conclusions of Theorem 1.1 are true with only one modification:
(1.81) u'€ L2¢0,T;V") + L'(0,T;H).

In the proof of the existence, we write after (1.47):

L Juy@12 + 2y @2 < 2g, @l luy@l + 205, @] Ju o]

(1.82) E.v”um(t)“z + %‘"fl(t)uzv + |f2(t)| {1+ lum(t)lz}.

Hence, 1n particular

(1.83) -(-?E {1+ Ju ()]} f_% le 2, + £, {1 + Ju_(0)]*).

t
Multiplying this by exp{- J Ifz(c)ldc}, we obtain
0

t t
£ lexp(- fo £,)]d0) + @+ Ju (MY < S TE @5 exp(- IO |£,(0) | o).

Integrating this inequality from O to s, s > 0, we obtain a majoration
similar to (1.50) which implies (1.51). Then integrating (1.82) from 0 to T
we obtain (1.53).

The proof of the existence is then conducted exactly as in Section 1.3.

Concerning the derivative u', we have
(1.84) u' = -vau + £, + £,€12(0,T;v") + L1(0,T;H).
It is easy to see that Lemma 1.2 is also valid if
2 oo
u € L2(0,T;V) NL (0,T;H),
(1.85) .
w'€12(0,T;V') + L'(0,T:H).

After noticing that, we can prove the uniqueness and the continuity of u,

u€€([0,T];H), exactly as in Section 1.4.
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The Case § Unbounded.

For the evolution problem, when § is unbounded, the introduction of the space

Y considered in the stationary unbounded case (Chapter I, Section 2.3) is no longer

necessary. All the previous results hold if { is unbounded and V is equipped
with the norm (1.9). Let us assume, in the most general case, that £ satisfies
(1.80). We have exactly the same results as in Theorem 1.1, if f satisfies (1.28),
and the same results as in Remark 1.1 if £ satisfies (1.80). The only difference

is that we must replace (1.82) by

d
P lum(t)]2 + 2%lum(t)“2 f.zufl(t)"v' Tu ()1 + 2|f2(t) lum(t)[
(1.86)
1
<Mlu 2 + vl @1 + g @G + [5,0] @+ Ju (],
Hence
d » 1
(1.87) <= {1+ lu_(e)]%} < (£, ()] + »i1+ lu ()%} + < l!fl(t)llf,,.
This inequality is then treated exactly as (1.83), to obtain (1.51). After that,
integrating (1.86) from O to T, we obtain

T
I ”u (t)uzdt < Const.
o ™ -

This majoration, together with (1.51), gives (1.53).
The proofs of the existence, the uniqueness, and the continuity are then exactly

the same as before.

Interpretation of the Variational Problem.

We wish to make precise in what sense the function u defined by Theorem 1.1

is solution of the initial problem (1.23) - (1.26).

Proposition 1.1,

Under the assumptions of Theorem 1.1, there exists a distribution p on

Q = Q><(O,T); such that the function u defined by Theorem 1.1 and p satisfy

(1.23) in the distribution sense in Q; (1.24) is satisfied in the distribution

sense too and (1.26) is satisfied in the sense

(1.88) u(t) =, ; in L*(Q), as t—0.

Proof.

The equality (1.24) is an easy consequence of w€L%(0,T;V); (1.26) and (1.88)

follow also immediately from Theorem 1.1; (1.25) is satisfied in a sense which
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depends on the trace theorems available for & since u is in LZ(O,TﬁHé(Q)),
To introduce the pressure, let us set

(t (t
(1.89) u(t) =J u(s)ds, F(t) =J f(s)ds.

0 0

It is clear that, at least,
UEE([0,T];V),  FEEC([O,T];V").
Integrating (1.31), we see that
(1.90)  (u(t)-u,,v) + v(U(L),v)) = <F(t),v>, Vee 0,11, VveEV,
or
<u(t)-u, - VAU(t)-F(t),v> = 0, Vee[0,T], VYvEV.

By an application of Proposition I.1l.3, we find, for each t&[0,T], the existence

of some function P(t),
P(t) € L2(Q),
such that
(1.91) u(t)-—uO - VAU(t) + grad P(t) = F(t).

By Proposition I.1.2, the gradient operator is an isomorphism from L2 Q) /R

into H™Y(Q). Observing that
(1.92) grad P = F + VAU ~ u + Ugs

we conclude that grad P belongs to C([0,T1M™(Q)) as the right-hand side of
(1.92) does; therefore

(1.93) P €'€([0,T];L2 (V).

This enables us to differentiate (1.91) in the t wvariable, in the distribution

sense in Q = Qx(0,T); setting
ap
(1.94) P=3F »

we obtain precisely (1.23).
We do not have in general any information on p better than (1.93)-(1.94). In
the next proposition, we will get more regularity on p after assuming more regularity

on the data f and U, .
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Some Results of Regularity.

Assuming that the data Q,f,un, are sufficilently smooth, we can obtain as much

regularity as desired for u and p. We will only prove a simple result of this type:

Propesition 1.2,

.et us assume that  1s of class €%, that

(1.95) f€L2(0,T;H)
and
(1.96) u, € V.
Then
(1.97) wE€L2(0,THI()),
(1.98) u'€ L2(0,T;H), i.e., u'€ L2(Q),
(1.99) p € L2(0,T;HY ().
Proof.

The first point is to obtain (1.98); this is proved by getting another a priori
estimate for the approximate solution u, constructed by the Galerkin method.
Using the notation of Section 1.3, we multiply (1.41) by g'jm(t), and add
these equalities for j = 1l,°°<,m; this gives
lu' () ]2+ v (£)u (£) D) = (£¢e),u'(£))
or
(1.100) 2lut ()2 + v u o)]? = 2¢£(8),0" (1)),
m dt "' m m
We then integrate (1.100) from O to T, and use the Schwarz inequality;
we obtain:

T T
2 J [u'm(t)lzdt + vnum(w>u2 = v”uomﬂz + 2 f (£(t),u’_(c))dt
0 0

T T
<Vfu ?+ [O |£(t)|%de + fo Jut (0] 2ae,

T T
(1.101) (o lu' ()| %de < V] |* + Jo |£¢e) | %at.

The basis wj used for the Galerkin method can be chosen so that ijSV

for each j and we can take
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Uin = the projection’in V of wu; on
the space spanned by Wyt W
Therefore
(1.102) u g in V strongly as m—r®o,
and
(1.103) lug I < Jugl

With these choices of the Wj and of Uy (1.101) shows that

(1.104) the u'm belong to a bounded set of LZ(O,T;H),

and (1.98) is proved.

We then come back to the equalities (1.23), (1.24), (1.25) and we apply the
regularity theorem of the stationary case (Theorem I.2.4): For almost every ¢t
in [0,T],

-Vhu(t) + grad p(t) = f-u' € L2(0,Ta2())

it

(1.105) div u(t) 0 in

il

u(t) = 0 on 90

so that u(t) belongs to H?(Q) and p(t) belongs to W' (Q). Moreover, since the

mapping
£(t)-u' ()= {u(t),p(t)}
is linear continuous from L*(Q) into IHZ(Q)><H1(92, due to I(2.40), and since
f-u' € LZ(0,T;L2()),

it is clear that (1.97) and (1.99) are satisfied.
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82, COMPACTNESS THEOREMS.

The compactness theorems presented in Chapter II are not sufficient for the

nonlinear evolution problems. Our goal now is to prove some compactness theorems
which are appropriate for the nonlinear problems of the remainder of this chapter.

After a preliminary result given in Section 2.1, we prove in Section 2.2 a
compactness theorem in the frame of Banach spaced. In Section 2.3 we prove two
cther compactness theorems in the frame of Hilbert spaces; one of them involves
fracticnal derivatives in time cf the functions.

Some related discrete form of these theorems will be studied later on.

2.1 A Preliminary Result.

The proof of the compactness 'theorems of the next two sections will be based
on the following lemma,
Lemma 2.1,

X, and X, be three Banach spaces such that

H

(2.1) X,CXCX,

the injection of X 1into X, Dbeing continuous and:

(2.2) the injection of X, into X' 1is compact.

Then for each 17 > 0, there exists some constant cn depending on 1 (and

on the spaces X,, X, X;) such that:

(2.3) "Vhiirmﬁx +°%Jﬂx » VYVEX,.
0 1

Proof.
The proof is by contradiciton. Saying that (2.3) is not true amounts to saying

that there exists socme 1 > 0 such that for each ¢ in R,
4
”V”X _>_. nnvll}SO + C”"Hxla
for at least one v. Taking ¢ = m, we obtain a sequence of elements Ve
satisfying
1 .
> + .
IVm‘x-—nl"'m!x0 mlvmlxl’ Ym
We consider then the normalized sequence

Ty,

)
which satisfies
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(2.4) beghy 20+ sl o Vo

Since ”wm”X = 1, the sequence v is bounded in X and (2.4) shows that
0

(2.5) "wm”X;*—~+0, as m-——°,

In addition, by (2.2) the sequence v is relatively compact in X; hence we
can extract from LA subsequence wu strongly convergent in X; Dbecause of

(2.5) the limit of wu must be 0, but this contradicts (2.4) as:

lelly 2n>0, Vi

2.2 A Compactness Theorem in Banach Space.

Let X,, X, X;, be three Banach spaces such that
(2.6) X, CXCX,,

where the injections are continuous and:
2.7) Xi is reflexive, 1 = 0,1,
(2.8) the injectién X, —*X 1is compact.

Let T > 0 be a fixed finite number, and let 0,, O be two finite numbers

1’
such that o, > 1, 1= 0,1,
i

We consider the space

(2.9) GLOL = %KO,T;@O,OLI;XO',XI)
%o p_dv o %
(2.10) ’lj,= {vel (0,15 ), v' = €L (O,T;Xl)}.

The space %% is provided with the norm

(2.11) Il = 1 o, + v o, ,
L (O,T;Xo) L (O,T;XI)

which makes it a Banach space. It is evident that
Oy
JH,CL (O,T;X),
with a continuous injection. Actually we will prove that this injection is compact.

Theorem 2.1.

S o

Under the assumptions (2.6) to (2.9) the injection of 2% into L 0(O,T;X) is
compact.
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(i) Let u be some sequence which is bounded in . We muséoprove that
this sequence contains a subsequence uU strongly convergent in L (0,T;X).
. Since the spaces Xi are reflexive and 1 < oy < 4, the spaces
L 1(O,T;Xi), i=0,1, are likewise reflexive, and hence ‘%& is reflexive.

Therefore, there exists some u in 2# and some-subsequence u_ with

(2.12) uu'-+u in 2%,weakly, as Yo,

which means

o
u—u in L 0(O,T;Xo) weakly

(2.13) H a,
u'd—-+u' in L (O,T;Xl) weakly.

It suffices to prove that

a
(2.14) v, = uu—u converges to 0 in L 0(O,T;X) strongly.

(ii) The theorem will be proved if we show that
o
(2.15) vu———+0 in L 0(O,T;Xl) strongly.

In fact, due to Lemma 2.1, we have

v ]l o <nlv | q +c vl g
M1 %0,T30) M0,z 0 Mo,

and since the sequence vu is bounded in @%:

(2.16) o 1 Sen+clvl g

Gy
L "(0,T;X) L (O,T;Xl)
Passing to the limit in (2.16) we see by (2.15) that

(2.17) Iin v | a, < ens
S S L (0 ’T;X)
since N > 0 1is arbitrarily small in Lemma 2.1, this upper limit is O . and
thus (2.14) is proved.

(iii) To prove (2.15) we observe. that
(2.18) %FCTE([O,T];XI):

with a continuous injection; the inclusion (2.18) results from Lemma 1.1, and the
continuity of the injection is very easy to check.

We infer from this, the majoration
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(2.19) lv. &), < e, Vte(o,r], V.
U Xl -

According to Lebesgue's Theorem, (2.15) is now proved if we show that, for almost

every. t in [O0,T],

(2.20) Vu(t)-—+0 in X, strongly, as U—®,

1

We will prove (2.20) for t = 0; the proof would be similar for any other t.

We write
t
0) = - v (T)dT
Vu( ) vu(t) Jo vp( )
and by integration

1 (S s rt _
vu(O) = E{Jo vu(t)dt - JO Jo vu(T)det}
Hence
(2.21) VU(O) =a + bU
with
1 [® 1 (®
(2.22) au =3 JO vu(t)dt, bu =-73 [0 (s-t)v u(t)dt:.

For a given € > 0, we choose s so that

s
1 €
loly < JO vt @y ae <5

Then, for this fixed s, we observe that, as U-—®, au-+0 in X weakly and

thus in X1 strongly; for U sufficiently large

€
H aunxl f_—f s

and (2.20), for t = 0, follows.

2.3 A Compactness Theorem Involving Fractional Derivatives.
The next compactness theorem is in the frame of Hilbert spaces and is based
on the notion of fractional derivatives of a function.

Let us assume that X,, X, X,;, are Hilbert spaces with
(2.23) X, € X CX,,
the injections being continuous and

(2.24) the injection of X; into X 1is compact.
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If v 1is a function from R into X, we denote by 9 its Fourier transform

e imet
(2.25) Y1) = J e T () de.

-0

The derivative in t of order Y of v is the inverse Fourier transform of

(ZiNT)YG or
—NN

(2.26) DZV(T) = irt)Y ¥(1). (L
For given vy > 0 (2),-we define the space
(2.27) HT@®:x,,x,) = (vELZ®;X,),0lv € L2®;x )},
This is a Hilbert space for the norm,
£ 1
I = {vl]. + it o2 I3
L ;X H
2 ®,X,,X)) ®3%,y) LT R,

We associate to any set KCR, the subspace 7ﬁ§ of W defined as the set

of functions u in ‘%X with support contained in K:
(2.28) ?FgcR;XO,XI) = {uEWHYGR;XO,XI), support uCK},

The compactness theorem can now be stated:

Theorem 2.2,

Let us assume that X ,X,X, are Hilbert spaces which satisfy (2.23) and (2.24).

Then for any bounded set K and any Yy > 0, the injection of ?#EGR;XO,XI)
into L%(R;X) is compact.

Proof.
(i) Let v and K be fixed, and let u be a bounded sequence in ?+gGR;X0,X1).

We must show that u contains a subsequence strongly convergent in ’LzﬂR;X).
Since %@YGR;XO,XI) is a Hilbert space, the sequence u contains a subsequence
u . weakly convergent in this space to some element u. It is clear that u must

belong to ?Fg too; therefore,setting

vu = u-u,
the sequence v, appears a3 a bounded sequence of ’#gGR;XO,Xl), which converges
weakly to O in '; this means

(2.29) vu'"—*O in LZGR;XO) weakly

(l)The definition (2.26) is consistent with the usual definition for Y an integer.

(2)

In the applications, 0 <Y <1 in general,
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(2.30) |T|Y0u'——+0 in LZGR;XI) weakly.

The theorem is proved if we show that uu converges strongly to u in

LZGR;X),that is to say

(2.31) vu“~—+0 in L2(R;X) strongly.

(11) The second pdint of the proof is to show that (2.31) is proved if we
prove that

(2.32) vu*‘-+0 in LZGR;XI) strongly.

Due to Lemma 2.1,

+ ¢ “v ﬂ

(2.33) vy li2 gz < n![vu"LZGR;XO) n' WL ;X))

and since vu is bounded in chR;Xo),

2.34 < + .
(2.36) Illie gy £ on * enlvl 2z
If we assume (2.32), then, letting u-—r° in (2.34),we obtain
lim ”v ” 2 /o, < en.
u >0 WL GR’X)_
Since n 1is arbitrarily small in Lemma 2.1, this upper limit must be 0
and (2.31) follows.
(iii) Finally let us prove (2.32). According to the Parseval theorem,
2 e 2
2.35 I = v, (t dt = ¢ (T dt
2.35) A N TR R N LYV
where GU denotes the Fourier transform of vu. We must show that

(2.36) IU—_—+O as Yo,

For this, we write

T f 19, (D)2 ar +J @+ N)e,m)2 - —
H |Tl$M M X, . |T >M u X, (l+|T12Y)
=S| 1,02 e,
Y Uty M 1

since VU is bounded in ”Ny.

