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TOPICS IN NONLINEAR ANALYSIS

Luc TARTAR

These notes represent most of the material covered in a graduate
course taught at the University of Wisconsin, Madison in 1974-75,

Although some new techniques have since appeared (as homogenization
or compensated compactness which I lectured more recently on) these notes
have conserved the interesting property that some of the results are not
written elsewhere. As these results are improvements of earlier ones that
I mainly learned from J.L. LIONS in similar lectures I hope that these
notes will provide an up to date basis so the reader can focus his (or her)
efforts on more recent developments.
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NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
USING COMPACTNESS METHOD
L. Tartar

I. Preliminaries: Functional Analysis

Distributions,

open N

Let @ C IR . 8(Q) is the set of all infinitely differen-

tiable functions with compact support in £ . SK(Q} = {fe §(Q): supp(f) C K}

if Kcomp act C 2. Thus S(Q} = U ;QK{Q}. The topology one puts on sK(Q}

makes it a Fréchet space. It is nota Banach space.

A distribution T is a continuous linear functional on (R}, in the
following sense, If 2, &K(Q), i.e. Py @ uniformlv on K together with
all derivatives, then T(e_) = (o).

T(e) is also denoted (T,q¢) .

1

Example: 1) Let fe Llcc{«;o). Define

(f,9) = [ f(x)g(x)dx  for any ¢ B(Q) .
Q

2} 6 or 60 Dirac measure.

(8,9) = @(0) forany ¢e 8().
{8,9) cannot be given by (f,¢; for f a function.

8'(Q2) denotes the class of distributions on 8{(R2).

Distributions can always be differentiated by the following definition:
aT

oT - T 29
axi)?'}) = <T: axi>

The derivative is linear and continuous,

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024,



Definition: If ae Coo, we can define the productof o and Te 8'(Q):
(aT,¢) ={(T,ap). Then

1) a(BT) = (ap)T ,

) do aT
2) 8xi (aT) = axi T+ « axi ,

3) It is impossible to multiply two arbitrary distributions. For
example & and &, (There is no multiplication which can be defiﬁed on
8'(Q2) which is associative, )

Example: (of a derivative of a distribution)

The Heaviside function is defined on Rby Y(x) = { ? i ;g
d
Then e Y = &.

Convolution: If f,g are defined on IRN, f * g (the convolution of £ and

g) is defined by

[fxglx) = [ f(x-y)g(y)dy
; mN

when the integral makes sense.

For distributions in general we have no convolutions, but for distribu-
tions with compact support we can extend convolution to be defined.
kbefinition: Te 8'(R) has compact support KCQ if (T,¢) =0 for aII‘
¢ e 8(Q): supp(e) N K=9¢.

If 5,Te 8'(2) and T has compact support, define (S*T,¢) =
(Sx,<'1‘y,r,o(x+y)_>) . Here (Ty, o(x+y)) is a function of x .
Properties: 1) Commutative
¢ ') and two

2) Associative when well-defined (If S SZ’S

i 3

have compact support, S1 * (S2 * S3) = (sl % sz) % 33_

-2~ #1584



¢ _ 95
4) % *3 = %
1 1
g _9e8 ., 2 - _J9%¢
( ox.  ox { ax.)(/’) = - 9%, (0)),
1 i 1 1
O s up . 25, ar
5) ax (S =T) = axi T =S8 * +X1

Corollary: If S is a distribution, Te S(IRN), then § *T is a CQo
function,

6) S * T is continuous (in some sense) (Sn-> S, Tn - T somehow,
then S *T —- 8 *T,)

n n

We will need the following

. 1 X
Result: Let pe §(R), p>0, [p=1. Define p(x) == ). Then
€

o~ 6 as ¢ -0, and for all Se 8'(2), S*p =5 as ¢ =0,
€

Fourier Transform:

Let u:RY —~ C. Define 3 u (£) = [ e 2™(X)  yax

N n ]RN
for £e R . (E,x) = Z xigi. Assume the integral makes sense, Define
j=1
F[u] = f u(x) eznl(x’g>dx )
]RN
Definition: S(]RN) = space of Coo rapidly decreasing functions; that is

U e S(]RN) if u and all its derivatives converge to 0, as |x|-, more
rapidly than any power of l_lﬂ . In other words, if given p a natural number,
|x|p Du(x)~ 0 as |x| -~ for any derivative D .
n N N, . , ,
Then /(IR )C S(IR ). S(IR ) 1is a Frechet space; its dual space is

s«mYy .

#1584 -3-



Theorem: = is well-defined on S(]RN), and 3 takes S into S . Further-

0
more, 1) 3[3;?‘} = 2mg. 3u],
i
9
2) agi Fu] = -2m 3{xiu],

3} % is an isomorphism on S with inverse é’ .
Definition: If Te S'(IRN) , that is, T is a continuous linear functional on
S(}RN), we define 3F[T] by
(3(T]e) = (T,5[0D Vo S®Y).
Example: If T =1, 3[l}(§) = 50, 3[60](5;) = 1,
Theorem: (Bessel-Parseval) If ue LZ(]RN), then 3[u]e LZ(IRN) and

Il , = lel , -

This theorem can be classically proven by extending from 'Ll n LZ,
but it can also be proven by using the distribution definition of x.

Sobolev Spaces.

These are spaces of functions in Lp(m together with soms deriva-
tives, for some p :1<p<w,
Definition: C C(Q) : This is the space of continuous functions with compact

support in © , under one of the possible norms ||+ ]|, 1< p <o defined as

P
follows:
lull, = (flelPa”®  1gp<ow
Q
full, = max [u@)]
Xe §2

Note: C‘cm} is not complete under these norms. One can consider 1P {22}

as the completion of C (@) under the norm Hu}}p for 1<p< oo, @)

-l #1584



is defined in the usua: way.

Then there is the follcwing result:

1
Proposition: The dual space of L (Q)p is Lp () where'-é- +E1)-, =1, for
I<p<w»,
This is not true for p = %; however, Cc is weak - * dense in Loo .

It is not strongly dense in Lw: continuous bounded functions form a closed
subspace of L .

The LP(Q) are Banach spaces for 1 <p <% , and, fdr 1 {p <w
LP(SZ) is reflexive., Thus the weak topology on L?(Q}, for 1 <p <, has
the favorable property that bounded sets are weakly relatively compact.

LQ(3 is the aual spa.ce of Ll, as mentioned, The weak-* topology on
L* has good properties also.

Definition: u, converges weak-* to u in LOO(Q) if
f u_f - [uf for every fe Ll(iz) .

Bounded sets in Lw(ﬂ} are weak - * relatively t:ompact. This does
not hold for Ll(m. -
Convolutions: If fe LARY), ge¢ LURY), then £ ge L(RY) where
1 1,1

—.:-—«-}-"“-1 1<p l'<y‘¢
r g s £Psq, TS

Ordinary Products: If fe Lp, ge Lq,*fg ¢ 1° where

l1<p,q,

(llh..;

e R I
Kol PR

s <o,

a—

Inequalities: With regard to the above, there are the two standard inequalities:

1. H8lder's inequality: Il fg ”s < HEll pﬂgﬂq

< e tally

2. . Young's inequalitv Hf % g“r < o .

#1584 -3



Take p =1, sothat g =1, If fe L1€IRN\, §§f}}l <1, then convolution with

f is an operation which takes Lq(IRN) into Lq(}RN) and is a contraction,

i

Hence, if we take f = P as before; P, (%) = _Lr} p( ), where p>0, fp =1,

€

so llp *gf j{gt for ge LPRN).

€ p-
In fact, P, ¥ g g in Lp(IRN) as ¢ =0, for 1 <p<w, Also,
P, * g is very smooth for ¢ smooth. To prove that o *g g in P (}RN} R

p(IRN) for 1 <p <w ., (Hence the

take ge Cc(}RN), which is dense in L
result is not proven for p = «, In general, it fails.)

The general idea of a Sobolev space is a space of functions u e Lp(ﬂ)
with derivatives in Lq(SZ) and boundary coriditions of some sort. We shall con-
sider here the case p=2, in which the spaces will be Hilbert spaces-good for

Fourier transform methods. For p or q # 2, the spaces will be Banach spaces.

Definition (1): ue¢ HO(RY) if ue LARY) and all derivatives of u of

orders < m are also in LZ(IRN). The norm on Hm(IRN) is defined by:

Huuz = q . | D* ]] 2, @ is a multi-index,

Proposition:. 1) Hm(IRN) is a Hilbert space.

—————

Proof: ((u,v)) DaufDav is an inner product which gives
[ <m

the above norm,. so H" (}R } is a pre-Hilbert space. The space is complete,
o0
under the norm || || : Take a Cauchy sequence {u, }, , . Thenif e} < m

” Dauz - Daukan _<.... ﬁuz - uku b

2, N .
so - {Daul}:—l is Cauchy in LZ(IRN). Hence, Daux»vae L°(R"), since

LZ(IRN} is complete,

-6- #1584



Note that differentiation is a continuous operation in. a&”(IRN). Thatis,
aT

. N n
if <‘Tn; @) - <T;€9> Yo e 8{(IR ), and <"a';(""

oT !

o) =~ (S,0) ¥ ¢ e (IR ), then

: 2T _p B2 d¢ o i
(Since <8Xi , oy = (T, axi) = -l1m<Tn, Bxi > which is
aTn N
= Um{ 5=,0) = (5,¢) Yoe (R).)
i

If u~»u in LZ'(IRN), then u,~ u in s‘(lRN): that is

£ £

fulqo - fuqo Jo e S(IRN).

(In fact, this is true for ¢« LZ(IRN)). Thus we have Dauz» p%u in S"(IRN).

But we already have Daui-» VQ in LZ(IRN) z==> Dauz-» ’\/Q in s'(mN), SO
v = D%, .
a .
Remark: We use a distribution result, which is to say, we went to a larger
space.
e m_N . ~ P
Definition (2): ue H (R) if F{u] =u satisfies:

2m/25 61 12Ny (or (14 [1)™ a() e LARY).)

1+ |g]

Note that if ue L(R"), then ue LRY) and Jufl , = [0 , .
L L

Also,
du 2 N du 2N
o2 R PR .
,axjemm ) <=> {aijeLuR )

> 21 g, aE) e LA®Y).
D% « LZ(IRN) for |aj <m=> pd(ggﬁ(g).e LZ(IRN), where Pa is a polynomial
of degree <m . Thus we can obtain an equivalent norm. Hm{IRN) , - defined
this way is thus complete since it is isometrically isomorphic to an .LZQSpace

under different measure. This definition will be used for m real > 0.

#1584 "7f
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Example: Au =f gives -4*32 [€17 ug) = ?(g) .

Properties of Hm(mN) :

1) Hm(IRN) is a Hilbert space

.2) We have multiplication by smooth functions. |
If e Cm(lRN), then 'u»qau is a bounded linear operator from Hm(IRN) to
HYR) .
Proof: Apply definition (1) and Leibnitz's formula for the derivative of a
product.

For definition (2) one can show: if m >s then u- ¢u is bounded
from HS(IRN) into itself. : ]

.3) 8(RY) is dense in HYR") .
Proof: Stép (1) (truncation) If ue H‘“(mN), let 0 g{IRN) such that @
’951 in a neighborhood of 0. Define 8, (%) = 6(%)- so 8, (x)~1 as k--§°.
Then uk(x) = ek(x)u(x) € Hm(lRN) has compact support, and uk» u in LZ(}RN}
strongly by Lebesgue's dominated convergence theorem, Using Leibnitz's
formula, DO‘uk - D% .
 Remark: Henhce, the functions in »Hm('}RN} with compact support ére dense
in Hm{IRN).

Step (2): (Regularization) Take ue Hm(lRN') with compact support,

Choose p as before: pe S{IRN) s fp =1, and p>0. Take pe(x) :% p{?),
N

R €
and let u =u*p . Young's inequality then implies that || u I 2 <
‘ - . . 2, N
HPé ﬁl . Huliz = Hu”z . Hence {u }e >0 is a bounded set in LR} .
Using the fact'that CC(IRN} is dense in Lz(IRN)‘, one can show that

u =>u strongly in L‘Z(IRN} as e - 0, Then, D(u * pe) = Du*pe - Du in

-8- #1584



LZ{KRN), sO ue -~ u in ,Hm(}RN) as € - 0, ®

Definition (3): Hm{IRN} = the completion of ;Q(XRN) with respect to the
A a 2
norm ful® = 7 [D%Z.
laj<m

Remark: This holds true with s > ¢, not just integral m . We have another

property of Hm(IRN) :

I Y e

.4) {Continuity property of elements of Hm(IRN)) If ¢> , then

55®Y) ¢ c’®Y) and

su u(x) u
x€pﬁ§§l (x| < clluf

Proof: u :é[ﬁ], and 7 takes LIGRN) into COGRNL Thus, it will suffice
~ N
to prove ue L'(IR" ).

aE) = (1+ ;g])s &(f,)--—--l----, and we know that

(1+1g)°
@+ 16D 0e) « LARY), so we need only that (1+ |£])™5 ¢ LARY). But

this is to say fN 1+ tg{)'zsdg < o, which holds if and only if s >%. .
R

Corollary: If s> 1-\;:4' k , k a positive integer, then HS{IRN) - Ck(IRx).

Remark: A derivative of order k takes elements of HS into Hs»k .
If s = —21\—I+ a, 0<a<l, then HS(]RN) o CG’Q(IRN). (The Lipschitz
functions of order « ;
u(x) - u; ) < constant, )
| x~v|
Proof: u(xth) = ;§{G(»)e21w<h">](x), S0
alxth) - u(x) = F[ a0 e s
~ 2wi¢h
Jush)y-uE | o < luEe < ’g>»HH‘1 N
C (IR") LR

#1584 9.



J2mi(h,g)

By Hdlder's inequality, this is < | léis U 5 I I . The
N w S 2
L 16 i L
Jezm(h,@ 1| 2
first factor is bounded, The second gives df . Let
N 2s
R &1
£ = —[%ﬂ*n and take h colinear to the first basis vector.
2min
1.,2 :
f e T -1 5 IN dn = lh{zs"N - C . Placing this back in the
|h
above, we must take square roots. We get
R I e R R L .
C(R)

.5) Lp-prcperties of elements of Hm{}RN):

Theorem: (Sobolev-Peetre) If 0<s < _lé\I_, then Hs(lRN) ctP (IRN) where
.6) Trace properties of elements of HS(IRN):
Problem: Can we restrict u to a subspace of IRN , say IRN"‘l?
Theorem: The mapping ;g(IRN)-- s(l'RN'l) given by ¢(xX.,... ,xn) -
¢(x1, N ,xn_l,O) (the trace of ¢ on JRN'I) is continuous from s(IRN) under

-1 N-1

o 1
the norm of HY(RY) into SRV Y) under the norm of H® (R ), if s>4,

Note: If s > _‘I%T_ s this process can be continued stepwise down to dimen-
sion 0 giving property 4),

N
Proof: Let ue SR ) and V(xl”"’xn-l) :u(xl,..‘.,xn_l,O).

Claim:  3[vI(,..,,6 ) = [ =lul€,...,6 56 )0 .
R

The proof of this claim uses the fact that 3(8) =1: thatis
(35,0) = (6,%[e]) = 3F[e](0) = ngo(xkdx for ge ;K}(]RN).' This can also be
IR

expressed as
Wo) = [ Fulx dx .

-10- #1584



s-3

Let €' =(€;;...,& ). We want to prove that (1+ e FVIE) €
2w
Using the above,
3(v] < (S 1elulEs 8, e ) de )
R
Cauchy-Schwartz then gives
dg
< [+ e+ e %%z % ST
R Rsle] + g £, 1)
Use the change of variable gn =(1+ [&']t:
(1+ [z_*; [)dt _ a -
, 2s  1128-1
IR(l—HE,} S(1+t) (1+:g B
1 2s-1 , 2s 2
(+]&'h l3[v]g 5 af(lﬂé | + {&n}) *3{"‘](&1"”’6:1-1’%‘:1}1 d%ﬁ.
IR .
Integrate over £' in RV to obtain the resuit. .
N

Example: Let szg IR, f be definedon Q. Find u such that

" Au=f on Q

Ll -

o
1

usually ue H(Q) . 02 is a manifold rather than a space of codimension 1,
Remark: Let X,Y be Hilbert spaces (Banach spaces). Then we can consider
the space of all u:IR— X suchthat ue LZ(]R,X) and %%:IR» Y such that
%;’ e L (IR Y}, (Here X is continuously imbedded in Y .}

Under such circumstances it is very important to know that u(0) has

a meaning:

Sobolev spaces in ]RI:I_ = {Xe ]RN :x.. >0},

N
open N

Definition (4Y: If Q C IR , m is a nonnegative integer ,

HT(Q) = {ue-Lz(Q): D% ¢ LZ(Q) ¥ azlal < m} .

#1584 -11-



Definition (513 Hs(m = {le tfe HS(IRN>»} for s> 0,

Remark: These definitions are not always equivalent, They are equivalent
if € is a '"'regular' open set,
) m N , e
We will study H (2} where Q = }R+ , using definition (4).

Properties: 0) If D% is a derivative with le] =k, it maps Hm(SZ) into

" K |

1) We have multiplication by smooth functions exactly as before,

n———

2) If ;&(IR_I;1r j is the spaceof functions which are the restrictions to mli

ro——

of elements of S(IRN), (note that fe¢ S(IRI_\}_I\ may no longer have compact

nr———

support in XR?& then @(}Rf } is dense in Hm(IRIj) for m >0 . However,

suRI:f) is not dense in Hm(mf) for m>1,

Proof: of 2) Stepl., Let ue Hm(IRI_\g), and h >0 . Define

uh(x ,...,xn) = u(xl,...,xn_i,xn-%h). Then as h- 0, uy N» u in
R
m,_N 2, N *
H (}R+L It is sufficient to prove this for ue L (IR+}.

Exercise: If ¢« Lz(m+}, <06= e{x+8) for § >0, then % ¢ strongly

in L3R as s§-0.

Clearly, ”‘05”2 < Hcpﬂz . Prove the result for ¢ continuous first,

t hen extend via the density of CC(IR+) in ‘LZ(IR.}) .
Step2: fix h>0.

Define u =u, * p defined in IRN for ¢ sufficiently small, Then
¢,h h € +

u - U, in Hm(}RIi) as e - 0,

¢,h h

We can replace u, by v, = 8 ¢, where Qh(x } is smooth and"

h h™h N

h h
satisfies Gh(x) =0 for xg--z—, Gh(x‘f = 1 for x> -7 Then

h
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v,e H(R ), v *u,andvh*p—»vhin Hm(]'RN). »
IRN )
EX
Another important property of Hm(}RIi) is
] N
3). Extensionto IR .
Theorem: There exists a linear continuous map P from Hm(IRIi) intc

Hm(IRN} such that P u =Uu ¥ Ue Hm(}le }.. {(Thus definition 4 and

N
Ry

definition 5 are equivalent for IRI;I L)

Proof: It is sufficient to define P on a dense subset of Hm(IRli); for

example, Q(IRli).

Let
u(x,,... ’xn-l’xn) if X >0
V(Xl, . e ’Xn-l’xn)
~ m
k;) a, u(xl, . "’xn-l"kxn) if X <0

where we will choose the ak (real) in an appropriate manner. v is a smooth

function in IRli and liler .

‘We must show that the traces are the same on both sides of N-1 .
3 am‘lv
We need that v, =L 5¢..y —=— be continuous:
ax m-1
N axN
Because, if we have a function ¢ on IR continuous, with g‘ﬁ'e LZ(R+),
d .
%e L2(1R~), then a—:%e LZ(IR) if and only if ¢ is continuous at 0 ,
m
So we want to choose the ak‘ 50 that Z ak(,-k')p =1 for 0 <p<m-l.
k=0
Solving these m equations in m unknowns, we get the proper a .

k‘
1
: -3 -1
Theorem: (Trace theorem) Hm(IRN) - " "‘(IRN ) given by
u(x}, . ,xn§ - WX ,.. .‘,xn_l,O} is called the trace. Also,

trace> @(}RN”l) ’

N
HR)

#1584 -13-



Thus we have the following situation:

_1_ r
Hm(IRIj \ P S Hm(]RN} trace N Hm_a(IRN’l)
Identity Restriction
NI v N
m
H (IR+}
If ue Hm(lRIj), {a| <m-1, then u~— Da(xl,. . ’Xn~l’0) exists as
ol - % -
a map: Hm(mf)-» ym-lel - 2 gN-ly
Remark:  8( lRi) is not dense in Hm(]RIj) for m >1, for: let u e Q(IRI_\:'),

u - u in Hm(]RN), la] <m-l, Then trace D*u -~ trace D% . But
n + ) - n u

N o - ' a
u e ;S(IR+), so trace D u, = 0. Hencetrace Du=0.

Definition: HIE(IRII) = {ue Hm(lRf):trace D*u =0 el <m-1}. So the.

closure of s(ﬂ%lj) is in H?(]RT& . Conversely

Theorem: If ue Hgl(lRN

+), there exists a sequence

; o N m,_N
: - i .
{uk}kzl C_E(IR+) w, = u in H (R )
The proof uses:

Hardy's Inequality: Let v be defined on [0,%), and be locally integrable,

Let wi(t) = t—lftv(s)ds .
0

Lemma: If taVe Li(O,OO) = LZ((O,OO);-%C-) with o« <1, then taWe Li (0,0
and
a 1 o
Itwi , < 5= lit'v]
LZ l-av L?,
% o 5 *
Proof: CC(O,°°) is densein {v :t ve L*(O,w)} so it is enough to prove it

for ve CC(0,°°). Note that (tw}' =v . Multiply by tzaw-?—- and integrate:

oG o0 0 o0
f vtzaw~d—t = f (w+’cw’)t2a gt = f {tawf 24t + f tZa ww' dt .,
¢ b £ o o

-14- #1584



Integrate the last term by parts:
2a 2 «©
0 2 0
f ¢ awW'dt - .E_%.\‘ﬂ___ ‘ . af tZQlwlZ _Sit_t
0 0 0
Now, {w(t)} < % for t large enough, so the first term goes to 0 . Hence

- [7 W] 2S [PiP w < e, W]
0 0 ‘

t t -
* *

o 2 a @ . .

So (l-a) ||t wi , £ Ieovll 5 it wll , which gives the desired result. =
L, L, Ly
Corollary: If ue H“ko,w), u(0) =u'(0) =... = um'l(O) = 0, then % € L2(0,°°),
: ; ¢
(k)

and tm'k e L7(0,%) for 0<k<m,

Proof: u(t) = ftu‘(s)ds since u(0) = 0, Hardy's inequality with « = —é s
0

t ¥

u' e LZ, gives -il-f u'(s)ds e L2 = P—-%l € LZ . Apply again, with -‘ti—e Lz s
0 V
1
-3 )
a= -3, _l__{‘}.@.e Li => *Ez" € L2 . Continuing, we can take m-l1 derivatives.
t

This completes the proof. .

As a further illustration of the uses of the corollary, take RppeosX g

as parameters, Then

if the trace of uis 0 .

"”:“LZ < cnuuH,g
Hence,
D%u
"-Wl‘sz C‘;‘U“Hm. for |a] < m.

¢

Approximation of u: Let 6(x) be smooth with 6(x) =0 for x <1 and

8(x) =1 for x>2,

Let Gk(x) = 0(kx) .

#1584 -15-



Let uk(xl,. .. ,xn) = Bk(xn) u (xl,. ceesX ).

n
Then the claim is that u, > u in H, (This is clear in LZ. }
du .
, k du k —-.w Ju
For i#n ax, O ox, vy
i i i
du
o k _ du . u ke du
For i=n ax ek ax. T K Xne (kxn) X, >
n n n n

the second term converging to 0 by the dominated convergence theorem,

Similarly for higher derivatives so u, - u in Hm(IRI_\z) . Then take a regulari-

k

N * S $ | ]
zat;on P ¥ U 1 and P *u, is smooth,

Definition: Hn(; (©2) denotes the closure of $(2) in Hm(fz) .

Sobolev spaces of negative order: Recall that for s >0

.. N 2
HY(R) = {ue (IR )(lﬂﬁl S/zu(g) € L (R )} .
Similarly,
Definition: HS(IRN) = {ue SURY) £ (1 + ;g[zs/z"g L (IR |} for s <o0.
Theorem: The dual space of HS(IRN), where s >0, is isometric to H‘S(IRN):
sup }fu\'}}
0#ve HS |v|_  ~ HUHH-—S
2, N S
for ue I (R ).
Proof: fu\'r = fﬁ\;} . Hence as v{{ ~—f(1+[g lzdg
u°
~ R 2.-5,~ 2%
sup lf uv| < (f(l+{§l,) lul®)® by Cauchy-Schwartz, »

Ioll_gs!

Characterization of H'm(IRN): (m an integer).

Se H"m <«=> we can write (perhaps in more than one way)

=i }; Dagoa 1o, € LZ(IRN)
<m
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Proof: If S= . D% , (S, = ) nleie, , D%y,
T o <m la]<m .
so [ssy | < Do I LID%] , < Cliell _, so Se BT,
— L il 2 2 - m
a L L H
Conversely, if ue " , the map us> {(Dau}:{a[ <m} is a map from
N

Hmi(LZ(IR ))B. (B=#o0fa:|al < m.) If S is a continuous linear func-
tional on TH™(RY)), which is a closed subspace of (LARV))®. By Hahn-

, 2, _N.B
Banach's theorem, T Te (L7(R ) :T! m N =S5 . Thus

mH (R )

- ¢ 2. N
’I‘(va) = 4 («pa,va) 5 where ¢, € L{(IR"'). Hence

laf <m L

sw = Y (o, 0% = (Y nl*ln%
laf<m laj<m

for ue ;@(IRN). Since s(IRN) is dense in Hm(IRN), we have the desired

result, s

Definition: H'm(ﬂ) is the dual space of Hr_g(m s Lz(ﬁ) being identified

with its dual,

Characterization: A distribution S is an element of H"m(sz) <> 8 = Dagaa
iaf <m

where 9, ¢ LZ(Q). (The same proof works.)

Remark: The dual space of Hm(mf) is a subset of the distributions with

e v——

support in ]RiI , for m>1.
1
Theorem: (Compactness)., If uk is a bounded sequence in H (}RN) and
all the u have support in some common compact set in IRN , then we can
2, N

extract a subsequence converging strongly in L (IR ) .

Remark: HIC(Q) < LZ(SZ) , and, by this theorem, if @ is open and bounded,

the injection is compact.
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The theorem is not true without the condition on the support of the u

as the following shows: Let ¢ ¢ S(IRN), ¢ #0, Let ¢k(xl" . ,xn) =

»X ) Then {}qak‘gié Lol ¢~ 0 weakly in LZ, that is,

fokf-o v fe LZ(IRN).

o(x Tk, X,
But qon# 0 strongly, by | cpkﬂ - loll#0.

Proof: (Of the compactness theorem). Extract a weakly convergent subse-
2
(

quence, {u, } < L(R").

We want to extract a Cauchy sequence in LZ(IRN) s or extract a Cauchy
sequence from {3[uk]}.
We know that f(l + §§}2)!Gk(§)lzd§ <C

(this is just ﬂukﬁ 21 ). Hence, it is easily seen that

H
[ 8,62 < —S
g >r (1+r%)
Thus
im [ |8 -4, (% <—S5— |
k,l-ﬁwtgtvz'r (l+r )

Take [E] <r.

n

f e-zn‘i { g,x)uk(x)dx

]RN

1,2,... . Then

Gk(g)

Say supp(uk} C K forall k
a (&) :f e-eri(g,x)u (x)dx—»f 'e'zwﬂg’x)u(x}dx
k K k K

-2mi(§, %)

since e € LZ(K) and u, = u in LZ(K) weak. So uk(§)-a(§)

k
for |g]<r

}Gk(§)§ < {( fuk(g)Idxg Huk!le - " meas(K)

by Cauchy-Schwartz, so ﬁk -1 strongly on (£ <r by the dominated
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convergence theorem,

So we have lim f lu, -u
k- |E|<r

—— A~ ~ 1
lim f |uk-ul | ng < CZ .
k, 4> [¢|>r (1+r°)
Take r-», and we have | Gk-ﬁz I /22 -0 as k,? —»», Thus we get strong
L

convergence, s

Sobolev spaces on 2, an open set in IRN: Recall

Definition (4): H'(Q) = {ue L4 DQUe‘LZ(Q), la|<m} .

Definition (5): H™(®) = {u: Zve HY(RY) and v| =u}.
‘ Q
For Definition (4), the norm is JJull = ¢( Z i D%ull

fej<m

e

)¢, while for

2
LZ
Definition (5) we define the norm to be

N
full =Inf {||v] :ve H(RY) and v| =u}.
H™RY) lsz

Note that u may be in X = Hm(Q) as defined by Definition (4) yet not in
Y = Hm(Q) as defined by Definition (5)', for general Q.

Example: Let @ be as shown:

Let u have different values
approaching Z from different sides,
Then u could be in X , but not in

Y.
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Definition: By ''regular open set' is meant a manifold with boundary such that,

at each point of the boundary, the open set is on only one side,
b4
2

Example: Take u =x&. Is ue Hl(Q)? y=X

Hulii2={2f{><!2adxdy = jo'llﬂzaﬂdx<oo if 2a4r > -1,

Similarly, u'e LZ{Q) if 2(a-1) +r > -1, Hence, uce Hl(sz) if
2a4r > 1. Note that o can be negative if r is large,
Theorem: (Sobolev) If ve Hl(IRZ), then ve Lp(IRZ) ¥ p. Now,

“u“p = f ‘Xfpa’<ﬁ°V => patr >-1 ¥p =a>0,
tPlo) o b
Referring again to the above, if ue Y, then ue P () ¥ p. Hence

x% ¢ Y=>a > 0. But we have seen above that x*e¢ X for a <0 if r is

large. Hence, again in this case, X # Y.

This indicates that our domain & must be such that a nbd of a point

N

+ * If

xe QU 8 can be taken to ''resemble' a nbd in 1RN, or elsein R

9Q is smooth, this is true. One then

@ has X =Y.

Q

This is done by covering  with open sets Qi and using a Cm-

partition of unity to concentrate on the 521 separately.
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II. Navier-Stokes Equations

The Physical Problem:

We have a fluid in 1R3, whose velocity is if(x,t).
1) Conservation laws,

a} Conservation of mass. Let p(x,t) be the density of the

fluid at position % ¢ IR3 and time t. We have a certain mass of fluid at

Qto which has moved to Qt0+ 6t at to + &t.

Then conservation of mass gives

= [ff sx,tax = 0.
Q

t
Also, e fff p(x,t)dx =fffat (x,t)dt + ff p(x,thu - n do
Qt Qt 8Qt
0 0
where n is the exterior normal to aﬂt . Transform the surface integral into
0

a volume integral over Qt , and we obtain:

0
3
SIS Y o t60x,0) § Hdx
Qt i=l i

0
Thus we obtain the equation
B, > o =
at T 121 5;1(9 u)=0.

b) Conservation of momentum: Suppose we have exterior

forces, applied to Qt . Then this law gives
O .

d .
a-t-({sz pu dx) = forces . {(these are known) .
t

0
Call the given forces in Q ?(x,t). Suppose we have constraints (i.e.

viscosity), which are tensors Wij' Then we obtain, using
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Edt_(fffpadx)szffdx+ ( on*i.n_du-)
ﬂt Qt o 3

0
Writing this last as a volume integral, we obtain the following equations:

(combining also the equations from a))

bu, o o o
Pl + 23 ul= 4+ & B,

c) Conservation of angular momentum: We get

= [[Jeta%ax = [f[Takax + [[(F)ixdo.

Using the preceeding equalities, we obtain °-j {59 j

d) Conservation of energy: Let e(x,t) be the density of

internal energy. {temperature) Then

>,
%fffp.(%lﬁlz+e)dx=fff?- -de+fff(§:cijnj ) U dx

+fffpwdx-a{zfa~ﬁdw.

The term pw represents the creation of energy as by chemical reaction: w

is given, The last term represents convection, This all gives:
Jde de ’ qu du
p[a—t~+ EZZ.U] = pw —Z-—-*' '+Z 5 I,

i i i i j,i

2) Next we have to consider the constitutive equations.

These give relations between p, crij, Ei s 'c'fi ; and e,
au
¥ g, — > 0 (energy lost by viscosity).

du du,

i ; N DR SR |
Write as a symmetric form 121‘ crij Dij with Dij = 3( axj + axi )
2
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Assuming that we have an incompressible viscous fluid, p = Pp @
constant, and O-ij = -p(x}&ij + ZvDij where p is the pressure. This gives

us the Navier-Stokes equations, p = Py in the first equation above gives

o T au},
b Lo 7O
] ]
Considering the second equation, N
Ju, du
AN ) ] v 2 i j
L ox. %ij 9%, v L 9x. ( ax, * 8x )
J ] 1 J
5 ou
=t TVAY Y ek 4 Bx
i i
0 by 1
Hence, we obtain three equations:
o au 6u R R 5p
2. Pol 5t *”J.Zaxj uJ-vau = - 5o

- We want to solve the system for xeQ , te [0,T] ui(x,i)) given;
for xe¢ 9Q ui(x,t) = 0 (or a given function of t, This is harder.)
We will consider @ C IRZ.

Kinetic energy at time t:

e Iy ;lﬁilzdx

It is natural to consider the space of all s Ei € LZ(Q) {so that

kinetic energy is finite).and u is bounded in time. The energy lost by

viscosity between 0 and T is

[ S-ps, +2vD ) d. = C | f}: --—-—1 Pdxdt
0 R i Y Ui o0& i 7
ou,
Consider the function space ¥ = {ﬁi: axl €
i

We will ask that ue LZ(O,’I‘;x), U e LOO(O,T;IS).

12Q). Let K= {3, e L)),
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Mathematical formulation and function spaces:

Let 2 be a bounded regular open set in IRZ. Let

2 do.
. o . " .
V= {p=(ps9,) ¢ ¢ 8(Q), dive =iz-.:1 o, =0} . Defineon ¥ two norms:
> 2
lolg = 2, ledl ™5 (n=2)
H @1 e
2 -
lolZ = 3 12,
1)]"1 J L (Q)
Let H = the completion of ¥ with respect to |- !H .
V = the completion of ¥ with respect to |- "V

Propositionl: V= {u: u, € Ht(m anddivu =20},

Proof: First, we show V C {u: u, e Hi)(sz), divu =0}, Take a Cauchy
sequence u_¢ ¥ suchthat [u -u_J|,,~ 0. We will use
n n m"V .

Poincare's Inequality: If Q is boundedv, Fc>0: for ue H(Q),

2 du 2
f|u‘dx§c£[-é-£(;‘dx.

Q
Proof: 0< fl +au|dx=f(lauz+2au%§ +a2]ui2)dx
X 1
) 2 i
e fl !de f( da _ Z)Iu’ dx after integration by part
3a:§-§—a22a>0' on . .

0
Using t,l‘alis inequality, {un} is a Cauchy sequence in HI(Q),, so {u-n } con-
verges to an element of Effz'")c Hl( 2), that is, Ht(ﬂ). div is a bounded linear
map (I-II(Q))n - LZ(Q) so the limit u of {un} in Hz(ﬂ) has divu =0,
This proves one inclusion,
The proof of the other inclusion is more difficult and will be given

later, "
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n

Proposition 2: H = {u‘gui € LZ(SZ), z ui(x)ni{x) =0 on o2 where n is
i=l

the normal to 9Q, and div u = 0 in the sens= of distributions}.

Remark: Here we use a difficult theorem (for general Q). If ui € LZ(Q)
i
and div ue LZ(SZ), one can define trace u - n =-Zui n, ¢ H ?(8Q) (so as to
i
extend u smoothly.)

For an element of V the velocity at a pointof 92 is 0, For an

element of H it is tangentto 92 and may be =0,

Remark: If ¢« (S(ﬂ))n, dive = 0, then T (o, ,aa: 8,9' =0 for pe 8'(Q)
1
since
oy
9p . _ i
249 5) = KL e P
i i i
= - ( dive,p) .

Back to the Navier-Stokes equations:

We will take p= Po =1, Then the equations 2° become

ou ou
i i - ap
ot L 23 up vy o= Bx,

Suppose ¢ ¢ ¥. Take the inner product of 2 and the above equation and

sum over i, use the two propositions, Then,

ot Z(u TARS 2 8 U9y y-v ?(Au 9y = g,(fi,wi) .

Suppose ue L (O,T;V)ﬂ L’ (O,T;H)‘ Then u satisfies the Navier-Stokes

equation (10 and 2.0) ifandonly if Y ve V
5 8u
ST WV + Z -—»uJ V) v((u,v)), = (V)

. H °
ij J
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Functional spaces related to the Navier-Stokes equation,

1. Let KR = {ue HHRY) : %{— e a5 imY), 1 =1,...,n}
. 1
Recall that ue H_l(}RN) <= () 1€ LZ(IRN).
(1+g] 52
Lemma l: x®Y) = LAmY) . R :
~ [£. u(g)]
Proof: ue X < u( )2_ and -—--1—-—-§1e LZ(IRN) .
(LHg | 5P (1+]g] 7P
« LEIEDUD p2RN) o G rPRY)
(1+]g]5* 2 N
<> ue L(R) .,
N 1 N, D LN
2. X(R,) = {ueH (m+>:~5§ieﬁ (R,), i=1,...,n}.

ot
S S _ i 2
Recall that fe H (@) implies f=f + ) ey for £ e LY@) .

= sup (f,u).
U e HE)

Jufl <1

Note that Il .1
H

Lemma 2: s(lRiT) is dense in x(IRIE) .

N . .
Proof: Take ue x(m+), let u . ,xn) =u(x,,... ,xn_l,xn-!-h} if u is

h(Xl,. .

a function. For general ue ¥ (IRf), define u, as follows: (uh,¢) = (u,go_h)

for ¢ ¢ Hi)(lRl_\:). Note that the two definitions coincide if u is a function.

Then uh-—- u in x(IR_l:T)' as h- 0,

Then approach u, by u_*p - u, in x(IRN). "
h h e N h R
R
* N N
Lemma 3: 4 a continuous extension from x(IR+ y - x(IR) .

Proof: Define P on ,g(]Rf) as follows:

Define Q :HX(I'RN) - HlO(IRI_\: } by
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0 if x <0
. n

2
U(Xpye X )+ 21 3,U(X) s X 15 -IX )

x >0
2 n
where 1 + Zaj =0 . (This ensures Qu=0 on x_=0). Now,
j=1
du 9 .
1 i
= 2—Ru if i=n
9x
n
where
0 if xn<0
(RU)(XI,‘...,X ) = 2 a.
n u(x, , x)+z --lu(x X -jx )
SRR S R B S .2 i
y -2 a
1 ' . Iy
ReH (R~ Hé(mf) s0 we require 1+ ), —-= 0. Extend Q onto mY(®Y)
| =l
by continuity;
let P = tQ (formal adjoint)
il w Ny N
‘P;HOGR+) H(R )
. SIS P N |
That is, P:H (]R+) H (IRN).
We then have the properties that
Lpr-pl i#n
ox, ox
i i
. 9 ' 9 O¢p
Since ('a-;(- Pu,py = - (Pu, 3}%) (u, ?}z’)
i i i
9
= - (W 3 Q)
i
du - U
= (g;;Q?) = (Pg;t,w)
i i
for ¢ ¢ H(RY)
du -1 N __ 8 ., _,0u -1 N
Hence axie H (IR+) = axi Pu = P---'axie H (R).
8 ., _t_ @ to =l N -l N du N
8an = R—-—-—-axrl where R:H (]R+) H (R, If —-—-axne H (;R“, then
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-a—a; Pu e H-I(IRN) . Finally, we must prove P is an extension
n

-1, N, P -1 -
D 2 Eeh) T oaw)

Ry ) 2 H@®Y) & H(R)
~ is the map: ~u is extended by 0 on IR .,

N
7w = transpose of ~ = restriction to 1R+ .

We need only note that =P = identity <> @ ~ = identity which is true, ®
N
+ )
‘Proof: Ue x(IRf) => Pu ¢ x(IRN) = LZ(IRN) by Lemma 1., Hence

Lemma 4: x(IR = LZ(ER_I;I)

TPUu = ue LZ(IREI). ]

Lemma 5: Let 2 be a regular, open, bounded set. Then x(Q) = LZ(Q).

Proof: Write u = Z eiu where 9i are a smooth partition of unity sub-

ordinate to a given covering of § .

Now, if 8 ¢ 8(@), 6uc WBY) = LARY) so o 12Q) (we can

j
extend eju onto IRN as 0 outside the support of Gj.). If 6, e 2(Q) (take

a function Ul that has 2 bdd derivatives as does ni-l,.)
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i

Then Siu e X{(Q) *"‘(eiu) oq*l € x(}Rf) = (eiu)t:m~1

€ LZ(Rf), by

Lemma 4. Map back via n to get the result, since n; Ppreserves LZ. s

2 -
Lemma 6: L4 Z2L m @)Y given by u- 2,
1

has closed range in (H"l (Q))N . (@ is as in Lemma 5)

du
‘7 ax
n

Proof: For the proof, we require the following lemma by Peetre, Let
BI’EZ’ and‘E3 be Banach spaces and suppose we have:

A
(= = equivalent norm) E > E

3

such that flull. = [[Aufl, + [Bull; , and ‘suppose B is compact. Then
' 1 2 3

Ker(A) is. of finite dimension in Bl , and Im(A) is closed in E_,. The proof

2'
of this lemma is left to the reader.

2 -1, ...N -1
 =L9@), B, = (m @), E, = H @),

A = grad, and B the injection. Note that the injection H})-» L~ is compact,

For the proof of Lemma 6, take E

so the dual injection LZ(Q) - H'I is also.