For € > 0 given, we choose M so that
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<E.
-2

Hence

I < { |9 ()] 2 dt + =
H= ]TlS_MIU X 2’

and (2.36) is proved if we show that, for this fixed M,

(2.37) J = J ¢ <r)[|}2{ dT—>0, s U—>,
H T|M H 1
This is proved via the Lebesgue theorem. If X denotes the characteristic

function of K, then VuX = vu and

rm ~24TET
e

-00

Gu(r) x(t)vu(t)dt.

Thus
le—ZthT "

lo @iy <lviliegy sy | Miz@)

(2.38) I ‘A’u(”"xl < Const.

On the other hand for each ¢ 1in Xo’ and each fixed T,

rm ~24TET

((GU(T) ,0>)X0 = ((vp(t) se x(t)c))xodt,

00
and this goes to 0, as p—>°, because of (2.29). The sequence GU(T)
converges to O weakly in X; and therefore strongly in X and Xl.

With this last remark and (2.38), the Lebesgue theorem implies (2.37).

Using the methods of the last theorem, we can prove another compactness
theorem similar to Theorem 2.1. Nevertheless, this theorem is not contained in

and does not contain Theorem 2.2.

Theorem 2.3.
Under the hypotheses (2.23) and (2.24), the injection of G%LO,T;Z,l;XO,XI)
into L%(0,T;X) is compact.

(1

Proof.
Let uo be a bounded sequence in this space °g; we denote by Gm the

function defined on the whole line R, which 1s equal to u on [0,T], and

(l)For the definition of this space see (2.9)-(2.10).
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to 0 outside this interval. By Theorem 2.2, the result is proved if we show
that the sequence Gm remains bounded in the space ?%yGR;XO,Xl), for some
Yy > 0.

Because of Lemma 1.1, each function u is, after modification on a set of
measure 0, continuous from [0,T] into X
of %; into ¥([0,T];X,) is continuous.

It is classical that since ﬁm has two discontinuities, at O and T, the

,» and more precisely the injection

distribution derivative of ﬁm is given by

d ~ _ > _
(2.39) Tc Un = &n + um(O)Go um(T)GT,

where 60 and GT are the Dirac distributions at 0 and T, and

= A = 1
(2.40) 8y = U g the derivative of u on [0,T].

After a Fourier transformation, (2.39) gives
(2.41) ZiﬂTum(T) = gm(T) + um(O) - um(T) exp (-24imTT),

where @m and ﬁm denote the Fourier transform of gm and Em respectively.
Since the functions & remain bounded in LI(O,T;XI), the functions
ém remain bounded in LIGR;XI) and the functions @m are bounded in
ﬁwdR;Xl):
(2.42) I @m(T)HX < Const, VYm\VT € R.
1

We already pointed out that the injection of %% into EX[O,T];XI) is continuous;
thus

l um(O)nX1 < Const, num(w:)llx1 < Const.,
and (2.41) shows us that
(2.43) It]? "ﬁm('r)“;'( <c, VnVTER.
1
For vy fixed, vy < %‘, we observe that

2
ITI 2‘Y 1+T

< c, (YY) ——57—, VTER.
=0T 2

Therefore
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2Y A~ 2 1+T A 2
]G (]2 dt < ¢ (v) f —— |&_(D)]| 2 dr
[_«, SR S R DI A

oo ar +0 )
o PARECE NS |~ 1ol

by (2.43).

Since Y <'l , the integral

{+w dT
00 l+|r|2(l-Y)

is convergent; on the other hand, by the Parseval ‘equality, we see that
[ 16,002 ar = [ o
|18_(0)]|2 ar = [ u ()2 at,
o I m X1 0 m X1

and these integrals are bounded.
We conclude that

(‘*m ZY A 2
(2.44) | 1T el 4 < e,
00 1

where c, depends on Y.
It is clear now that the sequence u is bounded in @#YGR;XO,XI) and the

proof is achieved.

Remark 2.1.
Assuming only that X, 1s a Hilbert space, X,,X being Banach spaces, it

can be proved in a similar way that the injection of

o
into L 0(O,T;X) is compact, O

o any finite number, ao > 1.
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§3. EXISTENCE AND UNIQUENESS THEOREMS (n < 4).

This section is concerned with existence and uniqueness theorems for weak
solutions of the full Navier-Stokes equations (n < 4). In Section 3.1 we give
the variational formulation of these equations, following J. Leray, and we state
an existence theorem for such solutions when the dimensien n < 4. The proof
of this theorem, due to-J.L., Lions, is given in Section 3.2. It is based on
the construction of an approximate solution by the Galerkin method; then a
passage to the limit using, in particular, an a priori estimate on a fractional
derivative in time of the approximate solution, and a compactness theorem
contained in Section 2. An alternate proof based on a semi~discretization
in time and valid in all dimensions is discussed in Section 4.

In Section 3.3 we develop the uniqueness theorem of weak solutions (n = 2).
In the three~dimensional case there is a gap between the class of functions
where existence is known, and the smaller classes where uniqueness is proved;
an example of such a uniqueness theorem is developed in Section 3.4 (n = 3).

In Section 3.5 we show in the two dimensional case the 9xistence of more
regular solutions, assuming more regularity on the data; a similar result
holds in the three dimensional case for local solutions, that is to say
solutions which are defined on some “small" interval of time, assuming that

the data is sufficiently small.

3.1 An Existence Theorem 12_:Rn (n < 4).

The notations are the usual ones, in particular those recalled at the
beginning of Section 1.1; § 1is an open lipschitzian set which we suppose
bounded for simplicity; the unbounded case is discussed in Remarks 3,1 and 3.2.

(1)

We recall that since the dimension is less than or equal to 4, one

can define on IH;(Q), and in particular on V, .a trilinear continuous form b

by setting
)
(3.1) b(u,v,w) = I u, (D,v,)w dx.
f,3=1 ) + 33
If u€V, then
(3.2) b(u,v,v) = 0, YvEH ).

For u,v in V, we denote by B(u,v) the element of V' defined by

(l)Cf. Section 1.1, Chapter II.
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(3.3) <B(u,v),w> = b(u,v,w), VYwEV,
and we set
(3.4) B(u) = B(u,w)E€EV', VYu€V,
In its classical formulation, the initial boundary value problem of the full

Navier-Stokes equations is the following:

To find a vector function
u: x{0,T] —R"
and a scalar function

p: Ox[0,T]—R,

such that
5 n
(3.5) == — VAu + 2 u,D,bu+ grad p=f£f in Q= 0x(0,T),
ot 121 i
(3.6) divu=0 in Q,
(3.7 u=0 on 92X(0,T),
(3.8) u(x,0) = uo(x); in Q.

As before, the functions £ and u, are given, respectively defined on
Qx[0,T] and Q.

Let us assume that u and p are classical solutions of (3.5) - (3.8),
say u&®(Q), p€¥€'(Q). Obviously u€L%(0,T;V), and if v 1is an element of
0 one can check easily that

4
dt

By continuity, equation (3.9) will hold for each V€&V,

{(3.9) (u,v) + v({u,v)) + b(u,u,v) = <f,v>,

This suggests the following weak formulation of the problem (3.5) - (3.9)
(cf. J. Leray [1], [21,[3]):

Problem 3.1.

For £ and u given with
(3.10) £€L2(0,T;V")
(3.11) u, €H,

to find u satisfying
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(3.12) u€L?(0,T;V)

and
(3.13) -a‘:é- (u,v) + v((u,v)) + blu,u,v) = <f,v>, Vvev
(3.14) u(0) = u .

If u merely belongs to L2%(0,T;V), the condition (3.14) need not make sense.
But if u belongs to L2%(0,T;V) and satisfies (3.13), then we will show as in
the linear case (using Lemma 1.1) that u 1is almost everywhere equal to some
continuous function, so that (3.14) is meaningful.

Before showing this, we recall that we are considering the case n < 4; we

will modify slightly the preceding formulation in higher dimensions (see Section 4.1).

Lemma 3.1.

We assume that the dimension of the space is n < 4 and that u belongs to
L2(0,T;V).
Then the fucntion Bu defined by

<Bu(t),v> = b(u(t),u(t),v), Vv€V, a.e. in te<[0,T],
belongs to L'(0,T;V).

Proof.
For almost all t, Bu(t) is an element of V', and the measurability of

fhe f‘unction
t€[0,T] — Bu(t)E V'
is easy to check. Moreover, since b 1s trilinear continuous on V,
(3.15) “BWHV, < cfw]?, Ywev,

so that
T ' T
[ Il < o | el < 4o,
0 y 0

and the lemma is proved.

Now if u satisfies (3.12) - (3.13), then according to (1.6), (1.8), and the

above lemma, one can write (3.13) as

a% <u,v> = <f-VAu-Bu,v>, VvEV.

Since Au belongs to L2(O,T;V'), as in the linear case, the function = f-VAu-Bu

belongs to L*(0,T;V'). Lemma 1.1 implies then that
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u'ert,T;v")
(3.16)

u' = f-vAu-Bu,

and that u is almost everywhere equal to a function continuous from [0,T]
into V'. This remark gives a sense to (3.14).

An alternate formulation of the problem (3.12)- (3.14) is the following one:

Problem 3.2.

Given f and u , satisfying (3.10) - (3.11), to find u satisfying

(3.17) weL?(0,T;V), u'€L'(0,T;V'"),
(3.18) u' + VAu + Bu=f on (0,T),
(3.19) u(0) = u,.

We showed that any solution of Problem 3.1 is a solution of Problem 3.2; the
converse is very easily checked and these problems are thus equivalent.

The existence of solutions of these problems is ensured by the following
theorem (cf. J.L. Liomns [1]).

Theorem 3.1.

The dimension is n < 4. Let there be given f and u  which satisfy

0
(3.10) - (3.11). Then, there exists at least one function u which satisfies

(3.17) - (3.19). Moreover,

(3.20) wEL (0,T;H)
(1

and u is weakly continuous from [0,T] into H .

The proof of the existence of a u satisfying (3.20) is developed in Section
3.2; the continuity result is a direct consequence of (3.20), the continuity of u

in V', and Lemma 1.4,

Remark 3.1.
(1) Theorem 3.1 also holds if we assume that
£=f, +£,; £el?(0,T;V"), £,€ L'(o,r;H).

For the corresponding modifications of the proof of the theorem, the reader
is referred to Section 1.5,

(ii) Theorem 3.1 is also valid if § 1is unbounded; for the details, cf.
Remark 3.2.

(D

i.e., Vvel, t#t=>(u(t),v) 1is a continuous scalar function.
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3.2 Procf of Theorem 3.1.

(1) We apply the Galerkin procedure as in the linear case. Since V is
separable and f is dense in V, there exists a sequence Wl,"',Wﬁ;"Of elements
L

of 95 which is free and total in V . For each m we define an approximate

solution w of (3.13) as follows:

!
(3.21) u, - .2 gim(t)wi
i=1
and
|
(3.22) (u m(t),wj) + \)((um(t),wj)) + bu (t),u (t) ’Wj)
= <f(t),Wj>, tE[O,T]’ j = l,"‘,m,
(3.23) um(o) = u0m9
where u is the orthogonal projection in H of wu, onto the space spanned

@)

by wl,"',wm
The equations (3.22) form a nonlinear differential system for the functions
Bim? "2 By’

m

m
(3.24) ) (wy,w g’y () + v ,2

L PRUCUBANING

m
+ i %_l b(wi’wz’wj>gim(t)g2m(t) = <f(t) ,Wj>'
§ K=

Inverting the nonsingular matrix with elements (wi,wj), 1 <i,j <m, we can

write the differential equations in the usual form

m m m
(3.25) g'. () + ) o,..g (&) + ) o, .8 (g ()= ) B, <f(t),w>
im j=1 ij%jm 3,k=1 ijk®im km j=1 ij hi
where aij’ aijk’ BijEJR-

The condition (3.23) is equivalent to the m scalar initial conditions

- .th
(3.26) gim(O) = the 1~ component of Uin

(&Y}

The wj are chosen in W for simplicity. With some technical modificationms,

we could take the wj in V.

(2)

We could take for U any element of that space such that

u —u

om 0 in H, as m—>,
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The nonlinear differential system (3.25) with the initial condition
(3.26) has a maximal solution defined on some interval [O,tm). If tm < T, then
]um(t)] must tend to +® as t—t 3 the a priori estimates we will prove later
show that this does not happen and therefore tm = T:
(ii) The first a priori estimates are obtained as in the linear case. We
multiply (3.22) by gjm(t) and add these equations for j = 1,**+,m. Taking (3.2)

into account, we get
(3.27) (u' (©),u (£)) + \>”um(t)]|2 = <f(t),u_(t)>.

Then we write
.ad? Ium(t)|2 + ZvIIum(t)ﬂz = 2<£(t)u (£)> < 2t|f<t)uv,[|um(t){|

<V @l + 2 g2,

so that

2

(3.28) Edt—}um(t)lz e @2 < 2 ew]2,.

Integrating (3.28) from O to s we obtain, in particular,

(s T
()17 < Ju, 2 + 2 J, leol2 ae < u)l® + 5 fo £l ae.

v v
Hence
2 2 1 (T 2
(3.29) sup fuy(@)[® < |+ 5] [E@]7y e
s€ [0,T] 0

which implies that

(3.30) The sequence u_ remains in a bounded set of Lm(O,T;H).

m in & oL

We then integrate (3,28) from 0 to T to get

T T
(D [* + v Jo lug(o%ae < Ju, I* +5 JO £l ae
1 T
< lol? + ] sl ae.
0

This estimate enables us to say that

(3.31) The sequence u_  remains in a bounded set of L%(0,T;V).
. m _— = —

(iii) Let ﬁm denote the function from R into V, which is equal to

u, on [0,T] and to O on the complement of this interval. The Fourier
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transform of ﬁm is denocted by 'ﬁm.

In addition to the previous inequalii =g, which are similar to the
estimates in the linear case, we want to sho. +hat
('+°° ZY A 2
(3.32) J | ] Ium(T)l dt < Counst., for some Yy > 0.
=00

Along with (3.31), this will imply that

(3.33) Gm belongs to a bounded set of %#YGR;V,H)

and will enable us to apply the compactness result of Theorem 2.2,

(1)

In order to prove (3.32) we observe that (3.22) can be written

d ~ jpd 3 = ¢ oo
(3»34) EE (um,Wj) = <fm’wj> + (UOm:Wj)so"(um(T) ’Wj)GT’ J = 1, iyl

where 60, GT are the Dirac distributions at 0 and T and

f
m

f-vVAu -Bu
m m
(3.35)

~

f

o fm on [0,T], 0 outside this interval.

By the Fourier transform, (3.34) gives

(3.36) ZiWT(ﬁm,wj) = <f w.,> (uomswj) - (um(T),wj) exp (-2imTT),

3

um(resp. fm) denoting the Fourier tramsform of wu_ (resp. fm).

We multiply (3.35) by éjm(T) (= Fourier transform of §jm) and add the

resulting equations for j = 1l,*°°,m; we get:

(3.37) 2awr|d (0|2 = <F_(0),8 (0> + (a8 (1)) = (u (1,8 (1))exp(-24mTT).

Because of inequality (3.15),
(T T ] )
J Tea@lpee < | Al + sl @ + el e,

and this remains bounded according to (3.31). Therefore

Sup "% (v < Const., Ym.
rer ™ 7 ’

Due to (3.29),

(l)Compare this with the proof of Theorem 2.3,
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Ium(O)I < Const., lum(T)] < Const.,
and we deduce from (3.37) that

el 18,0 1% < e g @l +c, 18]

or
(3.38) ] 18 (1% < e l6_ @] .
For vy fixed, vy < %-, we observe that
+
[t] Y < e, (1) —l—Jl—z-l_-? , V1ER,
1+ ]
Thus
oo [t
2Y A 2 14+iT N 2
Loo [T Ium(r)l dt < e (¥) J_oo l+]T|1—2Y lum(T)I dt
< (by (3.38))
(oo ”ﬁm(T)"dT (o ) )
% | PR + J_w 18] ?ar.

Because of the Parseval equality and (3.31), the last integralAis bounded as
m—©; thus (3.32) will be proved if we show that
A
rw la (ol

<
T3y dT__Const.

~o 14| 7|

By the Schwarz inequality and the Parseval equality we can estimate these integrals by

00 —%“< (T
dt 2 %’
_ lu (o)) at) ,
(J—oo a+]t)t 2*)2> Jo, m

which is finite since Yy <-% » and bounded as m—« by (3.31).

The proof of (3.32) and (3.33) is achieved.

(iv) The estimates (3.30) and (3.31) enable us to assert the existence of

an element uGELZ(O,T;V)f\Lw(O,T;H) and a subsequence u such that

u T in L2(0,T;V) weakly, and in
(3.40) o
L (0,T;H) weak~star, as m'—>o,

Due to (3.33) and Theorem 2.2, we also have
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(3.41) uo T in L%*(0,T;H) strongly.

The convergence results (3.40) and (3.41) enable us to pass to the limit,

We proceed essentially as in the linear case.
Let Y be a continuously differentiable function on [0,T] with YT) = 0.

We multiply (3.22) by Y(t), integrate in ¢t, and then integrate by parts. This
leads to the equation

(T (T
- Jo (u (£),9 (t)wj)dt + v Jo ((um(t>,ij(t) )) de

(3.42) T T
+ J b(um(t),um(t),wj¢(t))dt = (uom,wj)w(o) + J

<f(t),w, Y(t)>dt.
0 J

0

Passing to the limit with the sequence m' 1is easy for the linear terms; for the

nonlinear term we apply the next lemma, Lemma 3.2, In the limit we find that
the equation

(T

T
- J (u(t),vy' (t))de + v J (Cu(t),v(t) ))dt
0 0
(3.43)
(T (T
+ J b(u(t),ult),vi(t))dt = (u ,vIV(0) + J <f(t),vi(t)>dt,
0 0

holds for v = AR PR by linearity this equation holds for v = any finite
linear combination of the Wj’ and by a continuity argument (3.43) is still true
for any v€V.

Now writing, in particular, (3.43) with ¥ =¢ € I((0,T)), we see that u
satisfies (3.13) in the distribution sense.

Finally, it remains to prove that u satisfies (3.14). For this we multiply

(3.13) by V¥, and integrate., After integrating by parts the first term, we get

T (T,
- J (u(e) ,vi(e))de + v J ((u(e),vy(t) ))de
0 0
(3.44)

T

T .
+ J b(u(t),u(t),vi(t))de = (u(0),v)¥(0) + [ <f(t),vi(t)>dt.
0 0

By comparison with (3.43),

CU(O)-uO,V)W(O) =0,
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We can choose ¢ with Y(0) = 1; thus
(u(0)-u,,v) = 0, Vvev,

and (3.14) follows.

The proof of Theorem 3.1 will be complete once we prove the following lemma.

Lemma 3.2.

If uu converges to u in L (0,T;V) weakly and LZ(0,T;H) strongly,

then for any vector function w with components in %1(6),

T T
(3.45) J b{u (t),u (t),w(t))dt*"*J blult),u(t),w(t))dt.
o * H 0

Proof.

We write

T T n T
jo b(u“,uu,w)dt = - JO b(uu,w,uu)dt =- z J jg (uu)i(Diwj><up)jdth'

These integrals converge to

n T T T
- 2 [ J ui(D,w,)u.dxdt = - J b{u,w,u)dt = f b(u,u,w)dt,
1,3=1 70 /Q 3] 0

and the lemma is proved.

Remark 3.2.

When & 1is unbounded, we prove (3.30) and (3.31) as we did in Section 1.5
for the linear case. Then (3.32) and (3.33) follow in the same way as before.
The main difference lies in the fact that the injection of V into H is no
longer compact.

Nevertheless we can extract a subsequence u ‘which satisfies (3.40). Then,
for any ball ¢ included in , the injection of H!'(® into L%(® is compact
and (3.33) shows that:

i
(3.46) uml belongs to a bounded set of ‘MYGRﬂH1(9?JL2(§3), V¢,
¢
Then Theorem 2.2 implies that

um,,ef-+u|9/ in L%(®) strongly, V&

which means
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2
(3.47) u T in JLlOC(Q) strongly.
In particular, for a fixed j,
u ,[ ——+u[ in L2(Q') strongly,
m Qr Q'
where ' denotes the support of w
in (3.42).

and this suffices to pass to the limit

j’

3.3 Regularity and Uniqueness (n<= 2).

When the dimension of the space is n = 2, the solution of (3.17) - (3.19)
whose existence is ensured by Theorem 3.1 satisfies some further regularity
property and is actually unique.

The proof of these results is based on the following lemmas.

Lemma 3.3.

If n=2, for any open set

1
2

(3.48) [l vl < 2t Iv172 g

1
Ly < ” grad v"]ig «)° Vve H; .

Proof.

It suffices to prove (3.48) for vE€EH(Q). For such a v, we write

X
vi(x) = 2 f ' V(g ,x,)Dv(E ,x,)dE

and therefore

(3.49) vi(x) < 2v (x,),
where

(3.50) v, (x,) = J’M [v(E,,x,)| [D,v(g,,x,)]dE .
Similarly

(3.51) vi(x) < 2v,(x,),
where

<0
(3.52) v, (x,) = Ln lv(x],sz)l lD2v<x1,€2)id€2

and thus
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. 00 o0
LRZ vi(x)dx < 4 LRZ vl(xz)vz(xl)dx.i 4 (de Vl(xz)dxz)(f_w vz(xl)dxl)
< 4 “Vﬂiz ®?) “DIVHLZ C[RZ)HDZVHLZCIRZ)
2

< 2|4 12 R?) lgrad Vﬂlz ®2) "
Lemma 3.4.
If n=2,

1 1 1 1 1

(2.53) Ib(u,v,w)| < 2% IuIT Hu“T v lwlT “w”r, Vu,v,wE]H; ).

If u belongs to LZ(O,T;V)f]Lw(O,T;H), then Bu belongs to L2(0,T;V")

and
3+
Proof,
By repeated application of the Schwarz and Holder inequalities we find:
2 v | ‘
b(u,v,w)| < . (D,v )w, |d
b | —'19§=1 JQ AN j! *
< 1 Muglieg oo gy oyl oy

i,j=1

. L2 | L2 N
- (i,§=l llDiVjHIz‘zm)>2 <i£l llui“i‘*(gz)>2 <j§=1 ”".’j"i"@)) -
Due to (3.48),
2 2
Il 2 T (1ol ay Teres sl o)
<2 Jul ]

With a similar inequality for w, we finally get  (3.53).
If u,v,w belong to V, the relation

b (U,V,W) = - (U,W,V)

gives another estimate of b:

(.55 b, <28 [uF [T [T [o[T ], Ve,vwer.
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In particular,

1
(3.56) |b(u,u,v)] _<_'22_ lu] o] v, Vu,vev,
and hence
1
(3.57) [‘Buﬂv, < 22 |u| Juf, Vuev.

If now 1J€IF(O,T;V)rlﬂ®(O,T;H), Bu(t) belongs to V' for almost every t

and the estimate

A .
(3.58) [Ba(®)] e < 2% u@] Juo]

shows that Bu belongs to L?(0,T;V') and implies (3.54).

We can now state and prove the main result (ecf. J.L. Lions and G. Prodi [1]).

Theorem 3.2,

In the two-dimensional case, the solution u of Problems 3.1-3.2 given by

Theorem 3.1 is unique. Moreover u is almost everywhere equal to a function

continuous from [0,T] into H and

(3.59) u(t)-*uo, in H, as t —0.

Proof.
(i) We first prove the result of regularity.

According to (3.18) and Lemma 3.4,
u' = f-vAu - Bu,

~and since each term in the right~hand side of this equation belongs to LZ(O,T;V'),

1

u' also belongs to L2(0,T;V'); this remark improves (3.17):
(3.60) u'€L%(0,T;V").

This improvement of (3.17) enables us to apply Lemma 1.2, which states

exactly that u is almost everywhere equal to a function continuous from [0,T]

into H. Thus
(3.61) w€¥([0,T];H)

and (3.59) follows easily.
We recall also that Lemma 1.2 asserts that for any function u in LZ(O,T;V)

which satisfies (3.60), the equation below holds:

(3.62) L Jue)}? = 2<u"(0) u(0)>.
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This result will be used in the proof of uniqueness which we will start now,

(ii) Let us assume that u, and u, are two solutioms of (3.17) - (3.19),

and let u = u -u,. As shown before, U s, and thus u, satisfy (3.60).

The difference u = u, -u, satisfies
(3.63) u' + VAu = -Bu, + Bu,
(3.64) u(0) = 0

We take a.e. in t the scalar product of (3.63) with u(t) in the duality
between V and V'. Using (3.62), we get

(3.65) <= Ju(e)|? + 2v]u(®)]? = 2 Cu, (£) ,u, (£) ,u(e)) = 2bCu, (£),u, (£),u(t)),

Because of (3.2) the right-hand side of this equality is equal to
=2b (u(t) ,u, () ,ult)).
With (3.53) we can majorize this expression by
2 Ju | sl s, ] < 20a@]? + 1 [a©]? Ju, @]

Putting this in (3.65) we find
5 O] <5 le®]? fu, @)
Since the function tF—*"uz(t)n2 is integrable, this shows that

t
2 fexp(- 1 J lu, ()] 2ds) » JuCe)|2}<o.
t v 0 2 —
By integration and (3.64), we have

lu(e)[? <0, Veelo,T].

Thus

u, = Uz,

and the solution is unique.

Remark 3.3.
As a consequence of (3.48) the (unique) solution of the Navier-Stokes

equations satisfies

(3.66) uEL* Q) (n = 2).
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Remark 3.4.

Theorem 3.2 covers both the bounded and unbounded cases: there are no

differences in the proofs of the two cases.

3.4 About Regularity and Uniqueness (n = 3).

The results of Section 3.3 cannot be extended to higher dimensions due to
lack of information concerning the regularity of the weak solutions given by
Theorem 3.1.

Nevertheless, we will prove some further regularity properties of a solution,
which are weaker than those of the two-dimensional case. We then give an uniqueness
theorem in a class of functions for which the existence is not known; this result
shows, nevertheless, how an improvement in the information concerning the regularity

of weak solutions leads to uniqueness.

The result similar to Lemma 3.3 is

Lemma 3.5.
If n =3, for any open set {:

Tyt + 1
(3.67) “v“Lu @ 52 ﬂanZ @ | grad v"]_Lz @) Vve s, @).
Proof.

We only have to prove (3.67) for v&€I(R). For such a v, by application
of (3.48), we write

+o0 ( 2
(3.68)J v“(x)dx<2[ {(J vzdxldx2><J ) (Div)zdxldxz)}dx3
RS T e UR? R? i=1
s 3 fogl?
< 2(Sup * f vidx dx )( D.v 3 ).,
- X, R? P \gmp ot L*@®’)
But
X3
Vi) = 2 | L v(x,,%,,8,)D,v(x,,%,,E,)dE,
oo
5-2 J lV(Xl,Xz,Es)l lev(x1’X2’g3)[dga

and hence

2
o [, vianen, <2 jw vl Ipgvlax < 20V 2 o 19,7 2 gy
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With this inequality we deduce from (3.68) that

{ 2
Jgo 7Gx < AVl 2 ey 10Vl 2 gy <121 Il g2 @3))

3 3
<Ay 1 oy gyt

and (3.67) follows.

Theorem 3.3.

If n =3, the solution u of (3.17) - (3.19) given by Theorem 3.1 satisfies

(3.69) uEL%(O,T;IL“(Q))
(3.70) + u'e L%(O,T;V').
Proof.

 For almost every t, according to (3.67),
1 3
(3.71) "u(t)ulq(ﬂ) < e, lu®) [Flue)]*.

8
The function on the right-hand side belongs to L§kO,T), and thus also the

function on the left-hand side.

By usa of the H8lder inequality, we derived in Chapter II the bound

(3.72) |b(u,u,v)| = [bu,v,u)l < cl"““]i‘*(gz) Hv“, Yu,vEV (l).

A
Therefore, if |1613(0,T;V)f]ﬁm(O,T;H), Bu belongs to ﬁT(O,T;V') since

(3.73) ”Bu(t)“v, < cluu(t)llig @

3
(3.74) Isa()]0 < e, @ [Fuol?, ae.

In the two dimensional case we established that any solution of (3.17) - (3.19)
satisfies (3.60) and (3.66) and this was -the property which essentially enabled us
to prove uniqueness. For n = 3, (3.60) and (3.66) are replaced by the weaker
results (3.69) - (3.70).

We show now that there is at most one solution in a smaller class of functions

than the class in which we obtained existence.

Theorem 3.4,

If n =3, there is at most one solution of Problem 3.2 such that

(1)

This inequality with ¢ depending on n holds for any dimension of space.
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(3.75) wE€LE(0,T;VIN L (C,T:H)
(3.76) w €L, T (Q)).

Such a solution would be continuous from [0,T] inte H.

Proof.

(i) The inequalities (3.72) - (3.73) imply that if u satisfies (3.76) then
(3.77) Bu€L2(0,T;V') (at least).

Therefore if u satisfies (3.75) - (3.76),and (3.18), then
(3.78) u'€ L% (0,T;V")

and according to Lemma 1.2, u is almost everywhere equal to a continuous function
from [0,T] into H.
(ii) By the Holder inequality and (3.67),

Ib(uwuyv) I

I A

00" u”ILu (Q)” V[llLli ) n u“ s
| RTINS
(3‘79) Ib(U,U,V)] f_ CIIU' "u“”v”]L'*(Q)‘

(iii) Let us assume that u, and u, are two solutions of (3.17) - (3.19)

which satisfy (3.75) - (3.76), and let u = u;-u,.

As in the proof of Theorem 3.2 one can show that
(3.80) L a2 + 20fu®)]? = 2bCue),ule)u, (©) .
We then bound the right-hand side, according to (3.79), by
1 7
2¢; [u(®) Pl u, g gy < Vlu@]* + e lue) [Flu, Ol g,
We get
d
1o [v®1® 2 e llu, ] Fs gy [u®].

Since the function tf—+]u2(t)[£}(g) is integrable, we can complete the proof
as done for Theorem 3.2.

Remark 3.5.

The preceding proof is valid for @ bounded or unbounded.

Remark 3.6.

There are many similar results of uniqueness which can be proved by assuming



239
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Ib(uwuyv) I

I A

00" u”ILu (Q)” V[llLli ) n u“ s
| RTINS
(3‘79) Ib(U,U,V)] f_ CIIU' "u“”v”]L'*(Q)‘

(iii) Let us assume that u, and u, are two solutions of (3.17) - (3.19)

which satisfy (3.75) - (3.76), and let u = u;-u,.

As in the proof of Theorem 3.2 one can show that
(3.80) L a2 + 20fu®)]? = 2bCue),ule)u, (©) .
We then bound the right-hand side, according to (3.79), by
1 7
2¢; [u(®) Pl u, g gy < Vlu@]* + e lue) [Flu, Ol g,
We get
d
1o [v®1® 2 e llu, ] Fs gy [u®].

Since the function tf—+]u2(t)[£}(g) is integrable, we can complete the proof
as done for Theorem 3.2.

Remark 3.5.

The preceding proof is valid for @ bounded or unbounded.

Remark 3.6.

There are many similar results of uniqueness which can be proved by assuming
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some other properties of regularity. For example (cf. Lions [2] p. 84), there

is uniqueness in any dimension if, in place of (3.76), u satisfies

(3.81) UELS(O,T;]Lr(Q))
with
§.+ Eﬂi 1 4if @ is bounded,
(3.82) *
2 n , .
§'+ ;-= 1 if @ is unbounded.

3.5 More Regular Solutions.

Our purpose in this section is to prove that by assuming more regularity
on the data, we can obtain more regular solutions in the two dimensional case.
In the three dimensional case the existence of such more regular solutions is
only proved if we assume that the given data u ,f, are "small enough' or that

VvV 1is large enough.

3.5.1 The Two-Dimensional Case.

Theorem 3.5.

We assume that n = 2 and that

'(3.83) £ and £'€1%(0,T;V'), f(0)E€H

(3.84) u, € (@Q)NV.

Then the unique solution of Problem 3.2 given by Theorems 3.1 and 3.2
satisfies

(3.85) u'€ L0, T;V) NL (0,T;H).

(1) We return to the Galerkin approximation used in the proof of Theorem
3.1. We need only show that this approximate solution also satisfies the two
a priori estimates:

u'm remains in a bounded set of

(3.86) o
L3(0,T;V)NL (0,T;H).