To satisfy the hypotheses, we must show |jull = |gradu| , . + [lull ..
2 (H—I)N H-l

L
We know that |grad u| + |u| < Clu|l ,. Since we have Banach
-1 N -1- -
(H") H L
spaces, we need to prove that |grad u| ant lu] _j is @ complete norm
(H H
on L2 . ’

Take a Cauchy sequence {un} in the above norm, Then {grad u,n}
- - -l .
is a Cauchy sequence in (H l)N, {un} is Cauchy in H l. H ~ is complete
o -1
= u,~Y in H => ue X(Q) = 1%,
grad u_~—grad u ¢ mHN

This completes the hypotheses of the verification of Peetre's lemma., =
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Lemma 7: If fe (H—I(Q))N and ¢(f,e) =0y @ € (H%)(S‘z))N such that
div ¢ = 0, then f{ = grad(p) where Pe LZ(S?).
Proof: 1In (H'l(ﬂ))N take Y = {grad(p) : pe LZ(Q)}. In (HE(Q))N, take
take 2 = {uldivu =0}, Then the lemma states that if fe ZJ‘, feY.
By Lemma 6 Y is closed in (H_l(ﬂ))N, s0 it is enough to prove Yt = Z.
Then zt =Y =¥=Y. Now, ue Y™ if (u,gradp) =0V pe L%, But
for pe 8(2), (u,gradp) = -(divu,p) so ue YJ'—-—-=> divu =0, Hence ue Z,
and Y'L = Z. ' .
Lemma 8: If pe LZ(Q) and fp dx =0, then & ue (H':)(Q))N such that
Q .
divu = p. (2 connected.) We can choose u depending continuously and
linearlyon p.
' 2 -1, N
Proof: grad: L () (H (2)) has closed range by Lemma 6, Let
N = {u: gradu = 0} = {u = constant}. Then Lz(ﬂ)/N = Image(grad).
isomorphic ’
The adjoint of this map is
N div 2
(s’ ),
{u:divu=0}
where 7 = {u: ul constants} = {u: f u=0} Y= grad(LZ) is closed in
Q

ey,

Y' ‘= (Hé(ﬂ))N/Y_L: (H})(Q))N/Z where Z is {u:divu = 0}.

Now, tf ue Ht s Pe LZ, (grad p,u)=-(p,div u) apply the surjectivity
of the above map to complete the proof of the lemma. "
Lemma 9: If fe (H'I(Q))N and (f,¢) =0 ¥ ¢ ¢ ) such that dive = 0,

then f =grad p where pe 12,
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Proof: Let szn be an increasing sequence of connected regular open sets

such that 5;652 and UQn=Q‘

Take ue (HB (szn))N such that divu =0, Then for small ¢

O *Ue (S(Q))N and diV(ps *y) = P xdivu=0. So
(f,u) = ahino(f,pe: %*u) = 0. By Lemma 7 applied to Q. ﬂQ = grad P,

2 n
with p ¢ L@ ) .

i - i W pose that
Since (pn H pn) is a constant on Qn e can suppose ha pn

+° pn
on Qn , and we have proved that f

. 2
= grad p with pe Lloc (2) .

Then we prove the lemma if Q is regular and strictly star shaped

with respect to a point (taking this point as origin this means that

8SCQ for 0< 0<1), If ue (Ht(ﬂ))N and divu =0 we define

ue(x) = u(%) which still has divergence 0 but has compact support in Q
and can be approached by p  *u Since (f,u) = lim_ lim (f,p %*u_ ) =0
£ 81l c=0 £ ]

we have f =gradq with qe L;(ﬂ) by Lemma 7.

In the general case each point of 92 has a neighborhood

connected regular and strictly star shaped. So f =gradg on w with

de Lz(w). Since p!w—q is constant on w we have pe Lz(w) and this
gives pe LZ(Q) .
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N; dive = 0} is densein {¢e¢ (H'é)N:dnga =0},

Lemma 10: {9 ¢ (8(Q))
N .. 1 -1_ N
Proof: Take fe {we(8(R)) :dive =0} and fe (H (2)) . By Lemma 9

f=grad p where pe L?‘(Q}, =>fe {pe¢ (HE)N :dive = O}J“ by Lemma 7.

Hence {gec (8(2)":dive =0} D {pe (H) :dive =0} . Itis
trivial that the other inclusion holds. ]
Recall now that ¥={p e § (R ))N: divg = 0} and
1 N 2 ou, 5
V={ue (Hy(®)) :divu=0} andthat [Ju]|® = ) || =] . So Lemma
0 . axj LZ(Q)
10 proves the second inclusion in Proposition 1. |
Let H = the closureof ¥ in (LZ(Q))N

Claim: H= {ue (L%@)"N :divu=0 and u-n|.. =0} (n is the normal

a2
vector to Q).

Lemmall, Let x={ue (LZ(Q))N: div u e LZ(Q)} , and define

Jull? = L0yl , o+ [lawul®, .
) L)

Then (&(SZ)) is dense in ¥ .
Proof: Similar to that of a previous lemma, .
Lémma 12: If ue X, oe¢ Hé(ﬂ), then (div u,¢) + (u,grade) = 0.,
Proof: For smooth functions, integrate by parts, Then use density
arguments. | .
Lemma 13: u - trace of u.n on 9 extends to a continuous map from ¥

-%( 4
into H 4&) = H(oM)'.

1

Proof: Let  be the traceon Q2 of a function ¢ in Hl(sz). (b e H2(0Q2).)

For ue X we have a linear map: L(y) = (div u,¢) + (u, grade) which
depends onlyon ¢ . Thatis, ¢ =¢ =y => ¢ 5 € I—I (), so

1 80 2 17 0

- v4
by Lemma 2,

-32- #1584



(div u,<pl) +=(ulgrad qal) = (div u,cpz) + (u, grad <p2) .

If ue (S(ﬁ))N , then L(y) = f (U - 1) ¢ dT since
on

i

; 9
(div u,¢)+ (u, grad ¢) Zf(-—-—-— ® + u, féfi-)dx
i8 i

1

i

Y‘\
LiJ 3f (uiep) ni az

= f Zun dz .

R 1
Since there is a continuous map: q; e H?(8Q) _}_z_g_t_’ Q¢ H () with

? = .
0N 1
This proves that for ue X , u- ne (H?(8Q))
1
= H?(a). .
2,...N e Hl

Lemma 14: If ue (L) satisfies (u, grade) =0 Ye¢e¢ H(Q), then
divu =0 and u.-n=0 on 9,

Proof: First choose ¢ ¢ 8(2). By definition of derivatives,

du
i ~ Op
axi »9) = (ui’ ax %)

so
(div u,¢) =-(u, grade)=0 Ye¢ =>divu=20
in the sense of distributions, so, in fact, ue x. We know

i
= (divu,e) + (4, grad ¢) = [u-nedE ¥ ¢ H3(3R)
0

so u-n=0 in H‘%{am. .

From here, prove the density theorem by orthogonality arguments. So
¥ is densein H. L
Question: What is V' ?

VC H. Identify H anu its dual.
dense
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{The scalar product in H is Ef ui Vi = {u,Vv)).
i
If Le V', then v - Lve IR is a continuous linear map. Since V is

closed in (Ht(ﬂ))N, we can extend L to L~ :(HE(SZ))N» IR: i.e.

If,... ’fn ¢ H'l(m such that

e

for ve (H’é(ﬂ))N

Lv) = L)
i

HO,H"
and for ve V, L (v) so defined coincides with L{(v) .
Two such expressions for L~ coincide on V if and only if
fi =9, + 'é%)- for some pe LZ(SZ). ( {fi} and {gi} are the different expres-
i
sions for L .)
-1, N
(fi -g)e (H (Q))" and (f-g,v} =0 Y veV.
We have seen that this holds <> f-g =grad p where pe Lz(ﬂ) .
Hence V' = (H“l(m)N | 2
‘ /{grad P:pPe L (9)}

By definition

hell,,, = sup V(L)

V! . L7y -1 L1
<1 T8 Vat g
(ue V)

Note that v C H c v

dense  dense
Henceforth, |<| will denote the normin H. ||-| will denote

10y and Bl = BT,
Then for ue V, |u|l <Clluf
for ue H, |ul,<Clu] .

Back to Navier-Stokes Equations:

Remember that p =1, Then the problem can be stated as follows:
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i i 2
—t vAu, + ). 1\»\u. = f - 2 in ax 10,T[
i ~ 9x, © i X,

ui(x,t) = 0 if xe¢ 9Q

divu=0 in Q X ]J0,T][
oC
Usually f=0. Itis natural to seek u. in LZ(O,‘T;V) N L (0,T;H).
' )
(Lz( 0,T;V) so that-the energy lost to viscosity is finite; L (0,T;H) so
that the kinetic energy of the system remains bounded.)
We will prove an existence theorem, (uniqueness for N = 2) with.
2 2
fe L7(0,T;V') or L7(0,T;H).
‘ du, 8v

Notation: 1) a(u,v) = ((u,v) = Zfax o, —Lax = Zf( Au,v,)dx

for u,ve V. This is a continuous bilinear form,on V.

av
2) b{u,v,w) = 2 f uj sfwidx for u,v,we V.
1, j

Remember that © is bounded.
If we are in the case N =2, we hafre
Lemma 1: b is a trilinear continuous form on VX VXV and
b{u,v,w) + b(u,w,v) = 0 Y u,v,we V. In particular, b(u,v,v)=0Y u,ve V,
Proof: Use VC (L*@)? for N <4 (Sobolev's Imbedding theorem, which

can be more generally stated as

Hm(Q) c tP@) for %:%-—E for m<‘I§.)
Lemma 2: [leof 4 2, < Clle]? H<pﬂaz , forall g Hl(IR)
L(R") Hl(IR ) L°(R")

Hence ngL- for N=2, and

ue Ve ue (Hy@) =>ue (Hl(m2 )% (extended by 0). Next,

Ib(u,v,w)| < ) f;u

i,iqQ ; i‘dx.

1
ox,
]J
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Then use Hblder's inequality

<2 Mgl H i Jwll , since $+z+3z=1
i, L } L L
Using the lemma,
1 L 1 1
|b(u,v,w)| < Cluf*flul *flvl [w|*|w]?
< Cliull HVH [ wil
aw
b({u,v,w) + b(u,w,v) = Z fu [ w,o+ —-—-v]dx
3
Z f u 2 (v. w,)dx.
L j 8x i i
If ue ¥ then u is smooth: integrate by parts,
] i
=~Z fax, viwidx = ‘vaiwiz’g;;dx = 0
i,j € 73 i ] ]
du,
since Z -é;i = 0., Since 7 is densein V and b is continuous,
J B

b(u,v,w) + b(u,w,v) =0 Yue V, vwe V., This completes the proof of

Lemma 1.

Proof: (of Lemma 2) We will prove this if ¢ e ﬁ(IRz).
y=x
2 2 9 2
o (x,x,) = [ L T, ¢ Y
- - 2
by the fundamental theorem of calculus
Y=%5 9
=-J 20(x,y) 52 (x,,¥)dy .
Y » I3 8x2 1

Apply Cauchy-Schwarz , and we have

X : 1 X
2 EX
1¢(x1,x2)}25 2(f zicv(xl,y)l dy)a(n{o l—-'e—(xl,y)} ‘dy)

1
2

(we may as well let the upper limits be ©,) If we do the same for x2~, we

get

2 oo 2, .3, %, 2, .3
I¢(x1,x2)§ < Z(L!ga(y,x?_){ dy)"‘(fw tgﬁl(y,xz){ dy)?
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multiplying, we get

4
!cp(xl,x ) S Mxdu(x,) where A(x)) and p(x,) are the riyht halves

2 1

of the respective inequalities above, Integrating

4
ffzigo(xl,xz){ dxydx, < (f fodxl)(fp(xz)dxz).
R R R
By Cauchy-Schwarz,

2 3 a
H{ "(Xl)dxlf_z[%; ]{ |o(x),v)| “ayax)%( [ [ |52 (XI,Y)[Zdexl)

L
F]

RIR
= 2|lel , I| Fral
LAm?) %% LiRrd
Similarly, we get a bound on p . Hence,
loll® <4fo|? 122 132
L4(IR2) Lz(mz) ox 1 LZ(IRZ) ‘3x2 L2(IR2)
2 ¢ ;2
< 2lle] [3E ] + 222 ]
tArd ™ tiwy %2 Liw?
A
< zlel’, , ol .
LR} H (IR

Definition: B:VX V- V' is defined by (B(u,v),w) = b(u,v,w) ¥ u,v,we V.
By Lemma 1, B(u,v) is continuous bilinear from V XV into V'

A:V-V
is defined by (A(u),v) = a{u,v) Yu,ve V. A is continuous and linear from
V into V'

2
Aw,uw) = flull®.
2 0 2

Lemma 3: Ifu,ve L90,T;V) 1 L (0,T;H), then B(u,v)e L0, T;V").

< Cllu]l [[v] to obtain B(u,v)e L0, T;v").

Proof: Use "B(U,V) "*
(B(u,v), W) = ~(B(u,w),v) by Lemma 1. |(B(u,v),w)| <Cllull ,Iwlllv] ,,
L L

so 13wl <Chul vl ,
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Hence, we obtain

L
2

1B, vl < Clul 2 ful 3 vl Ev? .

i
2

Now,

ful e Lw(O,T) and |jufl ¢ LZ(O,T) =

i
2

1
W2l e LYo, (thatis 1%0,Tv N 0, s tho,Tiit)).  m

Remark: The above was for N = 2,
For N=3, Bu,v e Y30,
For N = 4, B(u, V) € Ll(o,'r;v*) .

o0
Theorem: If ue LZ(O,T;V)H‘L (0,T;H) and u satisfies the Navier-Stokes

equations with fe LZ(O,T;V’), then %%e LZ(O,T;V‘) and (%—% s @) + v{A(u), )+

+ (B(U,U),cp) = (f:ﬁp) Yoe V. a.e.t.
Moreover, Ue CO(O,T;H);u is continuous from [0,T]- H, and

u{0) = uo_.

Proof: ue L2(0,T:V) N L0, T;H) => Au + B(u,u) - fc L3(0,T;V'). Take

¢e ¥, Ye 8(]0,T[). Consider the equation
du V
—a-E-+ vAu + B(u,u) = f - gradp
in the sense of distributions on © X ]0,T[. If we apply o(x}(t), we obtain

Bui qui

off wgeoptaxat + [ v T b o poaxa

§ x ij
Qx10,T] oxlo,7[ *’

+ [T [, wetaxat = [Tit,0) | | wiot
0 0 H, H,

because the last term (-grad p, ¢(X)}§(t)) is O as dive =0 . Thus, after

rewriting, we get for all ¢ ¢ V ( by density)
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9
e, 2at [Ty aw,enmd + [TBu,W, 00, et
0 H Bt O 0 V‘,V

T \
= ’of (f,go)v,’vw(t)dt.
Let f - vAu - B(u,u) =ge LZ(O T;V'), Rewrite:
T Yy T
- fo (W, 9);; 5y Ot = f (9,0)y, .
Notice that t - (u,¢) is a good funcfion of t. (e Lm(O,T).)
In the sense of distributions:
L (u,9).. = (9,0
dt )¢H" qu’v,’v
So u satisfies -C%(u,qo) = (g,¢) = ({,9) - v(A(u),e¢) - (B(u,u),¢). This is

the desired result,

9
oo < gl < gl llol = H 8, < e, « L%0,m.
: aui aui
Converse: If 5, = &= -vAu 4--211j -5;-1- - £, the new formulation gives,

for ¢ ¢ B(Q), that (S,p) is a distribution in t, and, if oe ¥ , then
(S,¢) = 0. From this one can show that S = grad p where Pe¢ 8'(2X ]0,T[).®

The meaning of at

Definition 1: u is a distribution in (x,t) => %% is also a distribution in

(x,t).

Definition 2: Uue LZ(O ,T3;X). Then %% will be a vectorial distribution in

X . (S is a vectorial distribution on ]0,T[ into X - a Banach space, if
we have a mapping (S,¢) from ¢ ¢ 8(0,T)- X which is linear and continuous.
Example: Ue L (0 T;X), (S,9) ={u,e) = fTu(t)go(t\)dt e X .
~N
° x R
Then the derivative is defined by

as
at,(P)"-(’at) -
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We will often be interested in spaces like

d
E= {ue L%0,T% : Fe 1%0,100}

where 1 <p,q <» and XC Y densely, X,Y are Barach spaces.
This means = fe LYO,T;Y): v o 8(0,T),

T .. ,de, . T
Of—d(t)a—t‘(t\)dt = [THpevdt

X 0 Yy
Theorem: (Density) Let X,Y be Banach spaces, with XC Y. Let E
du dense
be as above with E}uHB = |lull . + H—&t—}i o
L0, T;X) L7(0,T;Y)

Then 8([0,T1X) is dense in E , where $(0,T];X) are the smooth
functions from [0,T] into X,
We give a proof for p=g.

Proof: 1) If ae Cl([O,T]), then u-> au is a linear map from E into E.

%{au) = a %;—1- + %?—u , and the first term is the product of a bounded function

and one in Lp(O ,T;Y), while the second term is the product of a bounded
function and one in LP(0,Tx) ¢ LP(0,15v) .
Choose a,be §([0,T]), 0<a<l, 0<b< l: atb=1 on [0,T]

Z'I'], while supp(b) C [%—T,T]. Now approach au and

Let supp(a) C [0, 3

bu. (Thus approaching au+bu=u.) |

v=aue {fe Lp(O,OO;X) : g‘%ﬁLp(O,in}}

(au = 0 for (T,).)

Let vh(t) =v(t+h) t>-h, Then v_~vVv in E. Regularize by

h
p** vh—a- vy where p is a smooth function with values in X . ]
£

‘Theorem: (Trace) u- u(0) is continuous from E into Y.

Proof: By applying density: we need to show that it is continuous from

([0, ThX) - ¥ (in 1MQE).
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We need to find C : Ju(0)|l, < C[liu] o H = ]
L7(0,T;X) L (O,T:Y)

for all ue H([0,T]X)

Pick a(t) smooth so that a{0) :L and a{t) =0 .

let v=au. v(0) = - T %%dt (v(T) = 0} .
Then by Hélder's inequality
l
Juoly = v, < /P19 <cisl G,

L (O T;Y) L
Corollary: EC CO([O,T];Y) if u is smooth. The same estimate gives

u =  max ufs) < Cllu
I “co([o,T]m Oﬁsgn Iy < Cliullg

(Note: C depends on T,)

The case for Hilbert spaces:

Suppose V C H C V! where H is a Hilbert space.

dense dense
Theorem: E = {ueL(O TV) é'll-eL(O T;VY) } CC([O TLH) .
Proof: If u is smooth, we want to prove

w0l < Cllully

Put v = au , where a is as before. Then remark:

d 2 v
o Vg = 2 i)
So iv(T)f ]V{O}} = ZfT ,Cé: dt

and, as v(T)=0,

vio)|? = -sz Sar < {f v S0

< [TAel® AIEIZe = vig < clelg
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Remark: If fe LZ(O,T;V'), ug e H and u is in LZ(O,T;V)ﬂ Lm(O,T;H)

and satisfies the Navier-Stokes equations, then %L;cl- e L7(0,T;V"),

—ad';(l}.,v)-’* v a(u,v) + b(u,u,v) =(f,v) Tve V,

Ue CO([O,T];H), so u(0) = u, has a meaning,

0
We know a(u,v) is bilinear and continuous from VXV — IR and
a(u,u) = Hu”z, and that b(u,v,w) is a trilinear continuous fon;n on V, with
b(u,v,w) = -b(u,w,v), (=>Dbu, v,v}’ = 0) with
[, v, )| <ClulZlul ¥ vl jwlZfw]? .
Remember that we needed N <4 for b to have the first group of properties,
while the last estimate depended on N =
Next, recall that we defined A and B so that a(u,v) = (A(u),v)
and b(u,v,w) = B(u,v),w) Y u,v,we V. We proved (with N = 2)
that if u,v ¢ LZ(O,T;V)ﬂ Lm(O,T;H) then B(u,v)e LZ(O,T;V’). (For N =
4/3

instead of Lz, wegot L' 7, while N = 4 gave Ll-.)
Thus, we can state the following:
Theorem: If ue LZ(O,T;V) n Lw(O,T;H) solves the Navier-Stokes equations,

then du + v A(u) + B(u,u) =f (<« eachtermisin LZ(O,T;V'),)

dt
u(0) = uo .
{(Note that we still are keeping N = 2:)
2 du 2 . 0
If ue L7(0,T;V), and prall L7(0,T;V') , then ue C (0,T;H) and

moreover, |u(’c)|2 is absolutely continuous, i[u(t)iz = 2( ég—,u) e L'(0,T).
Since this is true for smooth functions by |u t)( lu(s)[

2 ft_( —Cj-,%,u)dv , we will utilize the density of smooth functions.
s
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Theorem (Uniqueness): If fe LZ(O,T;V') and u0 ¢ H then there is at

2 %
most one solution ue L7(0,T;V)N L (0,T;H).

Proof: Let u,, u_, be two solutions. Then

17 72
d
(—ﬁ(ul-uz Y+ v A(ul-uz) + B(ul,ul) - B(uz,uz) =0
and (ul-uz)(O) = 0, Take the inner product of the above with ul-u2 to
obtain
1. d 2 2 : -
e [ul-uzl + vHul-uzll + (B(ul,ul) - B(uz,uzj,ul-uz) =0,

Now, (B(ul,gl)- B(uz,uz),ul-uz) = (B(ul-uz,ul),ul-uz) + (B(uz,ul-uz),ul-uz) .

But (B(uz,u -uz),u -uz) is of the form (B(u,v),v) = b(u,v,v) =0,

1

=> We have that |(B(u1,u1) - B(u,,u,),u,-u,)| SCHul“ luy=u, | fluy-u, ||

1

(from the above consideration and our estimates on b.)

Thus we obtain,

d 2 2
%E'ul'uzl + v“ul'uzn < C” ul " |u1‘u2| ||u1-u2||
oy - uyl0) = 0. i
Use Young's inequality (ab < va2 + -%-‘; } in the right hand side to conclude
d 2 2 2 C 2 2
R L MR L RS L = TP L Ty

da 2 ' 2 2
dt,lul'uz' 5 C nuln lul-uzl
Iul-uz‘(O) = 0.
2 2 1 ”
Since u;e L7, ||ul | “ ¢ L. Apply the following:
Lemma: (Gronwall's inequality) If ¢ > 0 satisfies
%;E < AMt)e Mt) >0 Ne Ll(o,'r),
then

o(t) < 9(0) exp( [* M(s)ds) .
0
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Proof: -?%[Mt) exp(-j:Ms)ds)] < 0. n

Using the lemma, lul -u2] =0, (]
Theorem: (Existence for Navier-Stokes). If fe LZ(O,T;V') and Uy e H

then there exists a (unique) solution u e 'LZ(O,T;V) n Lw(O,T;H).

Proof: We will use the Galerkin method.

First step: Choose a basis for V: that is, a set {wl,wz, vou yC VW
such that ¥ m, {wl, e ,wm} is a linearly independent set, and the sub-
space spanned by {wl, ...} is densein V.

Note: Such a basis exists <> V is separable. Later, we will require
other, '"'special'' properties of our basis.

Second step: Study the approximate problem: that is, to find

n
un(t) = Z gi(t)wi satisfying

i=l
clun
( -a-t—+ vA(un) + B(un,un) - f,wi) =0 for i=1,...,n.
un(O) =ug. € span {wl, - ,wn} where u v
strongly in H as n=-»>o ,
Remark: The space spanned by {wi}:o_1 C H and also is densein V',

dense
The approximate problem is a system of ordinary differential equations

for 9yseee 39,

n dg(t)
& T(wj’wi) + Gj(t,gl,. : .,gn) =0.
The matrix with entries (wj ,wi) is invertible, since {wi }?-l is linearly

independent, Apply the inverse to obtain

dg
1 _
dt b ‘Pj(t)gl"")gn)o
If the wi are orthonormal, then the system was already in this form, since
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(wj,wi) = aji . Using the Cauchy-LipsChitz existence theorem, we get
solutions un(t) to the approximate problem on some interval [O,tn)C_ {o,T].

Third step: We must show tn =T for n=1,2,... where 0<T <o,
To do this, we must show

max |u (s)] <C <= (where C may depend on n)
0§x<tn

so that |un(-t)[ is bounded for t- t .

Multiply the ith equation of the system by gi(t) and sum over i:

du
n
(o + vA(u_) + Bu ,u ) - f,u ) =0 (u = ) gw.).
Then,
du
n d 2 2
o ) = gl v ) = v 1T,

and (B(un,un),un) = 0, This gives the estimate

d 2 2
b lun T vl 1% < el el
Use Young's inequality to get < 2 |lu |2 + - ]2 , and so obtain
d 2 2 1 2
Sl B vlu 1® <012,

Integrate from 0 to t where 0 <t <t and get

2 t 2 2, 1t 2
lu (6] % + vj(; lu (s)]| “ds < |u_(0)] +-;{) | (s) || cds

2 2 1 T 2 ,
=> Iun(t)l < |u0n| + ;.{; || f(s)|| ,ds. This estimate is independent of t,
=Te) tn=T for all n .
Fourth step: Obtain sufficiently many estimates independently of n,
to show u = u, for some subsequence,

Since uon—) u, in H, Iuon[ < C independently of n . This gives

max |u (s)|2 + fTHun(s)[I %ds < C independently of n ,
o<t<T " 0

0 [ 0
C o
This means {un}n=1 C Kl’ a bounded set in L™ (0,T;H) and {un}n:l—c-' KZ
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a bounded set in LZ(O,T;V).
We can extract a subsequence u such u, = u in Lw(O,T;H)
%
weak andin LZ(O,T;V) weak. This means that
T T 1
{) (u 5 0)pdt -—»g‘ (u,¢) Gt Yoo L(0,T;H)

and

T T z‘
{)‘um"")v,v'dt —»g (4,0)y pdt ¥ pe L0, T3V

(Aun,wi) - (Au,wi) in LZ(G,T) weakly

du

dt ’

d
Al LAY

ES
(w ,w,) = (a,w) in L°(0,T) weak andin L(0,T) weak.

{
d d , o
Hence I (un, wi)» e (u,wi) in the sense of distributions,
{B(un’un)}:—l is contained in a bounded set of LZ(O,T;V') since

vl , <ol ,  +ll. ).
L°(0,T;V") L7(0,T;V) L (0,T:;H)

(vl + vl ).
1%(0,T:v) (0, T;H)

Hence we can extract a subsequence B(um, um) - g weakly in
130, T;v') .

Problem: There is no a priori reason to believe ¢ = B(u,u) since B is

not weakly continuous, -
Claim: -3% + vVA(u)+g = §
u satisfies
wo) = u0
-d—g- 2 R 3 g—’:‘a -_ -
{(and so el L7(0,T;V') since a - f - vA(u) - g.

Proof: Let ¢ be a smooth function in [0,T] that satisfies ¢(T) =0 .

Multiply by ¢ and integrate by parts. Then we obtain,
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T , T
- fo (U, W)e' (t)dt - (ug ,w,)e(0) + v {) (A(u, ), w,)e(t)dt

T T
+ { (B(u ,u ), w,)o(t)dt = { (£, W )o(t)dt

Each term has a limit as n--% (for a subsequence {un} as chosen
previously.). Taking the limit,

T
[T wwpetat - g, we0) + v [ T A, wemat +

T T
+ {) (g, w,)e(t)dt = {) (f, w,)e(t)dt .

Let h=f- vA(u) - g. Then he L2(0,T:V').
T

-‘{) (u,wi)¢'(t)dt - (uo,Wi)fl’(O)

Take ¢ ¢ 8(10,T[), so that ¢(0) = o(T)

d
E(u,wt) = (h,wi)

fT(h, w,)e(t)dt .
0 i

0 , and we get

in the sense of distributions. Recall that the span of {wi}iﬂ_1 is dense in
V. Since
T .
(-[T uwe' it - [Thtiettidt, w) = 0
0 0 :
¥ i, this implies

JTuwer e - [Tnwemrdt = o,

0 0
du
Hence ( 3 #) - (h,¢) =0 ¥V ¢e 8([0,T]), so
du _ 206 Tt
at - he L7(0,T;V').
2 du 2, .
If a function ue L (0,T;V) and at ¢ L°(0,T;V') then we know
ue CO(O,T;H). Take ¢ smooth as before: ¢(0) =1, Then
Td . T
Goed = -[Tutg(thdt + WTDe(T) - u(0)e(0) ,
0
so (U(O)rp(O),Wi) = (uorp(O),wi) Vi, = u0)=u,. s
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du

Theorem: If { } -] < K

30 @ bounded set in LZ(O,T;V‘), then

g = B{u,u).

Lemma: (Compactness) If {vn} is contained in a bounded set of Lz(O,T;V),

dv
{ } is contained in a bounded set in L (0 T;V'), and the injection

V_C_‘?H is compact , then {vn} is contained in a compact setin L (O,T;H).
We will apply the lemma, then give a proof later. However, for now

we remark: If € is bounded the injection V_C?_ H is compact, We know,

if @ is bounded, that Hé(sz} S Lz(Q) is compact, If W W weakly in

1
V , then (Wn)i - Wi weakly H_, so (Wn)i A strongly in Lz, therefore.

0
Hence Wn - w strongly in H .,
Now we give a proof of the theorem.

Proof: Using the lemma, we can extract another subsequence, calling it
{um} such that

u > u strongly in LZ(O,T;H}.
Then we can use the following continuity property of B: If u. —u weakly
in LZ(O,T;V), u —~u strongly in ~L2(0,T;H), then

B(um,um) - B(u,u) weakly
in LZ(O,T;V'). To see this, we need to show that, for ve LZ(O,T;V),

T T

_{) (B(um,um),v)dt - j(; (B(u,u),v)dt .

However,

T
‘{;T(B(um,um),v)dt = -‘g (B(um,v),um)dt

by the properties of B . Recall that
av

f (Blu_,v),u_)dt = gf(u ) o (u ), dxdt .
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R SEN
(um)i - ui weakly in Lk(O,T,L (£2)).
{Since LZ(O,T;V) ﬂLw(G,T;H)g L4(0,T;L4(€2)).)
, 2 2
(um)i-v ui strongly in L7(0,T;L(Q))
, . 2 12 ; '
So (um)i(um)j is bounded in L7(0,T;L"((2) and (um)i(um) uiuj

. 1 a1 . 2 42 ,
in L(0,T;L°(Q)). Hence (um)i(um)j uiuj weakly in L™(0,T;L7(2)). "

strongly

du
How can we obtain { } contained in a bounded set in L (O T;v4) ?
We choose a special basis {Wi}i=l .
Let h =f-vA(u ) -B(u_ ,u ). Then {h } is contained in a bounded
n n n’ n n’
set in LZ(O,T;V').

dun
( "a't_'rwi) = (hn’wi) i=1,2,..

du
n
dt

= Proj of hn on the span of {Wl"' e ,wn} with the normof H .
A good choice for {wi }:_1 would be to take {wi }:(;1 as orthogonai in .
V and V', This gives '

li =1, < In H

For exampie, take for {Wi }i~1 the eigenvectors of the symmetric operator

A or A”l.

(Riesz's theory). ALivia v s linear, so it maps H- H.

mj ,1!_1_:1

(B v i H.) Since VG H is compact, A is compact as an

operator from H into H . Aﬁl is symmetric, so the Riesz theory implies

the existence of {Wi }il , an orthonormal basis for H with A']‘Wi A

where u, - 0. Altérnatively, Aw, = —l*w, = A, W, where \ -0 ,
i i w1 i i

_ _ (0. i#]
Then ((Wi’wj))v = (Awi,w},)H = (xlw w) d\ i=]
_a-l [0 i#]
((Wi)wj))vs - (A wi’wj) - ii i:j
Kc
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1 i

thus gy = 5wl = = VR
This is the required ''special basis'', and the above remarks complete
the proof of existence for the solution of the Navier-Stokes equation. .
Remark: u, ~u weakly implies u is a solution. Since we earlier proved
uniqueness, this proves that the entire set;uence converges weakly to u. =

Theorem: (Compactness) Let B0 C B, C B, be three Banach spaces with

1

and compact injection B I
du
~contained in a bounded set in LP( 0 ,T;Bo) s {—-—&—Q} contained in a bounded

2

continuous injection Bl_C_; B G B,. If {un} is

2 0

set in LP(O,T;BZ), with T<o , and 1 <P <w, then {un} is contained in

a compact set in LP(O ’T;Bl)'

Lemma: Ve >0 EC(e) : HaHBlf_e [{aHBO + C(e)ﬂauaz, VaeB,.

Proof: (By contradiction) Otherwise, @ ¢ >0 :¥ ni a ¢ B, with

HanHBi > EOHan”BO + nnanHBz . We can take Han]ls =1, so that
Locgliagly + nlagly - = laly <£—O

and ]}an!}B <§-.

2
Thus, {an} is contained in a bounded set in B, hence contained in

a compact set in B,. Therefore, we can extract a subsequence am - a,

1.
strongly in B. Clearly W B, =1. But a_- 0 strongly in B,, so,
by the continuity of the injection, a, = 0 - Contradiction, "

Proof: (Compactness theorem). We know {un} is bounded in ‘LP(O,T;B
du :
and { —dTn } is bounded in LP(O ,‘I‘;BZ). We want to extract a Cauchy

o)

sequence in LP(O,T;Bl).
First step: It is sufficient to extract a Cauchy sequence in LP(O ,T;BZ),

since the lemma gives
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P P P v
iall, < e llally + Cte)lfal VaeB .
B B B 0
1 0 2
That gives

P

m LP(O,T;B

P

vFo, 158

P

P
L (O:T:BZ)

fv -v_1i

A <elv_-v_|

1

and the first term on the right is bounded, while the second goes to zero,

+ SV, v, |
0

if {Vn} is Cauchy in LP(O,T:BZ). Thus we would get
m v vl

n"m <e constant Ye >0,
n, m-o L (O,T;Bl)

so {Vn} would be Cauchy in LP(O,T;Bl) .

Second Step: Let 8 be smoothon [0,T}]:6(0) =1 6(T) =0. Then {Bun}

and {(1~9)un} satisfy the same hypotheses as does {un}. The two new
sequences are handled analogously: we will work with { eun} now,

assuming un(t) =0 for t >T, decompose u s

u (t) = (= 1 ft+hu (s)ds) + (%ft+h(u (i) -u (s)}ds}'with h>0
n n
k t " J L —~— J :
a '(t) b (t)
1
tlbnttﬂt < [N -y e,
t 2
and
1/P! Pl P
og-uyiollly < [° IS <s>uB as < |-t J* | S e/
by Holder's inequality.  Thus Hu (t) - un(s)“B <Ch /P, and so
I/P’ 2 I/Pv
b (t)}[Bzf_ C h’" . Hence, Hb I p < C'h . If we can
n L'(0,T:B,)
extract a Cauchy sequence from {a }, then we would have
om e - | < cn/®,
n,m»0 L (0,T;B.)

2

and so, letting h- 0, and using a diagonal procedure, we could extract a
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Cauchy subsequence in LP(O,T;B ) from {un}.

2
Fix h >0, {an} is contained in a bounded set in CO(O,T;BO) :

]
ﬂan_(t)HB 5_-% hl/P Hunﬂ p < constant.
0 L (O,T;BO)
da du da ,
n _ 1 _ 1l et+h n _n
S = R, (th) - u (1) = h_]; =+ (0)do , so I n {Bzg Constant,

Hence {an} is a uniformly bounded equicontinuous family in CO(O ,T;Bz):
{an} takes values in a bounded in By which is in a compact set in B,.
Apply the theorem of Arzela-Ascoli to extract a strongly convergent sub-

sequence in CO(O,T;BZ) and so in LP(O,T;Bz). .

Properties of the solution of the Navier-Stokes Equation:

So far we have: 1f u ¢ H, fe L2(0,T;v), 3t ue L20,T3v) N £%0,T;H)

with %E-e LZ(O,T;V') which satisfies

-g% + vA(u) + B(u,u) = £
1)
u(0) = Ug -
Theorem: (Continuous dependence on Uy and f,) If U satisfies (1)
with uol,fl,uz satisfies (1) with uoz,fz, then
fu,-u_ || < Clu)lu,-u |+ || £ -] 1.
17281 200,730 N 150, T5H) zror ez T 2N 20,1
Proof:

d —
"é—f(ul"uz) + vA(uI—uz) + B(ul,ul) - B(uz,uz) = fl ’f2
(u)-u)()) = ug - Uy, -
Take the inner product with U - Uy

i
2

2 2 |
"c%‘ul-uzf + v”ul-uzn < ﬂfl-.fzn*nul..uzﬂ + }B(ul,ul)-B(uz,uz),ul.uz)‘,
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As before,

!(B(ul}ul) - B(uz}uz))ul}uz)g S {(Bul,ul-uz)’ul‘uz)! +
|B(u1—u2,u2),ul-u2)] = ]B(ul-uz,uz),ul—uz)l
f. C§ul”uzi Hu}“uzn ﬁuzn .
Hence,
d 2
%-c-i-,c'§ul-u2} +vnul-uzn

5 v
3 LA W R TR Y I
- Using Young's inequality on the right-hand side,
v 2 1 2
Z”ul-uzu + ;”fl'fzn*

AL R I T
and so

d 2 2 2 2C 2 2
IR NN L ERA Ty I L
Now, ]qunz € Ll(O,T)’:‘ Use Gronwall's inequality:

First step: Omit v| ul-uzlfz Then let o(t) = ]ul(t) - uz(t)lz

. The above
inequality becomes

o' (t) <a(t) + \M1) o(t),
where a, \e LI(O,T). Let

W(t) = o(t) exp(- [* -A(s)ds).
0
Then

(1) = (o' -Ap)exp(- [ N(s)ds) < a(tlexp(- [ N(s)ds) < a(t).
0 0
Integrate:

w0 <o) + [Fa(s)ds <p(0) + Jla] |
0 L{0,T)
Thus,

o(t) < (@(0) + flafl | dexp(|A] [, ).
L7(0,T) L7(0,T)
2 2
max]ul—uzl < Cllugy - u, |7+ [Ifl-lel 5

L0, T;V")
where C depends on uz

If u, is fixed,

)

#1584
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Second Step: Integrate the original inequality on [0,T].

T 2
l‘ - I .
Vfo fu-u, f%at < Jug
(something of the same type as above.) Therefore,

w. 1%y fT(a{t) + Mt)e(t)dt < C.

fhu,-u i <Clugy-u, | + 1 -£ ] ).
b2 120, 1v) N0, T3H) L0z - T2 20 1oy
C again depends on uz. .
Questions:

1) If f does not depend on t, is there a solution which does not
depend on t? (This is the stationary problem: given fe V', find
ue V:vA(u) + B(u,u) =£,)

2) For f(t)= £, what is the asymptotic behavior of solutions ? Does
the solution with u 0 initial point converge to a stationary solution ?

3) If fe Lw(O,oo;V'), is u bounded on (0,%) in some space?

4) 1f T < o, does a periodic solution exist?

g% + vA(u) + B(u,u) = £ fe LZ(O’T;V,)
u(0) = u(T)

5) If f is periodic of period T , does the solution converge to a
periodic solution ?
6) Regularity of the solution: If fe LZ(O,T;V), uoke V, is the solu-
o0
tion ue L (0,T;V)?

Theorem: (Bounded solutions) Let u,e H, fe Lf‘oc(o,oo;V') such that

0

ft+lﬂf(s)ﬁ ids <C VY te [0,0),
t
Then the solution u satisfies ue Lw(O,oo;H) and

[* e %as <.
t
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Proof: We know that there is a solution u on each bounded interval.
satisfies
S5l P e vl 2 <l el <2 el e )
Thus,
Sl e vul® <2 g2
Integrate (*) from t to t+l:
] ? + f“” luts) %ds < um]? {"“;m s 2

If we can prove |u(t)| <C , we will have established that

{tﬂﬂu(s) | “ds < <C,.

The injection VG H is continuous. This implies that ¥y > 0:
lull 2 vlul, so (1 =
L ul? e w2 < L2
Let o(t) = §u(t){2 . Then
P'(t) + e o(t) = g(t)
»(0) = given,
The exact solution is

olt) = p(0)e™" 4 ft e ¢ (*-%)g(s)ds |
0

Integrate from t to t+l and put (t) = f t4l o(s)ds
t

Pit) +e = ftﬂg(s)ds < C
t

Y(0) given.
Hence (t) < np(())e"Et + CE-:- if ft+1 g(s)ds < C.,
t

so  [** g(s)ds is bounded.
t

#1584
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If t <s <t+l, integrate from tto s .

@(s) - ¢(t) + (something >0) < fsg(s)ds
t

so s-l1<t<s => g(s) <o(t) +C ., Integrate from t =s-1 to t =s:

<C,

ols) < fs1 p(thdt + C < C'.
S -

2 ,
and we have an estimate

Applying this with ¢ = vyz we have g(t)< l}}f(t)!l*

2
ful < cgu(){ + Csup f Il £(s ){; .
L (0,0;H)
If ¢ satisfies o' +e¢ ¢ =g, ft g(s)ds < C , then
t+l

limsup |¢| < C hmsupf g(s)ds.

Indeed since ¢(0) e et 0 as t—=o, We have proved that if {Hlf(s )ds < a,

then limsup|e| < Cx.
{0

It ft+19(5)ds <a for t >N, let o(t) = p(N+t). Prove that
t
lim sup [¢| < Ce. This gives rise to the following:

Corollary 1: 1If ft+l{|f[l ds- 0 as t-, then |u(t)] - 0 and
fﬁ'l}!u(s)ll ds=- 0 as t-,
(;orollag 2: If felL (0,°°,V'), then ue Lw(o,w,H).
Question: If f(t)— £ V', does u con{rerge to something in H?

We will give a positive answer if fﬁo has small norm. For this we
will begin with an existence and uniqueness theorem for stationary solutions

for 'small data.