In the limit (3,.86) implies (3.85).
Since u €& VNH2(Q), we can choose v a8 the orthogonal projection in

VOH2(Q) of u, onto the space spanned by w

0

1,°°',wm; then
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U in IEZ(Q), as m—o
(3.87) .
< .
nuomnmz (Q) — " U, "Hz )
(i1) We multiply (3.22) by g'jm(t) and add the resulting equations for
j=1,*°°,m; this gives

(3.88)  [ul(©)]2 + v((u (1),u! (£) D) + blu (£),u_(£),u'(£)) = <E(t),u’ (£)>.

In particular, at time t = 0,
(3.89)  [ul(0)|? = (£€0),u)(0)) + v(bu, ,u'(D)) - blu ,u _,u’(0))
so that
(3.90) lur @] < 1€ + v[su | + [Bu_].
It is clear from (3.87) that
[Auoml _<_ CQHuOmHHZ (Q) _<_ coﬂuonmz (Q)'

u, Wwe have, by the Holder inequality,

by, < e lullpe o lerad ulps g 1v]

< (by (3.48) and the Sobolev inequality)

A

c, |l Huﬂmz(mlvl, VueH?(Q), VveEL?(Q)
~and hence
(3.91) IBuom| < c?_ﬂuomﬂ "uomﬂmz(g) < (by (3,87) < czﬂuouéz(g).
Finally (3.90) and the above estimates show that

(3.92) ué(O) belongs to a bounded set of H.

(iii) We are allowed to differentiate (3.22) in the t variable, and since

f satisfies (3.83), we get

(3.93) (ull;l’wj) -+ \)((UI;,WJ,)) + b(UI;l,Um,Wj) + b(um,ur;l,wj) = <f"wj>’ j = l,"',m.

We multiply (3.93) by ggm(t) and add the resulting equations for j = 1l,**°*,m;

we find (taking (3.2) into account):

(3.94) —C—lc—lt— lur'n(t)[2 + Zvﬂut;)(t)nz + 2bup (£)yu () ,ur (£)) = 2<£7 (1), ur (£)>.
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By Lemma 3.4,
3
2b(ul (t),u (£),ul(€) < 2% lul ()] Ju! (0] RO

<Vl ]2 + 2 fu_]? Ju! 02
Thus, we deduce from (3.94) that

(3.95) % lu! (£)]? +§ o (]2 < S e ()]G + ¢ () ]ul(0)]?

where

8,0 = 2 Ju (0],

Then, by the usual method of the:'Gronwall inequality,
t
d ' 2 2 [ 2
L _ < 2
& Ul en- | g a1 <2 Iz oI3,
whence

t t
1 2 ' 2 2 ' 2
(3.96) ]um(t)[ < {Ium(O)] + 5 Io | £ (s)lv,ds} exp IO ¢_(s)ds.
Since the functions u remain in a bounded set of LZ(O,T;V) (cf. (3.31))
and because of (3.92), the right-hand side of (3.96) is uniformly bounded in

s€{0,T] and m:

(3.97) u& belongs to a bounded set of Lm(O,T;H).

—— e ———irs e i,

With (3.97) we infer easily from (3.95) that the u% remain in a bounded
set of LZ(0,T;V).

The proof is achieved.

Theorem 3.6,
The assumptions are those of Theorem 3.5 and we assume moreover that Q is

a bounded set of class €? and that

(3.98) £€L(0,T;H).
Then the function u satisfies

(3.99) u€L (0,TH2(Q)).

Proof.
(i) We write (3.18) in the form

(3.100) v((u(t),v)) = (glt),v), VveEV,

where
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(3.101) | g(t) = £(t)-u'(t)-Bult).

The proof is now based on two successive applications of Proposition 1.2.2.

(ii) Since wEL (0,T;V) and

(3.102) b (u(e),ult),v)| < conu(t)”]Lq (Q)"u(t)" "V"]Lq“z)

< 2
_— C,_”u(t)" "VHIL‘* )
we have
P 'S
Bu€L (0,TL(Q)).
Thus (f-u'€ 1L (0,T;H)),
L
(3.103) g€L (0,TLIQ)).
Proposition I.2.2 then implies that
oo 2 %—
u€L (0, TW 7 ().
4
By the Sobolev theorem, WZ’S(Q)C Loo(Q), and hence
(o]
uEL (Q).
(iii) We can now improve (3.103). We replace (3.102) by the inequality

[bCute),ue),m] < e bl o fue)] vl
A L (Q)

which shows that
(o]
Bu€L (0,T;H).
This implies that
o
g€L (0,T;H)
and another application of Proposition I.2.2 gives
Remark 3.7.
By repeated application of Proposition I.2.2 it is now easy to prove, exactly
as in Proposition II.1.1, that if @ is of class ‘e°°, u, is given in @W(Q),

OO e 00 —
and f is given in & (Q), then the solution u is in € (Q). By the same

methods, intermediate regularity properties can be obtained with suitable hypotheses

on the data.
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3.5.2 The Three Dimensional Case.

We will prove for n = 3 some regularity properties similar to those obtained
for n = 2, but in the present case this will be done only by assuming that
the data are "small,"

In the next theorem we denote by ¢ some constant such that

(3.104) [o(u,v,w)| < cluf vl [wls Vu,v,wev.

Theorem 3.7.

We assume that n = 3 and that there are given f and u, satisfying
(3.105) u,€H@)NV
(3.106) f£€1(0,T;H), f£'€L!(0,T;H)

and a further condition given in the course of the proof which is satisfied if

h" (l).

v 1is large enough or if f and u_ are 'small enoug

0
Then there exists a unique solution of Problem 3.2 which satisfies moreover

(3.107) w'€ L2(0,T;VIN L (0,T;H).

Proof.
(1) To begin with, we observe that uniqueness is merely a consequence of

Theorem 3.4, because such a solution will sétisfy
(3.108) uEL (0,T;V)

and then VEL*(Q) implies (see (3.76)) that
(3.109) w€L (0, T ().

(i1) Some of the steps of the existence proof are the same as in Theorem
3.4: we use the Galerkin method of Theorem 3.1, and we choose the basis and u n
so that (3.87) holds. The estimates (3.90), (3.91), and thus (3,92) still hold:

3.1 Ju @] <) = [£©O] + ve Julpz o) + eiluglie gy

We derive in the same fashion equation (3.94) and using (3.104) we deduce

now from it:
(3.111) -édg fut () [2 + 20v=clu_(0)]) [ur()]? < 2] ()| fur(e)].

(iii) There results from (3.28) and (3.29) that

(l)Like (3.115).
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(3.112) a7 < 5120 - 26,0, 0))
<leolz, + 20u @] fuo]

Td, %
|2+ =2 0F ul(e)]

where
(3.113) d, = €)%, .
L (0,T;V")
Using (3.110), we infer from (3.112) that, at time t = O,
1
(3.114) Wlu 1% < 2+ 24, (Ju, |2 + B2 )7 = a,.

The hypothesis mentioned in the statement of the theorem is that

d 2 2 Td '%‘ (T Ve
(3.115) 4, =2+ (1)) (Ju ]® + %) exp(JO [£'(s)]ds) < =

Since d, f_d“, we get as a consequence of (3.114) - (3.115)

3
Vi, O < ¢, <4, <3

and then
v-c"um(O)H > 0.
We deduce from this inequality that V~c"um(t)" remains positive on some
interval with origin 0. We denote by Tm the first time t < T such that

v=clu_(T)] =0

or, 1f this does not happen, Tm = T,

Then

(3.116) v-clu ()] >0, 0<e<T .
(1v) With (3.116) we deduce from (3.111) that
£ a2 < 28 @] lul o],
Eét- (lflﬁr;(t)lz) < e ] aHul )],

Thus
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t
é% {(1+]u&(t)[2) exp (- JO lf'(s)lds)} <0,

t
1+ |ul()]? < (1+[u’ (0 ]?) exp(,j [£'(s) |ds),
‘ 0
and, by (3.110),

T
(3.117) l+|u1;l(t)lz < (1+d?) e'xp()(o |£7(s)]ds), 0<t< T .

From (3.112), (3.115), and (3.117) we get

\)" um(t)uz < dq: 0=t f_ Tm’

(3.118) V—c"um(é)" z_v-ch; >0, 0<t<T.,

— - m

Then Tm = T, and (3.111) implies

L ]2 + 203wl <212 @] Jwo], o<ex<T,

and we easily deduce from this relation that

(3.119) u' remains in a bounded set of LZ(O,T;V)F]ﬁw(O,T;H).
m — — ———

The existence is proved.

As in the two~dimensional case, we also have

Theorem 3,8.

With the assumptions of Theorem 3.7, and if we assume moreover that  is

of class ‘@2, the function u satisfies

(3.120) w€L7(0,TH(Q)).

Proof.

We write (3.18) in the form,
v((u(t),v)) = (g(t),v), VvEV,
with
g(t) = £(t)-u'(t)-Bu(t).
Since f~u'€iﬁw(O,T;H), Proposition I.2.2 gives (3.120) provided we show that

(3.121) BuéELm(O,T;H) (and hence gEELm(O,T;H)).
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This result is also obtained by repeated application of Proposition I1.2.2
and various estimates on the form b.

By the Holder inequality, we have:

b Cu(e),u(®), )] < elu®lps oy luO] |vlps o
(3.122) lb(u(‘t),u(t),v)l < e fuw)]? |lv|[]L3<Q).

We deduce from (3.122) (and 11€IfRO,T;V)), that
Bu€L (O’T;]L (Q)), g€l (OaT;lL ).
Proposition I.2.2 dimplies that
[=<) 2 —g—
UEL (0,T;W°2())
3
and, in particular (since WZ’T(Q)CZLB(Q) for example, since n = 3),
*® 8
u€L (0,TL ().
Using again the H8lder inequality we estimate b by
8
b(u(t),ult),v) < coﬂu(t)ﬂle(mnu(t)! HVHILT(Q)'
Hence
o £
Bu,g&L (0,T;IL°(Q))
and by Proposition I.2.2,
oo 2 -g— oo
(3.123) u€L (0, T;W > CL x{o,T 1.

With (3.123) and 11EIFRO,T;V), the proof of .(3.121) is easy, and thus

Theorem 3,8 is proved.
Remark 3.8.

The same remark about regularity as in Remark 3.7 holds.

Introduction of the Pressure (n < 4).

For introducing the pressure, let us set

t t
U(t) = J u(s)ds, B(t) = J Bu(s)ds, F(t) = J f(s)ds.
0 0

If u is a solution of (3.17) - (3.19) then, for any n < 4,

(3.124) U,8,FEC([0,T];V').

Integrating (3.18), we see that
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(3.125) v((U(t),v)) = <g(t),v>, YvEV,Vte[0,T],
with
g(t) = F(t)-B(t)-u(t)+u,, gE&C([0,T1;V").

By application of Proposition I.,1.3, we get for each t€[0,T], the existence

of some function P(t),
P(t) € L7 (Q),
such that
-VAU(t) + grad P(t) = g(t)
or
u(t)—uo—\)AU(t) + B(t) + grad P(t) = F(t).

According to Proposition I.1.2, the gradient operator is an isomorphism
from LZ(Q)/R into H ™ (Q). Observing that

grad P = g-vAU,
we conclude that grad P belongs to €([0,T]1;H~'(Q)) and therefore
(3.127) PEC([0,T];L2 ().

This enables us to differentiate (3.126) in the distribution sense in

Q = Q% (0,T); setting

’ JP
(3.128) P =
we obtain
(3.129) EE - viu + § u,D.u + grad = f in Q
‘ ot g-% T eraa p ’ y

i=1

The pressure appears in general as a distribution on Q defined by
(3.127) - (3.128). Under the assumptions of Theorems 3.6 (n = 2) or 3.8
(n = 3), the application of Proposition I.2.2 shows also that

(3.130) pEL (0,T;HI (D).
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84, ALTERNATE PROOF OF EXISTENCE BY SEMI-DISCRETIZATION.

Our goal now is to give an alternate proof of the existence of weak solutions
of the Navier-Stokes equations which will be valid in any number of space
dimensions. An approximate solution is constructed by semi-discretization in t,
and we then pass to the limit using compactness arguments.

In Section 4.1 we reformulate the problem in a way which is appropriate in
any dimension and we state the existence results; Section 4.2 describes the

construction of the approximate solution; Sections 4.3 and 4.4 deal with the

a priori estimates and the passage to the limit,

4.1 Statement of the Problem.

Before giving the existence theorem in the higher dimensions we must
reformulate the prcblem of weak solutions. As in the stationary case, if n > &,
the form b is not trilinear continuous on V and a statement such as (3.10)-
(3.14) does not make sense since the b(u(t),u(t),v) term in (3.13) is perhaps
not defined.

For this purpose we introduce again (see Chapter II, Section 1.2) the spaces

(4.1) VS = the closure of U in - IH;(Q)rVHS(Q), s > 1.

The spaces ZH%(Q)FYHS(Q) and VS are endowed with the usual Hilbert norm of
H(Q):

= { z ]Djulzy%. (s 1integer).

(4.2) o] o =
B () [ilgs

Obviously (s > 1),

(4.3) vsc A\

with a continuous injection and VS is dense in V.

The form b 1is defined on V><V><VS, provided s 2_2-; more precisely:

Lemma 4.1.

; bqa s n
The form b is trilinear continuous on V><V><VS f s> 5 an

(4.4) b Cu,v, )| 2 elul vl Il

Proof.

For u,v,w€’Y the HSlder inequality gives

1)

Any dimension, § bounded or not,
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n
Ib(uavgw)l = ]b(u,w,v)] < Z_ ”uiHLZ(Q)HDin“ n HVJ" 2n
i,3=1 L) )
IR ()
20
< (by the Sobolev inequality H;(Q)C Ln"z(ﬂ))
MR
< ¢ fut v D,w.ll . .
= 1,3=1 I M@)
Since s Z'% > Hs-l(Q) is included in Lq(ﬂ) where
(4.5) sT1 5 axn

If wéEVS then Diwj belongs to Hs—l(ﬂ) and to Lq(Q); Diwj belonging

to Lq(Q)f\LZ(Q) implies that DiijEL?(Q)» too and

oyl < euloly
so that

(4.6) [bCusv,m | 2 ey lul ] ]y, -
s
This estimate shows that we can extend by continuity the form b from

VUV onto VXVXVS, and even HXVXVS, by (4.6).

Lemma 4.2,

If u belongs to LZ(O,T;V)r1Lm(O,T;H) then Bu belongs to Lz(O,T;V;)

for s

——— —

INY ]

Proof.
By the definition of B and because of (4.4),
|<Bu(e),v>] = [blu(e),u(®),W] < clu®] Ju)] |, ,» YvEV_;
s

hence
(4.7) "Bu(t)"v, < clu(®)] fu(t)]| for a.a. t€[0,T]
=3

and the lemma is proved.

In all dimensions of space, we can give the following weak formulation of the

Navier-Stokes problem:

Problem 4.1.

For f and wu, given such that
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(4.7) £€LZ(0,T;V"),
(4.8) uDE H,

to find u satisfying
(4.9) w€L2(0,T;V)NL7(0,T;H)

(4.10) "d‘ég (u,v) + v((u,v)) + b(u,u,v) = <f,v>, VVGVS (s Z }%)

(4.11) u(0) = u .
If u satisfies (4.9) and (4.10), then
d
EE<unP = <g,v>, VVEVS

with
g = f£-Bu-vAu,
Due to Lemma 4.2, Bu belongs to LZ(O,T;V;) and since f-vAu belongs to
L2(0,T;V"),
(4.12) g€ L? (O,T;Vé).
Lemma 1.1 then implies that

u'€ 12(0,T;V")
(4.13) s

u' = £-VAu-Bu;

therefore u is almost everywhere equal to a continuous function from [0,T]
into Vé and (4.11) makes sense.

An alternate formulation of Problem 4.1 is the following one:

Problem 4.2,

Given f and u , satisfying (4.7)-(4.8), to find u satisfying

(4.14) w€L2(0,T;V)N L (0,T;H), W €LE(0,T3V)) (s > 3)
(4.15) u'+VAutBu = £ on {0,T},
(4.16) : u(0) = u

The formulations (4.9) = (4.11) and (4.14) - (4.16) are equivalent.
The existence of solutions of these problems is given by the following theorem
which implies Theorem 3.1:

Theorem 4.1.