Let CO be a constant such that

0 [(B(u,v),w)| < Cllullfvilwl (This requires N < 4.)
‘ vZ
Theorem: If f e V', with I £y I, < < then there exists a unique solution
' 0
Uy of

1
vA(u,) + Blug,u,) = £, and }}uon <z Hfo I,
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For the proof we will use the following lemma:
Lemma: (Lax-Milgram) If V is a real Hilbert space and a(u,v) is a contin-
uous bilinear form on VXV satisfying a(u,u) > ai}u”z (@a>0) FueV,
then a defines a map A:V- V', given by (Au,v) = a(u,v), which is an iso-
morphism, and:
18760, < 2y, .

Given ue V,feV', consider the following problem: Find Ue¢ V
satisfying vA(u) + B(u,u) = f, This is linear in u .

Let a(u,v) = (vA(u) + B(u,u),v). Then A(u,u) = v(A(u),u)+ (B(u,u),q)
> v[[ﬁ}[z . Then by Lax-Milgram's Lemma & u = T(u.f) : [Ju]] < -éﬂfn* .
Problem: Find a fixed point of u - T(u,f). (f is fixed). Observé that T
maps fluj} < é el tmto itseﬁ,‘ since it maps all of V into that set,

2
F] 9 K3 v .
First method: With || £, I, < —-—-CO .

In this case, T is a strict contraction on {u:fjuf < % £ 1l 3 -

Hence there is a unique fixed point in this ball, This is seen as follows:

u

L

T(u,f,) vA(1) + B(u,u) = £
v = T(v, fo) vA(V) + B(v,v) = £y -
Take the difference, ‘13 -v , and its inner product with the difference of the

two equations:

(B(v,v) - B(u,u),u-v)

<
=
'
<
i

i

(B(v,v-u),v-u) + (B(v-u,u),v-u)
= (B(v-u,u),v-u) < Collv-ull fulllv-ull. T will thus be a strict contraction

CO - CO
since 2] < —5 £, <1

v
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C
Second Method: T is continuous, (T has Lipschitz constant -—-g— i fO H*.)
1 4

and compact. Hence we can apply Schauder's fixed point theorem. (We

will explain this later.) ]
2
v
Theorem: (Convergence at @) Let f ¢ V', [|f ||, < —é—g, u,e¢ H, and

let fe L (0 V') such that

ftH | f(s) - foo}[i ds—= 0 as t=—®,
t
Then |u(t) -u |~ 0, ftﬂ lus) - ull 245 0 , Where u_ is the unique
t
solution of vA(u,) + B(u ,u.) = fe

Proof: u e V, t- ut)=u, satisfies

o0
duw .
I +vA(u)+B(u,u}=r°°,
duoo du
since e 0. Now, Y + vA{u) + B(u,u) = £, Subtract, take the inner

product with u-u_, and we get

P2 ueug? b viusugl® < el umugl + Cglugl u-ugl®

in the same manner as before.

Remark that Coﬂ u | L <v. Let v- Co"uw" =¢ >0,

Then
P e, |2 e fumug 12 < Be-gll Jlu-u, |
< Slu-u 12+ 5o et 012,
and so
Sunug 1?4 efluug1® < cleg, 02
Thus,

lim sup (}u--umj2 + ftﬂ fu-u | 24s) < C lémsup ( ft+1ﬂf-f I 295 .

>0 t -y OO

So |u-u | -0 andf ]uuHZ»O.
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t+1,du , 2

Hggﬂ*ds—* 0 as t—oo,

This implies f
t

This proves also that ftH u(s) »~ % in V , because
t

1

Stationary solutions: the general case

Let f¢ V', The problem is to find ue¢ V such that
(1) vA(u) + B(u,u) = f, All solutions of (1) satisfy

vllull® = vaw,w + (B,w),w = (L < [ ] -

Thus [ul < ]—/l-HfH* We have defined T:V—V by u =Tv is the
solution of the linear problem vA(u + B(v,u) =f. T maps V into

fusful < < 60,3 -

We want to find a fixed point of T . (We have achieved this for | f||  small)
We will use a fixed point theorem. There are two main possibilities:
Theorem: (Brouwer) If K is a nonempty compact, convex set in IRN , and
S:K -~ K is continuous, then S has at least one fixed point.
Theorem: (Schauder) The same result holds if K is a compact, convex set
in a Banach space E and S is continuous, S:K -~ K.

First Method: Use Schauder's theorem. The difficulty is to find the set K.

1
Let X = {us|lull <= [[£ll,}. Then T~ K , but K is not compact.
We must show T(Kl) is compact, and use K = the closure of the convex hull
of T(Kl), K= conv(T(Kl)) .

Second Method: Use Brouwer's Theorem in an approximating problem,

Consider the Galerkin basis w,,w For ne IN, find

1, 2,'.’ *
n
u = i; A satisfying (vA(u )+ B(u ,u )-f,w,) =0 for i=1,2,...,n.
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Let Tn be the map given by un Tnvn

(vA(un) + B(Vn’un) - f,wi) for i=1,2,...,n.

and get Jlu_| <2, .

where un solves

Multiply by gfiwi and sum,

1 . .
T, maps {ue span {w,... ,wn}:ﬁuﬂ < ;}jfn*} into itself, T is

C.

continuous. (It has Lipschitz constant

theorem, ¥ a fixed point u. All u s

NER

> .} Hence, by Brouwer's
v

n ==1,2,...,‘ belong to

{ue Ve |Jull < %{}f‘{ - Extract a subsequence, call it {u_}, such that

un - u weakly in V; u, - u strongly in H , since the injection V S H is

compact. This implies B(un ,un) - B(u,u) weakly in V' by a previous result,

(Remember, (B(un,un},v) = -(B(un,v),un) -
AThus u satisfies (vA(u) + B(u,u) ~

stationary solution.,

-B{u,v),u) = (B(u,u),v).)

f,wi) =0 Yi, andsois a

Remark: If |(B(u,v),u)|< C*“uuzﬂvn , then we have uniqueness if

,2
Il < g,

Periodic solutions:

Let 0 <T <o, fe L%0,T:V"). Is there a solution ue LZ(0,T;V) N

1*(0,T:H) such that

'+ vA(u) +B(u,u) = f

(1) -
: u{0) = w(T).
Remark: We have the a priori estimate
1
lull < Sl
L7(0,T;V)

-60-
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Proof: If u solves (1), qu H. Then gtg € LZ(O,‘I‘;V‘). We can take the

inner product with u :
d 2 2
L LI CU AR E W DY B

Integrate from 0 to T,

T d

el 12
dt

lu]zdt = |wT)|” - ]u(O)IZ =0 .

Hence

[ Tuli®at < [Tl lula.
0 0

Use Cauchy-Schwarz:
T 2.3, Taen
< Nl dtﬁ({) el

which gives the desired result, L]

i
2

Let y >0, sothat ||V]] > y)V{H .
Lemma: We have the a priori estimate

lu | < oty,T)| £
0 ’ .20, T;v")

d 2 2 v 2 1 2
Proof: 3 -lul®# viul® < el el < Sl ®+ S5l
d 2 2 1.,.,2
= Sl vjul® <l
Therefore
d 2 2 2 ] 2
wlul? e w?lul® < el
This estimate gives

2 2
lum|? < fu 2™ F o fPemV (82
0

v

les)) 2 ds .

2 2
(Obtained by _(%(e"\’ tlulz) < %ﬂf“:ew ' and integration. )

For t =T, this gives

}u(T)sz_ e-WZT{u 2, CHf[[ZZ

|
0 120, T:v")
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(where C depends on T,) This implies, since ug = u(T), that
2 1 2
ugl® < ———5clfl5, .
] - T L7(0,T;Vv")

Theorem: (existence of periodic solutions) If fe L2{0 ,T;V') there exists at
least one periodic solution u e LZ(O,T;V) n Lw(O,T;H).
Proof: By proving the existence of a fixed point of the map S:H~H given
by Suo = u(T) where u satisfies |

u' + vA(u) + B(u,u) = f

u{0} = uo

First, we derive some estimates on S . Multiplying by u
S ju P ful? < el
and get
)% e vyPlul® < 22

This gives as before

Iu(T)Iz < e-WT|uO|2+ -T;Hfﬂzz
L7(0,T;Vv") .
—= Ty n®, en ) ®<
vT 17(0,T;V")

2 2
If lug ™ < .
l-e”

Hence S maps {ue H:|u| <m} into itself.

First Method: Use the Schauder fixed point theorem. We must show S is

compact. To do that, we must prove regularity theorems.

Second Method; Use the Galerkin method.

n
Let wl,wz, e be a Galerkin basis, un = 21 gi(t)wi satisfy
du -

n
at + vA(un) + B(un,u

un(O) = ugje Span{wl,...,wn} .

n) -f,wi)=o i=l’c.,n
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Let Sn(u ) = un(T). Then the above estimates show that

0
< = = <
Iun(O)i <m . iun('r)} }sn(un(om <m,
Use the Brouwer's fixed point theorem to find a fixed point for the map Sn .
The solutions {un} corresponding to these fixed points are all contained in

a bounded set in L2(0,T;V) and L°(0,T;H), since

1
u_|l < =l and |u (0)] <m .
Al 20, TV L%, TV @ n

1f the w, area special basis, then {-—atg} is contained ina bounded

setin L%(0,T;V').
; o«

Now, if u -u weakly in Lz(o,‘E;V), weakly * in L (0,T;H), then

B(un,un)-* B(u,u) weakly in LZ‘(O,T;V'), so u satisfies
(Y L AW FBULUT- W) =0 Vi
dt i

Hence u is a solution; since all the u, are periodic of period T, so is u,
That is

un(O)» u(0) weaklyin H, un(‘I‘) - u(T) weaklyin H.

This gives the existence of a periodic solution, ]

Uniqueness of Periodic Solutions:

Let |(B(u,v),w]| < C fulflullliv] .

2
Theorem: If [ | 5 < l—%——-ﬁ— there is a unique periodic solution.
‘ L7(0,T;V") 1
Proof: If u and u, are solutions,

d -
a;ﬁ-(ul-uz) + v.AB.(u1 -uz) + B(ul,ul) - B(uz,uz) =0
(ul-uz)(o‘) = (y - uz)(T) .

~u.: Then use

Take the inner product with ul 2

(B(ul,ul} - B(uz,uz),ul-uz) = (B(ul-uz,ul),ul-uf + (B(uz’ul‘uz)’ui“uz)
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So lB(ul,ul) - B(uz,u ),u

2 1-1.12){ = CI{UI-UZ‘ ” ul'uzﬂ “U

N

Farluuyl® vl ) ? Cyluy -yl uy-uy ey |

Clihuy 2y mu, 12

&

e | u,-u +

2 4e

(where ¢ is to be chosen.)
Since Hul-uzll gviul-uzl )

chul®
u -uzl

ZI < 4e ‘ 1

Then if ¢(t) = [ul(t) - uz(t){z, the above becomes

d 2 2
%?l “u, | CH (vae)y }ul-uZ{

L ott) + 2MB)(t) < 0

where

. Crlym)®
4¢

Mt) = (veely ™ -

which can be written

g tk(s)ds
et e ) <0

2[T\(s)ds 2[T\(s)ds
Therefore, o¢(T) e 0 < ¢(0) : and so, if e > 1, then

2(0) < 0 => ¢(0) =0 so ¢=0 Now

Now, c?‘

JINss = (vee WP - iy 1%,
) 1%0,Tv)

We know that |ju]| 5
L (O,T;V) L0, T;v")

Thus, we have uniqueness if

2 g @
c 2 C
2 1 L7(0,T;V") 1
(v-e )y T > > nuu
4e v2 4 120, T;v

V)
This is possible if || £ 5 < ——-}é—-'\[:.— by taking ¢ = 5"
L0, T;v") 1
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Theorem: (Convergence) If [f < NT and f is periodic of

X
130, Tv") <
2 (0,»x;V'") satisfy

of period T, let fe me

ft+T|]f(s)-f(s)]|fds—> 0 as t—o,
t
and let uje H. Then lu-u|~>0 as t— , and

-2
S u-dds =0 as 1w,
t
where u is the (unique) periodic solution.
Proof: 3—‘:- + vA(U) + B(u,u) = f  4(0) = u(T) .

du
dt

+ vA(u) + B(u,u) = £ u(0) = Uy

Subtract and take the inner product with u - u. Then

5 lued) e vua)Pe g Jusd) + o) fund] fu-i) i)
clu-ula)?
< mllusG) g NEEN S+ e fusi ) 2=
where n+e¢ <v. Apply the estimate [u-ull >vy|u-ul:
a2 o 2 Slwsl®pl® o
%a-'!u-u‘ + (v-e -n)y Ju-ul“ < y» + Z;}-”f-fn*

Let o¢(t) = |u(t‘)~ﬁ(t)!2. Then ¢ satisfies

-n2
(%) %?(t) + 2Mt)e(t) < y(t) where \(t) = (v-e ‘ﬂ)YZ } Clz “:e“ g

u(t) = ZL 1£- ﬂ: . By the last theorem we know, with ¢ = 0, & ¢ :fTX(s)ds> 0
i 0
This was with n=0 but with 7 small enough and ¢ optimal, this will still be
true. Now M is periodic of period T , and we know that
t+T ) -
f Y(s)ds -+ 0 as t-cw by the hypothesis on f-f .
t
Let a = exp(sz AMs)ds) >1 and b = max (exp(zftk(s)ds)).
0 0<t<T 0
Then by (*)

ft-w(t)exp(z{&(s)ds)) <yt exp<2f0t>:<s>ds) < by(t) .
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Integrating, ae(T) - ¢(0} < D f%;(s)ds. Change the origin and use th. fact
G
that N\ is periodic, and get

a o((n+D)T) <. o(nT) + bf(mm b(s)ds .
nT

Thus,

a>] => gnT)—> 0 as n=-»ow ,

[ I JRE——
: = i & w— 1
Remark If a Xn+1 xn +yn, nlim90 Xn <3O éimoo yn {a >1.)
. m m .

Because if ynﬁm for large m then a(xn_%l - a-l) < (xn "I ) for large n

ETe. m
SO hm(xn - a-l)s 0.

Therefore, |u-u| - 0 => ft+T;}u~5Hst»0 as t-ow by
t
integrating the equation,

Regularity of the solution of the Navier-Stokes Equation.

Part 1, Regularity in time:

The equation is u' + vA(u) + B(u,u) = £
u(0) = Uy -

We have existence: If fe LZ(O,T;V'), uo ¢ H, then a solution u exists,
with ue L20,T;v) N 1°(0,T;H) and u' ¢ L3(0,T:V').
Theorem: If f and f' arein LZ(O,T;V'), (so that fe CO(O,T;V')) and
U, € V with £0) - vA(uo) - B(uo,uo) ¢ H, then u'e LZ(O,T;V)ﬂ Lw(O,T;H)
and

u' 4+ vA(u') + B(u,u') + Bu',u) = f

u'{0) = £{(0) - vA(uO) - B(uo,u} .
Thus, u''e LZ(O,T;V') SO U e CO(O,T;V)ﬂ Cl(O,T;H).
Proof: Via the Galerkin method, Let Wi Wy be a ''basis' for V.

n

Find un(t) =i21 gi(t)wi satisfying
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du

_a?t_"{'vA( )+B(un)un)~f'€n’wi) = O izl,...,n

un(O) =

(1)
Yoy € Span {ul,. .. ,wn} .

- . T
where €, = vA(uOn) + B(uOH,,u } - vA(uO) B(uO,uO) ¢e V' and u, = u

on On 0

strongly in V., Then e n” 0 strongly in V',

We have the following estimates on u Take the inner product with

g, and sum over i . Then,
i

{%'ﬁ"!unizwliunhz < Bl ul + e B lug
lu (0)] = | 0 ,

Thus, {un} is contained in a bounded set in LZ(O,T;V) and Lw(O,T;H)‘
du

n . . .
Let Vn el VO = f{0) - vA(uO) + B(uo,uo) ¢ H . Differentiate to obtain

” dv
( +VA(V)+B(U. ,V)+B( ,u)-f,W) = 0 izl,z,OOC’nt

on’? ¥y

2) ¢ (vntm,wi) (50) + ¢ _ - vA(u_(0) - Blu, ,u

It

L (vo,wi) i=1,2,...,n.

This implies }vn{O)t <l|v We can then get some estimates on v = —g-:

ol

Take the inner product by gi and sum over i :
41,2

dt

L
2

pvlv 1% < 1w uvl + el v,
clv v e I+ 1) lv, |
< Ly 1P+ cplu 1P |+ v 1%+ c el

v,

IA

Finally, we obtain

d 2 2 2 2 2

E AR S RN Tl BN PR TN

MACEIINE
Since ||f' ﬂ € Ll(O,T) and Clnunﬂz is bounded in LI(O,T} an application
of Gronwall's inequality gives {vn} contained in a bounded set in LZ(O,T;V)

and Lw((} ,T;H). Pass to the limit through a suitable sequence:
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um - u weakly in LZ(O,T;V)
vV weakly in LZ(O,T;V).
The compact injection =2 um - u strongly in LZ(O,T;H), Hence,
B(um,um) - B(u,u) as in the existence theorem, and this proves u is the
solution. Next we pass to the limit in (2).
B(un,vn} - B(u,v) weakly
B(vn,un) - B(v,u) weakly.
(This follows because of the strong convergence of u -~ u in H,.
aw,
i
(B(u_,v_),w) = -(B(u_,w),v ) = -f(un)j s—(v,), and

]

( 2 L2
(un)j(vn)i - ujvi weakly in L (0,T;L (@)

This gives us ( -3-;—’- + VA(v) + B(u,v) + B(v,u) - f‘,wi) = 0 for all

1=1,2,... . Since Av, B(u,v) and Dfvyu)e LZ(O,T:V') we have

-%Y ¢ L%0,Tiv).

Theorem: (Regularization property.) If f,f' ¢ LZ(O,T;V’), Uy € H, then

tu' ¢ LZ(O,T;V)ﬂ Lw(O,T;H), and so u' ¢ Lz(e s T;V) ﬂLoo(e ,T;H) for any >0,

Thus, even if u is not smooth at t=0, the solution becomes smooth after

time t =e¢.
dun
Proof: Same approximation with v, = t gl Multiply by t and take the
derivative, to obtain
" dvn
Wt v— - I -
( T + vA(vn) + vA(un) + B(un,vn) + B(un,un) + B(un,un) tf en’wi)
< =O fOI' i=1,...,n.
v (0) = 0,
_ N

The same estimates as before give {vn} contained in a bounded set

in LZ(O,T;V) and Lw(O,T;H}, and soon ,
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Remark: 1) This procedure can be repeated, If f,f',f",.. are in
LZ(O,T;V‘), and U, satisfies a few natural conditions then
W, ,u e 10, 7w N L0, TiH).
2) If f,f',...,f(k) ¢ LZ(O,T;V'), Uy € H, then
u,tu’,.. .,tku(k) € LZ(O,T;V) n LOO(O,T;H). In particular, if £=0, ug e H,

then ue Cw(e,T;V) Ye > 0,
Part I1:

Regularity in Space: We will need some regularity result for A: What is

D(A)?
Lemma: (Cattabriga) we D(A) (this means we V and Awe H) <>

w;te HZ(SZ)ﬂ H'})(SZ) ¥i, div w=0 . (This holds if @ is bounded and smooth. )

1 L
Lemma: If we D(A), then B(w,w)e¢ H and |B(w,w)| < C|w|?|lw]| |Aw]|?2
aw awi
Proof: | (B(w,w),9)| = !z_; fwj 8x | < C(izj{wj.é-;j-le)wl‘}
2
by Cauchy-Schwartz. Thus
8w
| B(w,w)| g <C Z lw} 8xJ 2
By HGlder's inequality,
8w
<C ) lwl 4 I"é;;"i
i,]
Recall that
1 L
lwl , < Clwl*, Iw]®
4 L?‘ Hl
Hence,
b e
|B(w,w)| < C ), RARSY LA T AA MY A Hz
2 jho 1 l
i,] L H

by the preceding lemma,
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Remark: If we (Hi))z Nn (HZ)?‘, div w = 0, B(w,w) does not have 0 divergence,

We identified H with H'. This means B(w,w) = h + grad p where
he H= {divh =0},

Theorem: If fe¢ LZ(O,T;H} and Uy € V , then u' and Au are in

2 x
L(0,T;H) and ue¢ L (0,T;V). (And so B(u,ule LZ(O,T;H) by the equation.)
Proof: We use the special basis of eigenvectors of A . Let wi satisfy

n
A w, = A w.. {Wi} is an orthonormal basis for H. u = E g.(t)w, satisfies
=
du
( n
dt

+ v A(un) + B(un,un} - f’wi) =0 i=1,2,...,n.

Note: Aun ¢ Span (Wl, e ,wn}, since Awi = A, w, . Multiply by )\igi and

i

sum in i, Then

du
n .
( el VAun + B(un,un) - f,Aun) =0 i=l,2,..,n .
du
. _n 1 d _14d 2
Note. ( dt $2 Aun) - 2 dt (A un?un) - 2 dt “ un"
d 2 2 :
%a—{\[unn +v|au [T < Bl ,u))] - |Au_| + £ ]Au | .
Apply the general form of Young's inequality:
P P! 1 1
ab_<__—a'§~+-§;‘ where ‘};4-‘1-5,:}.

1
or ab<ea +Cle)b’ Ve .

Let P=4/3 ., Then P' =4, The right-hand side above is, from previous

results,
< elau |2 cerfu | Ao 1 +elau |2 s cele]®.
We obtain
Sl 1%+ mlau |? <ol clu [ Phu 12 )®
l{un(O)H <C since uje V.

Apply Gronwall's inequality. With A (t) = C|un]2[|un ﬂz , then
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A ()] <cC
o ho,

because |u | < C and fT | u HZ
n' — 0 n
Then we get {un} contained in a bounded set in LZ(O,T;H). Now

<cC

Ue Loo(O,T;V) and A uce LZ(O,T;H) => B(u,u) ¢ L4(O,T;H) by the lemma above,
Thus u' e LZ(O,T;H).

Theorem: (Regularization.) If fe LZ(O,T;H), u, e H, then Nt ue Lw(O,T;V)

0
and Nt u'e LZ(O,T;H) .

Proof: Multiply by t)\igi and sum in i , as before, Then

2 2
1%+ t1au |2 <tiBu )|« |Au | +t]g] A |

d 2
2 g e 1 - 2llu )
3/4

Ct%lunl%Hunn /% |au 124t A ]

Apply Young's inequality again, and obtain

d

2
& ™.

2 2 2 2 2
(¢ fu 12+t (< cleffe 2+ ctlu P |2

The remainder of the proof follows as usual.

Remarks: (On Cattabriga's results,) D(A) = {ve V:vie HZ(Q) Yi}. Suppose

he H, Au=h. Then each hi € LZ(Q), divh=0, and h - nlaQ = 0. (inner
0
product,) Au = h means there exists pe LZ(Q) with - A ui = hi - E-i—
i

If hie H'l(n), then ueV, Pe LZ(Q) satisfying
- p_ 1
-Aui = hi - 8Xi (11i € HO)
divu=20
Cattabriga's result says that if hi € LZ(Q), then u, e HZ(Q) and
Pe Hl(ﬁ) .

Embed this in the more general problem: Let

f e 1 lg) , Je L2©) with [ gax=0.
Q
Then there is a unique solution (ui, p) such that ui € HE(Q), Pe¢ LZ(Q)/constants
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and

~Au, + o = f
i axi i

iva = g {This is an elliptic system)
Consider the regularity problem: if fie LZ(S‘Z) and ge Hl , then U, e HZ

and pe Hl.

To prove this, use the Method of Translation

'r.h is a semigroup whose infinitesimal generatoris A, a ISt order
differential operator in HZ .
1f fi ¢ DA, ge D(A), then usPe D{A). This gives regularity in

tangential directions; the equations then give regularity in normal direction.

III. A Semilinear wave equation.

" We will now consider the problem

2
__8 §~ Au + u3 = 0
§ ot
u(x,0) = uo(x) (in IR3.)
8u

(This equation is a perturbe:d wave equation. It is a propagation problem;

we will show that the propagation speed is 1. We will consider § = IR3‘}.
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Formal estimates on the wave ejuation:

Consider
u' - Au =20

u(0) = uO , ul{0} = ul

Multiply the equation by g% and integrate: {u goes to 0 at =)

d du, 2

9 u du i
[ S e dx =3 g [, 50«
R arl Ot dt .3 8t
2 2
g u 9du du 2 u
3= 5% = [ a0 (by parts)
E)xl t
au . 2
=z dt f3(m)dx

Formally, if u is smooth, we have

= f = 8u z+§«(8u z]dx~0

The integral is the total energy. The first term is kinetic energy, the second

is potential energy.

The abstract formulation of the wave equation:
where V = HI(IR?’} has norm ||-|| and

We have VC H=H'CV',

H = L%R>) has norm |-]. V is densein H

3
Let Ae &(V,V'), A=-A, A=A, since (Au,v) = (Av,u)., We have

the coercivity condition:

(Au,u) > efull® - plul
(Au,u} f Z( au 2-.

Then we can express the problem as

ufl? - Ju)?

u'+ Au=20

u{0) :uoe \%

u'{0) = u,e H
-73-



To derive a formal estimate, take the inner product with u':

" ' d ¥ 2
(wiuh = 3 o ul”,
. 1 d . * .
(Au,u’'y = 3 —d—t(Au,u) since A = A , and since
= 4+ [(Au,u') + (Au',u)].
Thus we have
d

2
— 1 -—
dt(]ul + (Au,u)) =0 .
Integrate from 0 to T . Then

hul ] < Cllugh + 1y T<w.
L (0,T;V) L (0,T;H)

Thus ue L (0,T;V) and u'e L(0,T;H). The u" given by the equation is
w .
in L (0,T;V).
All this is formal because (u',u') and (Au,u') have no meaning.
A good space to look in for solutions u is uc« Lw(O,T;V),
o0 1
u'e¢ L (0,T;H), and u" +Aue L(0,T;H).

Existence and uniqueness for the linear problem:

Hypotheses: VCH CV, A - A" , and (Au,u) Zallu]fz .

o€ V and ul ¢ H, Then there exists

ue Lw(O,T;V) with u' e LOO(O,T;H), such that u'" + Au =f, u(0) =u

Theorem: Let fe Ll(O,T;H), u

0 2
and u'{0) =ul: that is, u''e Ll(O,T;V'), sd u(0) and u'(0) have meaning.
Proof: Via Galerkin's method, (Note that V is separable.) Let wl,wz,,,,

n
be a '"basis' for V. We try to find u_ = Zl-g,(t)w, such that
-~ n i= 1 1

dzun

( 5 +Aun-f,wi)=0 i=1,2,...,n
< dt

un(O)zuon—-uO in V

! = -

un(O) =y, >y in H.
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1) Local existence of un
As the wi are linearly independent, this is a system of differential
equations in 9. We can write
g'i'(t) = Fi(gl,. .. ,gn,t) .
Thus solutions un exist and are unique on intervals [0 ,tn) where ‘tn <T.
2.) GClobal existence,
The formal procedure can be used now, since u,u', and u" take

values in span(wl,w wn). Multiply the equation by gi(t) and sum

2,70‘.’

over i, Then »

d un dun dun
( +Au , —/) = (f, —).
dtz n dt dt

Using A =A*, we get
d 2 n
a5+ au u ) = (f 55 < [fHul] .
Integrate from 0 to t:
-‘-(tu'l + (Au_,u ) < ,,,({ul |12 +(Au0 »U, ))+f €] fu! |ds .
Now use Hélder's inequality with |f] 3([5 | : lu‘ |): then Young s inequality, so
[F1gulas < & [ lglds + & [P gl | Pas
0 0 0
Thus
1 t 2 i 2
Au | + (Au,u)) < C + zfgf}ulds.
Take ¢ (1) = 1u(t)§ + (Bu_,u ). Then
¢ (t) < C + ft A(s)p (s)ds with X« LI(O,T). (x= £ .
n - 0 n
Let q;n(t) be the right-hand side of this inequality. Then

H —
G = Mble () < MO (1),
Therefore, Gronwall's inequality gives

<pn(t) <C exp({;t R(s)dsz < C e’xp(_{}T A(s)ds) .
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This is a bound independent of t , and so tn =T forevery n. (This gives
an a priori bound on un. )
Hence {un} is contained in a bounded set in LOO(O,T;V) and {ul“l}
is contained in a bounded set in LOO(O,T;H).
3.) Pass to the limit via an appropriate subsequence. Extract as subsequence

u - u weakly* in LOO(O,T;V) and ul"n-~ u' weakly* in LOO(O,T;H). Then

2
d um . dzu
at>  dt?

in the distributional sense. Take the limit in each term of the equation:

(Bu_,w,) ~ (Au,w) weakly* in 1°(0,T)

i'vt, v

2
d"u du
n 4, _n L 4 du o
( 2 W) r g Cae W) w Wy in 8'(0,T).
Thus u satisfies

dZu
( 2
dt
(In the distributional sense,) This proves that
dzu

dt?

+ Au-f,wi)=0 Vi,

1
¢ L (0,T;V")
du

m
at )

um(O) - u. weakly (because we have estimates on u and on

0 du

1 , m - g_li . Q0
For um(O) we have ( at ’Wi) (dt ’Wi) weakly* in L (0,T) and
du
d m
q gt oWy - Aug,w)
1 dum
which converges weakly in L7°(0,T). Thus ( 3t ,wi)lt__o converges to

du

(a—t—,wi)|t=0 = (ul,wi) for all i .
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Theorem: (Regularity in time). 1f f,{' e LI(O,T;H), Uy € D(a) (Au0 ¢ H), and

ul ¢ V, then there exists a unique solution of
u'' + Au. .= {

Vo=
u(oY uO

H _
u'{0) -ul

such that u,u' e L(0,T;V), u" e L°(0,T;H), and u’ = v satisfies

v+ Av = f

v!(0) = £(0) - Au,

Proof: (Via Galerkin's method)
du
. As usual, we get un such

b

First, we obtain more estimates on 3

2

that
du
i=1’2’acn,n

n
( +Au_ -f,w)=0
dtz n i

{
un(O} = uOn

i -
du un{O} = Yn
n
Put vn rrami Thus

dzvrl

( + AV -f’,W,)'—‘:O izl’z’ovu’nl
dtz n i

- i - - 3

vn(O) = un(O) -uln ul in V.

Using the equation, we get also (v;l(O},wi) = (u;;(O},wi) = (f(O)-Aun(O),wi)
i=1,2,...,n,

The trick is to choose w, =u, and u, =u, forall n. v (0) is

1 0 On 0 n
bounded in V , and v;l(O) is the projection of f(0) - Au0 onto
span(wl, v ,wn} , and is bounded in H ., Apply to v the estimates obtained
in the existence proof for u .
-77-
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Then we have

{un }, {vn} are contained in a bounded set in L?O(O.T:V) and {Vn}

dv
{ -a-;c{}w } are contained in a bounded set in Lw(O,T;H). We know that u - u
dun i,
weakly, since {Eﬁ:—} is containedin a boundedsetin L (0,T;V). This gives
gf— e L7(0,Tiv).
dzun o
{ > } is contained in a bounded set in L (0,T;H) gives
dt
dzu o0
5> ¢ L (0,T;H). This gives the existence of a regular solution.
dt

Uniqueness is next, Suppose u are solutions., Then

Y2
(ul-uz)” + A(gl-uz) = 0
(ul-uz)(O) = 0
(u;-u,)(0) = 0.

Take the inner product with (ul-uz)‘. Since Y and u, are regular, inte-

. . d 2 _
gration by parts is legal. Thus we obtain 3t (lul-uzl + (A(ul-uz),ul-uz)) =0,
The quantity in parenthesis was 0 when t=0, so

2 2 2 _
|u1-u2] + vnul-uzn < ]ul-uzl + (A(u)-u,),u-u )= 0
The first inequality uses the coercivity of A . Uniqueness follows.
Uniqueness holds under weaker conditions, however,

Theorem: (Uniqueness) If fe le(O,T;H)_, Ug € V and u, ¢ H, then the

1
solution u of the equation is unique in the class of functions

{ue L7(0,TiV) tu' e L°(0,T;H)} .
Proof: By taking differences, we need only show that f=0, Uy = 0, and

w, = 0 imply that u =0,

1
Take ge Ll(O,T;H) such that g' ¢ LIQO,T;H).
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Solve

2
-d—;, +Av =g
dt
< v(T) =0
9 vi(T)y =0
Take w(t) = v(T-t). Then
('
w'' + Aw = g(T-t)
{ w(0)=0
wi(0)=0
N

g satisfies the hypotheses of the regularity theorem, so we can find
0
v,vte L (0,T;V) with v" ¢ Lw(O,T;H}. Consider

0= fT(u” + Au,v)dt .
0

fT (u't,v)dt
0

T

ST, vndt + T, vm) - (u(0),v(0)
0
- {u',v')dt,

#

0
We can do this since u"e L (0,T;V;), u'e L (0,T;H), ve L°(0,T;V) and

0
vle L (0,T;V). (v is regular)
T T
= [T (u, vt - (W(T),v(T) + (4(0),v'(0)) = [(u,v'")dt
0 0
(note that the integral has meaning by our conditions on u and v.) Also,
[Tau,vidt = [fu,av)at  since a=2a% .
0 0

Hence,

0 = fT(u" + Au,v)dt -

fT(u,v" + Av)dt
0 0

[T, gt
0

for a dense class of g, so u=0,
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Theorem: (identity of Energy) Suppose fe¢ Ll(O,T;H), ug € V, and u H.

Then u e CO(O,T:V), u' e CO(O.T;H) and 7 s,te¢ [0,T],
[u' (0] + (Au(t),urt)) = [u'(s) 7+ (Buls),uls) + 2 (£(7),u'(7))dr .

s
Remark: This implies that if u e Lw(O,T;V), u' e LOO(O,T;H) and

u'" + Au e Ll(O,T;H), then |u'| 2 + (Au,u) is absolutely continuous.

Proof: Assume f,uo,u satisfy the hypotheses of the regularity theorem.

1

o0 (o]
Then u,u'e¢ L (0,T;V) and u"e¢ L (0,T;H), and so the conclusions are true.
{We can integrate by parts, )
Next, we approach
f by fn

u. by u satisfying the regularity conditions,

0 On

and u1 by u

u -u_ satisfies an equation with f -f , u
n m n m

In

-u and u, -u
n Oom’ In

.

0 Im

By the original estimate,

lu_-u_| < cllf - | #llug cug o+ Juy -]
n m Lw(O,T;V) n le(O,T;H) On Om In "Im

and }u;l -u' | satisfies a similar inequality.
©0
We have a Cauchy sequence {un} in L (0,T;V), therefore, and all
0
the un are continuous; this gives un - ue C (0,T;V) and similarly
ux'q - u' e CO(O,T;H). Now, pass to the limit in the desired equality.
Theorem: (Regularity in space)

If fe Ll(O,T;V), Ug ¢ D(A), and u, € V , then the solution u satisfies

]
ue L2(0,T:D(A)), and u' e L (0,T:V) .
Proof: If f,f' and f'e Ll(o,T;v;,uee DA% (A ug ¢ DA) and u ¢ DA)

then u,u' and u'" e L°°(o ,T;V) from the theorem of regularity in time,
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Obtain a new estimate by taking the inner product with Au':

(u',Au") = 3 %{(Au‘,u’} since A" =2
d 2
(Au,Au'} = é-d?gAu}

This gives

N

d. . 1
Sl ,un + [Aul %] = (5,201 < (AL, DA, u)
since A = A* and (Au,u)>0 ., Now, (Aul,ul) + iAuolz <® , By Gronwall's

inequality
2 2
(Au',u') + |Au|” < Cl]|f] + Jfu, |l + e )
LI(O,T;V} 0" IXA) 1%V

(C depends on [f||.) Now approach f by £ e CZQO,T:‘J}. Also u, by

uOn € D(AZ} in DA} and u, by u in D{A)} in V., (The approximation of

1 in

1
f isin L(0,T;V).) .
This gives the estimate on u ., In the case V C__‘? H is a compact
injection, one can use a special Galerkin basis of eigenvectors of A, (or A“I).

Awi :Xw‘,ki»w .

ii
This gives
dzun dun
{ +Au_ -f, A —— ) =0, which gives the estimate,
2 n dt
dt
Special estimates on the wave equation:
s 2
g l; - Au=f
ot
< . N
u(O)::uO in R , n>1,.
du
L o5 (9 =y

These are for smooth solutions.

Propagation with speed <1,

Note: BE{Q’rO) = {v:fvl,.< rO} .
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Theorem: If the support of (uo,ul) is contained in B(O,ro) and

supp(f(t)) € B(O,r0+t), then supp(u(t)) C B(0,r *t) .

Proof:

Take the inner product with fu

pr ¢(r-t), where ¢ satisfies: ¢(r) =0

on [O,ro} e(r) >0 on }r0,+°0[ @'(r) >0,
We will prove that

10 = [ (] 5, +21 e 01 otr-tiae r= x|
R

dI
t —_— 0,
satisfies prragih

Ju

10) = [ (Jul®+ Tl etriax =0
<r i i

r
Then I(t) < 0 implies

a“ 24 Zl 2 2)(x,t) p(r-t) = 0 a6

so if r-T>r0,<p(r T)>0 and so

ou, 2 o ou 2
{ ‘ Z l 9%, =0,
1

which is what we wanted, Now, to prove the assertion above,

2 2
au 8 du d u
fN 20t0-t) [ 50 5+ L ox. ox ot 19X
ot i i i
ou,2 0 2
[y Penlle +Zlu
IR
2
ou 2 u 2] du
= f 20(r-t) o —dx - f — [20(c-t) s—] =
IRN ot 8t2 }RN ox. axi
au ;2 ou_ 2
~fN<p(rt)Hu Ei
R
2 x
du, 9 u N i 8u du
= [ ¢ 2000-) 5 (= - Au) - Lf r-t)— 22 &
IRN 8t2 i IRN r axi at
Bu 2 du 2
-f [ ot 2 o o,

i
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2
Use the fact that i—%» Au = f , together with the conditions on supp(f) to
ot

get the first integral © .

Then it suffices to show

X
ou "y odu 2 i du du
— —_ = >
(at) Z(Bx') +4§12r Bxat—o a.e.
! 2 2 % 8u
Use the fact that 2|ab| <a™ + b” Va,b¢ IR, together with a = T 3 ond
ou
= ox, to get i
i du du du 2 i, 2 du 2
2l o x| S (ox )“)(at ’

i
and sum over i, Then
X, 2
L= B a

r

H

so that the absolute value of

ZZ 18u8u
raxat

is less than or equal to the sum of the other two terms, as desired,

In the more general case - A = - Z -a%—:— a, j -gi- s the speed of
: i i

propagation S is less than the square root of the maximum eigenvalue of

If f=0, and supp(ua}, supp(ul) C @, then distance (x,2) >t =>
u(x,t) = 0, To see this, cover @ by small balls and apply the above
result,

If u" + Af = 0, then |u'| 2 + (Au,u} is constant in time. That is,

du 2 du 2
E(t) = fN [l 501+ };1 5—)—{-1 (x,t)| “]Jdx = constant.

E is the energy.
. N . N .
Energy cannot goto 0 in IR . However, if QCIR and Q is

bounded, the energy in @,
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cangoto 0, as t increases. (The problem is still posed in IRN.) This

corresponds to the wave passing by.

2
Three invariants for 2 .Au=0,
atz
ou, 2 2
1) E((t) = INU&" + |gradu| “}dx
R
L du -1, - 2
Recall: gradu = (5=,...,5) r= |x| N"'\/Z,Xit
1 n R i
E)u 2 du Bu
2) E,(t) = fN [t 51 “ + |oradu] 2y 4 or M 5 o+ (N- 1)u——~]dx
X
du i du
where ar _Z r ox,
i i
3) E_(t) f [(r e )| ;2+tgradu Y+ 4tz?r“§—‘-‘-+2(N Lt - (N- l}u } X
3 N ar

These can be obtained by multiplying the equation by something:

ou du ou
For Bl, 28t ; For EZ’ 21:8t +2r +(N byu; and For
E,, 20%+t%) Sy 4tr-—§—+ 2(N-1jtu

Remarks: 1) We are still in ]RN. If we work in Q = IRN, and use u| 0 = 0,
, d Cn.
we still have Gt El(t) = 0 ; but

d du, 2 8u 2
-d'EEz(t) ::a{zl—a%[ {x-n)de and —d—EE3(t) = 2t f{ {(x - n)de

(n is the normal vector to aQ.) If Q is the complement of & star-shaped,

bounded set in IRN, E2 and E3 are decreasing, since x-n<0 on Q:
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2) }33 >0, If E3§C , we will prove, for N = 3, that

S U224 gradulPax - 0 as L
k 2

for a bounded set K.

Suppose u is smooth, (with compact support in IRN) and
2

-?——pz--Auzf in IRN. N>1.,
at
d ou,2 2 _ du
1) dth‘”(l 5r| + lgradu[ax = sz"’ TR
R R
3u2 2 d¢ du du
+ f (I + | gradu] )-Zzai o, at]d}s:

d du du 8u 2
2) a2 16%, ot X = f" fd‘z’”f[’"axl ot |

9
+ 1 aii aduQZ 881 du ou ba i 0u du 1ox .
2 ox, ar ; axj dx. 8x} W ax, ot
Proof: Left as an exercise. Multiply the equation by a-g;c—- and integrate by
parts, a = a(x,t)

9 ou, 2 9
D Jeun s Syt s Sl - vl ® e Ga Ste dap fu e

. . . d 9
If we work with functions of (r,t), using o Z";"’"é; , and ¢
depends only on r ,
du, 2 ou, 2 2 d¢ 9udu
(1) f (] + }gradu{ )~f[2¢ (l +|gradu| °)- 25, or ot Jox.
Taking a, {x,t) -—-a(r t) and summing in i
d ?EQE_ _ 1 Qi (N-Da,  8u,2
(2 aarat"f f+f[ 2( + r ”8t!
9a ou du , , da {N-3)a 2 da
storoat Tl *o ) oredu]” - {3_'_” | “Jax.

As an example of the derivation, we compute the coefficient of { !

It was

Ba x X X
! ! i%a i, 8 T
Zbax *i-‘ [rar r+a6xi(r)]

- L\’.l

i
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S T i _ 2 (N-la
)—r' 3'8028xuar+ r

Next, sum the left-hand sxdes of {1}, (2") and (3), and suppose the

result,
B2, g2 BBy By
5 Jell5o1 "+ arady] ”’aar 5 tvus)
ou, 2 3u 9
has no term in |+, |gradul 2, o2 Iau %. Then the coefficient
ot or ot
3
ler ! -[-a—g’ - ?], which is 0 if and only if a(r,t) = b(t)r; then the
3 N
coefficient of { { is 5—?— - 5 b(t)+ ¢ ; that of {gradui2 £+¥b(t)-¢
o o
and that of o ot IS -2 or + b'{t)r
These are 0 if andonly if ¢ = gb(t) - %t‘g and

9¢ 3¢
at 2b(t) 5 ar

This implies b"(t) = 0 and the general solution is

ib'(t)r .

® a+ pt+ y(r2+t2)

b = 2(B + 2vyt)

$ = (N-1)(p+2yt).

For a=1l, =y =0, weobtain E.. For a=0, B=1, vy =0, we

x
e} du 2.
obtain E,, and also get _'o‘—\tk ugr +zadlulT=o0
a=0,p =0, y=1 implies -g% aat Aup[ i = Z(N-l}uép---—-(N l)u ).

Subtracting the right things, we get E3 .

Remark: u'' - Au=1f,

i) tf(iau 2+}gradu} dx = fz——-fdx

au du

gt ot (N- l)u-——]dx f[ t +2r——+(N -hu)fldx.

ii) -—-—f[t(lau 24 | gradu| 2y 2y
Question: If u' - Au = F(u), for what kind of functions F does this give an

invariant ?

Let' G be a primitive of F . '&% G =F.

RS
[
(31
o o]
Mo
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Then

du d
j(zt—-mr——r- +(N-Du)Fu = — [ (2t Glu) +

5 —a;;iwxi G(w) + f(N-1 uF(u) - 2(N+1)G(W)]

1

and so,

%{f [t(-) - 2t G(u)] = [ [(N-DuF(u) - 2(N-1)G(u)] .

. . a . ‘g .
There is one function: F(u) = cu~ which satisfies this, where

N+1 3
a:-ﬁ-—f For N = 3, F{u) = cu
Recall, now, that we had the following invariants for u'' -Au =0
in R

1) fN(lau 2 4 |gradu| %)dx

ou, 2 ou 9du du
Z)IN[t(] +!gradul )+ 2rg— gyt (N-Du 5=]ax
3) [ (Foet )({8”12+ |gradul ) + 4 tr 22 B4 oo pyru 3 (N-1puPax
IRN ot or
Now we have other invariants
number Invariant Corresponding multiplier,
N fud Bu
x, ot 9x.
i i
du 9u 3du du du
N fxi( Y + | gradu] )+ 2t — 3x 3 *iot +t5-;
N(N-1) du du ., du | 8u du
2 f (xi 3x}. % ax ot X ax} X ax, :
2
Remark: FEach multiplier satisfies 3 ‘2'" ~-Av =0,
62 ot 9u
Lemma: If u,v satisfy — - A =0, then I = [ w2y s constant.
_— 8t2 ’ N at ot
8 v 8%1 ;
Proof: -—I-—fN at = f(-uAv-!—Auv):O

for u,v with compact support. (Note: we used (Au,v) = {(u,Av)., The lemma

*
holds with A in place of A forany A=A .)
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This lemma implies the next:

2 ,
Lemma: If P transforms solutions of 2u Au = 0 into solutions, then
5 au_ O
Zpy .. &
Jtu gpPu - G Pu)

is a constant in time,

3 L
Now we can compute all the operators P=a, — + ZL}% +C
T .

2 0 ot
which do this. Let [P, ,ﬁi_z,‘ A] be the commutator:
dt
2 2
P(i—é‘- A‘i-(—é—*z"-A)P
dt at
which is a second order differential operator, S0 we want
a2 82
{P,--—-z - Al = d(x,t}(-—-é-- A)
ot ot

Simple computations give

r
I R -
i axj o8t 2
< Bbi E}bj
% et —it =
Vi#) B, tox 0
db. da
¥y o—t = —
j ot ax
L i
2
r ¢ a
9c 0
2~ + -Aa_ =0
ot atZ 0
N
**< V. -275;‘;-+~—-—-23—-Abj=0
) § 8t
2
é——g-—Ac:O .
~ ot
Using #* we obtain
azao 8%, 8%, 8%b,
Yi¢j 2 L 1=0\ and so 0.

- ] _
9x. 0x, 0x,9t = 9x. ot x. ot
i i j i

-88- #1584



82a 82b, Bza
0 i

0
Let o = - - 3.
- da 83a
K N 3X18Xj2= 0 for some j(N>1)
0%, o’b azbj o
Let By = 3xot™ 2 - oxox 'j 2nd = -—5 Vk#i
3
V-—aﬁi~—-—--“ =05 ¥ # Py 2% 0
3 -
v % 2
t axi axfat ot
ac
*% gives then 25-,; = (N-Da
gc
and
2 9p
Q0 = E—g"AC - _Nz.l%% - N;}.Z axi
ot ] 3
. N-)® e
- 2 at

So « and B, are constants and we have the general form of a,

a,2 2
a.= —(t 4gr )+t X, + vyt + 0.X, +¢ .
0 Z( ) 32653 Y ; } 1]
Then we deduce

B,
i, 2 2 "
bi = (t -r) + xi;ﬁjxj+atxi+\’xi+6it +bi
where _ _
8bi ab:,L &)bi t’)bj
A e R R
i i i
N-1
= —~—= c
c > (ot + Zﬁlxj)-t- 0
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525, 2~ 2~ 2-

‘ i 8 bJ. 3 bk 2 bi '
Since %.0% = "I en = e T hidn the equal form of bi is
ok ik i i Tk
}’ A X, 4+, with X\, ,p, areconstantsand A, + X, =0 7. . Toobtain
’i'J iy ] i ij7'1 i) i i,
the invariants we notice that
ou - Y‘ du du
f( Pu - Pu)dx Sz, “+a {gradui +2) 3 bjax} 5p )dx
2
aa ab ] b ~
dc
l_.l_ ] 3 9
+fuat +j? dx+f (Aa+LJJ J8t 5 )%
so this gives
Theorem: (invariants of the equation)
aa
du, 2 , v, 9du du au
S50 +a;gradu{ +_ij8 37)9x +(Nl)f--atu dx
2
__{I\I_-ii_)_oz_ f{u} de is constant in time if u satisfies §-;~l—- Au =0 (and is
ot
smooth with compact support in x) where
24
a, = 3t +rz)+t;§3jxj+yt+;6jx}. + e
B,
i, 2
= - - A
bi 2( r)+x ijxj+atx+yxi+6t+z i j
N
c = (at + 2 ﬁ X ) + constant

i

with A, + A, =0,
‘ ij ji

So there are 3 + 3N +AT-(-1§:~]’)* invariants of this type, N+2 of them
corresponding to d(x,t)# 0,
a%u * du
Remark: '"Formally." ——=+Au=0, A=A, If F(u, _d?) is an invariant
dt
9
and differentiable, as a function F(u,v}, then w(t) = g(u(t),%(t)) is a
2
solution of g_;v +Aw =0,
dt K
We can prove thisin V=H=1R".
kHence, (g}?’:w) (u, dt) is a constant, equal to (u §—F- + v -g—— )} where
v = g—: If F is homogeneous, this is cF, All the homogeneous invariants



dPu d

are of the form (u, dt} (= ot

sPu) where P is homogeneous and transforms
solutions into solutions.

In the case N=1 for the wave equation, there are nonlinear transforma-

tions P taking solutions into solutions,
Conjecture: If N >1, there is no noﬁ-affine transformation conserving
smooth soiutions of the wave equation.
Example for N=l, u -~ (au)'2 + (2“)2 conserves solutions, u is a solution
if and only if u = f(x+t) + g(x-t).

w= @2 &2 2 pgf +0490)? = 20 + 2097 = £00b0) + g (x-1)

The corresponding invariant is

f[(au)z+ 3 83‘,i gi)zld = f(u%-vg-%% )dx ,
where u is a solution,
o’r  o°r
If N=l, one can prove that if F(u,v) satisfies 3= T3> then
du ov
f p 28 Su 811
ot’ ax

is a constant., Thus there are many invariants kfor N =1,

Lemma: EB >0,

Proof: First proof: E, is independent of t s sotake t = 0. Then prove
f(rzlgradu[ 2. (N-l)uz]dxz 0 for ue SRV).

This is a generalization of Poincare's inequality. Consider

2
X X
2,.9u 2 du 2.2 71 _ du i 2
e G ) + 2u axlaxi+au r2)dx~f(r~—-—axi+a~—-r u)dx >0 .
So by an integratzon by parts )
fZ Ju xi .
(—w)dx fudx+fau-——~dx>0 Sumin i,
r ; ‘

frzigradulzdx-fl\}'a uldx + fa‘?‘uz >0, so
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f rzigradujzdx > (Na-az) f{ui de Ya.

a=l gives the desired result; but a = -NZ gives a better inequality:

2 2
fr |gradu| “dx > 4 j

9‘1 (N-1)(N-3)

Second Proof: E f{( 2 ) y

2 ou
+Z>\ 1+ 4= ?xihi}+

. (r +t) 2
[ 2%

r

u .,

The last term is 0 for N = 3, while the other portion is positive by

Cauchy-Schwarz:

ou du au gu
tro= o 2N-Dtu = 4o izxixi

1]

2, 2
|gradu| Zx - (N-D) ) -—2‘- }‘: (N;l) [“‘2
i Tr

T
Thus, E, = [(r°+t?) [}8u 2y Pl +ar Zx A, Jdx - (N-DX

where

X, 2
= [l Y= 83;: wa DLl 2
r

An integratlon by parts gwes

2,.2 2
X = (3-N) [-LEE %M dx .
4r
Remark: If N >3 andu is a smooth solution,
2,.2, 2
f N ) xau 2"‘2)‘ )+4t Z (N»l‘i(Nd)f (r +t2}u dx < K.
IR r

Theorem: (Local Decay of Solutions) For 0 <6 <1, and N=3,

f (}au}2+ (gradulz)dx 5C0/t2 as t-o ,
r <6t

Proof: If r<6t, 6<l, then 2tr <22
140

2 .2
2(r+t),
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u v e 184915, 2 : au ;2
4t ot ?xikif_%r ! t‘(bxi) 52tr(}—é;c—~;
< ————-{262 r2+t K
146

(The first inequality is Cauchy-Schwarz, the second is Young's. )

Now apply the remark above:

-2 B85 Pl < k.
i

1+8 <ot
1- 292 = ‘1'62) . Therefore
140 1+0 1

K

P
f (122 +E>\ yax < —8=9

Bt 2

r<ot t
Now, by the definition of )\'

J DA = [ |oradu| +(N-1)Z - 4.1_,:_2_,, 2

<ot i r<ot
An integration by parts gives

= [ |gradu]

r<et <6t 4r2

Thus, for N = 3, we have no problem, For N >3,

2..2 2
fr+t)]u} <K @flzi -‘_%
r<0t r t

Remark: If n >1, then

C

] 2 ‘

f ([ 4 + | gradu| ) --%*
r>nt t

The nonlinear equation:

2
§~§~Au+mu; =0,
ot ‘

Remarks:

1) Do we have the same invariants ?

Answer: We keep the 142N+ N(Nz'l invariants for all F .

2| Lul@-1(n-3) ‘[ (N-Dlul® o
T

We keep the N+2

others (the noncommuting case) only for some F(u) = cu®, where o depends

#1584
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on N . {a=3 if N=3}

2 . .
2) F(u) =m u, m+# 0, gives us the Klein-Gordon equation. It has different
decay properties than the wave equation.

Existence of solutions for the eguation:

L2

éw%-Au+u3=0 iang"ﬁRB
ot

< u(x,O):uo
au

T (x,())mu1 u}an«()

1 -
In IRN, take V = HO(Q) n L4(s2), H = L&(n). The problem is, given

Ug € V, u,e H, to find ue Lm(O,T;V) such that u' ¢ Lw(O,T;H) and u

1

satisfies the equation. We also hope that, in some sense

d 2 2 4
5 (lulg+ %uuuﬁé + %&uiL4 )=0.

Is there a unique solution which depends in a regular way on the initial

data ? We prove uniqueness for N=3, Existence works for all N .

3

Lemma: In ]RB, Hé(m C Lé(s‘z), SO Ue H'é(ﬁ)*-% u” e LZ(SZ}, We have proven

in IR'2 that ue Hl(]Rz) =>Ue L4(IR2). We will generalize the method to have

it work for u, —g—?—z € LP(IRN) for P<N. (This Lemma is a specialk case of
i

Sobolev's imbedding theorem. )

Lemma: Let f,... ’fn be defined on IRN with fi independent of X, and

1
N-1__N-1
fi(xl""’xi~1’xi+l""’xN)E L (R ).

1N
Then ;(xl,...,xN) "'fl'fz'“fNe L' (IR") and

e

£ :
ey T NN
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Proof: By induction on N . The result holds for N=2 by Fubini's theorem.

Note that
S ggdxg =t [ g dx
*N

Use Holder's inequality, and get

L[ £ fg 32l < 1l (1 (f N’lde)VN‘l =
Xy ~1xN

N-1
’fN(X R ’XN"l)* ;EI; ‘Pi(xl) A ,XN_l)’

N-1

nm—

, ‘N- 1 - - - -
2 does not depend on i, and ¢§\I 15 L (}RN 2). Now, ¢ Ze LN 2(]RN 2),

so, by induction

N-1 N-1
TT j‘N 2 Ll(IRN l) =§W‘Pi€ LN-Z (IRNGI} )
e RN, so £ TTo, ¢ MRV that s f...f e thwYy |
To prove Hé(]RB) CL (IR3), write (for smooth u)
4 3 du 3,0u
u =4 [ u = dx, <4 [ |ul7|=ldx, = v (%),
fIR axi i 'I[R Sxi i i
which doesn't depend on X,
e L, Il el 10,
Then
lu? < v, e LA,
By the Lemma,
- 1/2 u ,1/2 6.3/4
0N H IREA =[|]v | :ESTW ﬂ (J1u]™
1 i=1 i LZ(]RZ) i LI(IRZ) f
s ou , 1/2 3/4
ST “u/ Il u /
6,1/4 =y O 1/2 - 3
= IS ST = i <4TTI5E uV
i .
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Then use the density of smooth functions to obtain the desired result,

Sololev's inequalities:

Theoreml: Let 1<P<N and ue S(IRN). Then there exists a constant C

such that

all H s 1 N
P i=l

where ¥ %} .
* N

Corollary: 1f ue¢ LU(RY) and 9—}( ¢ tFmY), we whT@Y), then u ¢ P,

_ 4
TP

Proof: &(IRN) is dense in Wl P(}iR ), so apply that and the above theorem. »

1/N

Theorem 2: If ue MIRN), lim -ﬂu“ )
L

G e 0O

c
SNy~ : (1Hlu 1NLN(]RN)

(This corresponds to P = N,)

Corollary: uce W"N(IRN) implies ue LYRY) v q:N<g <o and |jul g Cq
L
for g>N.

Theorem 3: If p>N, and uc« S(IRN), iC:

1Y N ]

u < Cjlu P ( P
Bl < Ol (TR L o

Corollary: ue ws (IRN) implies ue Lw(}R )and moreover, u is H&lderian

of exponent 8 =1 - N : that is
P N
max |u(x+h)-u(x)| < C|h]| (H H = |

X = 1 LP(IRN)

4
N
)

" Proofs: of Theorems 1,2,3

Consider v = |u]’~

ol jau def
fvix)| = [f dx} <f r|u] i{dxi = (%)
fi is independent of X, and

1401 x- })<rn5—-—n Putuxr"lan,. (343 =1
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(v <f ¢ L
. 1
N 1 ———
vy N e N N-1
S e
Sro e < T -1
| —_ - - i -
(=1 i N I(IRN 1 i=l Ll(IRN l)
Hence N N . 1 N
-1 N-1 =-—,0u ,N-1 r-1,N-1
Slalm Tax < e T2 Wl
Let N N-1
o) = ( [lulN T ag N,
and let
N, 5
o= (T s | )
=1 % PN

Then we have

plr) < M[«P((r-*l)a)}l/a o = Z(N-1)

For Theorem 1, p <N, so a«>1. Then & Ty such that T ="(r0-1)a,

laoz rON *
;% 1=P »so |lull px<Ch, proving Theorem L.

et

and so go(ro) <C\ b Na .
For Theorem 2, P=N, a =1, so ¢(r) = Are{r-1) which gives

o(r) <\ rlg(0). Rewriting,
1

(o))’ = Jul N
N-1
k 1

1 L
< M) (e(0)).

Now, ri= (é)r!\f 21r {Stirling's formula) so (r! )r = - as r--o, Letting

r-o, we get
lim < llull _:N < Cx.
r ~>00 L(N-l)

Remark: ¥ u with -g-;lz ¢ LN(lRN), such that ug/LP(IRN) for every P .

u =((Log(1+r))a with a <1 "N is an example, If v = !log r‘a near 0,

Lo NNy Then ve LFRY) v P <o , but usz(mN) )

0<ax< l-“l\'}: e
i
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For Theorem 3; P > N, so a< l, Perform the following transformations

i

) efr) x%(r) , the same formula for & , but X\ =1,

2) wlr) = x(r+ fi%)' Then . .
o3 o o
x(s) < (s ~m)(x(as}) < s{x{as))
_a 1
3) x(s) = s¥ (). E(s) < (E(es)®,
and

log(é(si < log(E(as))
s —_ as :

Then we obtain

- log &(s )
lim 10gr (r) < log M + 0

]
T 0

0

¥ fixed vso < 0

We know u ¢ LP, that is ga(ro) for some special Ty -

N ).
V L(N*l)

The bound in all r gives the'bound in LQ0 This gives
N N
P, P
full o < CN Jull 5 -

L LP

To show that u is H&8lderian, let wv(x) = u(x+hei)~u(x}

ov. T
AR AR

Then

One can show

u i
vl < Bligl

(The h is taken in the X, direction: ei is the unit vector in that direction, )
Hence

N N LN
P P P au
Il o e lvl 7 s cn TATIgl p:
We can do this in any direction. ‘
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Remark: If ore knows flu| _ < c(]lul ot iu% | p) » then by a homo-
L L i L

geneity argument, applied to u(ix),

l-g § du }I;
hufl o < cliull 5, =1 o) .
L7 oFo %Lk
Back to the existence problem for
7~
2? :
%—Au—&u?’:f V on 2
ot
u(0) = u
: 0
4(0) = u Ul g =0
\. (0) =4
Q C IRN .

Let V= Hé(ﬂ_) N1%9) and H=1%9) .
1) V is a reflexive, separable Banach space, under the norm

lully = el + Hull .

HO L

What is the dual space of V 7?
Remark: §) is densein V. (if @ is bounded, open, and has smooth
boundary.) The dual of V is

vo= )+t =B @ 1 e

n Bfi
fe V! 1fandoniy1f»f=i§l—5§;+g foel

2( /3

), ge L 0) .

(This sum is to be considered in some larger space like the space of distribu-
tions.)

Remark: If N< 4, then V= Hé(ﬁ), since (extending by 0 ouiside )
%

Hy@) € H(R) C L' (RY) where %, = 2.3, N#2)
Thus
N =2 (@) C LU®Y) ¥p.
N =3 H@ < LY®)
N=-4 H@ < LARY
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To prove the reflexivity let {unk} be bounded in V then {un} is
bounded in Hé, a Hilbert space, and {ur-}} is bounded in L4, a reflexive

space, so we can choose a subsequence {um} converging weakly in both

spaces,

If fe V!, then f=f +,f2‘, where f, ¢ H'l(ﬂ} and fze Lé/B{Q).' This

1 1

means

(f,un} = (fl’un) + (fa,un}-—- {fl,u) + fz(u) = (f,u).

Thus V is reflexive,

Theorem: (Existence) Let fe Ll(O,T;H), Uy € V, andu, ¢ H. Then Zu, a

1
solution of

2

é—;-l--Au-&uS:f in £
ot ‘
0) =
u( )k u, u§8§2 o
u'(0) = uI
oo ‘ du 00
such that ue L (0,T;V), and are L (0,T;H).

Proof: Via Galerkin's method,

Step 1. Take a Galerkin basis Wi Wose e of V. Find

n
un(’c) = Z gri(t)wi satisfying
i=]
. azu 5
( 5 nAun-!-un-f,wi):O 1=1,2,...,n.
ot
< u,(0) = uOn ‘
nk ; in Span(wl, v ’Wn) such that
aun '
- "—5?(0} = uln >
; . d g ;
- i - . th . =" ‘e s
Ugp™ Yo 1P V and W,y in H . This is of the form dt?‘ Fi(gl’ ,gn,t),

where F contains cubic terms, and is thus nonlinear. However, F is con-

tinuous, etc., so that we get local existence for each u s onan interval [o ,tn)‘.
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Step 2: Find a bound on v independent of t¢ [0,T]. To do this, multiply

by g;(t} and sum in i. Then use

d?‘u du ., du
( n’___.."i} 1 9__1_..2}2}
dtz dt dt ' dt
du
_n, _14d 2 _ 14 2
(-av,—g7) = e el =g f‘grad”nl dx ,
‘ HO (9
3 dun d 4
— ) o A
T )“4dt£}u | "ax
and
dun dun
& 5r) < Holgl5lg
to obtain
du du
d n; 2 2 4 . n
w Gl T+l 07+ slu 1) < g5ty -
HO L

An application of Gronwall's inequality gives the desired bound, More
du

precisely let o(t) = 3| ?Ei- 2 + %an I 2 + :Hunti . Thus ¢'(t) < Mt)Ne(t)
with A(t) ='\f?7{f(t){ . This proves W“’(t))', < __é_’E_). so

‘ '\/m <~Ng(0) +\7-1—:2- ft [f(s)|ds
e

Then we get {un} is contained in a bounded set in Lw(o,T;v) and
du
{ wdtn } is contained in a bounded set in Lw(o,T;H),

Because V is reflexive, we can extract a subsequence, call it {um}

dum du

dat . dt

; © v
which converges weakly * in L (0,T;V), to some u , and so that

o .
weakly* in L (0,T;H).
au
u_ - u weak¥* in L°°(o T;V) implies =2 . @weak* in
m i Ix ox

0 ) )
L (0,T;H), since . :V—H .,

Apply the compactness Lemma: V S H is a compact injection because Q
1 2

is bounded, (V & HO S L )
continuous compact
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Thus {um} ccntained in a bounded set in Lw(o,’l’;\!) implies {um}

contained in a bounded set in LP(O,T;V) for any 1 <P <%, and similarly
du
{ dtm } is contained in a bounded set in LP(O,T;H) 1<P<», so {um}
2

is in a compact set in LP(O,T;H) = LP(O,T;L (1 1 <P <, (We apply the

compactness lemma with B0 =V, B1 = B2 = H.}). Then um - u strongly in
du
P 2 . m 3
L' (0,T;L7(f2)). (I <) Recall, now, that (—dt -Aum - .um ~f,wi) =0 for

1=1,2,...,m, With the above convergence, what can we say about u?ﬂ ?

We have um—» 1 strongly in LP(O,T;LZ(Q)) and um-‘ u weakly * in

tFo,Tii%) verhern)

By Holder's inequality, u - u strongly in LP(O,T:Lq(Q)) for

) 1-0 ‘ 1 _1-8 8
2<3<4. (Since }tum"uHLq < }{um-uHLZ {{um«-u\}L where = ===+ —.)

0
4 q 2

Take g >3 and p > 3. Then u:n-» u3 strongly in Lp/s(O,T;LQA{Q)L

Take limits:
2
du dzu
,Ww.) = (——,w,) in the sense of distributions
at? 1 at? 1

(

(-au_,w) = (-Au,w,) weakly* in £(0,T)
and
3 3 L
(um,wi) - (u ’Wi) weakly* in L (0,T).

2
o d . .
This proves that u satisiies ( ——-% - Au+u3-f,wi) = 0 and so is a solution,
‘ dt
1

Theorem: (Uniqueness) For N =3, Let fe¢ L(C,T;H), u.e V, and u, ¢ H.

0 1

Then £ a unique solution ue Lw(O,T;V\ with %—%e Lw(O,T;H).
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Proof: Suppose u and v are solutions., Let w = u-v., Then

d ? AW+ aw = 0
dt
w(U} = 0
aw
L dt{m 0
u3-v : Z 2
where a = - =u +uvtv . Now we use N=3, to get, via Sobolev's
‘ . 1 ‘,, 6 . , ' o0 3
inequality, HO(QS: L (). So, since u,ve L (0,T;V), ae L (0,T;L7(Q)).
We know we LQ:)(O,”.[';Hl (2)) and %‘g ¢ L (O,T;LZ(Q)) . Take the inner
product with %‘% to obtain
d ,dw,2 2 dw dw
%.5;({5? +SIWH i) (aW,EE"\< IaW§ 2§—T§ 2
HO L L
. , , 2 3 1 6 . .
This is valid, since awe L™ :ae L7, we HOC_I_L . {Using N=3 again.)
Thus
: Ul vl < el Slwl 5t -
dt ''dt H%) L3 Lé dt LZ
dw 2 2
< Clall 5 AGHS < Iwl%).
HO
dw . e .
Since ('dt + ||w H . lt _o =0, Gronwall's inequality implies
O
idw y | wil 15 . This proves uniqueness.
H
0 1 N
Remark: It is enough to have ae L(0,T;L (Q)) for N >3, Then
o0
we L (0,T; LZN/(N 2)(52)) by Sobolev's inequalities, so awe L (0,T; L IR

If u,v satisfy u,ve L (0,T;L N(Q)); then u = v by the above proof.

Theorem: (Regularity). Still N =3, Let f,f ¢ Ll(O,T;H), u, € HZ(Q) n H;(SZ),

1 du Py w 2
and ule HO(Q). Then u, e L (0, TH (Q)), @ ¢ L (0,T;L (®)), and hence
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(from the eguationt Aue L (0,T;L Q. Thatis, ue L (0,T;H (D).

Proof: Use Galerkin's method and obtain nsw estimates:

d&u .
n 3 .
(= - Au_ +u - f,w)=0 i=1,2,...,n
A n ¢ i
dt
Take Wl = uo (i}? u0¢ 0, otherwise arbitrary)., Take un(O) = ua s
dun ‘ 1
—— O} = : >
dt (0) un qul n HO ; d u
Differentiate the equation and take the inner product with dté_
du
Take v = -~§. Then v satisfies
n dt n
dzvn 5
(dtz‘ -Avn+3unvn-f',wi):0 i=1,2,...,n.

. i
vn(O) =u {un} bounded in HO

c:lvn \dzun : 3
—(0) = (0) = Projection ({{0; + Au,. - ul)
dt 2 0 0
dt
on span (W}."' - ’Wn)
Remark that £{0) + Auo - ué ¢ LS. Then
d?‘vn 2 dvn
- - £t e} = i = '
{ dtz Aun+ 3Unvn fr, ot y=0 \ i=1,2,...,n.
(By taking the proper multipliers and summing in i.) Hence
dv dv dv
r d,_n,2 2 2. 0o By
e dt” dt |+ Uvnn 1)+3(unvn’ dt ) o= (f dt
0
dv dv dv
d H n 2 : : 8 . ol n 2
= SH=E e v 1 e R i vl el
HO L L L
dvr1 dvn 5
< =+ Clst v g Tl
dt at LZ n Hl n L6
0
; 2 )
and jlu_|l is bounded.
n Lé
#1584
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By Gronwall's inequality,

dv
{-——} is contained in 2 boundad set in L (O T; L )
{vq} is contained in a bounded set in L (O,'}Z’;Hl )
\ , ‘ au
This gives, as n~x, the desired bounds on R
: A 2 1 )
Remark: If fe L(0 TsE), uy e H N Hy, » and uje Hy, then
. %0 1 2
u'e L {O,T;HO) and ue L (O,T;H ).
IV. Another perturbation of the wave equation.
A2
2 ; - Au + a(x,t)uz =f
< ot
u(O):uO u%aw = 0
{0):11
.
. - N 1 2
Theorem: (Local existence) If Q C IR with N <4, U € HO(Q), ua1 e L7(Q),

la(x,t)] <M ¥xeQ, te [0,T], and fe LI(O,T;LZ(Q)), then

kY TO :0< TO <T and % a solution ue Lw{O,TO;Hg(ﬂ)}, with

du 0 2

at ¢ L (O,TO,L ()

Proof: By Sobolev's inequality, if N <4, [lul 4 < Cliull , - Use the

L HO

Galerkin method, and obtain estimates. Even for the finite dimensional case
we may have only local existence,

We get
dzu

qt?

{ n-Aun+aui-f,Wi} = 0 i=1,2,...,n.
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Taking the appropriate linear combination, we have

5

d"un dun
{ -Au +au -f,—=—1 =0
dtz dt
\ du du iu
c n,2 2 2
= %a?(‘"a‘t‘ + Hun“H )< ka ‘ FM‘ thul’llLZ
0 dun du >
< =]+ M= Ju 17,
dt dt L n L4
dunk du
1120+ M P 2 12
H
0
dun 2 2
If gan(t):é—(] 7|+ lu I7)) we have
: H
0

) < |f] N/Zgon(t) + MCZ'\/Z(pn(t) z¢n(t) .

This gives no global estimate for 2

We have cpn(O) <A. Let T_ be the first time where cpn(t) =A+1,

0
Then
9 < || N2+ + M cZ2a+1)>’? on [0,T,]
So
rm—— TO 2 3/2
Al =o (T)) < A+N2(+D) [ °|Hs)|ds + M CT(2(a+1)) o
0
which gives a lower bound on TO depending on |f| and A,
Evenif =0, sothat ¢ (t) < K@f/ztt) .
Then
1
-5 -3/2 i
(0 2(t)' = -3 ¢'¢ / > -K/2

lv--

(t) > ¢, (0) T2 LR/2t
l
? (0)~ -!<./2t

<

Pojr=
ju IR 3P

> 0 for K/Ztﬁgon(O)—*, SO o
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The bound thus depends on both A and £, as does the interval,
«© | 1 dun
Now, on [O,TO] we have {un} is bounded in L (O,TO;HO), {—dr}

2
is bounded in L (0,T ;L 7). Thus we get existence on [O,TO] exactly as

0

before,

Suppose we have:

2

?___; - Au+a(x)u2 = £
ot

w(0) = UO N Y
ut{0) = u1 o

where a is independent of time,
Theorem: (Global existence,) Assume [a|<l, N <6; then

3 N 1
*uI3ECOhuH L Assume Hu0“<5’" 1f
L H 0
0
1
)2,

2
a=(%]u1] >

1
+ %!Iuoll2 + %ga(x)ugdx)" ’w-% ngf(s)lds <
0

6C

then we have existence on [0,T].

Proof: Via the Galerkin method. By the“usual method, obtain

du du
doriy_ny2, 1 2 1 3. 0
SISl e 5 fau a6 5.
Q
%2 Cox3
The graph of vy = > -3 is useful for the estimate.
2
2 C.p
05ﬁ<é— is defined by o° =.%__ (;

0
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AY
i
6Cy 0
0
o2 ~
> x
0 pL
CO
Suppose that on [0,T [ we have igun(s)ﬁ _<_é~ then
0
iy 12 L a 3 L g2 S0 3
Liy U 2 1 -9
gl 4 5 fauga 2 Hul® - Sl 2 0
So :
‘ du du C
n,2 n,2 2 0 3
ARl B bl L4 LY e
du
n,2 2 1 3
< Hlg !0 Ee T+ 5 fauax
~ du
1 2 1 2 _1; 3 t . _“_Il
= -a-{ull "+ a]]uOH +3fauO dx+g (f« —)ds .
Let y = %{ul{vz + %HUOHZ + %fa ugdx (y > 0 by hypothesis). Then
dun 2 t dun
1. , -1 = oft
b ral B +{} [f(s)] |- (N ds = olt) .
So.
dun I
o'(t) = [t | W] < [HB[N2e(t) .
So
e — 1t 1 .3
No(t) < Ny + NEal |f(s)|ds < a <(- >)
0 6C0
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This gives

3
du . C Hu |
n,2 2 oM 'n 2 1
sl El s T s e st =
oCO
So
du
n,2 1
=23 on [0,T]
3C‘0
and
.3
il
1 ”U nz - COHul’l‘ < QZ
2 n 3 - ‘
So
1

flul <p <+
n CO on [O,TO{ .
This second estimate implies that T = T because I unl! is continuous,
This estimate being now independent of T and n gives the existence of a
solution exactly as before.

Acknowledgement

This is part of the lectﬁre notes of a course given at the University
of Wisconsin, Madison, 1974-75, I wish to thank C, Rennolet and T. Kiffe
for the writing up of this part,

REFERENCES
J. L. Lions, Quelques méthodes de résolution des problémes aux limites
non linéaires. Dunod, Gauthier-Villars, Paris 1969,

This book contains a lot of examples and a good bibliography,

e
—
Ul
Qo
o

. -109-



VARIATIONAI METHQDS AND MONGTONICITY
1. Tartar

| 1. intraduction

{n an other report [#1589] we have studied the problems

du

-d—t—+ Ay = £, {(ueV)
2

dzu + Au) = £,

dt

in infinite dimensional spaces. The methods used can be divided into the following
principal steps:
1} Approach by finite dimensional problems, i.e, replace V by a finite
dimensional space Vn‘ Solve using finite dimensional theory.
2) Obtaiﬁ bounds, and extract some converging‘séquence un - U,
3} Prove that u is a solution to the original problem,
Step 3) can be done using two different methods:

i) Compactness methods: Use compact embeddings to get strong con-

vergence in some space.

ii) Monotonicity methods: Use special properties of the nonlinear term,

so that one zan prove convergence of the nonlinear term without strong
convergence of u
So ifar the analysis has mainly relied on compactness methods, and the purpose
~f this report is to study the monotonicity methods.
We begin with the equation
A(u) = f.

When we reduce this to a finite dimensional problem we use:
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Brouwer fixed point theorem: If C is a compact, convex, nonempty subset

of IRN, and T maps C continuously into C , then T has at least one fixed

pointin C .

We begin by studying the variational inequality:

Definition I.1. Let C be a convex set in }RN, and let A map C into IRN.

Then u is a solution of the variational inequality in C , if ue C and
(A(u),v-u) >0 forevery ve C.
Remark I.1, If ue CO (the interior of C ), then A{u) =0,

Theorem I.]l. (Existence). If A is continuous, and C is compact and convex,

then there exists a solution u to the variational ineguality.

Proof, Make the counter-assumption that
vue C, 3ve C 2 (Alu),v-u)<0.
Defining

X, = {ue Cl(A(u),w-u) <0},

one can write that assumption as

U X = C.
weC W

Each XW is open in C , because the mapping u - (A(u),w-u) is continuous
from C into R, The set C is compact and covered by {XWIWe C}, so

there exists a finite subcover
Y
c =U X .
i=1 Wi
Choose a partition of unity on C , subordinate to Ky 2ee ,XW , 1i.e. choose
' 1 p

continuous functions gai(x) (i=1,...,p) suchthat 0 < P, <1, supp 2 - XW s
B ; i
Z <pi(x) = 1 (xe¢ C). Now consider the mapping

=1
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P
Bu) = ), ¢(u)w, .
1=1

Then for each fixed u, B(u) is a convex combination of [Wl’ e ,Wp]. B
is continuous and maps the convex hull of [Wl" . _.wp] into itself. By
Brouwer fixed point theorem, uO 3 B(uO) = uO,. Hence it suffices to prove

that (A{u)}, B{u) - u) <0 Vue C in order to get a contradiction. This is done
as follows:

ut ><Wi =>¢.(u) =0 => g (U)(A(),w,-u) = 0
On the other hand, ue XW => goi(u) >0 and (A(u),wi-u) <0 = (pi(u)(A(u),wi-u)
i : P
<0 . Now at least one goi # 0 , and thus Z wi(u)(A(u),wi-u) <0 <=
i=1

(A(u), B(u) - u) <0 . .
Now look at the more general case where RN is replaced by a locally
convex (and Hausdorff) topological vector space E , with dual E'.

Definition I.2. Let C be a convex setin E, andlet A map C into E'.

Then u is a solution of the variational inequality in C, if ue C and

(A(u),v-u) >0 for every ve C (the''inner product' is between A(u)e E' and
v - ue E).

The same existence proof for a solution of the variational inequality goes
through, if A is continuous in the right way. The only questionable statement
in that proof is that the sets XW are open. This is true if ¥ we E, the set
{ue E{ (A(u), w-u) >0} is closed, which in turn is true provided A is con-
tinuous from E into E' in the strong topology:

u— (A(u),w) is continuous (needs weak continuity of A)

u - (A(u),u) is continuous (''requires'" strong continuity of A),
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Remark I, ., One cannot expect a unique solution, e.g. all zeroes of A are
solutions.
Remark I.3. The variational i4nequality arises e.g. in the following situation:
Let J map C~ IR, with J di'fferentiable, and C compact. Then J attains
its minimum on C at somek point; call it ug - If uO € CO , then I‘(uo) =0, |
1f only uo ¢ C (in general) then |

I(uo + e(v—uO)) > I(uo) Yve C => (I“(uo),v—uo) >0 V ve C.
II. Filters.

This is intended as a brief review of filters, and no proofs will be given.

Definition II.1. A filter ¢ on X is a collection of subsets of X such that

i) ¢t a
ii) A,Bead=>ANB e¢qg
iii) Aed&ACB => Beg.

Definition 11,2, A filterbasis @ on X is a collection of subsets of X such

that
) ¢ta
il) A,Be@ = ZCeq@, CCANB.
Remark II.1. Every filter is a filterbasis, Given a filterbasis ¢ one can
construct a filter B as follows:
B = {BCX|8Ae¢g, ACB}.

Definition II. 3. A filter ¢ is finer (stronger) than a filter £, if # C g,

i.e. every element of B is contained in & .

Definition II. 4. An ultrafilter is a maximal filter, i,e. if ¢ is an ultrafilter

and f is finer than @ , then A3 =d .
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Savete 3. 1y Every filter is contained in an ultrafilter (i.e., given any filter
ciere exists an ultrafilter finer than @).
ii) If ¢ is an ultrafilter, then for any given A C X either

Ac¢ o Ae@ (A = the complement of A =X\A =X - 4).

Example II.1. If A CX

0 1By * ¢, then @ = {AC X!AO C A} is a filter,

This is an ultrafilter if and only if A_ has only one point,

0

Examvle 11,2, If X is a topological space, and A

OCX,AO;é ¢, then all

open sets containing AO form a filterbasis (neighborhood filterbasis).

Definition II. 5. (A filter &) a filterbasis ¢ converges to a point X in

X , if it is finer than (the filter induced by) the filterbasis of neighborhoods of

XO.

Sequences can be considered as. special cases of filters in the following

fashion: Given a sequence {xn} , define the filter

@ = {ACX|@nje N3 (n>n, => x ¢ A)}.

o

It is easy to see that this filter converges to some xe¢ X if and only if the
sequence converges o x .

* More generally, nets can be regarded as filters. Let I be a directed

i,jeI=> 3kelId>i<k & j<k.

i.et {xi)_ be a net (i.e. a mapping from 1 into X ). Then one can define

iel
a filter ¢ by

a = {ACXiEiOe I3(i>i, =>x ¢ A)}.

0

It is also easy to see that the net converges if and only if the filter converges.
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Remark II. 2. If {xn} is a sequence with corresponding filter ¢ , and {yn}

is a subsequence of {Xn} with a corresponding filter B, then £~ is fine~

than @ .

Theorem II.1. X is a compact <= every ultrafilter is convergent,

Lemma II.2, Let AC X. Then ae A <> there exists a filterbasis on A
converging to a .

Remark II.3. If E is a topological, locally convex space, and & is a filter

converging to xe¢ E , then it may happen that every element of ¢ is unbounded,

Definition II.6. A filter is bounded if it has at least one bounded element,.

Definition II.7. Let &« be a filteron X , and f: X— Y. Then the image of

d under f is the filterbasis B = {f(A) CY|Ae @} .

Remark II.4, The image of an ultrafilter is a basis of an ultrafilter.

Remark II.5. If ¢ is a filteron IR or R = {-0} UR U {+0}, and B is an

ultrafilter finer than ¢ , then /B converges to some Xx_ ¢ R , because IR is

B

compact,

Definition II.8 . Let g be a filteron IR or IR. Then

lim sup @ = sup{x, R|3B/~ %o D& is finer than @ }.
lim inf @ = inf{x_ R |25~ X 2 B is finer than ¢}

II11. Nonlinear Equations.

The problem is the following: We have a topological vector space E,
and a mapping A:E -~ E'. We want to solve A(u) = 0. The procedure will be
as follows: First take finite dimensional spaces F spanned by (Wl’ cen ’Wn)’
and solve (A(u),wi) =0 (i=1,...,n) in F using finite dimensional theory.

Then extract some converging filter, converging to u , and prove (with as weak

A "y e



b

piE= F' (= algebraic dual o! F) oy

(AF(,U),V) = (A(u),v) (u,ve F).

Nowtien:  1f F < E, define A
We shall use the following assumptions on A :

‘i) If ¥ is finite dimensional, then A_ is continuous.

F
i1y IE ui is some filter on a compact set K C E, then
(1 ( u -~ u in E
s
Alu,) -~ 0 in E' weak => A(u) = 0

1

(A(u),u.) =0

S

The convergence of ui in E of course depends on what topology we
use on E (usually the weak top.)