Let there be given £ and u, which satisfy (4.7)-(4.8). Then, there

0
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exists at least one solution wu of Problem 4.2, Moreover u is weakly continuous

from {[0,T] dinto H.
This theorem is proved in Sectioms 4.2 and 4.3; the weak continuity in H is

a direct consequence of (4.14) and Lemma 1.4.

4.2 The Approximate Solutions.

Let N be a integer which will later go to infinity and set
(4.17) k = T/N.

We will define recursively a family of elements of V, say uo,ul,"°,u R
m . . . . .

where u will be in some sense an approximation of the function u we are looking

for, on the interval mk < t < (mt+l)k.

We define first the elements fl,"',fN of V':

o 1 mk
(4.18) f =% J ' f(t)dt, m= 1,°** N; levy,
(m-Dk
We begin with
(4.19) u’ = u,, the given initial data;
then when uo,”',um_l are known, we define 4™ as an element of V which
satisfies
um-um_l m m m
(4,20) R — + VAu + Bu = f ;

m PP . . , m
u depends on k; for simplification we denote them T in lieu of uk.

The existence of such a u" is asserted by Lemma 4.3, whose proof is postponed

to the end of this section,.

Lemma 4.3.

. . m o e
For each fixed k and each m > 1, -there exists at least one u satisfying

(4.20) and moreover

4.21) o™ 2=]d™ 2 4 (WPl kv WM 2 < 2k<t™ ™,

; . N
For each fixed k (or N), we associate to the elements u1,°",u , the

following approximate functions:

(4.22) i [0,T) =V, u (t) = ", te[(m-Dk,mk), m = 1,°°¢,N

G
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wk: [0,T] 1, Wk is continuous, linear on

(4.23)

each interval [(m-1)k,mk] and wk(mk) = um, m= 0,°°*,N,

In Section 4.3 we will give a priori estimates of these functions; we will

then pass to the limit k-—0 (Section 4.3).

Proof of Lemma 4,3,

The equation (4.20) must be understocd in a space larger than V', for

example in a space V;, s 3_%—. It is equivalent to

(4.26)  W®v) + k(W™ v)) + kb (W™, u",v) = <™

it v, Yve v_.
We proceed by the Galerkin method, essentially as for Theorem II.1.2.
We choose a sequence of elements w ,*°°*,w,,***° of V_ which is free and
1 i ? s
total in VS and thus in V. For each r, by application of Lemma 1.4,

we prove the existence of an element ¢r (depending on r,k,m):
. .
(4.25) ¢, = 1 By ¥y
i=1

m-1

(4.26)  (6_,v) + W0 ((4,,¥)) + Kb(4,,0_,v) = <u y B

+kfm,v> , VVESD (w1 2TtV

We must then get an a priori estimate independent of r, and pass to the limit
r—o, (k and m are fixed in this proof).

Taking v = ¢r in (4.26) we get

(4.27) (6,~u" 1,0 + o |2 = ket 0>,

r r r

Now

(4.28) 2(a-b,a) = |a|®-~|b|* + |a-b|*, Va,b€H,
so that (4.27) gives

@.29)  Jo_|? + fo "2+ 2o |2 = [W"THE 4 2kee™ g >

m—l! 2

LR i e P R S I P LR P R s £

Hence

4.30) o2+ [o,-a"HE o I < [THR + SN2,

Tl) oo

,Wo

Sp(wl,"',wr) = the space spanned by w_, .

1
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The inequality (4.30) shows that the sequence ¢r remains bounded in V as
r—», Therefore we can extract from ¢r a subsequence ¢r' such that

(4.31) ¢r,*“—+¢ in V weakly, as r'——,

By standard arguments we then pass to the limit in (4,26) and prove that
o = o' satisfies (4.24),

It remains to establish (4.21). This would be obvious if we could take v = u"
in (4.24); since umﬁivs in general we proceed instead by passage to the limit. We
pass to the lower limit in (4.29), noting that the norm is lower semicontinuous
for the weak topology:

612 < 1m fo,1%, Jel® < 1m o %
¢! r'!—

The proof is complete.

4.3 A Priori Estimates.

Lemma 4.4
(4.32) !umizidl, m= 1 o-.,N’
¥ m 1
(4.33) ko) ful® 254,
=l —- Vv
¥ m m-1
(4.34) DoJu-u" < a,
=1
where d, depends only on the data:
1 T
(4.35) dl = ‘u012+;[ “f(s)”\zﬂdso
0

As mentioned in the proof of Lemma 4.3, we cannot take the scalar product of
(4.20) by um, at least for n > 4 (BquEV'). But (4.21) will play the same role
as the equation we would obtain by this prodedure.

We majorize the right-hand side of (4.21) by

2 €70 1" < la™® + S 1E2

and we obtain
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O P e L e LR & 16 L P KRR TR

Adding the equalities (4.36) for m = 1,°+*,N, we find

(4 37) lN[z Ig m m-lz N 1 Ty 2 2 k N Ty 2
R T R I e IR SN 1% IR P L i P L
m=1 m=1 m=1

Adding the equalities (4.36) for m = l,°*°,r, and dropping the terms
[W2, we get
N

2., k 2 = 1 eoe
= !uOI"{—_\-’.m-Z;]_ “ fmﬂvv s r 1, s N.

) r
4.38) Ju'[? < |y, 12 + 5 ] J£2,

A

The lemma is now a consequence of (4.37)-(4.38) and of a majoration of the

right-hand side of these inequalities given in the next lemma. g
Lemma 4.5,
Let f' be defined by (4.18). Then
N n T
(4.39) ) Hf”é,f_[ €] 2,ae.
m=1 0
Proof.

Due to the Schwarz inequality,

1 (™ 1
195 =51 £(e)de] 2, <

J l£¢e)] % ae.
k (m-1)k

J(m-—l)k

Then (4.39) follows by summation of these inequalities for m = 1,°+¢,N.

The last a priori estimate is the following:

Lemma 4.6. ooml o,
The sum k ] [==—]|

. is bounded independently of k.
pon t )
m=1 Vs

Proof.

Taking the norm in (4.20) we obtain

m m-1
== < 1+ VAT
Vs

T TR { - I P IO | Y N
k s

A V!
s s s

m-1

5= !!é' < G + ey + DB
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From (4.4) and (4.32) we get

B3, < e lu™l? W12 < edu 2.

.

We finally have

N um_ N n
kL RSP <o 1A + 1T,
m=1 Vé m=1

and we finish the proof using (4.33) and Lemma 4.5.

It is interesting ncw to interpret the above in terms of the approximate

functions:

Lemma 4.7.
The functions uy and W, are in a bounded set of Lz(O,T;V)r\ﬂw(O,T;H);

w, is bounded in L? (O,T,VS) and

k
(4.40) u, ~w, —0 in L2(0,T;H) as k-,
Proof.
The estimations on u and w, are just interpretations of (4.32)-(4.33) and

Lemma 4.6; (4.40) is a consequence of (4.34) and the next lemma.

Lemmg,=é§,
N ]
k m m~l
(4.41) ,Uk-'wk'Lz (O,T;H) = J—_;' (mzl lu -u ’2)-2—'
Proof.
w, (£)-u, (£) = (tkm;{) W™y for (m-1)k <t < mk,
mk
[w, (£)=-u, (t)|%dt = 5.]um~um“1[2 ’
J(m~l)k k k 3

and we find (4.41) by summation.

4.4 Passage to the Limit.

Due to Lemma 4.7, we can extract from u a subsequence U such that

uk,“~+u in L?(0,T;V) weakly,

(4.42) ©
in L (0,T;H) weak-star.

(I)Strlctly speakxng,lf uO¢IV W (t)é?V for 0 < t < k; in this case we simply

replace L? (0,T;V) by L2 %0 T1;V) whenever we are considering the functions
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We want to prove that u is a solution of (4.14) - (4.16); we need a strong

convergence result for the u in order to pass to the limit in (4.20). The

k9
functions Wy will play, for this, a useful auxiliary role.

We can choose the subsequence k', so that

W, —u, in L2(0,T;V) weakly,

(4.43) K .
in L (0,T;H) weak-star,
dwk,
(4.44) T —ru, in LZ(O,T;Vé) weakly.

Because of (4.40), u = u,.

Theorem 2.1 shows us that

(4.45) \

Wi in L2(0,T;H);

thus by (4.40),

(4.46) w o ~>u in L%(0,T;H).
The equations (4.20) can be interpreted as

dwk
(4‘47) -a—E'- + \)Auk + Buk = fk,

with fk defined by

£,(t) = £, (@-Lk<t<mk, m=1,°°,N,
Because of (4.42), (4.46), and Lemmas 3.2 and 4.2, |

Buk,—*+Bu in L2(0,T;V;1 weakly,
By Lemma 4.9 below,
£,—f in L*(0,T3V");
therefore we can pass to the limit in (4.47), and we find
u' + VAu + Bu = f.
Due to (4.43), (4.44) and Lemma 4.1,
<wk,(t),o>-——><u(t),o>, VOGV;,VtG [0,T];

o Ve get

since wk.(O) = u
u(0) = uy.

‘We have proved that u satisfies (4.14) - (4.16); the proof of Theorem 4.1

will be complete once we prove
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Lemma 4.9.

(4.48) f, —f in L2%(0,T;V'), as k—0,

Proof.

We observe that the transformation

[
f fk

is a linear averaging mapping in L2(0,T;V"); this mapping is continuous by

Lemma 4.5 which enables us to assert

(4.49) I, 12(0,T;V') = Il (0,T;V)°

Therefore, instead of proving (4.48) for any £ in Lz(O,T;V') we need only
to prove it for f 1in a dense subspace of L2(0,T;V'); for an £ in €([0,T];V")

the result is elementary and we skip its proof.

Remark 4.1.
Summing the equations (4.21) for m = 1,*¢+,r, and dropping the terms
m m-1 2
lu —u " |?*, we get

r r
(4.50) Iurlz + 2kv E ”u?n”2 j_]uo'z + 2k z <fm,um>.
m=1 m=1

The relation (4.50) can be interpreted as
2 k. 2 2 'k
(4.51) Iuk(t)l + 2v [o (Iuk(s)u ds < |u,|? + Jo <, (s),u, (s)>ds,

where

(4.52) = (mtl)k, for mk < t < (wrl)k.

x
For each fixed ¢, uk(t) is bounded in H independently of k and ¢t}
(L

as k'—0, uk,(t) converges to u(t) in V; weakly; therefore
(4.53) u , (t)—>u(t) in H weakly, as k'-—0, Vt€[0,T].
k ’

We then pass to the lower limit in (4.51) (t fixed, k'-—0), using (4.42)
and (4.53). This leads to the energy inequality:

t t
(4.54) |u(e)]|? + 2v J lu(s)]?ds < fu, |* + 2 f <f(s),u(s)>ds, Vte[0,T].
0 0

If n =2, using (3.62), it is easy to prove directly the energy equality:

t t
(4.55) Ju(e)]® + 2v J luts)f?ds = |u,|? + 2 J <f(s),u(s)>ds, YVt € [0,T].
0 0

(1)

Proof by contradiction,
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85, DISCRETIZATION OF THE NAVIER-STOKES EQUATIONS:

I. General Stability and Convergence Theorems.

This section is concerned with a general discussion of the discretization of
the evolution Navier-Stokes equations. We study here a full discretization of
the equations, both in the space and time variables:

1) The discretization in the space variables appears through the introduction
of an external approximation of the space V; for example, one of the approximations
(APX 1) to (APX 4), corresponding either to finite differences or finite elements.
Actually these particular examples will be discussed in more detail in reference [9].

2) TFor the discretization in the time variables, we propose, among many
natural and classical schemes, four schemes with two levels in time (fully implicit
scheme, Cranck-Nicholson scheme, a scheme implicit in the linear part and explicit
in its nonlinear part, and a scheme of explicit type).

After the description of the scheme under consideration we proceed to study
the stability of these schemes. The problem of stability is the terminology
in Numerical Analysis for the problem of getting a priori estimates on the
approximate solutions. It is classical that the discretization in both space and
time of evolution equations can lead to unstable or conditionally stable schemes:
the approximate solutions are unbounded uﬁless the discretization parameters
satisfy some restriction. We discuss in full detail the numerical stability of
the four schemes ccnsidered. To our knowledge the methods used here are non-
classical methods for studying the stability of nonlinear equations. The study of
nonlinear instability is a difficult problem; cur study here, based on the energy
method, leads only to sufficient conditions for stability; the stability conditions
which are obtained seem close to being necessary, but the problem of necessary
conditions of stability is not studied at all in the text.

The last subject treated in this section is the convergence of the schemes.
Two general convergence theorems in suitable spaces are proved for the different
schemes. The proof of convergence depends on discrete compactness methods. Owing
to the lack of uniqueness of weak solutions in the three dimensional case, the
convergence results cbtained in the two and three dimensional cases are different,
and better, of course, if n = 2,

The repartition of this material throughout subsequent subsections is the
following: In Subsection 5.1 we describe the general type of discretization and
the numerical schemes which will be studied. In Subsections 5.2, 5.3,and 5.4, we

successively study the stability of Schemes 5.1 and 5.2 (Subsection 5.2),
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5.3 (Subsection 5.3) and 5.4 (Subsection 5.4). Subsection 5.5 deals with
auxiliary a priori estimates of a rather technical character (involving fractional
derivatives in time of the approximate functions). Subsection 5.6 contains the

description of the consistency hypotheses, the statement of the general convergence

theorems, and the proofs of these theorems.

The application of these results to specific approximations of the space V
will be treated in reference [9]. There we will also study practical methods for
the resolution of the discrete problems. In fact, a more complete account -of
the numerical study of the nonlinear evolution Navier-Stokes equations is given
therein and cother methods of appreximation include the fractional step or
prcjection method and the artifigial compressibility method.

From now on we restrict ourselves to the "concrete' dimensions of space,

n=2 and n = 3.

5.1 Description of the Approximation Schemes.

From now on we will be concerned with the approximation of the solutions of

the Navier-Stokes equations in the two and three dimensional cases exclusively,

2 being bounded. For simplicity we suppose that the given data, u,,f, satisfy
(5.1) fE€L?(0,T;H),
and, as before,

(5.2) u, €H,

Theorems 3.1 and 3.2 ensure us that there exists a unique solution of
Problem 3.2 if n = 2, and that there exists at least one such solution if n = 3.
Let there be given a stable and convergent external approximation of the
space V, say {<Vh’ph’rh)h€9+’GE’F)}; the Vh " are assumed to be finite
dimensional spaces. This approximation could be any of the approximations
(APX 1),¢*+,(APX 4), that were described in Chapter I. For simplicity we assume.

that

(5.3) v, CL2(@), VheEY,

a condition which is realized by all the previous approximations. The space Vh
induced by T2(Q) and its

L)

is therefore equipped with two norms: the norm

own norm "'%h' Since Vh is finite dimensional, these norms must be equivalent;
the quotient of the two norms is bounded by a constant which may depend on h.

Therefcre we assume more precisely that
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(5.4) luh! idalluh“h, VuhGVh,
d, independent of h, and
(5.5) ”“h"hf- S(h) |uhl, \/uhe v, .

The constant S(h), which usually depends on h, plays an important role in
the study of the stability of the numerical approximation; for this reason

S(h) 1is sometimes called the stability constant. Usually S(h)—+x, as h—0,

Let there be given a trilinear continuous form on V_, say bh(uh,vh,wh),
which satisfies

(5.6) bh(uh,vh,vh) =0 ‘duh,vhe Vh’

(5.7) by, ooy | < dfla i v el

Vuh,vh,w eV (d, independent of h),

h™ 'h’ 1

and some further properties which will be announced when needed (i.e., when
discussing the stability and the convergence of the schemes).

Let us divide the interval [O;T] into N intervals of equal length k:
(5.8) k= T/N.

As in Section 4, we associate with k and the functions £, the elements
1 N
£r,000,f
m 1 mk m 2
(5.9) f~ = i-f f(e)dt, m= 1,°**,N; £ € L°().
(m-1)k

We will describe and study four basic schemes chosen from among a large class
of interesting and sometimes classical schemes which have been proposed for the
Navier-Stokes equations.

For all the four schemes we define recursively for each h and k a family
of elements u§,°",u§, of Vh. Actually these elements depend on h,k (and the
data), and should be denoted ,u:k; 'nevertheless,for simiplicity we do not emphasize
this double dependence.

In each of the four schemes, we start the recurrence with

(5.10) ua = the orthogonal projection of - u, onto Vh, in L2(Q);

0

this definition makes sense by (5.3) and we immediately observe that

(5.11) |‘?f,| < |u,l, Vh.
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Scheme 5.1.

0 m m . . o
When uh,°",uh » are knowg, uh is the solution in Vh of

1 . m m-1 m m-1 m _,eMm
(5.12) ¢ (uh-uh V)t V((uh,vh))h + bh(uh ,uh,vh) = (f ,yh), Vvhev

h.
Scheme 3,2.
T -1 , .
When uﬁ,“‘,u: s, are known, ug is the solution in Vh of
1 m m-1 v m~-1l, m 1 m-1 m-1, m
(5.13) o (uh-uh ,vh) + 5 ((uh +uh,vh))h + E—bh(uh »Uy +uh,vh)

= (fm,vh), VvaV .

h
Scheme 5.3.
When uﬁ,°°',ug_ » are known, ug is the solution in Yy of
(5.14) 1 (u§~ﬁ‘;‘"l,vh) F (v ), bh(urg—l,ug-l,vh) = (f"v), Vv EV,.
Scheme 5.4.
When uﬁ,“’,uﬂ_ » Aare known, ug ig;the solution in Vh of
(5.15) I @l-athv ) # vl v, + bh<u§‘l,u§'1,v¥l) - (0,90, Vv, €V, .

For all the schemes, the equation defining u: is equivalent to a linear

equation of the form

m ——
(5.16) ah(u ,Vh) = Lh(vh), \/vhe Vh’

L depends on m, a depends on m for Schemes 5.1 and 5.2, but not in the

h h
case of Schemes 5.3 and 5.4,

We observe, in all cases, that

1 2
(5.17) a, (v,v) > ¢ v |%,
and therefore the existence and uniqueness of the solution of (5.16) is a

consequence of the Projection Theorem (Theorem I1.2.2).

Remark 5.1.

, . m . . ,
(i) The computation of w requires the inversion of a matrix;

- the matrix is positive definite, nonsymmetric,and depends on m for
Schemes 5.1 and 5.2,
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- the matrix is positive definite, symmetric,and does not depend on m for
Schemes 5.3 and 5.4.

(i1) Scheme 5.1 is the standard fully implicit scheme; Scheme 5.2 is an
interpretation of the classical Cranck-Nicholson scheme. Scheme 5.3 is a partly
implicit scheme, implicit only in the linear part of the operator.

(iii) Scheme 5.4 is an explicit scheme or more precisely an interpretation
of the so~called explicit schemes; this terminology is justified by the fact that
this type of scheme usually gives uﬁ explicitly, that is to say without inverting
any matrix., In the present case, due to the discrete condition div u =0
built in the space Vh’ the determination of ug necessitates an inversion of a
matrix. This restricts considerably the interest of this scheme, but we considered
it of interest nevertheless.

(iv) Besides this discussion on the type of scheme, the reader is referred

to reference [9] for practical methods of computation of the ug.

Remark 5.2: Related Schemes.

(i) A related form of Schemes 5.1 and 5.2 is a nonlinear form of these
schemes:

Scheme 5.1'.,

l , m m-1 . m m m S
(5.18) E-(uh—uh ,vh) + \)((uh,vh))h + bh(uh,uh,vh) = (f ,vh), ’VthEVh.

Scheme 5.2'.

m m-1 Vv m— l m m- 1 -1
(uh uh )) + b (u

1 m m
'12 ’Vh) + "2' ((Uh h’vh h h’uh

(5.19)

m
+uh,vh)

m .

(1i) A related form of Scheme 5.3 is a Cranck~Nicholson scheme implicit in

its linear part:
Scheme 5.3'.

ORI N (SR DIEE W R RN
(5.20)

m
= (E,v), Vth Vi

(iii) These Schemes could be studied by exactly the same methods as Schemes
5.1 - 5.4,
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5.2 Stability of Schemes 5.1 and 5.2.

The problem is to prove some a priori estimates on the approximate solution.

5.2.1 Scheme 5.1.

Lemma 5.1.

The solutions ug of (5.12) remain bounded in the following sense:
my2
(5-21) Iu}l‘ —<- dz, m = 0,""N,
¥ m m-1y,
(5.22) ) o, = u 1> <4d,
m=1
N my 2 1
(5.23) kel ful® 235 q,,
m=1
where
2 dg ! 2
(5.24) d, = |u,] +“\TJ | £(s)|2ds.
0
Proof,
We take vy = u: in (5.12). Due to (5.6) and the identity
(5.25) 2(a-b,a) = |a|® - |b]|% + |a-b]?, Va,b € L2(Q),

we obtain

-1 ~1
I L Pl P P Py

h h
= 2k(fm,u‘;’)
(5.26) | < 2k| £7| ]u‘}‘l‘l < (by (5.4))
< 2xdy €7 1,
2
kdg
<ol ¢ =2 e
Hence
my 2 m-1;, m m-1j2 my o d% my 2
(5“27) luhl _luh l + luh-uh I + k\)"uhﬂhi_\)_— If I s WM = ].,"',N.

Adding these inequalities for m = 1l,*°*,N, we get
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Ny 2 N m m-l;, N my 2 012 kd: N m
(5.28) luh| + Z [uh~uh I + kv Z ”uh”h i_!uh[ + ~ 2 If ]2.
m=1 m=1 m=1
One can check as in Lemma 4.5 that
N - T
(5.29) k) |£]? f_J | £(s)|%ds;
m=1 0

thus, by (5.11) and (5.29), it follows that the right-hand side of (5.28) is
bounded by

) d§ (T
(5.30) d, = |u| +—\)—J-O | £(s)|%ds.

This proves (5.22) and (5.23).
We then add the inequalities (5.27) for m = l,e+s,r, dropping some positive
terms, we get
lurlz < I 012 EEE_ S m 2
N2l +— 1 e
m=1

< (due to the above) < d,;

(5.21) is proved too.
5.2.2 Scheme 5.2.

Lemma 5.2,
The solutions ug of (5.13) remain bounded in the following sense:

m
(5.31) ]uh|2 <d,, m=1,°¢e,N,

-1
N m+um 2 d:

(5.32) k ¥ [|:1—h—2—}—‘——ll <=

m=1 h

with the same d, as (5.24).

Proof.
We take vy = ug+u$—l in (5.13). Due to (5.6) we find
um+um-l 2
m -1 h h
I i T e Ry
= k(fm,u:+u2_l)
(5.33) o =1
< 2kd | €] BB |
— 0 2 h
u:*-u:_l 2 g
: m
R el B el E A

h
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Therefore
m, m-1 2

u 2 kd
-1 0
(5.34) lur|? + kv u—h—zh—uh_<_|u: |2+ == €72
We add these relations for m= 1,***,N and get
N um-*-um_l
Ny2 h h 2
PRI
m=1 h
012 § S mi2
o |? +—= ) |£]

m=1

A

I A

(as before) < d,.

This proves (5.32); adding then the relations (5.34) for m = 1,***,r, and dropping
the unnecessary terms, we find
42
Yz 0 mj2
lu 12 < T l* + == m_Z_llfl < d,;

this implies (5.31).

5.2.3 Stability Theorems.

We recall first a definition:

Definition 5.1.

An infinite set of functions o is called Lp(O,T;X) stable if and only if
g _iglgvbounded subset of Lp(O,T;X).

It is interesting to deduce from the previous estimations some stability
results.

In order to state these results, we introduce the approximate functions uy

(5.35) u [O,T)F——*Vh,
uh(t) = ug, (m-k < t < mk (Scheme 5.1)
(5.36) u:+ug—l
uh(t) == (m-1)k < t < mk (Scheme 5.2), m= 1,°°+,N.
Due to Lemmas 5.1 and 5.2,
(5.37) sup  |u (B)| <vd,,
t €[0,T] =

(T d2
(5.38) J fu, (0] 2de<— .
0
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Since the prolongation operators ph€5§jvh,F) are stable, we have
(5.39) “phuhHF f-dauuh“h’ \/uhe Vh’ (d3 1ndepepdent of h).

We infer from (5.38) that
T a2d
2 < 3 2
Jo lppu, () 5ae < =

These remarks enable us to state the stability theorem:

Theorem 5,1.
The functions Uy 116%%’ corresponding to Schemes 5.1 and 5.2 are

unconditionally Lm(O,TﬂLz(Q)) stable; the functions phuh are unconditionally

L2(0,T;F) stable.
Remark 5.2.
The majoration (5.22), and similar majorations for the other schemes which we

will give later on, does not correspond to stability results but will be technically

useful for the proof of the convergence of the scheme,

For the same majoration for Scheme 5.2, see Subsection 5.4.3.

5.3 Stability of Scheme 5.3.
We infer from (5.5) and (5.7) that

5.60) [oy v < dlul? vl < 4,57l Ty Ivls Yo ev,.

Sometimes this relation can be improved and this means an important improvement of

some restrictive conditions of stability which will appear later on in this section;

for this reason we will assume that
(5.41) Ibh(uh,uh,vh)l < s (h) [uhl u s [.vh], Yu, v, €V,

where at least
(5.42) s, (h) < d,5%(n).

5.3.1 A Priori Estimates.

Lemma 5.3.

We assume that k and h satisfy

(5.43) ks?(h) < d', ks*(h) < 4" @

(l)In practice, one of these relations should be a consequence of the other
(this depends on the explicit values of § and Sl).
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where d' and d" are some constants depending on the data and are estimated

in the course of the proof.

Then, the u: given by (5.14) remain bounded in the following sense:

(5.44) luﬁ]{i d,, m=0,°**,N
45 Ig m~ m-llz < d
N iy o
(5.46) ko) Nl <4,
m=1

where d,  1is some constant depending only on the data, d', and - d".

Proof.

We write (5.14) with vy = u:. Using again (5.25), we obtain the relation

(5.47) P R i KR et KRN I

m-- l m l m

2kb ( uy

) + 2k(f sUp ™.

Due to (5.6) the right-hand side of (5.47) is equal to

m- 1 m -1 n m 1

Zkb ( h guh ) + 2k<f ,u )’

this expression is less than (c¢f. (5.4) and (5.41)):

-1 - -1
2w, @1y | 1] 2 €71 el
my 2 202 m~1; 2 m-— m m-1;2 kdi m»
wlull 2 + 26282 @l 2 W72 + 5 lul-al 2+ 2 [
Therefore
-1 -
(5.48) lup]® = fuy l2+ |up-up M2+ uln

2

~2k282 () [ 2 T2 < b3 |£7]
1 Yh h "m="v :

We add these inequalities for m = l,¢*»,1;
iI‘ mm-lg

LRI L R
2 m=1 m=1

(5.49)

-2k252 (h) § | '1|2 I]um“lﬂ2 <A
P L T h 'h="m
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kd? ¥ m 2 2.2 0f2 § oy2
(5500 A= |ul|? + T"mzl L2 + 282 [ug]® fupl?e
Let us assume that

(5.51) 2ks? (h)A < v=§, for some fixed 8, 0 <& < v.

If this inequality holds, it is easy to show recursively that

(5.52) |uf]? + 2 § L™ 12 4 s §
: h 2 Yh'h L

IaTI2 <, r = 1,eeen,
m=1 .

Indeed the relation (5.48) written with m = 1, shows us that (5.52) is true

r = 1. Let us assume then that (5.52) is valid up to the order r-1, and

let us show this relation for the integer r.

We observe that, by assumption,

(5.53) ILLEIZ < Xm i‘)\N, m= l,e¢°,r~1;

therefore, by (5.51),

252y | LT JumYe
R P e h 'h

r
-1
< 28T (A Z Rt
m=2
r

< 2k7S2(R)Ay Z ”ug”;
m=1

r

<k0w=8) ] Juli.

m=1

Putting this majoration into (5.49), we get (5.52) for the integer r.

The proof is complete if we show that a condition of the type (5.43) ensures

(5.51).

According to a majoration used in Lemmas 5.1 and 5.2 (see (5.11), (5.29))
2

dg (T
Ag < luyl? +—\-)°—[0 |£(s)[2as + 26288 () [uy |* ug]y

(see (5.5) and (5.24))

A

jA

202 2
d, + 2k*8%(h)s® (h)|u, | 2.

Hence, if (5.43) is satisfied,
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26T (WA < 2d'(d,+2d"d" [y, |*)

and this is certainly bounded by v-§ if d' and d" are sufficiently small:

(5.54) 2d'(d,+2d"d"[u |*) < v-8.

The proof is complete.

5.3.2 The Stability Theorem.

We define for the Scheme 5.3 the approximate functions u by:

(5.55) uh:,[O,T)——')Vh

uh(t) = »UI;:, (m-—l)k _<_ t < mk’ m = l’ooo,N.
We infer from (5.39), (5.44), (5.45) that if (5.43) holds then
sup Ju (o)] <VE
t€[0,T] “n 4

T
J, Moy oliae < asa,,

and thus

Theorem 5.2.

The functions uy and PpYy hEE@%;cofresponding to the Scheme 5.3 are
respectively ﬁm(O,TﬁLZ(Q) and L2(0,T:F) stable, provided k and h remain

connected by (5.43).

Definition 5.2.
Conditions such as (5.43) are called stability conditions. They are sufficient

conditions ensuring the stability of the scheme. A scheme is called conditionally

or unconditionally stable according Eg_whethér such a condition occurs or not in

proving stability.

5.4 Stability of Scheme 5.4.

5.4.1 A Priori Estimates.

Lemma

24

We assume that k and h satisfy

1-8

A for some §, 0<§ <1,

(5.56) ks?(h) <

and

2 V8
(5.57) ks](h) < g7
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where
az T
(5.58) d, = lu [? + (— + 4T) J | £(s)|%ds.
0 V 0
Then the ug given by (5.15) remain bounded in the following sense:
m.—
(5.59) Iuh[?_f_ds, m= 1,***,N
N, 2ds
(5.60) k 3 lelh <=
m=1
N d, (T
(5.61) Lo lu-ul” M2 < (2-6) + 4T | |£(s)|%ds.
m=1 0
Proof.
We replace vy by u:_l in (5.15); due to the identity
(5.62) 2(a-b,b) = |a]? - |b|? - |a-b|?, Va,b € L2(Q),
we find

2= ]2

-1 -1
A LRI el

b '™

m m
2k (£
( ,uh)

2 | €7 ),

kd?
my 2 mij2
vidudl? + =% |£7]

A i

A

2

(5.63)  lal 2]l M2 - [P 4 el 2 < €7
m 112

The difference with the preceding is that the term Iuh h on the left-

hand side is affected with a minus sign and so, we must majorize it.

In order to majorize luh-um— |2, we write (5.15) with v = u:—uﬁ—l.
This gives
m m-ly2 m— 1 U 1
2luymuy T1E = 2o (T )y

(5.64)

m- l oM m—l

+ .
2kbh( Y uh U U 1+ 2w(e®, uh n )

We successively majorize all the terms on the right-hand side, using repeatedly

(5.5), (5.41),and the Schwarz inequality:
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S PRSI i N It

h
m_ m—ll

'f_Zka(h)Hu:~l"h E “h

<3 1= avist ol

m-1 m~1 m m-1,.
—Zkbh(uh s Touy Uy )
m-1 m=-1 m m-1
< 28 o 7 o Tup-ug
1 -1 -1 -1
<A sl Y
m m_ m ~1 m_ m-1
2k(f, ) < 2k|£"] Iuh uy |
1y m m=ly2, ., 2y.m2
f_z-luh u l + 4k ’f l .
Therefore (5.64) becomes
-1 : -1 -1
| opup "2 < axtvzg? CH] Rt IS eV il L i R S b

(5.65) < (by (5.56))
m- 1; 2 m=12 m-l 2 2 2
< kv(l- 6)[1u 2+ dK’s (h)t 12 Ju ;l + 412 €72,
for (5.63) we then have
o 2=ful ]2+ s -aks? () |l )WDY 2
d2
2 kG + 4k |72

(5.66)
< (since k <T)

dj
< kG +4T) | £7] 2.