Definition III.1. Let C C E be convex, Then X, is an internal point of C ,

if

Yye E, 3e>0 > xo+eye C.
(note: this is an algebraic definition, not topological). If 0 is an internal
point of C , then C is called absorbing. The se‘t of internal points of C is

denoted by i(C) , and its complement in C by 3C , i.e. 3C = C\i(C).

Theorem I1I,1. Let A satisfy (1). Let C be a compact, convex and absorbing

subset of E , and let the ""compatibility condition':
(2) (A(u),u) > 0 (ue 9C)
hold., Then {ue C]A(u) = 0} is nonempty and compact.

Preof. Let F be a finite dimensional subspace of E. Define C, = CNF.

Then .. is convex and absorbingin F . By (lL.i), A

P is contiruwous on F .

F
Consider the variational inequality

(AF(U),V—U) >0 (v e CF) .
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By Theorem I.1, there axists a solution Up C CF . Now separate two cases:

g A
((P(u uF) >0 =

F)’
(AF(uF>’V) > (AF(uF},u?) >0 (ve CF) .

Because CP is absorbing we get

/‘
(A(uP),uF) <0 =

u aC_ (because AF(uP) + 0).

F¢ o
B« up € 1(C) (because of (2)) => ug < i(C

F P)‘

These two statements contradict each other, and thus case p

kcannot appear.
We conclude that forall F, & g, BAP(uF) =0, in particular (A( uP) ,f)=0
(fe F), and (Aup),uy) = 0.

Consider the filter induced by the net {uril“ a finite dimensional sub-

space of E}. As C is compact, and u, C C , there exists an ultrafilter u

F G

finer than Up converging to some uce C. Because (A{ug),f) =0 (fe F}) we
have (A(u,),f) - 0 (fe¢ E), which implies A(u )= 0 weak” in E . In the
same way one gets (A(uG),uG)» 0. By (1. ii), Alu)y=20,

The closedness (and hence compactness) of the zero set of A follows
easily from (1. ii).

Instead of (2) one can also use a different compatibility condition:

(3) There exists a compact set KC E > (Alu),u) =0=>ue K.

Theorem III. 2, Let A satisfy (1) and (3). Then Hue K3 A(u) =0. More-

over, the set {ve KQA(V) = 0} is compact,
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i_.a. et P obe a finite dimensional subspace, and choose a set CF which
. ~smpsct, convex and absorbing in F , and contains KN F in its interior.
O tne boundary of CP , (A(u),u) # 0, Without loss of generality we can

assume that (A(u),u) >0 for ue SCF. (otherwise multiply A by -1). By

Theorem 1.1 we can find some uP - CP such that

(AP(UF), v - uF) >0 (ve CF)'

(u,) =0. In

In the same way as in the proof of Theorem 1 one gets AF £

particular, (A(u?),uF) = 0 , and thus by (3), uF K.
The last part of the proof is an exact repetition of the last part of the
proof of Theorem 1 (replace the set C by the set K).

We shall now study different continuity properties more closely.

Definition III, 2. A is of type MO if it satisfies

i) AP is continuous for finite dimensional F
[ If 'ui is some filter on a compact set KC E , then
(4) < u, > u in E
ii) § ' N
A(ui) -~ f in E' weak => Au) = ‘
\. ‘ -
L (Afu,),u,) (f,u)

Definition I11.3, A isof type M if

1) AF is continuous for finite dimensional F

1f ui is some filter on a compact set KC E, then
{5) < ‘ u, - u in E

ii) 1 .
’ A(ui) -~ f in E' weak => Au) =f

I
SN mosup (Ay),u) < (Eu)

#1571 .



Definition III. 4., A is monotone hemicontinuous if
i) ¥ u,v e‘E , the mapping t - (A(u + t%/),v) is continuous
(hemicontinuity).
ii) Vu,ve E, (A(u) - A(v), u-vi > 0 (monotonicity).

Theorem III. 3, (existence): Let E be a reflexive Banach space with its weak

topology., Let A be of type M0 , and satisfy the coercivity condition

A
L e -
Then A is surjective, i.e. A(E) = E'.

Proof. Let fe E'. Define the operator B: E— E' by B(u) = A(u) - £. It
follows immediately from (4) that (1) holds (in particular, ui - u means weak
convergence in E). Theorem 3 then follows from Theorem 2, provided one can
show that (3) is satisfied with A replaced by B. So take some ue E sﬁch

that (B(u),u) =0, Then (A(u),u) = (f,u), and thus

o e

By (6), |lu]] <C for some constant C . By reflexivity, the set

K= {ue E||Jul] <C} is (weakly) compact, and thus (3) holds with A replaced

by B . Applying Theorem 2 one now gets Theorem 3 , a
Lemma III. 1. If A is of type M, then A is of type MO' If A is of type
M0 , then so is -A,

Proof. Obvious.

Lemma III.2. If A is monotone hemicontinuous, then A is oitype M

(hence of type Mo).
Note: The topology on E does not matter as long as it is compatible with the

duality. The interesting case is when E has its weak topology.
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Proof.  We begin by proving (5. ii). Supposé that
ui-a- u in E
(7) Mu)— f weak in E
lim sup (A(ui),ui) < (f,u).
Take some ve¢ E, (A(ui) - A(v), ui-—v) >0 <=> (A(ui)',ui) - (A(ui),v) -
(A(v),u,) + (A(v),v) >0 (by (7)) => (f,u) - (f,V) ‘- (A(v),u) + (A(v),v) >0
<> (f - A(v), u~v) > 0 (ve E). We want to show that A(u) = . Take
we E, t >0, andput v =u + tw., Then (f-A(uttw),-tw) > 0. Divide by t,
andlet t{ 0 ‘using the hemicontinuity of A . |
This gives
(f - A(u),-w) > 0 (we E}y=> f-A(u)=0,
‘This shows that condition (5, ii) holds.
We still have to verify (5.i). Take F finite dimensional. Note that

F

shall show that AF : P> F' is bounded, i.e. maps bounded sets of F into

bounded sets of F', This will imply continuity for the following reason:

A_ is monotone: u,v,we F => (AF(u) - AF(V),W) = {(A{u) -A(v),W). We

Suppose that un—-» u in F (weakly or étrongly). Then {un} is bounded, and

hence {A_(u )} is bounded. Extract a converging subsequence: AP(u ) - £,
F'n - n,

Then (7) holds for this subsequence, and thus by (5. ii), AF(u) = f,

It only remains to show that A_ is bouvi-ded, Suppose this is not

F
the case. Then one can find a bounded sequence U, which (after passing to
a subsequence) converges to . ,such that || AF(un)N -~ o, Extract a subse-
quence so that |
An(u )

- £e¢F, with ||E§}] . = L
IAnu | F
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(AF(un) = An(V), u -v)

>0 (ve F).
AT
But
AP(un) - AF(V) L I
Taa T
un-veunv (n -~} ,
and thus

(6, u-v) >0 (veF) = £ =0,
Note: In an infinite dimensional space § =0 does not lead to a contradiction.

Example III.1., (an unbounded monotone operator). Take E = Ez , then E con

be identified with E'. Consider A: E~ E defined by

A(x,...,xn,..,) = (yl, o3 Yoy ous)

n
with Y, = -x:'nﬂ. A is well definedon all of !Z% because (xn) € !fz-—-> ;«:r1 - 0

. 2
(n—>®) => }yni 5}xn1 for large n =>(y )e £~ .

Monotonicity is tr1v1al:‘(A(xn) —A(xn), xn - xn) = Z;(*yn - ynv,xn-x'n) =

Z( 2n+l - 2n+l
X - X

n n xn";cn) 2 0.
A is not bounded: Take u =(0,0,...,0,2,0,...). (the 2 in the

nth position). Then |lull =2. A(u) - (0,0,...,0,22" o ),

ﬂA(u)H - 22n+1'

Lemma III.3. If A is of type MO, and bounded, then A is continuous from

E strong into E' weak.

Proof, If un» u strongly in E , then A(un) is bounded in E'. Extract

*
a subsequence A.(un) -~ fweak . By(4), A(u)=1.
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Lemma III.4, If A is of type MO , and B is continuous from E weak into

E' strong, then A+B is of type‘ MO R
Proof. Let
ui - u in E weak
‘ %
A{ui) + B(ui) - f} weak in E
By the hypothesis, B(ui)-* (B(u) strongly => (B(ui),ui)-» (B(u),u) =
Sk
A(ui) - f - B(u) weak
(A(w),u,) = (£,u) - (B(u),u).
Hence A(u) = f - B(u), i.e. (4.1i) holds.

Lemma III.5. Let A be oftype M. Let B be bounded, weakly continuous

, %
(l.e., from E weak into E' weak ), and let (B(u),u) be weakly lower semi-
continuous (i.e. u, = u => lim inf (B(u,),u,) > (B(u),u)). Then A+B is of

. type M.
For example, if B is monotone and weakly continuous, then it is
of the type described above.
Proof. Let.
u, —-u in E

(8) ' .
A(ui)+ B(ui') -~ f weak in FE
‘ ‘ A
Then B(ui)—*rB(u)‘ weak in E', and thus

*
(9) ~ A{u) -~ f - B(u) weak in E'.

‘Moreover, by the weak lower semicontinuity if (B(u),u), we have

lim inf (B(u,),u,) > (B(u),u) .
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This, together with (8), (9) and (5.ii) gives A(u) = f - B(u). Hence (5. ii)
satisfied with A replaced by A+B, and so A+B is of type M.

We shall now change the problem slightly. Up to this point A has
always mapped E into E'. Now we instead suppose that we have two topo -
logical vector spaces W arid \Y with WC vV, and W dense in V. This
implies that V* C W', and that V' is dense in W', We next study the case

when

A:V->-W

Theorem III. 4. Let K be a convex, compact and absorbing subset of V.

Let A map K into W', and suppose that
(" i) AF is continuous for finite dimensional F
:'ueW&u,-—»umV
i i
(10) < ii) A(vi)» 0 in W' weak => A{u)= 0

(B(u,),u;) = 0

k~m) Yue WI 8K, (A(u),u) > 0.
Then there exists ue K such that A(u) = 0.
Proof. Take F finite dimensional in W (note: nbt in V), and pick some
upe K N F satisfying: (A(up), v-up) > 0 (ve K N F). This can be done
because of (10.i) (cf. Theorem I.1}. From (10.iii) one gets AF(uF) =0 (see
proof of Theorem 1). We get a filter in K , induced by the net uF. Since K
is compact in V (although not necessarily in W), we can find an ultrafilter
u, finer than Up such that |

uieW, u > u in vV,

%
A(ui) - 0 in W' weak |,
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(A(u),ui—~ 0.
By (10 ii), A(u) = 0. .

Remark I1I.1, We do not know in this case that the zero set of A is compact

in V , as was the case before.

Theorem III.5  Let A :V~ W' satisfy (10.i) and (10.ii), and suppose that

P
, There exists a compact subset K of V2ueW & (A(u),u) =0
(11) ‘
. => ue¢ K.

Then there exists ue K such that A(u) = 0.
Proof. The first part of the proof is exactly like the proof of Theorem 2 (take
finite dimensional subspaces F C W). The second part of the proof is the
same as the last part of the proof of Theorem 4. u
We shallb now apply the theory developed above to a differential
equation. Let V be a reflexive Banach space, continuously and densely
imbedded in a Hilbert space H . Identify H with its dual. Then we have
VCH = BHCV ,
Let A map V- V', We want to solve
du

a?'i- A(u) = 0O

u(0) = u0 e H.

(12)

Theorem III. 6, Let A,V and H be as above. Let p,p’' satisfy 1 <p,p' <w
and —é%, = 1. Define the map @ :a@(u) = A(u(t)) (ue LX(0,T;V). (T is some

finite number). Also suppose that
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(‘ H
i) @ : Lp(O,T;V) -~ Lp (0,T;V"), and maps bounded sets in:o bounded
- gets,

iy . Pon s P!

ii) @ is of type M from L7(0,T;V) into L~ (0,T;V")

iii} Coercivity condition

A\
a3 ¢ 0 ¢ 120, T:v)
§ R
%t‘ﬁ e 1P (0,T:v =

3 o]% + @p,0) < 3luy|

¢ ¢ C = a bounded subset of Lp(O,T;V)

k ¢o(t) e K = a bounded subset of H .
. p . du p'
Then there exists ue L (0,T;V) with Pl L* (0,T;v') such that
du ‘
at + du = 0,
uw(0) = u

0
H
Note: (@¢,¢) denotes the "inner product' between Lp (0,T;Vt) and Lp(o_,t;\f}.

The norm in H is denoted by |- |, and norms in other spaces by |- |, with
appropriate subscripts.

Remark 11I. 2. The above theorem can be used to solve more general equations

than (12) when ¢ is defined globally in t . In the case where (u)(t) =
A u(t) - f(t) with fe Lpt(O,T;V'), one can show that
(13) (ifii) <= either o) A is affine continuous from V into V' (and p > 2i
or ) A is monotone hemicontinuous from V into V'
satisfying [Au]| , < C, +C; ”u”5~1 .
It is clear that o) => ¢ weakly continuous bounded =>(13) i) ii), Case f)
is very important for applications {one can give in this case direct and simpler

proofs of the theorem)., In this case ¢ is monotone and hemicontinuity, that is
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continuity of \-» IT(A(u(t) + )\v(t)),v(t))dt, follows from the boundedness and
0

hemicontinuity of A .

The other implication is not obvious and we only sketch it,

Claim: If a,be V and (Aa - Ab, a-b) < 0 then A is affine on the segment

{a,b].
Proof, Take
2 (XKL Gloo)T
: n n
u {t) = 0<k< n-l
b in ({KHL-OT ()T
n n
then * u, =~ ous= (1-8)a + 8b in LOG(O,T,v) weakgz<
Bu_~ &= (1-0)Aa + 6b in L°(0,T;v') weak ™
" and [MAu_,u )dt - T((1-0)(Ba,a) + B(Ab,b)) < [ K&, u)dt
o B T

so Au = £ and the claim is proved,

Then if for some Uyt Au, - A U5 uo-ul) <0 one shows that A

0

is affine on the line (uo ,ul); then on every line through uO; then everywhere,

Proof of Theorem III. 6, Define two reflexive Banach spaces:

v = P00, TV)x H,

i

du
dt

i

¥ = {twum)ue LPo,v), e 1P0, v} .

The norm on 7 is: || (w,a)f, = g.;uuip(o,f;v);r ey »

The norm in ¥ is: |[(u,u(T)||,, = [Jull + 151 .
¥ P dat ' _p!
L7(0,T;V) L (u,15v) .

3 ' o
‘We have seenbefore that ue Lp(O,T;V), %tli € Lp (0,T;v') implies ue C(0,T;H).

Hence # C ¥ .

Claim 1. % is densein ¥ .
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Proof of Claim I, Let (v,vy)e Lp (0,T:V) X H =%"' , and suppose that

T
(W, (), (v,y)) = [ (wx),v(x))dx + (u(T),y) =0 for every (u,u(T))e % .
0
Then in particular, fT(u(x),v(x))dx = 0 for every u-e $(0,T;V), and since
5 _
$(0,T;V) is dense in Lp(O,’I‘;V) we get v = 0 . If one then takes u to be a

constant function in V then one gets {(u,y) =0 (ue V), and since V is dense
in H, we get v = 0. This shows that the zero functional is the only functional

in ¥' which vanishes on % , and hence by Héhn—Banach, % is dense in 7 .

Now define an operator 2 :¥—%; by (P(u,a),{¢,9(T))) =

de
(0 g

between Lp(O,T;V) and LP (O,T;V'), and the last two are in H. We have

) + (qu,e) - (uo,.;o(O)) + @, ¢(T)) (the first two '"inner products'' are

used the fact that % C C(0,T;H)).
Claim 2. u solves the original problem <=> pB(u,e) =0 and a =u(T).

Proof of Claim 2. (=>): Integrate by parts. {<=): Suppose that

(Plu,a),(e,o(T))) =0 Y(g,e(T)) e % . Take Y e $(0,T;V). Then in particular,
(V,0)e ¥, so
“, Ry @uw) = 0 Wes (0T

Thus by the definition of distribbﬁtion derivatives, %u{ = - Ue Lp‘(O,T;V' ).
This means that u e Lp(O,T;V), g% € Lp (0,T;V'), so in particular ue C(0,T;H).
Integrating by parts one gets, for ¢e¢ %,

“u, 2+ (SR04 (ug,0(0) + (a,0(T) =

(w(0) - uy,9(0) ~ (UD - a,¢(T)) ,

so one must have w(0) = uo,u(T) = a.
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. We shall now use Theorem 5 to solve B{u,a) =0,

i) (Assumption {(10.1)): 6 restricted to a finite dimensional sub-
space is continuous, since the nonliinear term g(u) is continuous in finite
dimensional subspaces of Lp( O,T;V) (this follows from (13 ii)).

ii) {Assumption 10.ii)): Let

(ui?ui(T)) "“ (4, a) ,
(14) Blu,u (1)~ 0,
(B(ui’ui(T))’b(ui’ui(T))) - 0
We want to show that R{u,a) =0 . (ui,ui(T))-* {u,e) means
ui- u  weakly in Lp(O,T;V) s
ui(T) -~ o weakly in H.
. ‘
By (13.i), @ ui is bounded in Lp (0,T;V"), so one can extract an ultrafilter
1
converging weakly to some § e Lp (0,T;v'). Then
& ] do ; :
(B(ui’ui(T))’ (¢,0(T)H = - (ui’ at )+ (aui)‘/’) - (uoy?(o)) + (ui(T)y?’(T))
‘ d
> - (U, T2+ (E,9) - (u, 9(0)) + (a,e(T)).
dt 0
By (14), this is =0, and so by the same argument as in the proof of Claim 2,

du +§ =0, u(0) =Ugs u(T) = «, Thus du € Lp4(0,T;‘V'), and in

we get =

dt
particular, (u,a)e ¥ .
| We still have to show that ¢u = ¢ . For this one needs the last
line of {14):
By, u (T, (u,u (D) = Hum|® + Hu0)]?
P 217y @174
2
ol
+ i]u((})[z - (u.,u.(0)) >
27 0’74 =

But %Iug‘(o)iz - (g uy (0N 2 -2luyl”s so

tim inf 3|u,(1)| %
Hal? - 4ugl? = Hum|® - Huo)]®
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This then gyives

lim sup (@ ui,ui) < ;ﬁ;lu(T}{Z - %}u(O)iZ
du .
= -(u, a?) = (§,u).

So we have
4= 0 in Lp(O,T;V) weak )
{
qu-~¢ in 10, T;v) weak => (by (131i)) 7u=¢& .
lim sup (dui,ui) <(&,u)
This then gives @(u,a) =0 , and we have verified (10 ii).

1

iii) (Condition (11)): (B (¢,¢(T));, (¢,0(T))) < 0 => 3|o(T)|

+ @os ¢ < %luoi 2 . It then follows from (13 iii) that (¢,¢(T)) is contained

in a bounded subset of ¥ .

Now we can apply Theorem 5, and the proof is complete,

IV. Variational Inequalities,

We now return to the variational inequalities briefly treated in SectionI,
We have:
"E = locally convex, topological vector spéce 5
K = a convex subset of E,
A = K- E (or E»E').

Problem 1V.1, (See Definition I.2.): Find ue K such that

(1) (A(u),v-u) > 0 VY ve K,
By Theorem I.1, if dim E <% , A is continuous, and K is compact and non-
empty, then Problem 1 has a solﬁtion u .,

We shall also consider the following generalization of Problem 1: Let

¢ be a convex, lower semicontinuous function in E , with values in (-00,®],

and ¢ 40 ,
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deaojers IV, 2, Find ue 8(¢) = {ue E|@(u) < ©} such that

(2] (A(u),v-u) + o(v) - p(u) > O iveE.

Remark 1V, 1. This ineaquality is trivially satisfied for every v# S(e) .

Remark i1V. 2. If the solution is an internal point of K, then A(u) = 0 (see

Definition 4, 3.1).

Remark IV.3, We get Problem 1 from Problem 2 by taking ¢(v) =0 (ve K),

@(v) =+ (v ¢ K). Then 8(¢) = K. Moreover:
Kz ¢pg= ¢ Z+w
K closed <=> ¢ lower semicontinuous
K convex <= ¢ convex,
Asiwas mentioned in Section 4.7, the main problem is to investigate
what kind of "continuity" properties' of A imply existence of solutions to
Problems 1‘-2.

Definition IV.1l. A pseudomonotone operator from E into E' is an operator

A which satisfies (ui stands for a filter):

(" i) If u - u,

lim sup V(A(ﬁi), u,-u) ._g 0 then

(3) < | lim inf (A('ui), ui¢v) > (A(u),u-v) (ve E).

ii) ¥y ve E, (A(u), u-v) is bounded from below on bounded sets,

. (as a function -of 'u),

Lemma IV.1l. If dim E< o , then A is pseudomonotone <=> A is continuous.
_EEQQ_f:j (<=). Continuity trivially implies (3 ii), Also (3 i) follows, because
if ui# u , then A(u,) ~ A(u), and hence (A(u,),u,-v) > (A(u),u-v) (ve E).

(=>). Let A be pseudomonotone, and let ui—» u. (ui a sequence).
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Claim. Aui is bounded,

Proof of claim. Suppose not.  Then one can find a subsequence such that
A(un) )
A < &0 with llgll =1, Fix ve E(=R'). Then by (3 ii),
n _

lat |~ =,

(A( ui)

(et C
Tty

,u-v) >
i S

(let i—»> o) => (£, u-v) > 0,

This is true for‘ every ve E, and hence £ = 0. But this contradicts the fact
that ||€]] =1. Thus ’we have proved the claim, i.e. Au, is bounded.

It still remains to prove continuity of A, Let ui» u , and extract a
subsequence such that A(ui) -~ f for some fe¢ E' =E. Clearly (Aui, ui -u)— 0,
By (3 i), (f, u-v). = lim inf (A(ui),uifv) > (Alu),u-v) for every ve E. But
thisbimpli»es that f = A(u). Since by the same argument, every subsequence
of A(ui) contains a subsequence converging to A(u), we must have the com-
plete séquence A(ui) converging to A(u). This means that A is sequentially
continuous, and since E (= ]Rn) is metrizable, we also have A continuous,

is pseudomonotone

Remark IV.4., If A is pseudomonotone on E , then A‘P

on F for every closed subspace F , so in particular AF is continuous for
every finite dimensional F .

Lemma IV, 2, A is monotone hemicontinuous => A is pseudomonotone => A

is of type M .

Proof. Let A be monotone hemicontinuous, and lef u, > u Since
(A‘(Ui) - A(u), ui-u) > 0 we get lim inf (A.(ui), u, - u) >0 . Soifalso,
lim sup (A(ui),ui -u) < 0, then

(4) . lim (A.(ui), ui -u) = 0.
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Take some ve E. By the monotcnicity of A,

(A{ui) - A(v), ui -v) > 0 <=
(A{ui),uim)} (A{ui)i,u - v) - (A(v),ui -v)> 0 => (by (4)),
lim inf (A(u,),u - v) > (A(v),u - ¥) .
Now take some we E, and put v =u+ t(w - u) (te [0,1]) in this inequality,
Then one gets
| lim inf (A‘(ui), tu-wj)) > (A(utt(w-u)), t(u-w)).
Divide by t, andlet t- 0., Then by the hemicontinuity of A,
lim inf (A(ui),u-w} > (A(u),u-w) .
Using (4) once more one then gets
lim inf (A(ui),ui-w) > (A(u),u-w),
and we have proved {3.1i).
Tﬁe property (3.1ii) follows trivially from the monotonicity: Fix some
ve E. Then (A(u),u-v) > (A(v),u-v), énd ihe right hand side is bounded, as a
fuaction of u, on _bbunded sets. This completes the proof of the first implica-
tion i1 Lamma 2,
Nex: éuppmz-;-s that A is pseudomonotone, By Remark 4, we have
(I11. 5. i) satisfied, We want to show that also (III, 5,1i) is satisfied. So
take ui—e— u, A(ui) -~ f weak* in E', and lim sup (A(ui), ui»u) <0, and thus
by (3.1), lim inf (A(ui),ui—v) > (A(u},u-fv) (ve V)., But
lim inf (A{ui),ui~v) < lim sup {A{ui),ui~v) <(f,u) - (f,v),
and thus
(f,u-v) > (Alu),u-v) (ve E).

This implies f = A(u), which gives the second implication in Lemma 2, and
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completes the proof of Lemma 2,

Theorem IV, 1, Let K be a compact, convex and nonempty subset of E ,

Let A:E—- E' be pseudomonotone. Then there exists ue K such that (1) holds.
Proof. Without loss of generality one can assume that 0 ¢ K. Let F be a
finite dimensional subspace of E. By Remark 4, AF is continuous, The set

KP =KN F is a compact, convex and nonempty ( 0 ¢ KF} subset of F ., Thus

by Theorem I.1, there exists Up € KF such that (A.(uF),v-uF) >0 (ve KF).
In this way we gét a net {uFlP = a finite dimensional subspace of E}, which

induces a filter. Let u, e an ultrafilter, finer than u Then by Theorem

P
1.1, u = u for some ue K. For each ve K ,
lim inf (A(ui), v - ui) >0,
In particular, take v =u, Then
lim sup {A(ui),ui-u) <0.
By pseudomonotonicity, this gives
0 > lim inf (A,fui),ui-v) > (A(u),u-v) (ve K),
and the proof of Theorem 1 is complete,

Theorem IV, 2, Let K be a closed, convex, nonempty subset of E. Let

A:E - E' be pseudomonotone.. Moreover, suppose that there exists Vo € K,

and a compact set Kl such that

(5) ue K, (A.(u),vo-u) 2 0 => ue Kl .

Then there exists ue K1 K such that (1) holds.

1
Proof. It is no loss of generality to assume that Vo = 0 (shift the origin).
Choose F as in the proof of Theorem 1, but replace KP by KF N BR’ where

BR is the ball of radius R in K. Then use Theorem I.l. to get
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o€ &Y n BR satisfying

ERIA

(A y > 0 (VeKFﬂB).

3 -
g rVUE R Z R

Since v, =0 ¢ K n B» We get from (5), u

- ¢ KFkﬂ Kl . Choose some

F,R

u_,e K,—= K (this can be done because

Oe - OO ] -
sequence Rk , such that uF,R F r 1

KF n Kl is sequentially compact). Then for this UF R

{A{u v-u)) >0 (v; KP)'

p)’ F

The proof is now completed just as the proof of Theorem 1, uging the fact that

u.,e K ﬂKI’ which is compact.

F

The following theorem generalizes Theorem 2 (cf. Remark 3):

Theorem IV,3: Let A: E— E' be pseudomonotone. Let ¢ be a lower semi-

continuous, préper (i.e. ¢ #+w) convex function on E. Moreover, suppose
that there exists Vg € 8(¢) such that

6) (Alu),vy-0) + 9(vy) - @lu) > 0 =>ue K,

where ;i is a compact subset of E . Then there exists u«¢ 8{(¢) such that
(2) is satisfied.‘

m Consider the space F = EXIR with the product topology. Liefine
B :F> F' by B(u, a;) = (A(u),l) (ue E, | ae R). Let K= {(u,a)la > ¢(u)}
be the 'epigraph'' of ¢ . Then K is a nonempty, closed convex svet in F,
Ciaim, If (u,a)e K satisfies

(7) (B(u,a), (v,B) - (u,@) > 0 ((v.B)e K),

then u satisfies (2), and « = ¢(u).

Proof of Claim. Condition (7) means:

((A(u), 1), (V”u)p“a’)) = (Afu),v-u) + B-a> 0.
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Condition (2) is trivially true if v} 8(p). Take ve Q(¢), and P = ¢(v). Then
(A{u),v-u) + ¢(v) - ¢ > 0, and since o > elu) , we get (A(uj),v-u) + o(v)

- ¢{u) >0, Thus (2) is satisfied. That o = ¢(u) follows if one takes v =u.
This proves the claim.

The problem (7) is of the type treated in Theorem 2, with E replaced
by F . The set K satisfies the requirements of Theorem 2, and it is easy to
see that B :F - F' is pseudomonotone, We still have to find the compact set
K

Then (B(u, a), \70 - (u,a)) > 0 <> (A(u),v

used in(5). We take the special point in (5) to be \70 = (Vg o(v)).

-u) + o(v,) - @ >0 => (since

0 O)

~

a > p(u)), (A(u),v0~u) + q}(VQ) - ¢(u) >0, andthus by (6), ue K. This is
one half of (5); we also must show that « is bounded: By the convexity and
the lower semicontinuity at ¢ , ¢ is bounded from below by a continuous
linear function (use e.g. the geometric form of the Hahn-Banach theorem in F).

Thus a > ¢(0) > C , where C is some constant, independent at ueX (K

is weakly compact, hence bounded). To get an upper bound we use (3.1ii):
(A.(u),u-vO) is bounded from below for ue ;( , and thus agcp(vo) - (A(u), u-vO)
is bounded from above for ue E . Thus we can take Kl = ?(X I, where' I is
some sﬁfficiently large interval in formula (5). Theorem 3 now follows if one
applies Theorem 2.

We shall next give a new, equivalent description of pseudomonotonicity.
However, this is possible only if E is a Banach space (with its weak topology)
so that one can ﬁse the Banach-Steinhaus theorem.

Definition IV.2., A :E- E' is of type P, if

(8) u, - u , and ui ¢ some compact subset of E => lim inf (A(ui)‘,ui-u) >0.
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Example I[V.1. If A is monotone, then (A(ui)ui—v) > (A.(u),ui~u)» e,

so (&) holds.

Lemma IV, 3, A is pseudomonotone => A» is of type P .

Proof. Let ui - 0, and suppose to get a contradiction that
lim inf (Afu ), u;-u) <0 . Then one can extract an uitfaﬁlter u, such that
(A(ui),u}'.»u) -~ a <0, Soin particular, lim sup (A.(ui),ui-u) =a<0, By
pseudomonotonicity
lim inf (A(ui),ui-v) > (A(u),u-v) \ (ve E).

Take v =u. Then

e = lim inf (A(ui),ufu) > (A(u),u-u) = 0 ,
- a contradiction,

Combining this lemma With Lemma 2, we see that pseudpmonotonicity
implies type 1\/10 and type P . The converse is also true, provided one adds
condition (3 ii), and also has a compactness condition on E',

Theorem 1V, 4. If A is of type P and type M if (3 ii) holds, and if

0.

~ weakly bounded sets of E' are relatively weak*»compact, then A is

pseudomonotone,

Remark IV. 5.  The compactness condition on E' is satisfied e,é. if

E is a Banach space (Banach-Alaoglu Theorem).
Proof, We must show that (3 i) holds., Note that u, - u and
lim sup (A(ui},ui~u) < 0 together with (8) implies (A(ui),ui~u) ~ 0, Tﬁus

if in addition, A(u}.) - f (weak*), then we will have
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u - u
A(ui) - f
(A(u),u,) ~+(f,u)
which by (III. 4,ii) implies that A(u) = f. Hence (A(u},),uj-v) - (f,u-v) =
(A(u),u-v), which implies the wanted inequality lim inf (A(ui),ui~v) >
(A{u),u-v) (ve E). So the problem is to be able to assert that A(ui) - £

for some fe E'.

To do this it suffices to show that (for an ultrafilter), A,uj is weak’==
bounded, since the weak*-compactness then gives convergence, This means
that (A(ui),w) 'is bounded for each we V., We know that (A(ui}, ui-u) - 0,.
Also by (3.ii), (A(ui),uj-v) > C(v) =a constant dependent on v, This
implies that (A(ui),u—v) is bounded from below for each v . One can take

v = u+ w, then one gets (A(ui),w) bounded for each we E. This shows that

*
A(ui) is weak bounded, so the argument in the beginning of the proof applies,

The last part of the previous proof goes through in more generality:

Theorem IV.5. Let A: V - V', where V is a Banach space, satisfy (3. ii).

Then A is locally bounded, i.e. ¥ x e Vde>03 IAx) || 1 is bounded for

Ix-xyll < & -

Remark IV.5. If A is monotone, then

(Alu),u-v) > (A(v),u-v) (ve V),
and the right hand side is bounded for bounded u . Thus (3.1ii) holds, and

so by Theorem 5, A is locally bounded.
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We first prove the following lemma:

Lemma IV.4. Let A: V- V' satisfy (3.ii). Then

e,C>0 2 [[x]| < e =(Ax),x) < C.

Proof of Lemma 4, Supposé to get a contradiction that there exists un—» 0>

(Alu ),u )=+ . Now [lA@ )l flu Il > (A ),u ), so

A(u
H (A(u ),

A{u )
v - n
n {A-(un))un)

is unbounded in V'. By the Banach-Steinhaus theorem,
there exists we V such that (vn,w) is unbounded, Extracting a subse-
quence we can suppose that (vn,w)» +0, or that (vn,w) - <00, In the

latter case, change w - -w, so that one gets (vn,w)—»+oo, Now

’ (A(\l ):W)
(A{u ),un~w) = (A(u y,u )1 ) = (Au s - (v yW)) > -0,

n T (A (u ),u )
because the first factor - +%®, and the second factor - -0, But this
contradicts (3.1ii), and the px’*oof is complete.

Proof of Theorem 5. By Lemma 4, there exist ¢ , C >0 such that

x| < & = (Ax),x) < C.
Thus by (3.1i), (A(x),w) = (A(x),%) - (A(x),x-w) is bounded from above for
each we V, and for ||x|| < & . Replace w by ~-w, then one getsl‘(A(x),w){
bounded for Hx” <¢ , and each fixed we V. This means that the image
in V' of the ball ||x] <e¢ is. weak ~ bounded. By the Banach-Steinhaus
* theorem, weak" boundedness implies norm-boundedness, i.e. [[A(x)]| , <C

for |x|| <e , and the proof is complete,
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In the last theorem for this subsection we specialize to a monotone
hemicontinuous operator:

Theorem IV.6. Let A :E—- E be monotone hemicontinuous. Let K be a

nonempty, compact and convéx subset cf E . Then the set of ue¢ K satis-
fying (1) is nonempty, closed and convex.

Proof. Nonemptyness follows from Theorem 1, combined with Lemma 2.
Claim., u satisfies (1) <> (A(v),v-u) >0 (ve K). (note: A(u) replaced
by A(v)).

Proof of Claim, (=>): (A(v),v-u) > (A(u),v-u), so this decision is trivial,

(¢=): Suppose that (A(v),v-u) > 0 (ve K). Let v =u+ 6(w-u), 8¢ (0,1],
and we K. Then (A(u + 6(w-u)), 6(w-u)) > 0. Divide by 6 , and let 6 - 0;
using the hemicontinuity of A one then gets (A(u) w-u) >0 (we K). This
proves the claim,

Now, for each v, CV = {ue K|(A(v),v-u) >0} is a closed and
convex subset of E . Thus the set of solutions to the variational inequality,
which is given by M CV is closed and convex.

ve E
Remark IV, 6, If A is strictly monotone, i.e. u# v => (A(u) - A(v),u-v) >0,

then the variational inequality (1) has a unique solution: Let ul, u2 be

solutions., Then

i
=

o
Q.
2

(A(u,),v-u,) > 0 (ve K), take v
1 1" -

1
c

(A(uz), v-u,) > 0 (ve K), take v

5)
(A(ul) - A(uz), ul—uZ) < 0. By monotonicity, (A.(ul) - A(uz),ul-uz) >0,

), u -uz) = 0., which by strict monotonicity implies u, = u

1 1 2°
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V. Minimizing Convex Functions.

Here we shall study minima of a function ¢ , which is supposed to
be lower semicontinuous, convex and everywhere defined function on E ,
which is a topological vector space.

Definition V. 1. f=E—- F(E and F topological vector spaces) is weakly differ-

entiable at vO if there exists a continuous linear operator A: E - F such

that vee E, Yae F',

——g—(f(x + te),a)

dt 0 t=0

We then write f‘(xo) = A,

Remark V. 1. If E and F are Banach spaces, and f is Fréchet differenti-

able, i.e, if
i
el

uniformly for ||eHE <1, then f is weakly differentiable.

I f(x tte) - f(x,) - the “F' - 0,

Remark V.2, If F=1IR, then A:E~ IR, i.e. Ae¢ E'.

Lemma V.1, If ¢ is a convex, everywhere defined, and weakly different-
iable function E , then ¢' is monotone hemicontinuous on E .

Proof. Restrict ¢ to the segment [u,v]. Then t=- ¢{u + t(v-u)) is convex
in [0,1]. The derivative of this funétion at zero is by definition (.go'(u),v—u).
The derivative at 1 is (¢'(v),v-u). By convexity, the derivative increases
(o'(u),v-u) < (¢ (v),v-u), so we get monotonicity.

The hemicontinuity follows from the fact that the function y(t) =
o(u+ t(v-u)) is everywhere differentiable, and hence &'(t) is continuous,
i.e.

P'(t) = (o' (utt(v-u)),v-u) > (¢'(u),v-u) (t-> 0).

This completes the proof of Lemma 1.
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We now get a new proof of Theorem IV.1 in this special case., We
begin with a lemma:

Lemma V.2. Let ¢ be convex, everywhere defined and weakly differentiable

-

on a Banach space =. Then ¢ is continuous,
Proof. By Lemma 1 and Remark 4.4.5, ¢':E~ E' is locally bounded, i.e,

¥xge Ede,C>0 3 qu'(X)HE, <C, for ]]x-xoll <g¢ . Thus for

l| x-x |.<_ €,

0l
lo(x) - qo(xo)[ = U(;l (go'(xO + s(x-xo)),x-xo)dsl SCHx-xo ”E ,

and we have continuity.

Theorem V.1, Let A = ¢', where ¢ is a lower semicontinuous, convex and
weakly differentiable function on a topological vector space E, Let K be a com-
pact, nonempty and convex subset of E . Then there exists ue K such that
(A(u),v-u) >0 (ve K). Moreover, a point ue K is a solution if and only if

¢ attains its minimum on K at u,

Remark V. 3. The lower semicontinuity is automatically satisfied if E is a
Banach space with some topology compatible with the duality (see Lemma 2).

Proof of Theorem 1. Since ¢ is lower semicontinuous and K is compact,

¢ attains its minimum at some point ue¢ K. Take some ve K, ahd define
U(t) = ¢(u+t(v-u)), te [0,1]. The function § attains the minimum in [0,1]
at t=0, so '(0)>0. But $'(0) = (¢'(u),v-u) = (A(u),v-u), and thus u
is a solution to the variational inequality.

We have now proved existence of a solution, and that points where
@ attains its minimum are solutions to the variational inequality. The con-

verse direction remains., So suppose that for some ue K, (¢'(u),v-u) > 0

H]
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(ve K). Take some ve K, and define w(t) = p(utt{v-u)). Then

$'(0) = (¢'(u),v-u) >0 . The convexity of ¢ on [0,1] then implics that

P(l) > Y(0), i.e. olv) > f,o(u}. This shows that u is a minimizing point for ¢.
We shall next study a special case of the previdus one, Where A is

linear, i.e., ¢ is quadratic, Here we work in a Banach space,

Theorem V. 2. Let V be a reflexive Banach space, and let Ae L(V,V') be
coercive:
(1) there exists o > 0 such that

(bu,u) > afuf

v {ue V).

Let K be a closed, con{}ex, nonempty subset of VA, and let fe V'. Then
there exists ue K such that

(2) (Au,v-u) > (f,v-u) {(ve Kj.

M Defide a new operator B:V-— V' by Bu =Au - {. Thenrby (1), B is
strictly monotone. Hemicontinuity bfollows from the linearity of A . QOne can
then use Theorem IV.2 to get existence, provided the set {ue Vl (Bu,u) < 0]}
is compact (take v, =0 in IV. 5 . But (Bu,u) <0 <> (Au,u) <({f,u) <

0
bl ull, = Gy ) allul? < el lull, = elull, < il
i.e. 'the set is bounded. Putting the weak topology on V , this set is then
relatively compact (note: the hemicontinuity of B is independent of the
topology on V). Theorem 2 now iollows from Theorem IV, 2.
In the case when V is a Hilbert spacé, we can give a different,

more direct proof, which only uses Theorem 1, and not the harder Theorem 1V, 2.

We begin with some lemmas:

#1571 -33-



Lemma V.3, Let Ae L(V,V')., Then (Au,u) is convex <> (Au,u)>0
(ue V).

Proof, (Au,u) is convex <> (Au,u) réstricted to an arbitrary line in V

is convex <> Y(t) = (A(u+tv),u+tv) is convex V¥ u,ve V), <= ('(t) is

nondecreasing in tV u,ve V. But U'(t) = (A(utty),v) +(Av,u + tv) =

= (Au,v) + 2t(Av,v) + (Av,u) is nondecreasingin tv ve V <> (Av,v) >0

¥ ve V. "

Alternative proof of Theorem 1., (When V is a Hilbert space): We begin

with the special case when A is self-adjoint, i,e. A= A*. By (1) and
Lemma 3, the function ¢(0) = %(Au,u) - {f,u) is convex. By the computa-
tion in the proof of Lemma 3 it is also weakly differentiable (in fact even
Fréchet differentiable), and (¢'(u),v) = 3[(Au,v) + (Av,u)] - (f,v) =
= %(‘(A%-A.#)u,v) - (f,v) = (Au-f,v), ¢'(u) = Au-f, Theoxfem 2 is then a conse-
quence at Theorem 1. |

Before we treat the case A # A* , we need another lemma,
Lemma V.4, Let S f=u be the solution of (Au-f,v-u)> 0 (ve K),
whenever a solution exists (u is unique because of (1)). Then S is
Lipschitz continuous with Lipschitz constant 1/ a, on its domain,
Proof of Lemma 4. Let u, =Sf , u, =Sf_. Thén

1 1 2 2

-ul)z O)

(Aul - fl,u2

(Auz - fz,ul - uz) >0, and

(A,(ul~u2),(ul-u2)) < (fl-fz,ul—uz) < ”fl'fz”v' Uul-uznv. By (1),
2
v

2
(Auy-u,),u;-u,) > al| ul-uzﬂ so one gets afu-u, || < I £ -5l u-u,

i.e. either u=u,, or a]{ul—uznv_<_ I fl-letv‘ . This proves the lemma;

taking fl = fz one also gets uniqueness of u).
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Alternative proof of Theorem 1. (continued). We shall solve the case A

A#A by gradually deforming the symmetric operatdr %;(A%—Ax) into the
operator A . Define

Ay = (1-9) Ha+n") +en (8 [0,1]).