Summing these inequalities for m = 1,*°**,r, we arrive at

T
(5.67) (w12 + k] (ve-aks? (m) |l l[ ) u m-lya T
h m=1 h -
where
di Y o
(5.68) = lul]? + k(o + 41 P

m=1
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Using (5.57) we will now prove recursively that

s o -1
(5.69) lu}rllz + T Z ”u_h “2 —<— ur’ T = ll’-qo’N.
m=1
We observe first that
0|2 d§ N my2
(5.70) T N k(5 + 4T) Y e
m=1
a2 T
f_luolz + (77>+ 4T) Jo If(s)lzds =d..

The relation (5.69) is obvious for r = 1; writing (5.66) for m = 1 and using

(5.57) we get )

02 + o ul2 < [ud]2 + k(S + am[£1]% 4 wsEm) [l ]2 w2 < uy + 2 ()2,

which ‘is (5.69) for r = 1.
Assuming now that the relation (5.69) holds up to the order r-l, we will

prove it at the order r. In fact by the recurrence hypothesis,
r-1 2

(5.71) lu, 1% < w_y 2wy < (by (5.70)) < 4.

Hence (5.67) gives
r
-1 -1
(5.72) Ju|* + ks 2 lop ™2 < w + a?si@yag ] w7
m=1

ks -1
— r + T 2 “um "]i’

and (5.69) at the order r follows.
It remains to prove (5.61). For this we return to (5.65); using (5.56),(5.57),
we get

'm m~1

up-up |2 < kv (L - —ou ﬁ + 4kT| 72,

(5.73)

By summation and using (5.29), we find (5.61).

5.4,2 The Stability Theorem.

We now set

(5.74) w [0,T)t~——+vh

(5.75) uh(t) = u:-l’ (m-1)k < t < mk, m=1,%-2,N,

and we have
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Theorem 5.3.

The functions Uy and phuh’ h€¥ys corresponding to Scheme 5.4 are
respectively L (0,T:L* () and L2(0,T;F) stable, provided k and h remain
connected by (5.56) - (5.58).

5.5 A Complementary Estimate for Scheme 5.2.

Using the techniques extensively applied in Sections 5.3 and 5.4, we can
complete Section 3.2 by giving, in the case of Scheme 5.2,an estimation similar

to the estimation
N
(5.76) z !uh- [2 < Const.

that we proved for Schemes 5.1, 5.3,and 5.4, As mentioned in Remark 5.2, these

estimations will be useful for the proof of the convergence.

Lemma 5.5.
m
The u defined by (5.13)(Scheme 5.2) satisfy:
N
(5.77) Lo :‘:1[2 < d(1 + ks*(h)),
m=1

where d denotes a constant depending only on the data.

Proof.
We take vy = 2k(uh uh l') in (5.13) and obtain
Z!um m=liz | kau ”2 + kv” e 1”2 kb, (um~l um+um—1 - ) + 2k (F ul—u l)
h 'h h *"nn YR Ch U5 " h
< (by (5.40) and (5.5))
-1 -1 —l
< Al oI Y2 4 kst | el o
-1
+ 2k|£"] ]u;n-u: |
-1 1 -112, k2 - -1
< o2+ ™2 o L PP 2 K gzt ) [ el 2
+e12'- Ium m1|2 + 2kT|£7] 2,

Thus
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N
I D P |

N
L el 2 < ko ul]2 4 2kt Z [£7]% +
m=1 m=1

2

| A

(by (5.5),(5.11),(5.29),(5.31),(5.32))

in

T
k\)Sz(h)Iu0|2+2TJ |£(s)|%ds + = ddks"(h).
0

The proof is complete.

5.6 Other A Priori Estimates.

In order to prove strong convergence results we will establish some further
a priori estimates concerning the fractional derivatives in t of approximate
functions. This Section 5.6 is essentially a technical section which is used in

Section 5.7 where the convergence of the schemes is proved.

For all the four schemes we define wis @ function from R into Vh , by:
w, is a continuous function from R into Vh’ linear on each
(5.78) interval [mk, (m+1)k], and wh(mk) = “E’ m= 0,** ,N-1;

W = 0 outside the interval [0,T].

Lemma 5.6.

Assuming the same stability conditions as in Theorems 5.1, 5.2, 5.3, (1) the

Fourier transform @, of w, satisfies

h — h
(2 2y. 2 1
(5.79) J || [wh(T)l dt < Const., for 0 <y <G

where the constant depends on <Yy and on the data.

Proof.

The four equations (5.12) - (5.15) can be interpreted as

(5.80) 391; (wh(t),vh) = ((g (t) ’Vh))h’ Vvhe Vh,te(o,T),

where the function & satisfies

T
(5.81) [ "gh(t)uhdt < Const,
0

For example, for Scheme 5.1, is defined by

&

(l)No condition for Schemes 5.1, 5.2; conditions (5.43) for Scheme 5.3; conditions

(5.56)-(5.57) for Scheme 5.4.
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m-1 m y -

(g, ()57 )Yy = (E7,w) = by (ul moutuvy) = V(v )y,

Vv eV, (m-1k < t < k.

Inequality (5.81) follows from (5.4), (5.7), and the previous a priori estimates:
ley (o, < ale™) + afut ), 1, + VIl
T
m-1 m m
hn%umdt<kz CHELIN Mo B (R R (P

the right-hand side of this relation is bounded according to Lemma 5.1.

Let us infer (5.79) from (5,80)-(5.81). Extending g, by 0O outside
[0,T] we get a function éh such that the following equality holds on the whole
t 1line:

(5.82) o Gn (£),v) = ((§,(0),v)), + (ul,v,)8, = (upv)6, Vv, €V,

dt
where 60’6T denote the Dirac distribution at 0 and T.
By taking the Fourier transform, we then have

—24mT (@, (1),9,) = (B (0,v)), + (wl,v) = (up,v) exp(-247TT);

(gh = Fourier transform of éh).
Putting vy = ﬁh(T) and then taking absolute values we get

nlx] 18,017 < 8,1, 19,1, + ¢ 18,1,

, N ,
since ug and uh remain bounded.

Due t8 (5.81) we also have
T
[lgh(r)ﬂh < JO "gh(t‘)"hdt < Conmst. = ¢, ,
and, finally,
(5.83) [ ] ]v’&h(T)lz < C3”Gh(T)"h
For fixed vy, ¥ < %-, we observe that

2 < ey =2l vrem.

1+t ]1 2y *

Hence
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LA P I

|12 |9, (| ar

400 9
J hlﬂ%aM%Tg%w>J
—o —o 1+|T

< (by (5.83))

o , 40 llv?h(r)ﬂh
(5.84) E_C“(Y) de IWh(T)I dT+c5 I_w I:T;TI:EV dt

< (by the Schwarz inequality)

e J+w |, (0 |2ar + c5<j+w ___éz______%>%-

e o (14| 1Yy

® 1
' <J~g I, @l d%>2

Ia

The integral
[+

dt
) @+t
is finite for Y < %-c Therefore the right-hand side of the last inequality is
finite and bounded due to the Parseval relation and the previous estimations:
00 o0 T
o5 | ool s e [ 18 ol - & JO i, (©)] 2a < const.

The lemma follows.

5.7 Convergence of the Numerical Schemes.

Our aim is to prove the convergence of Schemes 5.1 to 5.4, in some sense
which will be described later on. We first state the consistency and compactness
properties on the discretized data which are required to ensure the convergence.

We then state and prove the convergence results.

5.7.1 Consistency and Compactness Hypotheses.

The subsequent hypotheses will,be easier to state after this lemma:

Lemma 5.7.

Let {(

h’ph’rh)hE$P’dz’F)} denote a stable and convergent external
approximation of V. Let us assume that for some sequence h'—0, a family

3£ functions

Uhv: [O,T]F—*Vh',
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satisfies
(5.86) ph,uh,—-+¢ in L2(0,T;F) weakly, as h'—0.

Then for almost every t, ¢(t) = wu(t), and

(5.87) u=wtyeLr?(,r:v).

Proof.

Let us denote by 6 some function in P((0,T)). It is easily checked that
T T
f P,y (£)6(t)dt—> J ()0 (t)de,
o bR 0

as h' goes to 0. But condition (C2) of Definition I.3.6

o))

shows us that,

under these circumstances,

T
,( d(t)0(t)dt € wv,
0

Since by definition, WV is isomorphic to V, wV 4is a closed subspace of
F; taking now a sequence of functious 68 converging to the Dirac distribution

at the point s, s€ (0,T), we see that for almost every s in [0,T],

T
J ¢(t)0_(t)dt—¢(s) in F,
0 €
and hence

d(s)EW a.e.

Then, as ® is an isomorphism, ® ‘¢ is defined and belongs to L2Z(0,T;V). B

The preceding lemma was quite general, but, in the present situation we

assumed that

(5.88) v, C L2y, VYh;

therefore it can happen that for some sequence h'—90,

uh,’—*u in LZ(O,TﬁLz(Q)) weakly ,

ph,uh;—-+¢ in L%(0,T;F) weakly.
By Lemma 5.6, ¢ = mﬁ*,u*EELZ(O,T;V). Without further information we cannot
assert that u = u,. But, actually this will be proved for each approximation

considered:

(1

Definition of the approximation of a normed space in the general frame.
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Let u be a sequence of functions from [O0,T] into V

h'

such that, as h'—0,

h'

WU in L2(0,TL?(Q)) weakly,

+—>¢ in L2(0,T;F) weakly.

ph'uh
Then

w€L2(0,T;V) and ¢ = Wu.

Besides (5.89), the consistency hypotheses are now the following (l):
(5.90) Let VoW, be two sequences of functions from [0,T] into
Vh" such that, as h'—0,
ph,vh,——;(b_v in L2(0,T;F) weakly,
ph,wh.———;ujw in L2(0,T;F) (strongly).
Then, as h'—0,
(T T
(v, () ,w _,(t) )) ,dt— ((w(t),w(t) ))dt.
h h h
0 0
(5.91) Let U Vs be two sequences of functions from [0,T]
into V. such that, as h'—90,
ph,uh,-—gu-u in L2(0,T;F) weakly,
u o —u in L°(Q) stromgly, Q =@Qx(0,T),
and
ph,vh,——ﬁv in L2(0,T;F) weakly.
Then as h'—0,

i

EICRIORMORIOLNIN L

(T
b(u(t),v(t),¥(t)w)dt,
0

for each scalar valued function leLoo(O,T) and each we&W

If moreover a sequence of functions lj)k, is given with

b in L7(0,T), as k'—0,

(1)
Chapter II.

Compare with the stationary case, (3.7),(3.8),Chapter I; (3.4),(3.5),(3.7),
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then, as h'—0, k'—0,

(T T
JO bh'(uh'(t)’vh'(t)’wk'(t)rh'wh')dt—-—* JO b(u(t) sV(t) ,W(t)w)dt-

In order to prove strong convergence results as those needed in (5.91)

(uh,——+u in TL?(Q) strongly) we will assume the following:

(5.92) Let v denote a sequence of functions from R

hl

into Vh"

with support in [0,T] and such that

T
[ oy 2 e < const..
0

te 2
J ITl YIGh.(T)lsz E.Const., for some O < v,

==Q0

where Gh is the Fourier transform of v, .

h
Then such a sequence v, , 1is relatively compact in iLZ(Q).
In particular, one can extract from Vi a subsequence
(still denoted vh.) with
ph,vh,——+ab in L2(0,T;F) weakly,
Vv EE.IEZ(Q) strongly.

5.7.2 The Convergence Theorems.

The convergence theorems are stated differently according to the dimension of
the space (n = 2 or 3) and to the scheme considered.

m .
We recall that we associated with the elements uh a function uh

u ¢ [0,T]*~+Vh,

defined slightly differently for the four schemes (see (5.36), (5.55), (5.75)) (1

(5.93) for (m-k < t <mk (m = 1,°**,N),
ug (Schemes 5.1 and 5.3)
uh(t) = %‘(u2 + u:-l) (Scheme 5.2)
ug—l (Scheme 5.4).

¢D)

We emphasize that u, depends on h and k; only for reasons of simplicity
have we denoted this function by u instead of Upge
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We have:

Theorem 5.4.

The dimension of the space is n = 2 and the assumptions are (5.1) to (5.7),
(5.9), (5.10),(5.41),and (5.89) to (5.92). We denote by u the unique solution
of Problem 3.1.

The following convergence results hold, as h and k-—0,

(5.94) u —u EE_iEZ(Q) strongly, ﬁw(O,TﬂLZ(Q)) weak-star ,
(5.95) phuh——+mh in L2(0,T;F) weakly,

provided:
(1) Scheme 5.1: no condition,
(ii) Scheme 5.2,
(5.96) kS? (h) —0,
(iii) Scheme 5.3: (5.43) is satisfied,
(iv) Scheme 5.4: (5.56)-(5.57) are satisfied.

Remark 5.3.

(i) TFor Schemes 5.1 and 5.2 it can be proved, without any further hypotheses,
that

(5.97) u, —wu  in LZ(O,T;F) strongly, as h,k—0,

Ph'n
(i1) The same results hold for the other schemes provided we assume moreover

that
(5.98)  kS2(h)—0 and ks?(h)—0 (Schemes 5.3 and 5.4).

(iii) The hypothesis (5.96) used in the proof of the convergence of Scheme 5.2
is probably unnecessary since the scheme is unconditionally L2(0,T;F) and
L7(0,T;L2(R)) stable, B

Theorem 5.5.

The dimension of the space is n = 3 and, otherwise, the assumptions are the

same as in Theorem 5.4,

Then, there exists some sequence h',k'—>0, such that

(5.99) uh,——+u EE_iLZ(Q) strongly,
(5.100) w,—u in L7(0,TL2(Q)) weak-star,
(5.101) ph;uh,-—+ah in L%2(0,T;F) weakly,
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where u 1is some soluticn of Problem 3.1.

For any other sequence h',k'—0, such that the convergences (5.99) to

(5.101) hold, u must be some sclution of Problem 3.1.

Remark 5.4.

We are not able to prove that the whole sequence converges due to lack of
uniqueness of solution for Problem 3.1.

We also cannot prove strong convergence in L2(0,T;F) due to lack of an
energy equality for the exact problem {(Problem 3.1) (for n = 3 we only have

an energy inequality; see Remark 4.1).

The two theorems are proved in the remainder of this Section 5.7; we will
prove Theorem 5.4 with full details for Scheme 5.1 (including (5.97)) and in
the other cases we will only sketch the proofs which are actually very similar,

5.7.3 Proof of Theorem 5.4 (Scheme 5.1).

According to the stability theorem (Theorem 5.1), and to (5.89), there

exists a sequence h',k'—0, such that

u, ,—>u in ﬁw(O,TﬁLZ(Q)) weak-star,

(5.102) h

ph,uh,-+ah in L2(0,T;F) weakly,
for some u in LZ(O,T;V)rWLw(O,T;H).

Let us consider the piecewise linear function Wy introduced in Section 5.6
(see (5.78)). By Lemma 5.6 and the estimations on the u:, we have

< Const. ,

b | o
BP0, @) "

”phwhﬂLz(O,T;F) f_Const. ;

2
J || Yjﬁh(r)lzdr_i Const.
=00

Hence, according to (5.92), the sequence h',k'——0 can be chosen so that
w,y—w in L (0,T:L2(R)) weak-star ,

(5.103) | W

Wt in LZ%(0,TIL2(Q)) strongly,

ph,wh,——*ah in L%(0,T;F) . weakly,
where vaI?(O,T;V)r\Lw(O,T;H}G

We now observe that:
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Lemma 5.8.

(5.104) uh~wh——+0 in L2(0,TﬂL2(Q)) strongly as h and k-—0.

Thu

(5.105) w=u
and

(5.106) uh,-—+u in LZ(O,TﬂLZ(Q)) strongly,
as h' and k'—0.

Proof.

Exactly as in Lemma 4.8, we check that
N 1
- - k m_m-1;2\ 7
(5.107) g2 0,712 @) \E(Inzl ooy I) '
Then (5.104) follows from the majoration (5.22); (5.105), (5.106) are obvious
consequences of (5.102), (5.103), and (5.104).

The next point is to prove that u 1s a solution of Problem 3.1.

Lemma 5.9.

The function u appearing EE.(5'102)»(5'103)’(5'105) is a solution of
Problem 3.1.

Proof.
We easily interpret (5.12) in the following way:

(5.108) = (w, (£),v) + V((u (£),9,0), + by (u, (k) ,u (£),v,)

= (£.(0),v), Ye€[0,1], Vv eV,
where
(5.109) £,(6) = £, -1k < t < mk.

Let v be any element in Y and let us take vy =TV in (5.108). Let

Y be a continuously differentiable, scalar function on [0,T], with
(5.110) Y(T) = 0.

We multiply (5.108) (where vy T rhv) by Y(t), integrate in t, and

integrate the first term by parts to get:
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T

T
—‘[0 (wh(t),w'(t)rhv)dt + v IO ((uh(t),W(t)rhV))hdt

(T
(5.111) + J bh(uh(t-k),uh<t),w<t)rhv)dt
0

T
= (ug,rhv)w(O) + J@ (fk(t),W(t)rhv)dt.

We now pass to the limit in (5.111) with the sequence h',k'—0 using

essentially (5.90), (5.91), (5.102), (5.103), and Lemma 5.8; we recall also that

(5.112) rhv-—+ab in F (strongly),
(5.113) uﬁ:—+u0 in L2(Q) (strongly) (l),
(5.114) £ —f in L%(0,T;L2(R)) (see Lemma 4.9).

We find in the limit
T

T T
- J (u(e),P' (t)v)dt + v J ((u(L),P(t)v))de -+ ] b(u(t),ult),Pv)dt
0 0 0
(5.115) T
= (uy,v)Y(0) + f (£(8) ,v)P(t)dt.
0

We infer from this equality that u 1is a solution of Problem 3.1, exactly
as we did in the proof of Theorem 3.1 after (3.43),

Since the solution of Problem 3.1 is unique (see Theorem 3.2), a contradiction

argument that we have already used very often shows that

(5.116) The convergences (5.102), (5.103) hold for

the whole family .h,k —0.

This completes the proof of Theorem 5.4.

5.7.4 Proof of (5.97).

For the sake of completeness we will also prove (5.97). 1In order to prove this

point we need a preliminary result which is quite general and interesting by
itself,

(l)We recall the proof of (5.113); due to (5.11) it suffices to prove this for
U, &%~ and in this case

luﬁ—uoi §-|rhuo—uo! j_uphrhuo¥5h0H§~*+0.



285

Lemma 5.10.

Let {(Vh’ph’rh)ﬂ)d;’F)} be a stable and convergent external approximation
of V. For a given element v of 1%(0,T;V), one can define for each he4y

+
hG L? (O,T;Vh_) such that

a function v

phv;—w*mb in L2(0,T;F) as h—0,

Proof,
The proof is essentially the same as that of Proposition I.3.1.
The result is obvious if v 1is a step function; since the step functions

are dense in L%(0,T;V), the result follows in the general case by an argument

of double passage to the limit as in Proposition I.3.1.

Lemma 5.11.

. The dimension of the space is n = 2; then for Scheme 5.1

(5.117) U U in L2 (0,T;F) (strongly),

Prln

as h and k—0.

Proof.

We consider the expression

N
.Xh = Iug—u(T)!2 + z lu:—uE

Y2 4oy [T lu, (£)=u (e)] 2de
- O“h h h

with u: defined as in Lemma 5.10.

‘According to (5.21) (Lemma 5.1),
Iugl.i Const.;
hence there exists a sequence h',k-—0, with
(5.118) uﬁ,——i'x in L2(Q) .weakly.
We temporarily assume that
(5.119) (x-u(I:),v) =0, Vven.
We then prove that
Xh,—~+0.
Actually, we consider
K T Xt

where
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1 2 (T + 2 2 T 2
ﬁ=hm|+WRm%Mmt+hml+WL%ﬁWﬁ
(by Lemma 5.10 and (5.90)),

T

=%

T
~2(uy,u(T) - 4 [ (Ca €0 07 (€)=~ =2|u(D)]? - v fo lute)]*ae

0
(by Lemma 5.10, (5.90) and (5.118)-(5.119), we recall that u(T)€ H), and

N
N m m-1
lu |2+ ] Ju-u |2
h i Yh Y

T
3 )
X 20 [0 RSTEE

(5.120)

W2 ] el e ]2
7oL T RS

By summation of the equalities (5.26) for m = 1l,°**,N, we get

N
(5.121) 2= o2+ 2k ")
m=1
T

]uglz + 2 Io (£, (£),u, (£)dt.

It is then clear that

T
Xi-——*]uolz-}-Zf (£(t),u(t))dt, as h,k—0.
0

Hence
T ' (T
(5.122) X, —|u |? + 2 J (£(t),u(t))de=|u(T)]? - 2v | fu(o)] 2at,
0 0

and this limit is O due to (4.55).
By a contradiction argument we show as well that the whole family Xh

converges to O
Xh——+0, as h,k—0,

In particular
T | + \
JO Juh(t)-uh(t)nhdt-+o,
and
T _ \ T | + , T + _ \
[0 I phuh(t)-wu(t)updt < c{JO ]]uh(t)-—uh(t)nhdt + IO nphuh(t)-—wu(t)n 2dt}—0

and {(5.117) follows.
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It remains toprove (5.119).
By summation of (5.12) for m = 1,*+**,N, we get

N N N
N_ o m m-1l m = _ m
(u —up,v, ) + kv Z (Copsvy )y + K ) by (a " usv) =k 2 (£7,v,).
m=1 m=1 m=1
Taking vy F TV, veEW we easily pass to the limit and get

(T T - ¢T

(X—uo,v) + v J ((u(e),v))dt + J Dlult),ult),v)dt = J (f(t),v)dt, Vve -
0 0 0

But since we deduce by integration of (3.13) a similar equation with ¥ replaced

by u(T), we conclude that
(x-u(T),v) = 0, Vvely

which implies (5.119) by density.

The proof of Lemma 5.11 is complete.

5.7.5 Proof of Theorems 5.4 and 5.5 (other cases).

For Schemes 5.2, 5.3, 5.4 and in the case n = 2, the proof is very similar
to the above one, using the corresponding a priori estimates.

For Scheme 5.2, we introduced the condition (5.96) as a sufficient condition to
prove (5.104); more precisely, in this case, the analog of (5.104) is a consequence
of (5.77), (5.107) and (5.96). For Schemes 5.3, 5.4, the stability conditions
(5.43), (5.56), (5.57) merely ensure that u, and PLl remain bounded in the
suitable spaces.

For the proof of (5.97), the condition (5.98)‘appears as follows:

- For Scheme 5.4 the '"matural" expression similar to Xh in Lemma 5.11 is

N 2 N m m-1l;p (T + 2
Y, = luh—u(T)l - Z u, Uy |2 + 2v J “uh(t)—uh(t)”hdt;
m=1 0
in order to deduce (5.97) from the fact that Y, -0, it suffices that

h

__._).0,

N
T, m m-l;s
Il
-m=1
and this is a consequence of (5.98).
- For Scheme 5.3, we consider the same expression Xh, but due to some terms

involving b (see (5.47)), the expression Xﬁ is not as simple as (5.121);

h
(5.98) shows that the supplementary terms of Xﬁ involving bh converge to 0.
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If n =3, we observe first that the stability conditions are not explicitly

mentioned in the statement of Theorem 5.5. Actually it is with the help of these

conditions, and the a priori estimates that they imply, that we prove the existence
of a subsequence h',k'—0, such that (5.99) - (5.101) hold ; that u

is a
solution of Problem 3.1 is proved exactly as before,
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Chapter 1

Section 1 contains a preliminary study of the basic spaces V and H; the
trace theorem is proved by the methods of JL. Lions-E. Magenes, see ref. [1]. The
characterization of H* was given by 0.A. Ladyzhenskaya [1] for n = 3; the
proof presented here is slightly simplified and extended to all dimensions.

We have not given any systematic study nor review concerning the Sobolev
spaces. We restrict ourselves to recalling properties of these spaces when
needed (Sections 1.1 of Chapters I and II in particular). As mentioned in the text,
the reader is referred for proofs and further material to J.L. Lions [1],

J.L. Lions and E. Magenes [1], J. Netas [1], L. Sobolev [1], among other
references,

The variational formulation of Stockes equations was first introduced (in
the general frame of the nonlinear evolution case) by J. Leray [1], [2], [3],
for the study of weak or turbulent solutions of the Navier-Stokes equatiomns.

The existence of a solution of the Stokés variational problem is easily obtained
by the Classical Projection Thecrem, whose proof-is recalled for the sake of
completeness., The study of the nonvariational Stokes problem, and the regularity
of solutions is based on the paper of Cattabriga [1] (if n = 3) and on the
paper of Agmon-Douglis-Nirenberg [1] on elliptic systems (any dimension); the
results are recalled without proofs.

The concept of approximation of a normed space and variational problem was
studied in particular by J.P. Aubin [1], J. Céa [1]; the presentation followed
here is that of R. Temam [8]. The discrete Poincaré Inequality (Section 3.3) and
the approximation of V by finite differences are in J. Céa [1]. The approximation
of V by conforming finite elements was first studied and used by M. Fortin [2];
our description of the approximations (AEX 2), (APX 3), (APX 4) (conforming
finite elements), follows essentially M. Fortin [2]. In this reference one can
also find many results of computations using this type of discretization; see also
J.P, Thomasset [1], Borsenberger [1]. The material related to the nonconforming
finite elements for the approximation of divergence free vector functions is due
to Crouzeix, R. Glowinsky, P.A. Raviart, and the author. Other aspects of the
subject (nonconforming finite elements of higher degree and more refined error
estimates) can be found in Crouzeix and P.A. Raviart [1]; for numerical experiments,

see Borsenberger [1].
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For other applications of finite elements in fluid mechanics, see J.E.
Hirsh [1]. Concerning the general theory of finite elements, let us mention
the synthesis works of I. Babushka and A.K. Aziz [1], P.A., Raviart {2], G. Strang
[1], and the proceedings edited by I. Babushka [1]. For more references on
finite elements (in general situations) the reader is referred to the bibliography
of these works. The description of finite element methods given here is almost
completely self~-contained; we only assume a few specific results whose proofs
would necessitate an introduction of tools quite remote from our previous work.

After discretization of the Stokes problem, we have to solve a finite
dimensional linear problem where the unknown is an element v, of a finite
dimensional space Vh° There are then two possibilities:

a) either the space Vh possesses a natural and simple basis, such that
the problem reduces to a linear system with a sparse matrix for the components

of u, 1in this basis; in this case we solve the problem by resolution of this

linea: systen,

b) or, if not, the finite dimensional problem is not so simple to solve
(i1l-conditioned or non-sparse matrix), even if it possesses a unique solution.
In this case, appropriate algorithms must be introduced in order to solve these
problems; this is the purpose of Section 5.

The algorithms described in Section 5 were introduced in the frame of
optimization theory and economics in Arrow-Hurwicz-Uzawa [1]; the application of
these procedures to problems of hydrodynamics is studied in J. Céa and R.
Glowinsky [1], M. Fortin [2], M. Fortin, R. Peyret, and R. Temam [1]. See in
D. Bégis [1], M. Fortin [2], an experimental investigation of the optimal choice
of the parameter p (or p and oa); a theoretical resolution of this problem
in a very particular case is given in Crouzeix [2].

The approximation of incompressible fluids by slightly compressible fluids,
as in Section 6, has been studied by J.L. Lions [4] and R. Temam [2]. The full
asymptotic development of ue given here is new; . for further investigations

of this point see M.C. Pélissier [1].
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Chapter II

Section 1 develops a few standard results concerning existence and uniqueness
of sclutions of the nonlinear stationary Navier-Stokes equations. We follow
essentially 0.A. Ladyzhenskaya [1] and J.L. Lions [2]. A more complete discussion
of the regularity of solutions and the theory of hydrodynamical potentials can be
found in O.A. Ladyzhenskaya [1]; for regularity, see also H. Fujita [1]. The
stationary Navier-Stokes equations in an unbounded domain has been studied by
R, Finn [1]1-[5]}; R. Finn and D.R. Smith [1], [2].

Section 2 gives discrete Sobolev inequalities and compactness theorems.

The principle of the proofs in the case of finite differences parallels the
corresponding proofs in the continuous case (see, for instance, J.L. Lions [11,
J.L. Lions-E. Magenes [1]). The prcof of discrete Sobolev inequalities has never
been published before, the proof of the discrete compactness theorem can be

found in P.A. Raviart [l]. TFor conforming finite elements the procfs are much
simpler: in particular, for the discrete compactness theorem, the problem is
reduced by a simple device to the continuous case; these results are new.

The discussion of the discretization of the stationary Navier-Stokes
equations follows the principles developed in Chapter I. The general convergence
theorem is similar to that of Chapter I and the same type of discretizatioms of
V are considered; the differences lie in the lack of uniqueness of solutions of
- the exact problem. The numerical algorithms of Subsection 3.3 has been introduced
and tested in Fortin-Peyret-Temam [1].

We did not establish here nonuniqueness results for the stationary Navier-
Stokes equations (1). The nonuniqueness of stationary solutions of the Navier-
Stokes and related equations has been proved with the aid of bifurcation theory and
topological degree theory. The main results in this direction are due to
P.H. Rabinowitz [2] and W. Velte [1], [2]. In [2], W. Velte proves the
nonuniqueness of solutions of the Taylor problem and the situation is very
similar to the problems for which existence is proved in Section 1, although
not identical. For other applications of bifurcation theory see in particular,

J.B. Keller and S. Antman [1}, P.H. Rabinowitz [1]}, [3].

(l)This proof will be included in R. Temam [9].
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Chapter III

The existence and uniqueness results for the linearized Navier-Stokes
equations (Section 1) are a special case of general results of existence and
uniqueness of solutions of linear variational equations (see for instance,

J.L. Lions-E. Magenes [1], vol. 2). In order to be self-contained, we have

given an elementary proof of some technical results which usually are established
as easy consequences of deeper results {Lemma 1.1 which is more natural in the
frame of vector valued distribution theory (L. Schwartz [2]) or Lemma 1.2 which
can be proved by interpolation methods (J.L. Lions~E. Magenes [1])}.

Theorem 2,1 is one of the standard compactness theorems used in the theory
of nonlinear evolution equations. Other compactness theorems are proved and used
in J.L. Lions [2].

The existence and uniqueness results related to the nonlinear Navier-Stokes
equations and given in Sections 3 and 4 are now classical and are in the line of
the early works of J. Leray [1], (2], [3]; see E. Hopf [1], [2], O.A. Ladyzhenskaya
[1], J.L. Lioms [2], {[3], J.L. Lions and G, Prodi [1], Serrin [3]. Further
results on the regularity of solutions and the study of existence of classically
differentiable solutions of the Navier-Stokes equations can be found in the an
edition of O0.A. Ladyzhenskaya [1]. For the analyticity of solutions, see
C. Foias and G. Prodi [1], H. Fujita and K. Masuda [1], C. Kahane [1], K. Masuda
[1], J. Serrin [3].

Let us mention also two recent and completely different approaches to the
existence and uniqueness theory that we did not treat here. The first one is
that of E.B. Fabes, B.F. Jones, and N.M. Riviere [1] based on singular integral
operator methods and giving existence and uniqueness results in P spaces,
The other one is the method of D.G. Ebin and J. Marsden [1] connecting the
Navier-Stokes initial value problem with the geodesics of a Riemannian
manifold and thus using the methods of global analysis.

The material of Section 5 containing a discussion of the stability and
convergence of simple discretization schemes for the Navier-Stokes equations
is essentially new; a similar study for different equations or different
schemes was done in R. Temam [2], [3], [4]. Stability and convergence of

some unconditionally stable one step schemes are given in O.A. Ladyzhenskaya [5].
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A more complete treatment of the numerical analysis of the Navier-
Stokes equations is included in R. Temam [9] (in particular, the practical
application of the schemes in Section 5, the fractional step or projection
method, and the artificial compressibility method). Among many other
references on the subject, see A.J. Chorin [1]}, [2], [3], C.K. Chu and
G. Johansson [1], C.K. Chu, K.W. Morton, and K.V. Roberts [1], M. Fortin,
R. Peyret, and R. Temam [1], M. Fortin [1], M. Fortin and R. Temem [1],
0.A. Ladyzhenskaya and V.I. Rivkind [1], G. Marshall [1], [2], C.S. Peskin

[11, [2].
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