Then Ae is coercive:

b 2
(Agu,u) = 3(14+6)(Au,u) +3(1-8)(A" u,u) = (Au,u) > afjull .
Thus by the {first part of the proof, the problem

(3) (Aju-f,v-u) > 0 (ve K)

0

has a solution ue K when 6 =0. Now for arbitrary 6 ¢ [0,1], define
Sef = u as the solution of (3), whenever a solution exists. Lemma 4 can be

applied with A replaced by A_ (since A_  1is coercive), and we find that

e 0

Se is Lipschitz continuous on its domain, with Lispchitz constant 1/a.
Claim: If 88, - V', then Ssn =V' for |n-8|<y , where
vy <2a/M, M = HA-A’:‘HL(V’V,) .
Assume for the moment that this claim is true. Since 8 S0 =V,
one then gets to Al = A in a finite number of steps, and has solved the
original problem,
It remains to prove the claim, We want to solve (Anu*f,wu) >0
(ve K). Consider this as

A u-(f+A u ~-A u),v-u)> 0
( e ( Ti 2 . >

o
i.e. u=S(f+Au - A u), if it exists. Ag - A = 10-n)A-A ), so
HAG - AT\ HL(V,V‘) < 3|6-n|M < zyM. Thus the function
u - Se(f + Aeu - Anu) has a Lipschitz constant $+yM/a <1 . One can now

use the contraction mapping principle to get a solution u (note that ue K,
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since the range of SS is contained in K). This completes the proof.

VI. Operators in HE(Q) .

Let © be a bounded open set in ]RN. We define

v:af)(sz) = {uel (Q)}—%e L (S‘Z),u =0},
i

o0

g = 149).
We have seen before that the boundedness of Q implies compactness of the
injection V&G H.

v =ule) = {f=1f,+ Z m{feL(m}
l

We study the following type of operators:
N

, du au Ou_ du
(1) A(u) = -‘Z o (2,000 55, 5]+ ag(x, u, = e e )
i=sl i 1 %y 1 N

The basic assumptions on A will be:

i) aj(x,u,pl, oo ,pN) is measurable In x and continuous in

u)pl.""}pN (j :l)...,N) 3

N
i) Jayx,u,pp,. e )] <)+ Clul+ ) p])
: i=1
(2) < where X ¢ LE(Q), and C is some constant (j =1,...,N),

N «
iii) the mapping (pi,. . ,pN) - (al,. .o ,aN) s R - IRN‘ is monotone

for each fixed (x,u) or equivalently

N .

Z [ai(x,u, ply- . ’pN) - ai(x,u, gl’f' . ’gN)} (pi“gi) > 0 (x,ue R).
i=l

Temma VI.l. Let A satisfy (1) and (2.i) and (2.ii). Then A is sontinuous from

\

: ou ou.
Proof. It is enough to show that u -~ aj(x,u, 3% ' I } is continuocus
N .

from V strong into Lz(Q) strong., This fdllows from:
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Lemma VI.2. Let A satisfy (1) and (2.i) -(2.ii). Then the mapping

(u,pl,. ..,P.) aj(x,u,pl,. o ,pN) is continuous from (LZ(Q))N+l strong -

N

2
L7(2) strong.
Before we can prove Lemma 2 we first need the following variant of:

Lebesgue's dominated convergence theorem. Let

Lpn(X) 5vn(><) < <pn(X) (xeQ); Lpn(X) - Y(x), vn(X) - v(x) and

,(pn(x)-*cp(x) ae. in . Moreover, let
Ju (0 dx~ [pxsx; [ o (x)dx ~ [ e(x)dx .
Q Q Q Q

Then fv (x)dx - f v(x)dx .
Q "o Q

Proof. Define wy(X) = vn'(x) - q;n(x), w(x) = v(x) - U(x) . Then wn(x) >0,

and wn(x) - w(x) a.e, in © ., Thus by Fatou's lemma,

fv_fq;::fwﬁliminffw = liminf[ [v_ - [y ] =
Q Q Q g " e " o "

liminffv --f¢. Hence liminffv va.
a " Q @ "o

In the same way (replace v, by -v , ¢ by -¢ ) onegets
limsupéfvrl < fv.
Thus lim f L fv , as claimed. =

Q Q
Proof of Lemma 2. By {1 ii), Iaj(x,u,pl,...,pN))] < Mx) + c|u] +'Z|pi|)e

LZ(Q), so we-only have to prove that aj(x,u,pi) (short for aj(x,u,pl, .o ,pN))
is measurable to show that aj(x,u,pi) € LZ(SZ). Since u and pl,. <+ 3Py are

measurable there exist N+l sequences of simple functions

k k
u ’pl"”’pN—’ u’pl"”"pN a.

e.
: k k . :
u,pl,...,'pN, we have Aaj(x,u ,pi)u» aj(x,u,pi.) a.e. in 2, so a isa

in . As a is continuous in u

limit a. e. of-such functions. Measurability of these functions will therefore
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imply measurability of a . Fix k. There exists a partition of © into
' . k k k
measurable sets such that on each set the functions u ,pl se e ,pN are
constants, Thus by {2i) aj(x, uk,pi;) is measurable on each set. Adding
the pieces together one finds that aj(x,uk,p)i() is measurable. Thus, as
we noticed above, we get a}.(x,u,pi) measurable.
. s n _n n
We still have to show continuity of a . Let (u 3Py see 5Py | R
. 2, N+l .
(u, pl, “ee ,pN) in {L7(2)) strong, Passing to a subsequence we can
get pointwise convergence in all N+l components a.e. in £ . Then for
this subsequence, aj(x,un,pril)-» aj(x,u,pi) a.e, in £ . Use (2,ii) and
apply Lebesgue's dominated convergence theorem to ldj(x;, un,p?) -
2 n _n ., .2

aj(x,u,pi)} to conclude that aj(x,u ,pi)-» aj(x,u,pi) in L°(R). =

Now condition (2, iii) enters the picture:

Lemma VI,3. Let A satisfy (1)-(2), and give V its weak topology. Then

A is of type P (see Definition 4. 4, 2).
Proof, Let u, > u weakly in V. Then, since the imbedding V GG H is

compact, u —~u strongly in H. By (l)and an integration by parts (denote

ou ou du
ai(X, u’ _5; 200y -5.;<— ) by ai(x’u’ 8X‘ ))
1 N ]
N Bun aun 8u
(A(un)’u“_u):izlg'{ ai(x,un, axj 1 8xi )dx+ fa (x,u > B J )(u -u)dx.

We have to show that lim inf (A(un),un—u) > 0. By the strong convergence

in H = LZ(Q), the la‘St term goes to 0 as n~-o , By (2 iii),

Bun du
f Z‘ [(a,Ge,u 5 5 ) - 3,(x,u ,ax )] (5
i=l j

_n ou
axi yax > 0,
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Thus

N Ju o Ju
L N \? / ou o 9Y
lim inf (A(un).un—u) > lim inf f o oatxeus o7 e % ydx
Q i=l j 1 i
aun ou 2
However, this is zero because % " 8w 0 weakly in L7(Q) and
ou ou ! . ! 2
ai(x,un, -8-;—)—» ai(x,u, g) strongly in L%(2) by Lemma 2, u

J . J
We eventually want to know that A is pseudomonotone., We have

already got type P , but we still need type M to get pseudomonotonicity

O b
{see Theorem 1V, 4), Type MO does not follow automatically; one needs

something more, e.d.

There exists « > 0 such that

ERE v
i;]_ [(ai(xyu)pl} ce )pN) - ai(x,u, gl’ ‘e ’gn)](pi_gi) P aizl lpi_gil .
k = =

Lemma VI. 4., Let A satisfy (1)-(3). Let u =u weakly in V, and
(A(un),un-u) - 0. Then u, = u in V (strongly).
This auxiliary lemma will be used in the proof of Lemma 5 below,

Proof of Lemma 4. Using the same arguments as in the proof of Lemma 3,

and then adding the condition (A(un),un-u) -0 and the assumption (3),

one gets
ou
0= lim (Au_),u -u) = lim { [ a_(x,u_,>—")(u_-u)dx
N ““n’’ "n B 0"’ "n’8x, " n
n-— oo n—-o £
N ou 8un du
+f Z 8,065 e o, ™ Bx )%
Q i=l j i i
n aun au 8un au
w [0 [a,66u 55 - a6 s g g - 5)dx )
Q i=l i j i i
N aun Ju un Ju
g PINCCRE LTINS Al
> o lim sup _n ou_ |2 gx
- Qf izl ox %,
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Thus we get strong convergence in the derivatives. We already had strong
convergence of u in LZ(Q), so we get strong convergence in V,
Lemma VI.5. Let A satisfy (1)-(3)‘» Then A is of type M (and hence of
type MO} from Vv weak into V’.
Proof. Take |

u = u weak in V,
{(4) | A(un) -—» f ’weak* in V' {= weak in V')

lim sup (A.(un),un) < (f,u).
We want to show that A(u) = f. By Lemma 3, lim inf (A(un),un~u) > 0.
This together with (4) gives lim (A.(un),un-u) = 0, Thus by Lemma 4, v,V
strongly in V., Hence by Lemma 1, A(un) - A(u) strongly in V', This to-
gether with (4) giveé A(u) = £, and completes the proof. N

The condition (3) is not the only way to get type M One can do

00
without it if ao(x,u,\pl,. .. ,pN) is nice:

The mapping u - ao(x,u R —g—;};) ‘is continuous from V weak into
(5) j

LZ(Q) weak.
Lemma VI.6. Let A satisfy (1), (2) and (5). Then A is of type M from

V weak into V',
du

» n - 3du
Proof, Let (4) hold, Then by (5), aO(x,un,%-}-{—'—)» ao(x,u,_ axj) weakly

in LZ(Q}. Since un - u strongly in LZ(SZ), we get as before
gu
. n ;
{2 ao(x,un, ?;)(un—u)dx» 0
Thus if we define a new operator A by

~ N 3 ou ou
A(u) = -Zl s la0u, 5] = AW - a(xu, ),
- l= i ) j j
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then {(4) holds with A replaced by A , and f replaced by f-ao(x,u, %% ).

This shows that there is no loss of generality in assuming that aO =0.
As before we get (A(un)?un-u) - 0. By(2ii), ai(un) is bounaed
in LZ(Q). Passing to an ultrafilter, again denoted by u s we get ai(un) - hi

weakly in LZ(Q), for some functions hi . This means that

_ 8u aun Su
0:11mf2 a(xu,—-.—) K—g;)dx
Ql—l i i
E)un 8un N U
= llmf Z ai(x,un, K)-a_x—__dx_f Z hia_X—, dx ,
Q i= j i Q i=l i

N Su 8un 9u
Zl a,(x,u_, % J) e dx—»f Z h, —;idx. By (2 iii) ,

N aun aun
S{' i“Zl.(ai(x,un,- ——8Xj ) - ai(x,un,pj))( _—3"1 - pi)dxg 0, for arbitrary Ppsees Py

pl, ce ,pN € LZ(Q). Passing to the limit (note that un—> u strongly in LZ(Q),
' ou

and using Lemma 2 to take care of the ai(x,un,pj) —a—;rl term) one gets
i

fZ(h xup))( -p,) > 0.

1

Qi=] 1
0
Take pi = 5—2 + tgi; then the above inequality becomes
i
th(h-é(xu3+tg))g>o (g. ¢ 1%
P At ] 8 j. .
Qi j
‘Divide by t >0, let t-> 0+, and use Lemma 2. This gives
ou 2
fZ - a,(x,u, 35))g; > 0 (g, ¢ L.
i i
Q i=l j

Replace gi by -gi, then one gets the opposite inequality. This shows
0
that ai(x,.u, 'é'u{ ) = hi , and completes the proof. L
To apply the existence theorems for solutions of (A(u),v-u) Z 0

(v ¢ K) we still need one of the two following conditions: Either K is

convex and compact, or K is closed and convex, and
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there exists vO ¢ K and a compact set KO such that
(6)

(A(u),vo-u) >0 = ue KO
(see Theorems IV.1-1V, 2). The condition (6) is e.g. implied by:

there exists f >0 and fe Ll(Q) such that

(7) N N 2
aO(X,u,pj)u +iZ_:1 ai(x’u’pj)pi Z f(X) + ﬁ 121 Ipil .

Lemma VI.7. Let A satisfy (1), (2) and (7). Give V its weak topology.
Then (6) holds, |

Proof, It suffices to show that (A(u),vo-u) >0 implies boundedness ofu
in V., Write

(A(w), v, -u) = s{ao(x,u,;fxlj)(vo-u)

N Ju 8v0 ou
+ f.z a (X)u, ax )( 8X ax ) z O
Qi= i
By (7),
f g ou ,2 f [%\_‘,I ou ., du f ou f
B I—I < a(x,u, )+ | a. (xX,u,7—)hu - | f(x).
o i3 axi Q 1ol i axj axi o 0 axj &
N ov
oJu 0 ou
Thus 5f Z ai(x,u,-é-;{—.)g}-{—_- + ao(x,u, % )v0 - f
Q i=l j i j
N ov
2 0 Ju
ﬁ”u”V 5 L laX |H|ai(x’u’§x—,)]H
. i=l i j
du
+ |VO|H IaO(x,u,&j)lH + C.

Using also (2 ii) one gets
2
Bllul? < o + o, llull,
where c;,c, are constants. This gives boundedness of ||u||v , and

completes the proof,

~42- #1571



We shall now look closer at the particular operator -Au + u3 which
was studied in connection with the '"'nonlinear wave equation'', Here wé

consider the stationary problem
. -Au+u3'= f,
(3)
u'aﬂ = 0,

The term -A is good, but u3 causes problems, because it does not satisfy
_ N :
|u} 3 < Ax) +C(ful + )| 58;(15-} ). We must change the space V:
i=l i '

V = Hl )N L4(9)

0
vi= mla) + 143

(Q) -
Then A(u) = -Au+ u° maps V- V' .

Lemma VI.8, A is monotone hemicontinuous on V.

Proof, Monotonicity follows from the fact that

S ou —22
(A(u)) - Au,),up-u,) = f 2 ax xi dx
+ f - u )u -u )dx > 0.

A is in fact more than hemicontinuous- It is continuous from v strong into
'V‘ strong: Let un—> u stronglyin V, i,e. u, u in Ho(sz) and u, -~
in LYQ). Then -Au_ - -Au in 1) and w -’ i 143(9), which
gives strong cbn_vérgerice in V',

Lemma VI.9, A is coercive:

: ' 2
(Alw)) - Au,),u,-u,) > Hul—uzﬂ ! 4tul--uz 4

l)
H, (@) L (ﬂ)
, 3.3 1 4
Proof, It suffices to check that (a”-b”)(a-b) > z|a-b|  for y a,be IR,

This is easy: (a3-b3)(a-b) = (a-b)z(a2 + ab + b?‘) > 1(a b)z(a2+b2)

> %(a—b)z(a2+b2 - 2ab) = Ya-b)t.
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This is enough to imply (6). Take any v,e K, and let (A(u),vo-u) > 0.

0

Then
4
1, |
+ 7|u Vo' 4

llu-v <
(@) 14@)

ol %)
HO

(A(U) - A(v),u-vy) < -A(vg),u-v,)

0

5 C(”U'VO” 1 + |u'V0| 4 ):

HO(Q) L ()
so one gets boundedness of ||u||V .

Theorem VI.1l., (Existence and uniqueness): If K is closed, convex and

nonempty in V = Ht(Q) n L4'(Q) and f' ¢ V', then there exists a unique ue K
such that

(-Au+u3-f, v-u) > 0 (ve K).
Existence follows from Theorem IV. 2 combined with Lemma 8 and the fact
that (6) holds. Uniqueness is a consequence of Lemma 9 and Remark IV, 6,

VII. Continuous Dependence of Solutions.

We begin with a concrete example, i.e. the operator A(u) = - Au+u3

from the previous section,

Example VII,l. The mapping f-u given by Theorem VI.l1 is locally

H&lder continuous.

Proof. Take two functions f. and f_ with corresponding solutions u, and

1 2 1
u,. Then |
(A(ul) - fl y U, - ul) > 0,
(A(uz) - f2’ u - uZ) > 0,
and thus
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(A()) - Au,),u-u,) < (£-f,u-u,).

This gives (use also Lemma VI.9)

2 4
fuj-u, 17+ 2w -u, | < -5l ey -u
1 72 H%) 1 ;L4(Q) 12" 1 2%v
Write ”ul-»uzu ;= %o ful-uzi 4 Y, Hfl-le!v' = a , then this
: L (Q)
0
becomes (|||, = -l ; + | |, )
M Hz @)

x2 + -};y4 < a(xty) =>

(xz-ax) + (iy4 -ay})< 0 =

2 .
(x -a/2)% + (by* - ay + %a4/3) < 1a%+ %a4/3
14 .-374/3 S | |
The function 3y - ay. + 23 s nonnegative (its minimum is obtained
at y = 31/3) and thus
4/3 %

x < a/2 + (2a? # i—a 2,
‘which gives a local Holder bound for x in termé of a (not global because
of the different exponents on the right hand side). A similar expression c¢an
be obtained for y . One éets‘
| x = 0?3 a-~0),
vy =063 @-o.
This proves the statement of Example 1.

We go on to more general cases:

- Theorem VII,1, Let V be reflexive and let A: V- V' be of type MO and

satisfy

lim -—-——L—(Aﬁ S .
full e Tl
v

#1571 -45-



Also suppose that A is one-to-one, Then the mapping A-I: f- u is con-
tinuous from V' strong into V weak,
Proof, Let fn ~fin V', andlet Au )= fn . Then by the coercivity con-
dition, u, belongs to a bounded set of V. One can extract a subsequence
uk»-u in V weak., Then

u - u in V weak,

k

A(uk) = fk»f in V' strong,

(A(uk,u ) - (f)u) s
0" The uniqueness of the

solution A(u) = { then implies that the complete sequence un tends to u

which implies A(u) = f because A is of type M

in V weak,
A similar theorem also holds for the variational inequality:

- Theorem VII, 2, Let A be pseudomonotone, Let K be corripact, convex

and nonempty, and let the variational inequaiity
(A(u) - f,v-u)> 0 (ve K)
have a unique solution ue K. Then the mapping f- u is continuous from
V' strong into V weak.
Proof. Let f —f étrongly in V', and define the corresponding u_e K as

above, Extract a subsequence u, =~ u weakly in V., We have

k

(A(uk) - f!«:’ v-—uk) > 0 (ve K),

so in particular
(A(uk) - fk s u - uk) > 0.

This gives (since fk» fin V')

Ilim sup (A,(uk), u -u) < 0.

k
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The pseudomonotonicity then gives

Ilim inf (A(uk),uk-v} > (A(u).u-v) {(ve K)

But (f,u-v) = lim (fk’vk - v)

fv

lim iaf (A(uk),vk -v) > (Alw),u-v),
so u is the solution corresponding to f . The uniqueness of the solution

again gives convergence of the complete requence,

VIII. The Method of Penalization.
‘Here we shall give a different proof of the existence of a solution of
the variational inequality. The idea is to approach the given problem by a
sequence of problems, which can be solved easily.
The requirement
(A(u),v-u) > 0 (ve K),
where KC V is some closed convex set, can be formulated as

(1) (A(u),v-u) + @(v) - g(u) > 0 (ve V),

0, ue K
<o(u)={
w, uf K.

Similarily, (A(u),v-u) > (f,v-u) becomes

where

(2) (A(u),v-u) + (@(v) + £,v)) - (p(u) + (f,u)) > O .
By Theorem VII, 2, if fn - f strongly Vin V' , and the other hypothesis of
that theorem hold, then the solutions u —u weakly in V.

Taking a sequence fn in (2) means that onekreplaces the convex
function ¢(v) + {f,v) by a sequence of functions ¢(v) + (fn,v). More
generally, one can replace the function » in (1) by some possibly differ-

ent sequence 2 of convex, lower semicontinuous functions, and solve
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(3) (A(un),V-un) + <Pn(V) - ¢n(u) >0 (\_’E V).

A question arises: What conditions on 2y will make the solutions
un converge to the solution u of (1)? (No:e that (2) can be considered as
a special case of (1), by changing the function ¢ .)

Theorem VIII,1, Let

i) 2, (V) = o(v) (Ve 8¢),

ii) u —~u = ¢(u) < lim inf cpn(un),
iii) The solutions u of (3) remain bounded,
iv) A be pseudomonotone and bounded.

Then there exists a subsequence u, - u weakly in V, where u is a solu-

k
tion of (2).

Remark VIII.1. If qan(v) = Y(v) + (fn,v), then i) holds if fn-,~ f weakly,

and ii) holds if fn—> f strongly.

Proof of Theorem 1. Since the sequence un is bounded we can extract a

weakly convergent subsequence uk—- u . By the boundedness of A, A(u

k)
is bounded in V',
Take some ve 8¢. Then ve 8§ P for sufficiently large k .

‘/’k(uk) _S (Pk(v) + (A(U.k),v—uk) s
so cpk(uk) is bounded from above. By (ii), ue 8¢ , and

o(u) < lim inf [:pk(v) + (A(uk),v-uk)] (vedo).
Take v = u. Then one gets, using (i)

lim sup (A(uk),uk-u) < 0.
By pseudomonotonicity,

lim inf (A(uk),u -v) > (A(u),u-v) (ve V),

k
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Thus for v e Dom ¢,

¢(u)

IA

o(v) + lim inf (A(uk), v-uk)

IN

p(v) + vlim sup (A(uk_), v—uk)

¢(v) - lim inf (A(uk),uk—v)

I

< o(v) - (A(u),u-v).
This completes the proof.

Example VIII. I, Take Kn decreasing, convex, closed. Let [l Kn =K#4¢.

Define

n
e (V) =
e, if v K
Solve (3). This is. equivalent to solving
(A(un),v-un) > (f,v-un) (Ve Kn)

6n K . Clearly Condition i) is true,

That alsq- ii) holds ié not too hard to see either: Let u-u, and
lim inf gan(un) <o, ‘Then une Kn for all sufficiently large n , and therefore
ue MK =K. This gives o(u) = (f,u) = lim ;on(un'), so ii) holds.

We now come to fhe method of ‘penalization,

Theorem VIII. 2, Let V be reflexive. Let K C V be closed, convex and
nohempty. Let .A.:."V» V' be pseudomonotone, bounded an‘d coercive:

i Vg € K 3 (A(u)‘-,vo—u) > 0 ==>u belongs to a bounded set. Moreover,
suppose that there exists B :V» V' monotone hemicontinuous such that
K = {u|B(u) =0}, For ¢ >0, define u, asthe solution of

1
Au,) + ~Bu) = 0

(which does exist). Then there exists a sequence un ~u (n- 0) such that
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ue K is a solution of
(A(u),v-u) > 0 (ve K).
Note that we already know from Theorem IV, 2 that a solution u of the
variational inequality does exiét. However, this gives a new existence
proof, under the new, somewhat more restrictive conditions.
The proof begins with a lemma:

Lemma VIII.1, Let V be reflexive. Let A,B:V - V' be pseudomonotone,

and let A be bounded. Then A+B is pseudomonotone.

Proof of Lemma l. By Lemmas IV.2and IV.3, A and B are of type M and

type P. This trivially implies that A+B is of type P (see Definition IV, 2).’
Claim. A+B is oftype M.

Proof of Claim, Let

u, =~ u
A(ui) + B(ui) -~ f
lim sup (A(ui) + B(ui),ui) < (£,0).
We want to show that A(u) + B(u) = f. By the boundedness of A,
we can get a subsequence uy such that A(uk) -~ g . This gives B(uk) -~ f-g.
Since B is of type P we get
lim inf (B(uk),uk) > (f-g,u) =
lim sup (A(uk,) ,uk)
< lim sup (A(uk) + B(uk),uk) - lim inf (B(uk),uk)
< (fu) - (f-g,u) = (g,u).
Thus A{u) = g,
In the same way one shows that B(u) =f-g. This proves the claim.

Thé Lemma now follows from Theorem IV. 4.
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Procof of Theorem 2. By Lemma l, A+ EIB is pseudomonotone, Thus in
1 R
particular, A+ - B is of type MO. Take VO as in the statement of

Theorem 2. Suppose that (A{u) + é'B(u),u-vO) < 0. Since v_ e K we get

0
B(,VO) = 0 , and so by monotonicity,
(B(u).’unvo) z (B(Vo)}u-vo) _>_ 0 *
Hence
(B(u),u-v,) < 0

which implies that u is contained in a bounded set. Take v to be the

0
origin in V, and apply TheoremIiI. 2, This yields the existence of u8 e V
satisfying
1
- = sl
A(us) +a B(us) 0
1
A ~B - =0 =>
( (ue) e (ue)’ue N > (as above)
(A.(us),ue-vo)_g 0,

and hence us ¢ bounded set, Extract un—» u (r - 0). Since A(un) is

bounded we get B(un) = -n A(un) - 0 (strongly). We thus have.
u - u
ki
B(un)-» 0 => Bu)=0 => ue K.

(B{u J,u )= 0
M T
Take any ve K, and note that B(v) =0,

1
- = a— - )
(A(un),v un) . (B(un), v un‘

= l(B(u ) - B{(v), u ~v) > 0 =>
n n n -
lim inf (A(u ),v-u ) > 0.
n n =

Substitute v for u. Then
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lim inf (A(u ),u-u ) > 0
n n -
and so by pseudomonotonicity,
0 > lim inf ——l-(B(v) - B(u }),v-u )
- n 7 n

lim inf (A(un),ur—v) > (A(u),u-v) .
This gives (A(u),u-v) < 0, and completes the proof.

IX. Variational inequalities related to the stationary heat equation.

We begin with the general equation on dynamics:

p(x,t) = density (1 unknown)
u{x,t) = velocity (3 unknowns in 1R3)
crij(x,t) = stress tensor (9, or rather 6 unknowns)
e(x,t) = internal energy (= temperature ) (1 unkno_wn)
g(x,t) = energy flow (3 unknowns)
Equations
Conservation of mass:
ap ) _
ot L o PY) = 0
i i :
Conservation of momentum:
8ui E)ui B(rij
P ét + ; axj uJ) = fi + ? an i=1,2,3),

where f = (fl’fz’fs)

Conservation

is an external force.

of angular momentum:

T,.
1]

o 3

ji

Conservation of energy (w = potential energy) :

ag
de de i
G(?t-‘ + Z?laxj uj) = pw - ; Bxi * 1ZJ T4
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Apply these equations to a solid: put u =0, p=constant. The second
equation gives the tension, which we do not care about at the present. The
last equation becomes
g,
de i
(1) P ae = PW - ) He
i i
The classical hypothesis on the material is that
(2) Doy 5
where (aij) is a positive definite matrix i.e. Z aij gi §J. > 0 (Ee IRS)
Roughly this means that the heat flow tends to even out the temperature, but
it doesn't have to flow in the direction of the negative gradient, because
the material can have different properties in different directions, Let
aij = aij(x). Then the positive definitions of (ai}.) means
(g, Ve) < 0.
More generally, one can suppose that
9 T "W Vox,
with
;ai(x’e’gl’§2’g3)gi > 0.
The needed"mathematical assumption is
. - ' - - >
iZ[ai<x,e,e> a,(x,e,m](E;-n;) > 0
which gives monotonicity. Note that this is automatically satisfied in the

matrix case (aij)' For simplicity we only use below the matrix form,

‘Substituting (2) into (1) we get the heat equation

Z a ae ) =
3 3X axJ -
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If the solid is isotropic, then

2

a,, = ale) s,
1]

1]
and one gets

oe o} .. ode
FRIE RGO
i i
Frequently one even takes a(e) = constant >0,

independent of e .

We also need some boundary conditions. There are three different
types of reasonable conditions:

1) give temperature on the boundary
2) give the flux of heét at the boundary:

'Za e cos(
- Tij 9x

n,x) = -_(g - n) given, where n is the
b ] o de de
outward normal. We define o -{g *n), =—— >0 means
vA ov

A
transfer of heat into our set Q.

For an isotropic material -5;2 is proportional to g% {(normal derivative).
A )
(3)

9
give some relation between u]ag and _é__e_ , e.d.

e(x) < e, => e = function of e(x) (heating)
- 0 avA

e(x) > e, = e = 0 (no flux of heat).
0 avA

We begin by studying the stationary problem for an isotropic solid in case 3):
9. de
- 5% (ale) 8"1) = w

(xxe Q)
i

de
™ + F(x,e) = 0 (xe 0Q2)

We shall see that this problem has a solution, provided a(e) > a > 0,

and F(x,e) is increasingin e . We assume 0Q to be sufficiently smooth.

We solve the problem by transferring it into a problem exclusively on

Q. For simplicity, take the case
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-Au - w in
{ g—z + F(x,u) = 0 on 9
The procedure is roughly the following:
First solve the problem
-Au = w ,
(3)
2 1
where v is a given function on 8Q. If we L7(Q), ve H?(0Q) (= restriction
of Hl(Q) to 92), and Q is a bounded, open, regular set, then there exists
a unique ue Hl‘(ﬂ) solving (3). One can then define an affine mapping
T : H%(ESZ) — (H%(BQ))' . This mapping is monotone, The original problem
is equivalent to |
Tu + F(x,u) = 0.
We now look at the details of the transformation,

Step 1. The equation (3).

1
For ve H2(0Q) = {restr. to Q2 of Hl(Q)},We define

vl s = inf__ |ull
3 u =v 1
H(092) 80 H(Q)
Take any u, e Hl(Q) 3 u =v , Then u - u, satisfies
0 o|aQ 0

-A(u-u ) = W+ Auge H'l(sz) = (Ht(sz))'

1
u-uo € HO(Q) .

1 -1
The operator -A is an isomorphism between H_, and H 7, itis in fact a

0
canonical isomorphism because (-Au,v) = the scalar product of u and v
in H%) (use the Lax-Milgram lemma; the same is also true for other more

general monotone hemicontinuous and coercive operators). This means that

the equation
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-~ u =w+AuO

has a solution ; € Hé(ﬂ)- Defining u = UO + u we get a solution of (3).

Step 2. Define g—-}’}- This would be easy if ue HZ(Q), but that is not

an
the case,

Lemma IX.1l. Define X = {ue HI(Q)[ Auce LZ(Q)} , and give X the (Hilbert
space) norm

2 _ gl 1 Au
Il =Wl o asl

Then D(Q) is densein X.
Remark IX.1. The solution u of (3)satisfies Au = we Lz(sz), sO ue X.

Proof of Lemma 1. (OQutline, cf, the chapter on Navier-Stokes): Use a parti-

tion of unity and a change of coordinates to reduce the proof to the two cases
Q=R and Q= IR: , where the proof is straightforward,

L
Lemma IX.2. The map u- -g-ﬁ- : X —» (H%(Q))', define by extending the
Q2

corresponding map defined on D(2), is linear and continuous.

€ Hl(xz) 3 uo =V, This can be
o
done in a continuous way: the mapping v - uG is continuous from

1
Proof. Let ve H2(Q), and choose vy

1

H(00) ~ HY@) .

Now let ue D() . Then by an integration by parts

3 0du
0 ou u

Stauu) = [ ) 5= = - [ u

Q 00 g id % ¥ g O 0

gu

1
(note that -8—}—{9— € LZ(Q), and Uy € H?(0Q) ¢ Lz(afz)). This gives

1
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au

|
i) 1)

< Cllugll o lhully, =
0 Hl X
du
[ aevl < olvl 2 fuly, =
9 H?(o0)

I3m II 1< Clully (we D)) .

?(002)

Since by Lemma 1, D(ﬁ) is dense in X, we get the same inequality for all

ue X.

Remark IX. 2. If one only knows that ue LZ(Q) and Aue LZ(Q), then one

le'(H3/2(aQ))l = H'3/2(an). This result, as well as the

can show that
on

one of Lemma 2, is best possible.
Putting everything together we find that we can construct a continuous

1 1
affine mapping T: H%6Q)- H 2(8Q) defined as T(v) = where u is the

ou
on ’
solution of (3).

Remark IX.3. Using Lemma l one can prove that
Bu ou ou

_2 1
f-Auu fzax ax 'fﬁuz

oQ

for u, ¢ X, uZ

product' between H 2(8&2) and HZ(BQ) Applying this twice one gets
ou du

Qf—(Aul)uZ) = S{-(Auz)ul - asf2 =, +as£ =2 .

€ HI(Q), where the last integral is con51dered as an "“inner-

for ul, u2e X.
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Step 3. T is monotone.

Take
-Aui = W “Au, = W
u = v, u = v
1 80 1 2 90 2
-A(u ~u.,) = 0
= 1 2
{u, - u = Vv, -V
1 2 80 1 2
Substitute U = u2 = ul - uz in the last formula in Remark 3. This giveé
) 9 2
fw-(u-u)(u»u)zfz&—-—(u—u)[
5 on 1 2771 2 S axi 1 2
T L N
1 2 1 1 2 5 T
H() L7(Q)
Thus T is not only monotone, but satisfies
- 2 2
A(Tv, - Tv,, v,-v_) > Cllv.-v_|| "1 - |u, -u,|
1 271 2 12 HZ(80) 1 72 LZ(Q)

In fact one can show that for ¢ >0, v- g¢v+ Tv is coercive (go back to
the integral formula).
Combining Steps 1-3 with Theorem III, 3 and Lemma III, 2 we get

i -1 _ "
Corollary IX.1l. Let F: H?(dQ)— H 2(8Q) beg monotone hemicontinuous, and

. satisfy
(F(v)) - B(v,), v,-v,) > ellvv, 1%, .
L (o)
Let @ be a bounded, regular,open set, and let we LZ(Q). Then there exists

a unique solution ue Hl(sz) of

~Au = w in Q
g% + Fu) = 0,
o
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If T is defined} pointwise: u(x)-— F(x,.{x}) with F(x,r) measurssle in x

for each r , continuous increasing in r for almost any x, and satisfies
IF(x,1)| < Mx) +c |r|, where \e LZ ,

then F is monotone hemicontinuous from LZ(BQ) to LZ(BQ) . To find

F(x, fl) - P(x,1,)
e >0 we have to assume > & . a.e.

-0 -

Remark IX. 4. The corollary does not cover the case F= 0 because of the

coercivity condition. In this case the solution does not exist unless the
compatibility condition
[fw=o0
2 .
. ou .
holds. This is true because for every ue X, f—Au = f on’ and this
2 aQ ‘
is zero if F=0. 1If fw = 0 , then infinitely many solutions exist (i.e. the
Q
solution contains an undetermined constant).
So far we have only discussed the stationary heat equation with non-
linear boundary conditions., Now we want to discuss a variational inequality
V = H1 ()
7
A: V-V given by A = -A
A is linear , monotone: (Au-Av,u-v)
d(u-v), 2 2
= [ L= = vl
Q i i
We can conclude from Theorem V. 2 that if K is a closed, convex se

in vV, and if fe V' = H-I(Q), then there exists a unique ue K such that

(Au - f,v-u) > 0(ve K).
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Example [X,1. Take K = {ve HB(Q)EV?_ ¢ a.e. in Q}, where g¢e LZ(Q)

Suppose that K#¢ . If ¢« Hl(Q), then K# ¢ <> c‘p}m <0. The set K
is closea: Let Vg € K- v in V, then for a subsequence | VU a.e, =>

v>e¢ a,e, in Q. Itis also convex, so it is also weakly closed.

Thus the inequality

(4)

u> ¢ a.,e, in Q
- 1
has a solution ue H(2). One can give a closer description of this solution,

)" (Bu - f, v-u) > 0 (ve K)
\

Take we D), w>0. Then u+we K. Put v=u+w = (Au - f,w)>(
(we DI}, w>0)., => Au-{ is a positive distribution => Au - { is
induced by a positive measure, so we get

f Au -f > 0 (in the sense of measures)

\L u > ¢ (a.e.)
- Formally one can further improve this characterization. For the following
discussion, suppose that u and ¢ are smooth functions, Also suppose that
in some open set w , u >¢. Then for we D(w), and for |e| sufficiently
small, ut+ew 3 ¢ on w, Take v=u+ew » € >0 and small =>
(Au -£f, ew)>0 => (Au-1f,w) > 0. Here w is anything in D(w ), so
Au-f = 0. So formally we get |

-Au - £f> 0\ and for each x ¢ Q one of these must be

(5)
u-¢>20 an equality,

u>e => -Au-f =0

u =¢ = -Au-£>0
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Conversely, suppose that u is smooth, and satisfies (5). Then it

solves (4):

ft-au - f,v-u) = [ (-Au-f,v-9) > 0.
Q T u=ge

The problem is to prove thaﬁ ‘a solution of (5) is smooth enough for this to
make sense,
Geometrical solution for N =1, @ = (a,b)
Solution: u = how a tense string looks
u fastened at a and b, pulled over
the function ¢ (take f = 0)

¢
av U \] b either u= ¢ and -u" > 0,

or u> ¢ and u't = 0,

Ist case: u concave
2nd case: u linear.

Note that even if ¢ ¢ Cw , we have in general u e Cl(a.b‘), u& Cz(a,b).

p

However, if ¢'"¢ L (a;b) , then either u'(x) =0 , or u'(x) = ¢'(x), so

u'e LP, and far | < ﬂ:p"']{ . Here we have a restriction on
L (asb}’ L (a’b)

the smoothne-ss of the solution which is built into the variational inequality:

p

smooth data does not hecess-arily give smooth solutions, as the heat equation
' ' ‘ ) s ~ S+>2 1
does, For the heat equation, fe¢ H )=>ue H () (s >-1, s # -3). Here
: o0
one can prove much less (let ¢ C ): fe H =>ue HS+2 if s <%, but not

for bigger s .

Theorem IX. 1. {regularity for Example 1 with ¢ = 0). Let & be a bounded,

regular open set, and let fe¢ Lp(ﬂ) for some p, 2<p<»., Define
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K= {ve Hla(Q)} v> 0 a.e. in Q}., Then the solution ue K of

(-Au - f,v-u) >0 {(ve K)

satisfies |Au] < 2|f}
LP) LP@) .
Remark IX, 5, This will imply u, 58;?' R 8>8< aux € Lp(Q). By Sobolev's embed-
i i
. 8w 9o 1 _1_ 1 roy L_1_2
ding theorem, u, % © L <), s "p N Also ue L (R), r P N’

1

provided p < N. If p> N

> 5 2 then ue Co(ﬁ) .

Proof of Theorem 1. Define

0, if ux)>0
Blu(x)) =

u, if u(x)<o0,.
Clearly ﬁ:LZ(Q)-» LZ(Q) , and P is monotone, hemicontinuous and bounded:
|B(u) - (V)| , 2 Ju-v] o+ Also B(u)=0 <> u> 0 a.e. Consider the

; L L
problem
1
-Au8 + " B(ue) = f |

in V= H‘é (2). We can use Theorem VIII. 2 to conclude-that we find a se-

quence ue-—- u weakly in V, where ue K is the solution of

(-Au - f, v-u) >0 (ve K).
To get the inequality |-Au]| D < 2|f| , it suffices to prove that
L) L ()
|-Au_] < 2|f ,
€ 1P@) LP@)

because the mapping u - Iu! is convex and continuous, hence weakly
lower semicontinuocus in V.,

Case p = 2.

2 2
= - ,
us e V ﬁ(ua) e L (), Au8 ¢ L ().
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Lemma IX. 3. 1If vy is Lipschitz continuous, monotone on IR, v(0) = 0 , and
U e HE(Q), then (-Au,y(u)) > 0.

Apply this lemmato vy =8, u= u, - This yields (~Au8,ﬁ(u€)) > 0,

Multiply the equation by -Aue =

2 1
| -Au_| + =(-Au_,B(u ) = (f,~Au ) =
ILZ(Q) e £ £
R N S T P VN
L) L) (o)

This gives the desired inequality

~au |, < ]

€ 1@ L%@)
(note: we do not even need the factor 2 here).

1
Proof of Lemma 3. Suppose first that y ¢ C(IR). Then one can integrate by

parts and get

(-Au, y(u)) Zf o, ax (u)
ou 2
=) [ v > 0.
i Q 1

In the general case, take a sequence Y€ Cl(]R), Y monotone with
yn(O) = 0 such that yn(t)-» v(t) forall t, and [y;l(t)l is uniformly bounded.
Then yn(u)-—»y(u) in LZ(Q), so

(-Au,y(u)) = lim (-Au,y (u)) > 0.
This completes the proof of Lemma 3 , and finishes the Case p = 2.

Case p > 2, Apply Lemma 3 (or rather a straightforward generalization of

Lemma 3) to y(t) = {6(t){p”2 B(t) (which is only locally Lipschitz) to get
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1 p 1
= [Bu )] == Blu ), v(u))
€ & 1 Pg) & g
< (fv(u) < || I )| o, =
£ Lp(Q) € Lp )
1
- |B)] < 11
) e 1Pg) LP@)
Substituting this into the equation for u_ one gets |-Au | <2|f|
€ B p
e () L ()

This completes the proof of Theorem 1.

X. A Hammerstein Equation.

The classical Hammerstein equation is of the form

ux) + [ Kix,y) fy,u(y)dy = g(x).
: Q
It is of the abstract form
u+ K(A(u)) = g,

where

(Au)(x) f(x, u(x))

(Ku)(x)

[ K(x,y)uly)dy .
Y]
We let X be a reflexive Banach space (=> X' is reflexive), and suppose
that
A: X - X'
KiX' = X,
Remark X.1. Itis no loss of generality to assume that K(0) =0, A(0) = 0;

otherwise put
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~

K(v) = K(v+ A(0)) - K(A(0)),
Aw) = A(u) - A0) =
u+ K(A(W) = g - KAO0); .
Another possible normalization is to take K(0) =0, g =0 obtained by
putting u=g+v, B(v) = A(g+v), u+K(Au)) =g => v+ KB(v))= 0,
Lemma X.1l. ZTue X:u+Khu=0 <=
-v+ Au =0
qHu ¢ X,ve X' :
u+ Kv=0
Proof. Obvious.
Now consider the map @ : XX X' = X' XX, i.e. V=V where
‘V = X X X', defined by
(u,v) = (-v + Au, u+ Kv) .
Lemma X. 2. & is monotone <=> K and A are monotone.
Proof. Take (ul,vl),‘(uz,v )e V.. Then

2
(d(ul,vl) = a(UZ’VZ) 2 (ul’vl) - (UZ;VZ))

((-v) # Au)) = (-v, + Alu,)), up-u,)

+ ((ul + K(vl)) - (u2 + K(vz)), v1 - VZ)

(A(w) = Au,), uy = u,) + (K(v)) - K(v,), v - v,).

-

1]

=V

This clearly gives the direction (<=), To get the other one, take first vy 5

and then u1 = uz .

' Lemma X,3. ¢ is hemicontinuous <> K and A are hemicontinuous,

Proof, The same type of calculation gives

(d(ul’.-t— tuz, Vl + tvz), (uz,vz))

= (-v uz) + (u VZ) + A(u1 + tuz,uz) + Kiv, + tvz,vz) s

1’

from which the statement follows. -

1’ 1
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Lemma X.4. 7 is pseudomonoione <> A and K are pseudomoinotone.
Proof, Essentially the same calculation.
Remark X, 2, The operator A and K seem to play different roles in the
equation u + K(A{u}) = 0. However, u + K(A(u)) <=

-v + A{u) = 0

u+ Kv) = 0,

Put K(v) = -K(-v), v =-v =>

u + ;{(:J) = 0

VAEAU =0 =

+AK(V)) = 0,

<1

where A and ?( have '"changed places''. Also notice that % is monotone
if K is,
We begin with the question of uniqueness., Suppose that A and K
are monotone hémicontinuous:
Casel. If A is strictly monotone, then we have uniqueness, because let
u+ K(A(u)) = 0
v+ KA(W) =0,
take the difference, and multiply by A(u) - A(v): 0 > (u-v,A(u)-A(v)) + (K(A(u))-
- K(A(v)),A{u) - A(v)) > (u-v, Afu) -A(v)). So u =v .
Case 2, If K is strictly monotone, then we have uniqueness: Same
computation gives Au = Av, and thus u = -K{(A(u)) = -K(A(V)) = v .
Case 3. If (A(a) - A(b),a-b) =0 => A(a) = A(b), then we alsor have unigue-
ness (use the reasoning in Case l to get A(u) = A(v), and then continue as in

Case 2). Clearly the same is true if one requires the same thing of K .
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Definition X. 1. M: V- V' is n-monotone, if ¥ ul,. REL
S
Mu,, u -u
1'/‘31( ¥
M is cyclically monotone, if it is n-monotone for all n .

) > 0 (define u =u).

i+l n+l 1

Lemma X.5. Let A be tri-monotone and hemicontinuous. Then

(A(a) - A(b), a-b) = 0 => A{a) = A(b) .
Proof.  Apply trimonotonicity with the triple a, u, b =

(A(a), a-u) + (A(u),u-b) + (A(b), b-a) > 0,
Thus using also (A{a) - A(b), a-b) = 0 we get

(A(a)y b-u) + (A(u), u-b) > 0
Put 'u = b + t¢c and use hemicontinuity:

(A(b+tc) - Afa), tc) > 0 (ce V)=>

(A(b} - A(@), ¢c) > 0 (ce V) =>

A(a) = A(b) .

In the particular case when

Ku(x) = [ Kix,y) uly) dy,
where K‘ is monotone’ ;an K(x,y) = K(y,x) we have K cyclically monotone
(the derivative of o(u) = %(Ku,u) is (K + K*) = K) . Thus in this case we
have uniqueness,

One can also look at the problem of uniqueness in the following way:

If u, and u_ solve u+ K(A(u)} =0, then (ul,vl) and (uz.vz) solve

1 2
72(u,v) = 0 , where vl =A‘(ui) and v2 = A(uz), ka(u,v) is monotone, so
the set of solutions of @(u,v) = 0 is closed and convex. Hence also

(1 - e)u1 + 0 uz, {1 - e)v1 + 8 vz‘)

= ((L-8u +6u,, A(l-0)u + 8u,)

1
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must be 3 solution of @(u,v) =0 ., This implies that

A is affine on the segment [ul,uz}.
Similarily one gets

K is‘afﬁne on the segment {vl,vz] .
There may be some cases where these informations lead to either Ul =u, or
vy =V,

In the following existence theorem we assume monotoniéity of A
and K. One could modify the argument to work when A and K are pseudo-
monotone, and (K(v),v) > 0 (ve V). The same remark applies to Theorem

2 below.

Theorem X.1. (existence). Let A and K be monotone, hemicontinuous;

A X- X' and K:X'~ X, where X is a reflexive Banach space. Also let
K(0) =0 (cf. Remark 1). Moreover, suppose that @ R>0 3 (Au,u) <0 =>
lull <R. Then there exists ue X suchthat u+ K(A(u)) =0 . (Actually one
can find u satisfying [ufl < R). We first need:
Lemma X. 6. Let X be a Banach space, and suppose that A: X- X' satisfies
¥ ve X inf (A(u), u-v) > -
lull <R
Then for every constant K, the image under A of the set
S={ue X [full <R, (A(u),u) < K}
is bounded in kX’.
Proof. Take any we X. Then

(A(u))w) = (Au;u) - (A(U), U»W)
80

sup (A(u),w) < K- Inf (A(u), u-w) < +»
e S , ue S

-68- ‘ #1571



Replacing w by -w one gsats

sup |(A(u), w)| < o,
Ue S

Hence by the Banach-Steinhaus theorem,

sup ||au)| o <o,
ue S
which proves the lemrma.

Proot of Theorem 1. By Lemma 6 A maps the set

{ue X |full <R, AW, < 0}
into a bounded 'sét‘ of X', say inside‘,.the ball |yl §S . On XXX,
consider ‘ |

C = {tw,v) | lull <Re1, vl 8 +1).
By Tﬁeorem IV.l. combined with Lemmas 2 and 3, there exists (ﬁ,x?) e C
such that |

@(@,%), (u,v) - (3,%) >0  ¥(u,v)e C.

This is equivalent to

(-v + A(u), u-u) + (u'+K(wv), v-v) > 0,
Take u.=v = 0 => (A(u),u) <.(K(v),v) <0 by monotonicity of K, and the

fact that ‘K(0) =0 thus (A(u),u) < 0.
Casel, (A(@),0) = 0 =>K(V,V) =0=>(-v+A@),u) + (4 +KT),v) >0

¥(u,v)e C => ~x?'+ A(u) =0 ; u+ K(v) =0, whichis exactly what we

want to show,

Case 2. (A(1),0) <0 => ||4f] <R. Take v.=v, and u in a neighborhood
of u =>-v+AU) =0, However, this implies |v] < S by the way we

choseé S,
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Now choose u =u, and v in a neighborhood ov v => U+ K(v) =0 .
This completes the proof. "

Application to the Hammerstein Equation, Take X = Lp(Q) (l<p<ow,

and suppose that |f(y,r)] _<_‘,g(y) + c]r]p“l where g e Lp'(Q) (-g-—!--g-, = 1),
Also let f satisfy the Carathéodory Condition: meagurability in y and
continuity in r. Then A(u) = f(x,u{x)) maps Lp(SZ) continuously in Lp'(ﬂ).
To get monotonicity one must require f to be nondecreasing in r, With
these assumptions we have A monotone hemicontinuous. However, to
get '"(A(u),u) > 0" for large u we still need coercivity:

r f(x,r) > s}rlp - hiy),
where he L1 ; for the following reason:

Let Ku = f Kix,y)u(y)dy map Lp‘(Q) into Lp(ﬂ) be monotone heini-

continuous, and try to solve

u 4+ K(A(u)) = o .
Using Remark 1 one’ can reduce this problem to Theorem 1, Howe\}ef, this
procedure replaces the operator A(v) by E(v) = A{¢ + v}, and the coercivity
is needed to get (A(g¢ + v),v) > 0 for large v.

Theorem X.2. Let A and K be monotone hemicontinuous; A: X~ X' and

K: X' - X, where X is a reflexive Banach space. Moreover, suppose that
R >0 3 (Au,u) <0 => ||A(u)]] <R' and that K is béunded, with K(0) =0 .
Then there exists ue X éuch that u + K(A(u)) =0, (Actualiy one can find

u satisfying [ Au || <R .

Remark X.3. We replaced (Au,u) <0 => |lu|| < R by the weaker condition

(Au,u) < 0 => [|Au]| <R' but we suppose now that K is bounded.
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Proof. " Let K map {ve X' | [[v] < R 1] into {ue X|{ulf <5}.
Like in the proof of Theorem 1 we can find (G, V) ¢

C-{(u,v)e XXX [flull < 5+1, v <R +1}, 3

| (-v + AW, u-u)+ U+ KV), v-v) > 0.

Take u=v =0 => A(u,u) < -K(v,v)<0. Thus (A(u),u)<0.
Casel. (A(u),u) = 0 =>(K(v),v) = 0, and the conclusion follows as in
Theorem 1.
Case 2:  (A(1),V) < 0 => [[A@)]| <R'.

(-v + Au),u) + (u + K(v),v) > (A(u),u) + (K(V),V)

= (A(@), 0+ K@) + (K¥), v - AQ)) .

Minimizing over u,ve C one gets

(S + D]V + AD)l,, - (R L1+ K@ L, >

IAG@ I 15+ K@)y - RGN - Ay,

> R KDy - 819 - Ay,
so v-Au)=0 and u + KWv) =0 which completes the proof.
Application. Let f be as in the application following Theorem 1, except for
the coercivity. Consider the equation

u+ Kf(x,u) =¢ .

Without loss of generality we can take f(x,0) =0 | (subtract f(x,0) from
f(x,u), and shift the error to the right hand side). As before, define
A(v) = f(x,9+v). This time to verify that

(A{v),v) < 0 => A(v) is bounded in Lpt(n) we do not need coercivity:
(A(v),v) <0 <> fu f(x,u) < fcp f(x,u), where u=v + ¢, so we want to prove
that fu f(x,u) Qf_ fqo f{x,u)Q => | f(x,u)| o is bounded.

Q Q LY ()
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Define B(x) = ealf(x,u(x)) , where « is a constant, to be specified

below. Then for |u(x)| < 8(x),

| f(x,u)] 5g{x) + C}u(x)fp‘l

<g(x) + C P ik, u(x)) | PP

= g(x) + C oF"! F(x,u(x))] .

p-l_ 3 . Then one gets

Choose a sothat C a
|f(x,u)] < 39(x) . (Jux)| < B(x)) .
Thus in particular,

() f {f(x,u(x))]pldx < 2> lgl o
lul <8 L @)

Returning to the assumption

f u f(x,u) dx < f;a f(x,u)dx
Q Q

we get '(note that uf(x,u) >0 by monotonicity and the fact that f(x,u) = 0)

[f(x,u)lp'dx -1 f Bl f(x,u)|dx
>p “lal> 8

[u
< é—f |uf(x,u)|dx :’:%Qf!uf(x,u)lds

jul>p
= -i—fuf(x,u)dx < -i-fgaf(x,u)dx
Q Q
1
< = ‘Q’i ]f(x,u)] t
* 1P 1P (@)

Combining this with (1} we get

, |
fx,w|®, <0+ Cylinw]
¥ (@) ¥ (@)

which vields the desired boundedness, since p' >1.
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Remark X.4. The same type of proof goes through for p = © , One must
replace the condition on f by : f is nondecreasingin r, and for every
fixed r, f(x,r) is integrable. The reflexivity of the Banach space is
0
destroyed, but her2s A maps bounded sets in L () into sets of the form
21 | 1

{(ve L(Q)||vix)] < ux) ¢ L)},
which happen to be weakly compact in Ll(Q) and thisensures existence by
a suitable generalization of Theorem 2.
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LINEAR CONTROL THEORY AND RICCATI EQUATIONS
I, Tartar

1. Preliminaries

Definition 1.1, If X is a topological space and f is a real functionon X,

f is called lower semicontinuous (l.s.c.) at x,e¢ X if for every ¢ >0,

0

there exists V(x.), a neighborhood of X9 such that

0))
f(x) > f(xo) -¢ forevery xe V(xo}.

Remark 1.2, If X is metrizable, f isl.s.c. at x,. if and only if

0

N < N N N »
f(xo)'__ h::r:cf f(yn) whenever Yn X, as n-> %,

Definition 1. 3. A real function f is called l.s.c. on X if f is 21.s.bc.

at xo for every xo e X.

Theorem 1.4. Let X be a compact topological space, and f a l.s.c. real

function on X . Then { attains its minimumon X.
| The proof of Theorem 1. 4 makes use of the following lemma, which
follows easily from Definition 1.1:
Lemma 1.5, Areal function f on X isl.s.c, on X ifand only if the sét
{xe X: f(x) <2}
is closed in X for every he IR,
Proof of Theorem 1,4, Let o = inf £(x).

Xe X
Of course, at'this point « may be -% , Choose a sequence {ozn} s

such that an‘ @ as n=®. Let@Q = {xe X: £(x) f_:_a'n}, n=1,2,3,... .
{Qn }0:1“_1 is a decreasing sequence of nonempty, closed sets by the definition
of @ and Lemma 1.5, So, since X is compact, we may choose
’ )
x. e (M Q
0 n=l n
Sponsored by the United States Army under Contract No, DAAG29-75-C-0024.




The;n f(xo) < @,

for every n, so f{xO) <a < f(xo). Hence { attains

its minimum at XO . In the case when X is metrizable a somewhat shorter

proof is available. Let {xn} be a minimizing sequence, i.e.

fix ) = a = inf f(x) as n— ®© ,
n xe X

Since X is compact, there exists a subsequence {xm} and a point X, € X
such that x -~ x as m- o ., Hence fix ) < liminff{x )=a < f{x ).
: m o0 0’ — © n -— 0

m-—u

Therefore {f attains its minimum at Xy ®

Definition 1. 6. Let f be a real function on a set E. Then

{(x,N) e EXR:f(x) <N}
is called the epigraph of f.

Application 1.7. Let E be a topological vector space and f a convex func-

tionon E ., Suppose on E we have two topologies ! and 4:-2 which are

~ locally convex and have the same dual space. Then f is l.s.c. withre~

spect to T if and only if f is l.s.c. with respect to T if and only if

2
epigraph f is closed in either E_ XR or E_ X R, This is a result of the

following lemmas and remark. : :

‘Lemma 1.8. Let f be areal functionon E. Then f' is convexon E if |
and only if epigraph f is a convex subSet of EXR.

Proof: Suppose f is convexon E. Choose (Xl, kl), (xz, XZ) ¢ epigraph f,
and 6 ¢ [0,1]. Then f(G:»:I + (1«6)}:2) < ef(xl} + (1~9)f(x2)‘_<_:_ ei?\.l + (I;G)xz .
So (exl * (lf{?)xz, oA + (1~8)?;2) = e(xl,?\l) + (1~e)(x2,>\2) € epi,graph, f.

Conversely, if epigraph f is ¢onvex, X, X, € E, 6= [0,1], f(&ixl + (1-8))(2)

2
< ef(xl)-k (I«O)f(xz) since (xl,f(xl)} ‘and (xz,f(xz)) afxd hence

(exl + (I~9)x2, ef(xl) + (1-8)f(x2)) is in epigraph .
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Lemma 1.9. Let f be areal functionon E. Then f is l.s.c. on E if
and only if epigraph f is closed in E X IR.

Proof: We give the proof for the case where E is metrizable. Suppose
epigraph f is ciosed. Choose X - X, we wish to show that

f(x) < liminf f{x )= «a.
n- ¢ n

If a =+ , there is nothing to prove. If - <a <o, choose a subsequence
{xm} such that f(x )- ¢ as m- o . Then (xm,f(xm))e epigraph f for
every m and

{xm,f(xm))-« (x,a) ¢ epigraph f.

So f(x) <a = lim inf f(xn) as desired. If a = -, choose a subsequence
n- o

{xm } such that

f(x )™ -0 as Mmoo,
m .
Then (xm,f(xmo)) ¢ epigraph f for mZm0 since f(xm) §f(xm0) for m>m
And (xm,'f(xmo}) - (x,f(xmo)) as m- o , Hence (x,f(xmo)e epigraph f
or f(x)< f(xm ) for every m,. But then f(x) < @ = -o , contradiction.
0 .
Conversely, suppose f isl.s.c. on E, and (xn,)\n)-a (xX,\) as n-w

0

with (xn, )\n)e epigraph f or f(xn) < )‘n for n=1,2,3,... . Then
f(x) < lim inf f(x_) < liminf A = X,

- n- o n - n - oo vn

" So (x,\) e epigraph f, and epigraph f isclosedin EXR.,
Remark 1.10. 1f E_. ET are as in application 1.7, the theorem of Hahn-

_ 1 2 : .

Banach implies that they have the same closed, convex sets. This, together
with the preceeding lemmas, proves the assertion of application 1, 7.

Remark 1.11. 1If f isa strongly continuous, convex real function on a Banach

gspace E, then f is weaklyl.s.c. on E,
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the strong topology, and 71, the weak

Proof: Apply remark 1.10 with T 2

1
topology on E . Since ET& s ETZ have the same dual space, a convex set
is weakly closed if and only if it is strongly closed by remark 1,10

Now apply the above with E replaced by E X IR. Since f is convex,
strongly contmuous, epigraph { is convex, strongly closedin EX R, so

it is weakly closed and f is weakly l.s.c.

Application 1.12, Let E be a reflexive Banach space, f a strongly con-

tinuous, convex function defined on a closed, bounded, convex subset C of
E. Then, f attains its minimumon C .

’_?.gg_o_jf_:_‘ Since C is strongly closed and convex, C is weakly closed,

(See remark 1.12). Therefore éince C is bounded and E is reflexive, C is
weakly compact. The function f is weakly l.s.c. by remark 1.12, so the
result follows directly from Theorem 1. 4,

Application 1.13. In a reflexive Banach space E , each point has a projection

on a closed, convex set C.,

ggggv__f_i Fix xe E. We wish to show that f(y) = ||x-y| attains its minimum

on C . Itis easy to see that f is strongly continuous, convex. Let

a = infcﬂx-yﬂ , C= CN {y:l|x-y|]|< @+1}. Then the minimum for f
Y € :

on & and C are the same and f attains its minimum on &, since C is

closed, bounded, and convex, by application 1,12.

- Example 1,14. An example of a nonreflexive space E with a closed subspace

C with the property that if x4 C , then x has no projectionon C .
Let E=1Y0,1)

c = {fe LY0,1 : f‘ tf(t)dt = 0)
0
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C is clearly clos=sd subspace of E .

For fe C, ce E

=18 = M lEm-awlar > SRy -gm |
0 0
> 1w grtat] = | [*ta(o)at] .
0 0

And .equality can 1old if and only if

|£(t)-g(t)| = t|£(t)-a(t)]

which implies that g =fe C . Therefore g} C implies that | f-g”l >

|ft tg(t)dt| foreviy fe C. However, dist(g,C) = |f1 tg(t)dt]|.
0. 0

- Define
g(t) lfor D<t<} - =
f (t) = l-h._
n af s g(s)ds forl--1-<t < 1
no n — -
] .1 l'“i 1

Then f’tf (t)dt =.f n tg(t)dt + a f sc(s)ds fltdt

o N 0 n Ll

n

l'Flf 1 1
= [f t)dt](1+a (H - =) .
0 2n
> 2
So, taking a = Lt f ¢eC
? n -2n ’ 'n )

. 1 1
le-£ Il ::]fi_lg(ﬂ - £ (t)]dt 51&|g(t)|dt +1_fi £ (t)]dt

1
lf lg(1)]dt +-— an)I{ " tg(t)dt|
O
1.1
1 ' n 1
= [ latt |at + [ Promdt] - | [ gyt
1 l-— 0 0
1-;1' 2n

as n- oo ,
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This proves that dist{¢,C) = ]fltg(t)dt] , and, since
‘ 0
l£-all, = | [*ta(t)at|  implies f=g,
V 0

every gt C has no projection on C .

2. Control of linear systems with guadratic (convex}) cost function.

Introduction.

We suppose the system state y(t) satisfies a linear evolution

equation of tkhe form

dy + Ay(t) = f(t) + Bu(t) for 0<t<T

dt - T
(2.1)

v(0) = v,

where Yo and f are given data and T <. The function u(t) is called the
control and is to be éhosen» (perhaps with some constraints) to minimize a cost
function J(u) of the form

, T
(2.2) Jiw) = [7Qly,u)dt + Q,(v(T)
\ 0
where Ql’ Qz are quadratic,
A control minimizirig. J(u), when it exists, is called optimal.

Example 2.1. Consider a simple case of (2.1),

()4

~ = u(t) , 0<t<T
(2.3) d
y(0) = 0

where the control u(t) has the constraint
(2.4) u(t) e [-1,+1] a.e,
and the cost function is given by

2.5 Jw = [Ty |® - uwiZa = [T [fusids]? - fuw]Pat .
| 0 } 0 0© ,
Claim: J(u) > -T for all u satisfying (2, 4).
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Froof U;'ul i;(ti[zdt > 0  and frIiwt)|2dt. < T by{2.4). So
0 : 0
T . 2 2
Jw = [Ty ]7 - fu)Hdt > -T.
) 0 >
If equality holas, u” =1 a.e. and y~ = 0 a.e. But, if y =0, the
dy : e . . 2
u o= St 0 in the distribution sense, This contradicts u =1 a.e. and
proves the claim,
Claim: inf J(u) = -T, the inf taken over all u satisfying (2. 4).
Define
+1 for te [—2-5- , E.I%L) n [o,T] K=0,1,2,...
u (t)=¢ . \
n 1 1 for te [5—1%’1 , -‘?‘—%f‘-) N[0,y K=0,1,2,.

Then uz(t) =1 for te[0,T] and since y (t) = ft u (s)ds
n 0 n

n
ly (0] 5;11— for te[0,T]. So

T 12 2 T 2
) = foy, @17 - @5 = fo ly (1)) “dt - T

< -T + -%-»—T as n-— oo,
n

This proves the claim., In this example no optimal control exists.

Remark 2.2. In example 2.1, un—» 0 weakly-star in LOO(O,T) as n- o,
i.e. _gT f(t)un(t)dt—+ 0 as n- o forevery fe LI(O,T), even though urz1 =1
for every n .

Proof: For simplicity of notation, take T =1. Since C[0,1] is dense in
Ll(O,l) it is enough to show that

fl f(t)un(t)dt-a 0 as n- o for fe C[0,1].
0

Since such f are uniformly continuous on [0,1] for each n , there is an

e'(;l) > 0 such that
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]f(t—!-%) - f(t)] < « ('-r-ll—) for te [0,1]

and e(t—i-)—*o as n- «© .

2K+2 2K+1 2K+2
Now | [ " ftw (tdt] = | [ " fvar - [ 7 gt
2K 2K 2K+1
n n n
2K+l
f (ftt)-f(t+—-))dt| -1-e (-—1-).
2k n n
n
Therefore, for even n ,
-;—-1 2K+2
! | 11,
;g f(thu_(t)dt| < KZ {f f(thu dt] < Se(=)70 as n-w
n
and, forodd n ,
n-1 2K+2
-1
1 2 e n 1 1, .1
{{) f(thu (t)at| < KZO lz’§< f(t)u (t)dt] + L{lf(t)un(t)dtt < e+l
n “n

which also -+ 0 as n- o and completes the proof., This remark motivates the
following

Example 2, 3;

Let C = {(u,v)e LOO(O,T) XLOO(O,T) : there exists us with Ilun ||00 <1,
satisfying u = u and ui» v weakly star in LOO(O,T)}

i.e. C is the weak-staf closure in Lw(O,T) X L°°(0,T) of the set {(u,uz):

{(u,,uz) s flull, €1} For (u,v)e C define y by (2.3) and let

T(u,v) = fT(lY(t)lz - v(t))dt .

Claim: If ?un,urz1 ) -~ {u,v) weakly-star as n-® , then I(un)~» Ff(u,\}) as

n-o
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Proof: Since u -~ u weakly-star,
t t
y (t) = f u (s)ds - f u(s)ds = y(t) for each te [0,T].
n o N 0
By considering f=1 1in Ll(O,T) . And
2 t 2 T 2 2
ly (0]° = ‘foun‘s)ds) < <{) lu (s)]ds)” < 17
- The dominated convergence theorem then implies that

fT!yn(t)!zdt—»fT(y(t)izdt as n-oo
0 0
and

fT uz(t)dt - fT v(t)dt since u2 -~ v weakly staras n- o -
Yo M 0 n

This proves the claim,
It is easy to see, as in example 2.1, that
Ju,v) > -T for (u,v)e C
and if un is chosen as in example 2.1,
{u ,u'2 ) - (0,1) by remark 2,2,
n’ n :
so (0,l1)e C and 'f(o,,l) = -T . Hence the '"generalized problem"

inf 'f(u,v)
(u,v)e C

has the optimal control (0,1), which may be thought of as a '"generalized
solution'' to Example 2.1.

‘We now consider equation (2.1) in an abstract setting. Let V be a
real Hilbert space continuously and densely imbedded in a real Hilbert space
H. His identified with its dual sothat VC HC V' . Let |-||, |- , and
|-|l, denote the norms in V, H, and V' respectively. Suppose Aeg(V,V')
satisfying (Au,u) > allu"z , for some « >0 . (or, more generally,

1% - Blu]?).

(Au,u) > aflul
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Theorem 2,4, Under the above hypothesis, if Yo € H and fe LZ(O,T;V’),

there is a unique y satisfying

glt’.+ Ay(t) = £(t) 0<t<T
{2.6) '

y(0) = Yo
having the properties:

Ve LZ(O,T;V) N c(o,T;H)
%% ¢ 1%0,T,v")

and y is a continuous function of f and Yo -

Proof: follows from previous results,

Remark 2. 5.
Let E be a real reflexive Banach space. The set of admissible controls

q Uad will always be a closed, convex

for equation (2.1) is denoted by Ua
subset of LZ(O,T;B).
If Be £(E;V'), then by Theorem 2.4, (2.1) has a unique solution y for
each ue Ué1 a4’ and y is a continuous affine function of u.
Remark 2, 6 We will consider a cost function of the form
(2.7) Ju) = £T<%<Cy,y)+<d,w + 3(Nu,u) + (v,u))dt + HKy(T),y(T)) + (k, y(T))
where
Ce &V,V'), C=C*,C >0, de LX(0,T:V")
(2.8) Ne £E,E'), N=N#, N>0, ve L50,T;E)
Ke ,\‘,(H,H), K=Kx, K>0, ke H
Lemma 2.7, u-~ J(u) is a quadratic strongly continuous function on LZ(O,T;E).

Proof: Follows immediately from (2,7) and the fact that y depends continuously

on u,
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Lemma 2.8, 'If C >0, (i.e. (Cw,w) >0 forevery we V), N>0, and K>0.

s
then J(u) is a convex function of u.
Proof: Follows immediately from the fact that y is an affine function of u and the
the general result that

w ~ (Rw,w) is convex if R>0 .
This result is a consequence of the identity

(2.8) (R(Gw1 + (l—G)mZ),Bwl + (l-—G)wZ) = O(Rw ) + (l-G)(sz,wZ)

1°°1
- 9(1-9)(R(w1-w2),w1-w2) for 0<6<1.

Remark 2.9, We will assume the coercivity condition that either

i) uad is bounded

or ii) there exist v >0 such that (Nu,u) > v u||g for all ue E.

We will need the following lemmas which are a consequence of previous results

Lemma 2,10, Let W = {ue LZ(O,T;V) : %1:- € LZ(O,T;V' )}

2 T 2 du
with  Jullyy = [* (o] ® + IS ) Aat .

Then
i) W is a Hilbert space
ii) ®([0,T];V) is dense in W
iii) W < c([o,T];H)
iv) for u,ve W
[H(ue), o) + (2 (0),vie) do = (u(t), v(t)) - (u(s),v(s)) .
A dt dt

So, in particular, taking u=v,

< lun? = 2S5, e tho,m.
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Lemma 2.1l. Suppose Ae £(V,V'), (Au,u) > a}fullz , a>0, ue V.
d
Then yve W — ( a-;[Y- + Ay,y(0)) is an isomorphism of W onto LZ(O,T;V') X H.
2
Or, equivalently, for every fe¢ L (0,T;V') and Vg € H there exists a unique

v e W satisfying

—g—zl + Ay = f
(2.8)
' y(0) = vy,.
{(Note this is a direct consequence of Theorem 2. 4). And taking the scalar
product of (2.9) with vy and applying Young's inequality we obtain the estimate

d
(2.10) 3= Iy %+ allym]® < o] v | <clvom)®+ = lan ;. « >o.

Taking e = we obtain

&
2

(2.11) vl > < (constant)(}yoi + | £ > )
L°(0, T;V) L%(0,T;V")

and a similar inequality is true with the left side replaced by

Fa

¥le(o, m3sm) ©F
LZ(O,T;V’)

Let us summarize the situation to this point. By replacing f in Lemma
2.11 by £+ Bu where Be £(E,V') and ue LY0,TSE), we have that each control
u in a given nonempty, closed, convex subset Uad Qniquely determines a state

y(t) determined by the equation

%t}i + Ay(t) = £(t) + Bu(t) S 0<t<T
v(0) = Yo where Y ¢ H is given.

We seek to minimize over u e Uad the cost function J(u) given by (2.7).
We have seen that if C, K, N satisfy (2. 8) then J(u) is a continuous convex
minimizing

function of u . The existence of an optimal control, ora ue Uad

J(u) is guarantecd by the following
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Theorem 2,12. Assume the coercivity condition that either

i) Uad is bounded

or ii) there exists v >0 sizgh tharty (Nu,u) > v[[u”é forall ueE
Then, under the above hypotheses, an optimal control exists. If (Nu,u) >0
for u # 0, this optimal control is unique.

Proof: Since J(u) is convex, strongly continuous, it is weakly l.s.c. by

Remark 1,11. So, if Ua is bounded, it is weakly compact in LZ(O,T;E), and

d

J(u) attains its minimum on Ua by Theorem 1. 4. This completes the proof'of

d

Case 1).
Now assume ii) holds., Write

: T
Ju) = Z [ (Nu,u)dt + Jy(u)
\ 0
where Il(u) is convex, continuous. Since I}. is convex, continuous, it is

bounded below by affine function, so there exists a,b >0 such that

(2.12) 1w > -alull , - b,
L%0,T;E)
So, by (2.12) and ii),
(2.13) w > % ull? - alul , - b.
L%(0, T;E) L%(0,T:E)
| 2
Pix uje U_, . Let 5= {uc L%(0,T;E) : Zlull® - afull -b < Hugy. By

completing the square it is easy to see that # is a bounded subset of LZ(O,T;E).
By (2.13),

(2.14) inf  J(u) = inf J(u)
Ue Uad u‘eUadnB

and U4 N 5 is a bounded set to which case i) applies.
To prove uniqueness, note that if (Nu,u) > 0 for u # 0, then

u~ (Nu,u) is strictly convex (see (2.8)).
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Hence u- J(u) is strictly convex, that is
(2.15) I(eu1 + (1-e)u2) < 9 ](ul) + (l-())](uz) for 0 <6 <1, ul¢u2 .
If J attains its minimum on Uad at both u1 and u2 then

J( Gul + (l-e)uz) < minJ by (2.15). But eu1 +(l-‘6)u2e Uad since Uad is

convex. Contradiction,
Lemma 2.13. u- J(u) is differentiable in the sense that

d i —
ax I(u1+>\u2) exists at A =0

for all u,u, e 1.%(0, T;E).
Proof: Fix up U, e LZ(O,T:E), Let u = w + >\u2. Then the solution y of
dy + Ay = f+B(ul+>\u2)

dt
y(0) = Yo
is given by
(2.16) Yy = + Az
where
dy _
at + Ayl-f+Bul
yl(O) = Y
and
dz
at + Az = Bu2
z(0) = O

Clearly A\-y is differentiable with

dy _
T =z by (2.16).

-14-
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And
T, _
Jup +2u,) =) = {) (2(Clyy + 2z), vy, +)z) + (d, v, +2z)

L, i ’
»+ 2(N(u1 + )\uz), u, + )\uz) + (v, u, + )\uz))dt

1 1

T (Kly(T) + 22(T), y{(T) + 2z(T)) + (k, v (T) + X2(T)) .
Hence
2w + ) ~fT[i<0z +\z) + 3(C(y; + \z), 2z)
dn 1 27 - 0 2 s Y}. 4 2 Yl Z}, 2

+ (d,z) + %(Nuz, u- + xuz)

!

+ #(N(u +Au,),u,) + (v,uz)]dt

1
+ (Ktz(T)), Yl(T) + Az(T)) + (K(YI(T) + Az(T)), z(T))
+ (k, 2(T)).

* % %
Using the hypothesis that C=C , N=N , K=K we obtain, by putting X\ =0,

that
(217 Sju + ) = [TlCy,,2) + (d,2) + (Nu ,u_) + (v,u,]dt
. d)\. 1 2 l)\zo 0 1) b4 l’ 2 s 2
+ (K(y,(T))), 2(T)) + (k,2(T))
Lemma 2,14. ug € Ua a is an optimal control if and only if
d
(2.18) iy I(u0 + Mw - uO”ik:O > 0 forevery we Uad .

Proof: Suppose u,. is an optimal control. Since Ua is convex,

0 d

0 q for A g [0,1].

(2.19) So }(uo + )\(w~u0)) > I(uo) for x e [0,1].

u,. + k(w~u0) € Ua

By Lemma 2. 3, I(uO + )\(w-uo)) has a two-sided derivative at X =0 ,

and by (2.19)

+ Ju +Mw-u,)) - J(u,)
d | d L 0 0 0
g+ Me-ug)) = = Tug + Mo - ) = xlirg X 2 0.
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Conversely, suppose (2.18) holds. Let R{(A) = I(uo + AMw - uo)) s
then R is convex, R(0) = }(uo), and R'(0) > 0. Since R is convex,
R(N) > R(O) + AR'(0) for N > 0, Therefore J(w) = R(1) > R(0) =:I(’u0) for all
we Uad .
Definition 2.15, The adjoint state P is given by the equation

| P'(t) + ATR(t) = Cy(t) + d(t) 0<t<T
(2. 20)
| BT) = Ky(T) + k

€ LZ(O,‘I‘:E)

Lemma 2,16, For every ups U,

d T %
g T+ "uz)ixzo mfo (B'P, + Nuj +V,u,)dt

where P1 satisfies (2, 20) with y = ¥, Yy satisfying (2.1) with u =u

Proof: By (2. 20), with z as in the proof of Lemma 2,13,

1 »

2.2)  [TCy+d,zdt + (Ry)(T) + k,2(T)
A |
= fT(-pi + A*Pl,z)dt + (P(T), 2(T)) .
A |

Using integration by parts, and the fact that z satisfies

! -
z' + Az = Buz

z{(0) = 0
we obtain

T o * - Tn, T ,
{)(‘Pl +A P, 2)dt + (py(T),2(T) = {) <p1s,z)dt+fo (P ,Az)dt + (P(T), 2(T))
‘ T T
- f (P,z')dt + f(Pl,Az)dt
0 o
T ‘ T
= .[;)(Pl,z + Az)dt = {} (P, Bu,)dt

or

T,
(2. 22) £T(-Pi+A*Pl,z)dt + (B, 2(T) = {) (E'P,u )t .
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Combining (2.17), (2. 21) and (2. 22) we obtain the desired result,
Combining Lemmas 2.14 and 2,16 we have

Theorem 2.17. (Condition of optimality) u1 is an optimal control if and only if

l)dt >0 forevery we Uad .

Remark 2,18, If Uad = LZ(O,T;E), then (2. 23) can hold if and only if

(2.23) fT(B>‘<P + Nu + v, w-u
A 1 1

*
BP1+Nul+V—0.

Hence u., is an optimal control if and only if

1

1 —
f yl + Ayl = f+Bul

%
_' g -
P1+AI3'1 Cy1+d

(2. 24) g B*Pl + Nu1 +v=0

yl(O)

Yo

PI(T) Kyl(T) + k.

.
Or, equivalently,

(' 4+ Ay, =f - BN XB™P, + v)
1 1 1
*
-P{ +A'P| = Cy, +d
(2.25) <
yl(O) =Y,
P(T) = Ky,(T)+k
! 1

Note: The hypothesis (Nu,u) > v||u||é , v >0 of Remark 2.9 implies directly

that N0 e ¢(E',E) with ||N"1||0(E, g < i
b4

v
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3, The Riccati Equation

We will consider (2. 25) beginning at some intermediate time s e [0,T]
writing (2. 25) as
("
yv' + Ay +DP =g

P + AP - Cy = d

(3.1) |
P(T) = Ky(T) + k
Ly(S)= h
where
(3.2) g=f~BN4v
. L
(3.3) D=BN B

and he H is given.

If p,y satisfy (3.1) then P=P + P_ and y:yl-l-y2 where Pl’yl

1 2
satisfy
((y! + Ay. + DP, = 0
1 1 1
s
P} + AP - Cy =0
(3.4) ﬂ '
Pi(T) = KYI(T)
Yl(S) = h
.
and PZ,Y2 satisfy
fﬂ 1] _—
y2+Ay2+DP2_g
%
-P' + AP - Cy., =d
(3. 5) < 2 2 2
PZ(T) = Kyz(T) + k
\ygs)= 0

Since Pl(S) is a linear function of h by (3.4) we write pl(S) = P(S)h, and

denoting PZ(S) by r(S), independent of h , we obtain the form
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(3.6) P(S) = P(S)h + r(S) for Se [0,T]
(3.7) where P(S) e $(H,H), r(S)e H for Se¢ [0,T].
If P and r are known, then the optimal control u at an intermediate time
Se [0,T] may be calculated frorﬁ the present state y(S) of the system, inde-
pendently of the initial state yo . For, setting h = y(8), we have

P(S) = P(S)y(8) + r(S)
and from 2.24 u(S) = -N(B¥P(S) + v(S)). So
(3.8) u(s) = -N—I(B*(H’(S)Y(S)Jrr(s)) + v(S))
In this section we will show that, in a sense to be made precise later, P and
r satisfy the equations

P+ PA + AP + PDP = C

(3.9)
P(T) = K

' +A'r + PDr = d+ P(f- BNl

(3.10)
r(T) = k
We begin by developing some basic properties of P,
Lemma 3.1, P (S) = P(S) for every Se [C,T].
Proof: Suppose P,y satisfy (3.4) with y(S8) =h and p,v. satisfy (3. 4) with
y(8) = ﬁl so that P(S) = P(S)h and ;3(73) = P(S)h. Then
(P(S) h,h) = (P(8),¥(8) = -éT 'f—,c—(p(t),ir(t)du(P(T),{r(T))
= fT [A7,P) + (DB,P) - (AP, ) + kCy,s'r)]dt + (Ky(T), ¥(T))
by (3.4). Now C,Ksare self-adjoint by hypothesis and D = B*N—IB is self- ;

adjoint since N is self-adjoint. So we obtain

#1555 -19-



h fT[<§,A"‘P>+<P DP) - (P,Ay) + (v,Cy)]dt + (y(T), Ky(T))

i
wn
=
e
=3
I

0
= [Tlay,B) + (DP,B) - (aB,9 + Cy,y)]dt + (KF(T), y(T))
S

since (7, P) - (P,Ay) = 0 = (Ay,B) - (°B,y). So
(®(S)h,h) = - LW, y(t)dt + (BT, (D)
S

(P(8),y(S)) = (P(S)h,h) .
Lemma 3. 2. IP(S) >0, i.e. (PP(S)h,h) >0 forevery he H.
Proof: As in the proof of Lemma 3.1, with h=h, P=P,

(3.1) (P(S)h,h) = [T[(DP,P)+ (Cy,y)ldt + (Ky(T),¥(T) > ©
S
since D>0, C>0, and K>0.

Remark 3.3, N >0 implies D >0 since

-1 sk K
L =(NlBhBh)

.- - -1 %
= (h,Nh) > 0 where h = NlBh.

(Dh, h)

I
w
Z
w
o

-
=z

Remark 3.4. 2(IP(S)h,h) is the optimal cost for the control problem on [S,T]

starting from v(S) =h with f=v=d=k =0,

-1 %
Proof: By 2.24 , since v =0, the optimal control is u = -N lB P. Therefore

-1 % -1 % %
(DP,P) = (BN B P,P) = (N B P,B P)

- b3 - * .
= (-N o P, - NN 15 P) = (Nu,u).

So that

(3.12) J(u) = %f [(Cy,y) + (Nu,w]dt + (Ky(T),y(T)) = 2(IP(S)h,h) by (3.11),
S
C>C, N>N, K>K then clearly from (3.12)

Remark 3.5, If

and so by Remark 3.4,

(P(S)h,h) > (P(S)h,h) or P >P,
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This is an important monotonicity property which will be discussed in greater
detail elsewhere,
In all of the following considerations we take f=v=d=k =0,

Theorem 3.6. There is a constant M, independent of S, such that

I PSH| <Mfor 0<S<T.

«H,H) ,
Proof: We first show there exists M such that [(PS)h,h)| < Mlhl2 for he H,

and 0<S <T. By Remark 3.4,

(3.13) 3(P(S)h,h) = inf  J(u) < J(0)
ue Uad

J(0)} is the optimal cost for the control problem with optimal dontrol u=0,
that is when B =0 whichgives D=0, |

The proof then follows from (3.13) and the following claim. J(0) < M|h]| 2
for every he H. |

B y definition

T
(3.14) 10) = 3 [(Cy,y)dt + HKy(T),y(T))

S
where y satisfies

y' + Ay = 0

(3.15)

y(8) = h
Multiplying both sides of (3.15) by y and using the coercivity condition
(3.16) (Aw,w) > alwl|® forall we V
we obtain

L2 ym)? +allyw)® <0 for te(s,T).

Integrate both sides from S to T anduse y(S)=h,

(3.17) Hym|? + wa vt %at < 3|n|®.
S
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~ Therefore, from (3.14) ,

T 1
10 < H1Cl gy, vy [ Iyl %ae + 3IK] g gy lvD1°
2

< 3M|h| by (3.17)
with '
M = 2max{ “cuigy’v') B PRTRE
Hence, by (3.13),
(3.18) |(P(S)h,h)| < M|h|® for he H, 0<S<T.
Now since P(8) = P (S), 0<S<T,
(3.19) C (P(S)h,k) =—41—>\ [(P(S)(htNk), hthk) - (P(S)(h-AK), h-Nk)]

for x>0, h,ke H. So, by (3.18) _
(3.20) [(PE,K)| < = ([brk|? + [nak|?) = 20 2lh] 2+ 228 (k|?)

2
Ml k.

Taking k =IP(S)h and A =T¥Z—é)—hr :‘ml (3.20) gives
(3. 21) IP(S)h|% < M|P(S)h||h]

which completes the proof.

Theorem 3.7. If D=0, A is independentof t and Ce £(H,H), then

% C%
(3.22) | Psih = e (TSR g o (TS0 o fTo~(t-8)A o (t-S0pgy.
]
Proof: A generates a semigroup of bounded operators e-tA where z(t) = e_tAz0
satisfies
z' + Az = 0
(3.23)
z{0) = z0
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The backwards, nonhomogeneous problem

z' + Az = g

(3. 24)
z{T) = 2T
has the solution
* %
z(8) = e-(T—S)A zp + fTeﬂ(t-s)A q(t)dt
S
we can explicitly solve
y! + Ay = 0
y(s) =h
(3.25) < «
SP+AP = (y)
. P(T) = Ky(T)
by (3. 24),
(T-8)A" T -(t-s)A"
(3.26) [P(S)h = P(S) = e "R PT) + [TV cytat
| (t-8)A S
and by (3.25) , y{t)=e " ~"h for s<t<T.
So substituting y(t) = e-(t;S)Ah and P(T) = Ky(T) = Ke'(T"S)Ah into

(3. 26) gives (3. 22).

Definition 3. 8. D) = {he V:Ahe H}.

The proof of Theorem 3,10 will require the following result of general semigroupk

theory.
Lemma 3.9. If he D(A), then e'o.A‘he D(A) for ¢ >0, and
‘"&%' e = 2 = e ™an, ¢>0.

Theorem 3.10, If D=0, A is independentof t, Ce ¢(H,H), and h,ke D(A)

(3.27)

then

(3.28) %(]P(S)h,k) = (IP(S)Ah,k) + (IP(S)h,Ak) - (Ch,k) .
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- ES -
Proof: By (3.22) and the fact that (e 0.A) = e oA s

(®(S)h, k) = (Ke Ty o (TS o (Tioon(t-8IAy o -(t-8By g
S

Hence, by (3.27),

Ke-(T-S)Ah'- -(T-S)A

d
E—(H’(S)h,k) = ,e Ak)
+ (Ke-(T-S)AAh, e-(T'S)A'k)
+ [Tice (-8B o=(E8IA pyygy
S

+ [Tice T Pan, o (96t - (ch,k) .
S

By rearranging terms one easily obtains (3. 29).

Remark 3.11. Formally speaking, (3. 28) implies that

%
((-P'+IPA+ A P - C)h,k) = 0 for h,ke D(A)
so that in this sense IP satisfies the Riccati equation
P+PA+ATP = C
(3.29)
P(T) = K
which is (3.9) with D =10,

Remark 3.12. Theorems 3.7 and 3,10 hold, with the same proofs, if

[¢0]
C=C(t)e L (0,T ; ¢(H,H))
We will nowshow that IP satisfies (3. 25) in a stronger sense.

Theorem 3,13, Suppose

i) A is independent of t
0
ii) Ce L (0,Tse(H,H)).
Then IP(S), defined by (3. 4) has the following property:
If ze LZ(O,T;V), z' e LZ(O,T;V’), and z' + Az ¢ 1L4(0,T;H), then

Pz e LY0,T; V), (Pz)' ¢ LX0,T;V") and
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(3.30) (Pz)) APz = Cz - P(z' + Az)
P e 1°(0,T; o(H,H)) and B(T) = K.

_PEP_?L” Suppose, for the moment, that z e CI(O,T;D(A)) and cl;zoose k,{:_ D(A).
‘Then

2 (PE)z(S),k) = (P'(S)z(8),K) + (P(S)z'(S),k)

= (P(S)Az(S),k) + (IP(S)z(8),Ak) - (Cz(8),k) + (IP(S)z'(S),k)
by (3. 28) |

Or, in another form, |
(3.31) -a%(IP(S)Z(S),k) + (A*IP(S)Z(S),k) + (IP(S)(z'(S) + Az(S)), k) = (Cz(8),k) ,

for all ke D(A). Hence q(S) = IP(S)z(S) satisfies

Cz - P(z' + Az)

1]

-q' + A*q
(3.32)
alT)

Kz(T)

Note that (3. 32) has a solution g satisfying qe LZ(O,T:V), a' e LZ(O,T;V‘)
if z satisfies only the hypotheses of this theorem, For such z choose a
sequence z_ ¢ Cl(O,T;D(A)) satisfying z —z in LZ(O,T;V), z;l- z! ir;
LZ(O,T;V‘), :a:l'_1 + Azn—» 2' + Az in Lz(O,T;H), and zn(T) - z(T) in H.
Putting z =z and q = qrl = ]P(S)zn(S) in (3. 32) and letting n-— o« completes
the proof. Note that P ¢ L (0,T;8(H,H)) by Theorem 3.6,

Corollary 3.14. If he D(A), IP(S)he LZ(O,T;V) and P'(S)h e LZ(O,T;V').

Proof: Take z(S) =h in Theorem 3.13.

Remark 3.15. The nonlinear case Dl € LOO(O,’I‘;;!(H,H)), Dl not necessarily

zero can be reduced to the case Dl =0 if we allow A and C to be functions

of t.
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Proof: Put A(t) = A+ Dl(t)}P(t). Then if A satisfies (Au,u) > aHuHZ - ﬁ]u|2

and P,D, ¢ L°(0,T;g(H,H)), we have

1

~

(A(tu,u) = (Au,u) + (D(HP(t)u,u)

> aflul® - plul® - (IO Jjul?
L (0,T;s(H,H))

\%

afluff® - vlul®

iv

which is an estimate of the same type. Now if IP(S)h = P(S) where P satisfies

y' + Ay + DiP =0

PP +AP - Cy=0

(3.33) < ‘
- K(T) = Ky(T)
_ Y8) =h
Then )
y'+Ay+DlIPy=O
and
P +A%P + PDP = Cy+PDP = (C+PD Py
Using K* = A* + IP‘DI, since IP,Dl are symmetric, and putting E =C + ‘IPDIIP
we have f |

r' ‘N
y' + Ay = 0

N* e
P 4+ AP-Cy=0
(3. 34) <

P(T) = Ky(T)

i

y(8) = h

]

.

which is the same as (3. 33) except that D1 =0 and A, C necessarily depend
on t. Therefore it only remains to investigate (3. 34) in the case where A

depends on t.
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We begin with a regularity result.

Theorem 3.16. Suppose A(t)e £(V,V') with (A(t)u,u) > O!UUUZ - ﬁlufz for

te [0,T], and there is a constant M independent of t such that HA(U I 2(V,V')
- g ’

<M. In addition, assume A'(t)e £V,V') and HA‘(t)Hs(V v < M for all
: . b4
te [0,T]. Then the solution of
y+Ay = §
(3. 35) |
y(0) = Yq
has the following regularity property:
If £, ¢ L20,TV"), y, ¢ V, and £(0) - A(O)y ¢ H , then
y,v' e L0, T:v) 0 L(0, T;H)
and ‘ v e LZ(O,T;V‘) .
Proof: The direct proof is suggested by the following formal procedure:
Formally differentiate (3. 35) to obtain
(3. 36) vy o+ Ayt + Ay = ',
Putting t =0 in (3.'35) we have
(3. 37) y'(0) = £(0) -A(O)YO .
So y' formally satisfies
; (y!}t + AY‘ = -A‘Y
{3, 38)
y'(0) = f0) - A(O)YO
Consider the equation
z' + Az = ' - Aly
(3.39) ‘
z(0) = H0) - A(O)YO

Since [|A't)] <M, and ye L%0,T;V) and £ ¢ L(0,T:V'), £ - Ay e LE(0,Tsv").
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Therefore, since £(0) - A(0)y, ¢ H by hypothesis, by previous results we know

0
that (3. 39) has a solution z satisfying
(3. 40) z e L2(0,T;v) N1°(0,T;H)
-

ze LEO,T;V").
By our formal work, we would hope to show that y' =z , or more precisely,
defining

. - .

(3. 41) y(t) = Yo + f z{S)ds

Y ;
we wish to show that v = y. Note that y«¢ LZ(O,T;V), v o= ze LZ(O,’I‘;V) .

Now
L ay) = Az + Ay
q WY = A8 y
and
(A)(0) = A0)7(0) = A(O)y, .
Hence
ADF() = Ay, + [TAS)zS)Hs + [A(S)F(S)s
0 0
and

vit) = z(t) = zO+ftz*(S)ds .
0
Adding, and using (3. 39) we obtain

(3.42) 7 + Ay = £0) + [H(£(S) - ASIWENds + [FA(0)(S)ds
0 0

= ft) - [*aus)vs)ds + [TAUS)H(S)s .
0 0
Therefore, r = v - y' satisfies
rr + Ar = ftA‘(S)r(S)ds
(3.43) 0
r0) =0

with re LY0,T3V), r'e L2(0,TV) .
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Multiply both sides of (3.43) by r to obtain

(3. 44) ;;—j; (012 + alr]l? < Mnr(t)u{)tur(s)nds - -“é‘-—g-{({)ﬂyr(s)uds)z.
Integrating both sides of (3. 44) frcm 0 to t we have,
(3. 45) Hew]? + o [Hns)ffas < Mt s as)® .
Apply Schwarz's ineoquality and‘rearrangg terms to obtain
(3. 46) Ir(t)]% < (Mt - 2a) j(;tur(S)nz ds
2a )

Hence r(t) =0 for t< M

Now r(t) = r{t+ —21\-‘%) satisfies (3. 43) with A(t) replaced by

A(t) = At + %—%). So r(t) =0 for t<2( %\%) Continuing this process shows

that jr =0 and y =y , completing the proof of regularity.
£
Our next goal is to prove the validity of Theorem 3.13 when A depends

on t, and (A(t)u,u) > ozHqu - glul?,

-pt

Remark 3.17. Let z(t) = e y(t), then y'+ Ay =0 implies z' +{A+ B8I)z =0

and ((A + BI)u,u) > (Au,u) + B(u,u) > a”u"z. So we may assume that B = 0.

Lemma 3.18. Suppose 0 = tO < ‘cI < 1:Z <,,. < tn = T, and A is constant on

]ti-l’ti[ for i =1,2,...,n, Then the conclusion of Theorem 3,13 holds,
Proof: Choose ie {1,2,...,n} and on the interval [ti-l’ti] consider the
problem

y' + Ay = 0

%

(3.47) -P' + AP = Cy

P(ti) = lP(ti)Y(ti) |
here, as usual, P is defined by (3. 4), however this P might also be thought

of as defined by (3.47) on [ti-l’ti[’ since the solutions z,q on [ti~l’ti] of
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z' + Az = 0
(3.48) "
-g' + A g = Cz
are determined uniquely by the data z(ti l) and Q(ti)’ Now, if z ¢ LZ(O,T;V) |
2 : ‘
z'e L(0,T;V'), 2' +Aze LZ(O,T;H), then 2z has the same properties in
]t 1 [, and since A is constant on ]t 1Y [, Theorem 3.13 implies that

(3.49) Pze it V), (P2)el¥(t, ) and

l)
(3.50) ~(Pz)' + A ]Pz = (z - IP(2' + Az) on [ti-l’ti] .
S:‘gnce this is true for every i=1,2,...,n, Pze LZ(O,T;V), (Pz)' e LZ(O,T;V)
and (3.49) holds on [0,T]. This completes the proof,

Theorem 3,19, Suppose Ae *;cw(O,T;,g(V,V')), and there exist positive constants

a,B such that

(3.51) Amu,u) > afull® - plul® for ueV, 0<t<T.
Then the conclusion of Theorem 3. 13 holds.

Proof: ByRemark 3.17 we may assume B =0,

For N=1,2,3,... defire
(i+1)T

Am = N Nag)ds for te]-l-T-, “*”T], 1=0,1,...,N-1.
N T T
N
Each An ‘is piecewise constant and
(3. 52) Iall , < lall ,
L (0,T;8(V,V")) L (0,T;g(V,V')

for N=1,2,3,... , 1< P < +w, since
(LT ()T

N N N N P, 1 T 1/P*
.55 dagol < F [ N inoes < Fof Jacs) | Pas) P (T
| Y 5
(1+1)T
N.1/P N P, 1/P
= (?)/ S Ol as)/
N
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so that

N T (i+1)T
Gose) [Magwifa =y [ N agm)fe < S0 Vias)) s
0 =0 iT ir
, N N

= [Tlam ) Pat
0

This is the argument for 1 <P < ® , and the case P = is clear. (3.52) implies

that LN A~ AN is a uniformly bounded family of linear maps on
LP0, T8V, V). 1f A C([0,T]ig(V,V"), it is easy to see that Ly A() ~ At)

‘as N- o in g(V,V') uniformly for te [0,T]. Hence A_=L_-A in

N N

LP( 0,T; £(V,V")), and by a density argument we obtain
(3.55) ANQA as N~ in LP(O,T, £(V,V')) for 1 <P <+,
(Note that P =+ must now be excluded.)

We will also need the following result:
(3.56) ANV “ AV in LZ(O,T;V') strongly for every Ve LZ(O,T;V).
This is true by a similar agrument: MN: V#ANV is a bounded linear map from '
LZ(O,T;V) to LZ(O,T;V‘) with norm dominated by ||A]| If

©
L (0,T;8(V,V')

Ve C(0,T;V), A V- AV is LZ(O,T;V‘) strongly, by (3.55) with P =2, so a

N

density argument proves (3. 56).
Next, we prove the following

Claim : Suppose fN“'f in LZ(O,T;V‘) strongly and Usn ™ Yo in H strongly.

Let Uy be the unique solution of

u! +VAuV:f u + Au = f
(3.57) N N'N - N and

u(0) = u u(0) = u

N ON 0

Then Uy~ U in LZ(O,‘I‘;V) strongly and C(0,T, H) strongly.
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Proof of claim: Let w = Uy - U then w satisfies

w . o+ A w._ =

N NWN = Iy T Iyt B (Bgu-Bu)

(3. 58)
w0 = Won = YonYo

Our hypotheses, together with (3. 56) imply that Iy~ 0 in LZ(O,T;V') strongly,
and WoN - 0 in H strongly. Hence, since all the AN are coercive with the
same « , standard arguments complete the proof of the claim,

Now IPN(S)h is defined as PN('S) where

*
' - ' - X
YN + ANyN = 0 -PN + ANPN = CyN
YN(S) = h PN(T) = KYN(T) .

An application of the claim, shown that Yy~ Y in LZ(S,T V)N CO(S , T;H) strongly
where y is the solution of

y! + Ay = 0

y(8) = h.
Hence CyN - Cy in LZ(S,T;V')str'ongly and KyN(T)~ Ky(T) in H strongly.

Now, applying the claim to P we have that PN - P in LZ(S,T;V) N C(5,T;H)

N
strongly where P is the solution of
-P' 4+ A*P = Cy
P(T) = Ky(T)
That is, }‘PN(S)h - TP(S)h in H strongly for every he H, and Se¢ [0,T].
Let z be given satisfying z ¢ LZ(G,T;V), z' e LZ(O,T;V';), z' + Az ¢
LZ(O,T;H). Let £ = z' + Az, and let Zy be the solution of

1 _
ZN + ANZN = f

zN(O) = z0 .
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By applying the claim, w2 have that z _- z in LZ{O,T;V) N C(0,T;H) strongly, so

N
IPN(t)zN(t)- P(t)z(t) in H strongly for every te¢ [0,T], since IPN(t)hH P(t)h

for every he H, and ||PP_(t)]| is uniformly bounded by Theorem 3,6
N Te(H,H)

and the fact that the AN are coercive with the same « . Since AN is piece-

- wise constant and ZN satisfies zN € LZ(O,T;V), zi\re LZ(O,T;V’),

2
' - .. . . -
Zy + AzN fe L7(0,7T;H), Lemma 3.18 implies that IPNZN satisfies

% :
- ! = C -
(]PNZN) + AN(IPNZN) C Zy lPNf

(P2, (T) = Kz (T)

(3.59)

An application of Lebesgue's dominated convergence theorem shows that

Py f ~ Pf in 1%(0, T;H) strongly, sothat Cz - P\ f = Cz - Pf 1.%(0,T;H) strongly

and KZN(T) - Kz(T) in H strongly since 4z -z in C(0,T;H) strongly. Therefore,

N
by vet another épplication of the claim, ]'PNzN - § in LZ(O,T;V} n C(0,T;H)

strongly where { is the solution of

4+ ATL = Cz - T
(3.60)
LT) = Kz(T)

By above; ]PNZN“ IPZ pointwise in H strongly, so Pz = { and the proof is
complete,

We now summarize the above results in the following:

Theorem 3. 20. Suppose

1) Ae 1L°(0,T;g0V,V')) and there exist a,p >0 such that

(Alt)u,u) > « u{[2-ﬁlul2 for ueV, 0<t<T.

i) Ce L7(0,T;8(H,H), Ct) = C*(t)?_o.

1
iv) Ke 8(H,H), K=K > 0.

o0 b3
iii) D e L (0,Tig(H,H)), Dy(t) = D(t).
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Then for 0 <S8 <T, the mapping IP(S) from H to H defined by IP(S)h. = P(S)

where P satisfies

r
y' + Ay + DIP = 0
P+ AP -y =0
(3.61) <

i1

P(T) = Ky(T)

H

| \Y(S) h
has the property that P e S!GO{O,T;.;:(H, H)) and satisfies the Riccati equation

P+ PA + AP + PDP = C

(3.62) | 1

P(T) = K
in the sense that if

2 A ’ I\ 2 RYi 1 Z .
(3.63) ze L7(0,T;V), 2'e L7(0,T;V'), 2'+Aze L°(0,T;H),
then '

(Pz) + P(z' +Az) + APz + PD Pz = Cz
(3.64) ;

(Pz)T) = Kz(T).
Proof: Combine Theorem 3,19 with Remark 3.15 and note that

A= A+ CP e 170, T;¢(H, H))

~k % %
since PP, D) 1°(0,T;e(H,H)) and A" = A + PD, , since P = P and
D, = D:‘. Furthermore, C = C + PDP e 17(0,T;H) and C' = C, and if
z' + Aze LZ(O,T;H), then z' + Az = 2z' + Az + IPDlZe LZ(O,T;H) since
N »
PD; ¢ L (0,T;g(H,H)), z ¢ C(0,T;H) .
Now we return to the complete system
r -1
Y'+Ay+D1P:g:f-BN v
P' + AP - Cy =d
(3.65) (
P(T) = Ky(T) + k
y(8) = h

.

-34- #1555



where Dl = BN"IB*. Recall that the solution P(S) is of the form

P(S)

fi

P(S)h + r(S). We wish to find an equation satisfied by r .

Theorem 3,21, Suppose the hypotheses of Theorem 3. 20 hold and

f - BN'IV = ge LZ(O,T;H), then r satisfies

v+ AT+ PDr = d+ Pf - BN 1)
(3.66)

r(T) = k

" Proof. (S} = P(S) - P(S)y(S) where ve LZ(O,T;V), v'e Lz(O,T,V‘),

y'+Ay = g-DPe LZ(O,T:H) by hypothesis. Hence by Theorem 3. 20,

1
(3.67) -(Py)' + APy = Cy - PDPy - P(y' +2y).
Since
(3. 68) P+ A%P = Cy+d,
we subtract (3.67) from (3.68) to obtain
(3.69  -r' + A't = d+PDPy + P(g-DP) = d + Pg - PD 1,

which vields (3. 66).

Remark 3.22. Equations (3. 62) and (3. 66) may be used to determine the optimal

control Yy in the case Uad = LZ(O,T;B) (i.e. without constraints), by the

following steps:

(1) Solve (3.62) to determine P (e.g. if V=H=R", P satisfies a

N(N+1)
2

(2) Substitute the result of (1) in (3.66) and calculate r. (e.g. if

system of ordinary differential equations).
V=H= IRN , r satisfies a system of N ordinary differential equations, )
(3) Find the state y by solving
" -1 %
v'+Ay = {-BN lB (IP(D)y{t) + r{t)) .

(3.70)
y(S) = h.
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(4) The optimal control u is then given by

1

(3.71) w(t) = -N B (P()y(t) + (b)) .

Remark 3. 23, The Riccati equation (3. 62) for IP may be motivated by the
following formal derivation:
Consider the control problem

y' + Ay = Bu, ue U_ c 1.%(0, T;E)
(3.72)

y(8) = h
with optimal cost starting from the state h at times given by
_ - T 1 1
(3.73) @(S,h) = min  [T(3Cy,y) + #Nu,u))dt + ZFHKy(T),y(T)) .
velyg s ‘
Recall from Remark 3.4 that ¢(S,h) = %;(]P(S)h,h), we wish to find an equation

formally satisfied by ¢ . We first obtain an approximation of ¢(S-A S,h), the

optimal cost starting from h at time S -AS. Assume there is a convex set

Ead C E such that Uad = {u:ult)e Ead a.e. }. During the time [S -2S,S]
apply the constant control u, ¢ Ea d°? then at time S the state vy(S) is given
by

(3.74) y(S)= h+ AS(BuO - Ah),

using (3,72). Furthermore,

.75 5 H(Cy,v) + Nu,up)ldes 3 AS[(Ch,h) + (Nug,ug)] .

S-AS

Now during the time (S,T] apply the optimal control, then, combining the above

we obtain

(3.76) @(S-AS,h)® min  {3AS[(Ch,h) + (Nugy,u )] + ¢(S,h+AS(Bu, - Ah))}

uoe Bad

~ mini{ AS[(Ch,h) + (Nuo,uo)]w(s,h)+(—§—‘§(s,h),AS(Bu0-Ah))}.
uoe Ead
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We also have the approximation
(3.77) o(S - AS, h)~ ¢(S,h) - AS %—”(S,h).

Combining (3.76) and (3.77) we obtain

(3.78) -22(s,h)~ min {4(Ch,h) + 3(Nu_,u )+ (22(S,h),Bu,.-Ah) }.
93 0’0 oh 0
u.e¢ E
0 ad
Since ¢(S,h) = 3 (P(S)h,h),
) )
(3.79) & = Ph, 55 = 3P'(S)h,h)
and, if Ead = E , by (2. 24) the optimal uo is given by
%
(3.80) Nu. + B IP(S)h = 0.

0
-1 %
Substituting (3.79) and (3, 80) into (3.78) and using Dl = BN IB we obtain

(3.81) -3(P'(S)h,h) = 3(Ch,h) + %(P(S)h,Dlms;m-ap(sm,Dln:'(S)h)-(IP(S)h,Ah)

= $(Ch, h) - 3(P(S)DP(S)h, h)-4(A P(S)h, h)-H(P(S)Ah, h),
since P = }‘P*. Hence
(3.82) -(IP'(S)h, h) + (PP(S)Ah,h) + (A*H’(S}h,h) + (B’(S)DllP(S)h,h) = (Ch,h)
which is formally equivalent to (3. 62). ‘The cost function is a function defined by
a minimum. The preceeding formal argument may be made mathematically accurate
by means of the following theorem. We will inves‘tigate the continuity and differ-
entiability properties of functions of the form

{3.83) g(x) = min £(x,\), xe X
Ae A

where X is a metric space, A is a compact topelogical space, and f:X X A- R.

Theorem 3, 24, Suppose

i) x- f(x,\} is continuous from X to IR forevery Ae A,
i1) (%, N) = £{x,\) is l.s.c. from XX Ato IR.

Then g is continuous from X to IR and for every xe¢ X,
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(3.84) g(x) = f{x,\) for \e A

where AX is a (nonempty) compact subset of A,

Proof: By ii), A= f{x,\) isl.s.c. from A to IR for each fixed xe X.

Hence, by Theorem l. 4, this function attains its minimum g(x) for Xe AXC A,

A.x compact. By i) f(x,N is u.,s.c. as a function of x for every \e A,

hence the minimum g(x) is u,s.c. Itremains to show that g is l.s.c.

Choose xe¢ X and x_ - x, with A_¢ Ax . Sothat g(x_ ) = f(x_,\_). Since
n n n n n’ 'n’

A is compact, there exists M e¢ A such that )gm-a A for some subsequence

{xm} of {)\n} . Then, by ii),

(3.85) x) < f(x,\) < lim inf f(x _,\ )= liminfg(x ).
g(x) < f(x,\) £ oo m’m s oo m

Since such a subsequence exists for every X, =% 9 is 1.s.c., and the proof

is complete.

Theorem 3.25. Suppose X = [0,o}, the hypotheses of Theorem 3. 24 hold, and,

in addition,
iii) for every A\ e A, f(x,)\) has a right derivative
(3. 86) h(x,\) = g?ﬁ (x,1), x>0,
and (x,\)= h(x,\) is lj‘s.c.' from X X A to» R.

Then g has a right derivative at 0 given by

(3.87) *g—}g; (0) = m;m h(0,\),
+ e A
0
where AO is our former Ax with x=0.

Proof: For x >0, since g(x) < f(x,\), e A, and g(0) = £(0,\),

(3. 88) g(x) - g{0) < f(x,\) - §(0,})) for Ze A
X - X 0
Hence
(3.89) lim sup 9(x) -9(0) < min  h(0,\).
x- 0 X e A
0
-38-
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The theorem will be proved if we show that the opposite inequality holds with
lim sup repla.ced by lim inf. Choose a sequence {Xn} C (0,%) with Xnﬁ 0.
Choose Xn € Axn , and pe A such a subsequence xm-» i . Note that u e Ao,
since by ii) and the continuity bf g,
(3.90) f(0,p) < lim inf f(xm,km) = lim inf g(xm) =g(0) .

‘Let ¢ >0 be given, By iii), there exists &« >0 and N(u) a neighbor-
hood of p in A ‘such that
(3.91) .h(x,X) > h{0,p) ~e for 0<x<a, \e Np).
kIntegrating (3.91) from 0 to x we obtain |
(3.92) £(x,\) - £(0,X) > x(h(0,i)-¢), 0 <x<a, e N(u).

For large m, 0 <xm < o, and hme N(p), so by (3.92),
(3.93) a(x_) = fx_,\_)> HON )+ x_(h(0,u) - e

2 9(0) + x_ (h(0,p) - ¢).

Hence, for every ¢ >0,

g(x_) - 9(0)
(3.94) lim inf " > h(0,p) - ¢
m- © m
and, therefore, since p e AO s
g(x ) - g(0)
(3.95) lim inf < > min h(0,\) .
m -~ m Ae A

0
Since for every sequence x - 0 , such a subsequence {xn} exists, this

completes the proof.

Remark 3.26. Suppose X = IR, the hypotheses of Theorem 3, 25 hold; and

f(x,\) has a two-sided derivative h(x,\) with (x,\)- h(x,\) continuous.
Then f(x,\) = f(-x,\) has a right derivative -h(-x,\) which is l.s.‘c‘«. 5 SO

by Theorem 3,25, g(x) = g(-x) has a right derivative at 0 .
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So g(x ) has a left derivative at 0 given by

(3.96) -83(0) = - min (-h{(0,\)) = max h({O,\).
Bx_ ANe A Ne A
0 0
Note that the left and right derivative are equal if AO is a singleton.
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EQUATIONS WITH ORDER PRESERVING PROPERTIES

L. Tartar

1. Introduction: Linear‘ Results

We have seen in [ 4] that the solution DP(t) of

P +}PA+A*}P-I-}PDIIP= D

(1.1) 2
IP(0) = ]PO
is increasing in IPO, Dz with respect to the order rélatien on £(H, H)
given by
(1.2) Q>0 if and only if (Qh,h) >0 forevery he H.

In this report we will investigate the class of operators which preserve
this monotonicity property when substituted for the nonlinear term
PD.P in (1.1).

We will first investigate monotonicity properties of second order
equations of the type

-Au = f
(1.3)

]

u(x) = 0, xe 9Q
with respect to the order on LE{Q) given by

(1-4) u>v if andonly if u(x) >v(x) fora.e. xe Q.

Sponsored by the United States Army under Con;r_act No. DAAG29-7 SV—C'—‘»OO 24.



Lemma 1.1. If uce HI(Q), then u ¢ HI(Q), and

0 if u(x) <0

Ei_(u_;»): 5u a.e.,
i g: if u(x) >0

where u+(x) = max(u(x), 0).
Proof. The proof will follow from a more general result.
Let ¢ : R - R be uniformly Lipschitz continuous, i.e. ‘qﬂ‘(x)f <K
a.e. for some constant X, and suppose ¢(0) = 0. We will show that
if ue Hl(S'z), then o{u) ¢ HI(Q).

Case 1: Suppose o « Cl(]R). If u is smooth then

o EPRRN-1
Yy o(u) = ¢'(u) X
1l 1
so that
o) au
— < ———
(1.5) axi e(u)} <K ox,

If ue HI(Q), for any -« such that wC Q, u may be approximated in
Hl(w) by smooth functions u, SO that since (1.5) holds in w for

‘ d 2,
each u s it holds in w for u. Hence, since gi- e L°(Q), (1.5)
i

implies that 'é%(‘“(p(u) € LZ(Q), and ‘«,o(u)l < KJul shows that
i
olu) € LZ(Q), hence ¢{u) ¢ HI(Q).
Case 2: Using the result of case 1 we may drop the assumption ¢ ¢ C1

by an approximation argument. If ¢ is Lipschitz, there exists

o ¢ CI(IR), iw;ql <K, such that gan(t) -~ ¢(t) uniformly for te R.
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Then c,on(u) ~ ¢(u) uniformly, so that ¢(u) e LZ(Q), and since

~

o
FYv son(U)‘
i

Ju
X,
i

<K

s

{5%(‘“ qpn(u)} is a bounded sequence in LZ(Q), and so has a weak limit
i

which must equal "5%’ ¢(u) in the sense of distributions. Therefore
1 : v

Bu
ax,
L) %)

<K and ¢(u) ¢ Hl(Q) .

l‘é‘i" qo(u)‘
1

Case 3. Suppose the sequence 9, € CI(]R) of case 2 has the additional

t
property that gol{l(t) - u(t) pointwise, where o(t) = f Y(s)ds.
0
In this case,
. - du 1
(l.6) ox, e(u) = Y(u) ox, a.e. forall ue H(Q) .

To see this, note that by case 1,

3

" 9u
‘3Xi G"n(u) = ¢’n(u) YR n=123,...

i .
and letting n - » proves (1.6). Returning to the proof of the lemma,

we take ¢(t) = max(t,0). Itis easy to see that Case 3 holds for this

¢ with, for example

t>0
t=20
t <0

o) =

[ R

Applying (1. 6) with this { completes the proof.
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Remark 1.2. Lemma 1.1 shows in particular that if u e HI(Q),

)
A= {xeQ:ulx)= 0}, then ‘,;}‘i"(x) = 0 fora.e. x¢A,
i

Thecrem 1.3. Consider the bilinear form on Hl(fz) given by

- T oy Qv Yy 8w .
(1.7) a(u,v) = [ (L 35 ax Z 3 5y V T aguvldx
Q 1, j i i i

ool 0
where aij e L (), a, 3, ¢ L(e), i,j=1,...,N. Suppose V is

0
a closed subspace of HI(Q) such that
i) a is coercive on V, i.e. there exists o« >0 such thut
a(u,u) > a lu ”2 forevery ue V, and
ii) fer all ueV, u, € V.
- Let L be a continuous linear form on V such that
(1.8) L(v) >0 whenever veV, v>0.
Then the unique solution u of
a(u,v) = L(v) forall veV
(1.9)
ueV

satisfies u >0.

Proof. Note that the existence of a unique solution is guaranteed by

Lax-Milgram's theorem. Let u_ = -min(u,0), sothat u= u, - u_.

By ii) since u e V, u, ¢ V, andso u_e V. Putting v =u_ in(L.9)
we obtain

(1.'10) alu, -u_,u)=1Lu)>0

+
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since u_ >0. Now a(u+, u_) = 0 for every u ¢ HI(Q) because

(gi__ u+)(i u )

% Yo =0 a.e., byLlemmal.l(ata.e. xe¢ Q, atleast
)

one factor is zero). Therefore, by (1.10) and i)

(1.11) 0<L(u)=alu ~u,u)=-alu,u)<-a “u_ HZ .

- +
Hence u =0, so u-= u+30.
Example 1.4. Let V = H'(Q) and

L(v) = ffvdx + f gvde
Q t:193

2 1
where f ¢ LZ(Q), ge L (8), (orsince v e Hl(Q) implies v ¢ H?(aQ),
) -1
one could take g ¢ H 2(8Q)). Then a(u,v) = L(v) forall ve Hl(Q)

means that

and, at least formally,
CooBu
Z aij %, cos(n,xi) =g on 99.
b

Theorem 1.3 say that if f,g >0 and a is coercive on HI(Q), then

u> 0. A particular case is if f,g >0, a, >0 then the solution of

-Au+aou=f in

on 3%

QJ|QJ
fo I f i

=g

satisfies u >0.
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Example 1.5. Let
' 191

for every v ¢ Hé(Q) means that u satisfies

-

v 9 _6‘_9..)+v du f in ©

; + U o= in
S oax iy ax, L3y bx, 3

u=0 on 3%,

and Theorem 1. 3 says that £2>0 implies u>0.

V= H(Q), Lv) = f fvdx, f e LZ(Q). Then a(u,v) = L(v)

Example 1.6. @ = [0,2] X [0, 12], a squake, with a periodicity condition

]

V={ue HI(Q) :u(0,y) = u(t;,y) for ye [o,¢

5]

1}

u{x,fz) for xe[0,¢

and/or u(x,0) )

Example 1.7. Let V= HX(Q), consider for ¢ >0 the bilinear form

a (u,v) = a(u,v) + i [ uvde .
¢ B

Then a, is coercive whenever a 1is and

a(u,u) =0 forevery ueV.

Taking L(v) = ffv + f gv as in Example 1. 4, a(ue,'v) = L(v) for
Q 191

every v ¢ V means that

7 9 aue . 81:&‘s
~Z 5—;: i —'—'*ax‘ +L a, —"”BX. -i»aouE =f in @
(1.12) < ,
gu
Z a "“icos(;x)+*1'u =g
~Ti} 8x, ' -
. L)

and Theorem 1.3 says that £>0, g >0 implies u, > 0.
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N

Example 1.8. In Example 1.7, replace L(v) by LE(V) = ffv+ L f gv.
Q o2

Then aé(ue,v) = Le(v) for every v ¢ V means that u, satisfies
(1.12) with g replaced by t*g.- We will show that as ¢ - 0, u —=u
weakly in H](Q) where u satisfies

: Au=f in @
(1.13)

u=g on 9N
-2 au du
whe - —) + . T 4 . -
here Au = ax (a i ij) Z a 8X1 aju In other words, a non

homogeneous Dirichlet problem may be obtained as a limit of variational
problems. Given the truth of the above remark, if f,g >0 then u >0
for évery € >0, so u2>0. We will now prove thaj: u —-u satisfying
(1.13). Choose w ¢ HI(SZ) such that w=g on 80. (i.e. we ;equire

: 1
that g ¢« H?(3Q)). Let v =u -w. Since ag(ue,v) = Le(v),

1 - 1
a(w+v€,v)+ef w+v)v-ffv+ f gv .
an a0
So, since w=g on 2%,
1
(1.14) a(ve,v)+: £Qv€v= éfv-a(w,v) for veV.

Putting v = v, in (1.14) we obtain, for some constant C,

(1.15) alv 12+ [ Iv 1?<[ &, -alwv)<clv I,
: o R

where [+l is taken in HI(Q). By (1.15), Hv€ I £C/a forall e >0,
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. : N
so that, taking a subsequence, there exisis v ¢ H (i2) such that
¥

v v, weakly in HY(Q) as ¢ - 0. Also, by (1.15),

€ >

“;‘f lv 12 <C/a, sothat v =0 as ¢ -0 in L%(8%) .
£ aQ € €

Hence v« Hé(ﬂ}. By (1.14}, for v ¢ §(2) we have

a(ve,v) = f fv - a(w, v)

Q

so letting € -~ 0 we obtain

(1.16) a(v,, +w,Vv) = f fv for v e Q(Q) .
Q

Finally, (1.16) implies that u = v, tWw satisfies (1.13).

Example 1.9. Let a(u, v), defined as before, be coercive on v :VHl(Q)

with © bounded and B > ao(x_) >a>0 forevery x e 2. Consider

the problem

]

Adu=f in @

g on 202

1]

u

o, L]
with fe L (Q), geL (8Q). We will show that

(1.17) u(x) > min( inf ;1‘ f(x), inf é‘ f(x), inf g(y))
Xxe Xe vedRd
1 1 .
(1.18) u(x) < max{ sup ” f(x), sup gf(x), sup gly)) .
xeQ xXe2 ved

let k denote the right-hand side of (1.17). Then, if k <0,

flx) - ao{x)k 2 f(x) - ak >0, and, if k >0, f(x) - ac’{x)k > i(x) - pk > C.
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Alsc giy) -k »2C for ye 8Q. Hence, by Example 1.1, the sclution

#
e
]
o
=t
-
Bt
o3
9]

{(‘A(u-5«;)
L u -k

satisfies u-k >0, or u>k whichis (1.17). Similarly, let k

f
Le]
~
Q
b
@
e

denote fhe right-hand side of (1.18). Then if ‘k <0, i(x) - aO(x)k. <f(x) ~pk <0
and, if k >0, f(x)- ao(x)k < f(x) - ak <0. So, by the same reasoning
as before, u -k <0 and (1.18) follows.
In general ankcrdering on a real Hilbert space H is defined by a
convex cone P in H where we write u >0 ifandonlyif ue P. We

will, in addition, require that P has the following

Property 1.10. P = {ue H:(u,v) >0 forevery veP}.

This property implies that P is closed as the intersection of closed
sets, and thatif u,-ue P, thén {(u,-u) >0 sothat u=0.
Lemma l.11. Every u e H has a unique decomposition u=u - u
satisfying u,u_ >0 and (u+, u__) = 0.
Proof. Let u, be the projection of u on the closed, convex set P.
The projection is characterized by
(1.19) (u-u+,v~ﬁ+)§0 for every v e P.
Taking v =0 and v = 2u , in (1.19) we obtéin

(1.20) (u - u+,u+) =0,

#1580 -9~



which, implies when combined with (1.19) that
(u—u+,v)50 for every v e P.
Hence, by Property 1.1’0, u, - ue P, setting u_ = u, - u we have

u=u, ~u,u

U 20, and (u,u ) =0 by(1.20).

To prove uniqueness, suppose u = a-b with a,b >0, (a,b) = 0.
Then
(u-av-a)=(-byv-a)=(-b,v) <0

for every v ¢ P, since b,ve P. "Hence a is the projection of u

on P or a-= uL and b = u -u=u_. This completes the proof.

Note that since -u = u_-u_, the uniqueness shows that u_ is the
projection of -u on P.

Example 1.12. Let H = LZ(Q), P={u:ux)>0 a.e. xe Q). Property

1.10 is satisfied since

f u(x)v(x)dx >0 for every v >0 bimplies u>0,
L9

.and, as before, u+(x) = max(u(x), 0).

Example 1.13. Let H = (LZ(Q))N, with

(u,v) = iZI {2 ui(x)vi(x)dx, u = (ul, ceey u‘N), v = (vl, cee, VN) .

Take P = {u:ui(x)g_c a.e. xeQ, i=1...,N}L

Example 1.14. lLet H.= & (IRN, }RN),, the set of symmetric N by N

S

, n,. =mn,, theinner

1 . M = . = Jy m,. = m
matrices. If {mi;)’ N (nn), Y i i

5
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product is given by

vy =
(1.21) (M, N) ié_,j mijnij trace(MN) .
H

We take P = {M :(Mx,x) >0 forevery xce IRN}‘ We wish to show
that P satisfies Property 1.10. Suppose M, N >0, then in the
orthogonal basis of M, M = diag{ml, cee, mN} with m >0, and

= > 0. = = 1- .
N (nij) with nii_O So (M, N) = trace(MN) Ei-‘miniizo

Conversely, suppose (M,N) >0 forevery N>0. Let N = (nij)

N ) 2
with n = &, £ ¢ R . Then (Nx,x)= ), §Exx = (z[, £x)" 20

el |
i, ]

for every x e ]RN, so N2>0, forany choiceof £. Now
{M,N) = Z mﬁgigj >0 for every gi € RN, implies by definition
. i, : '
that M > 0.
+ N _N
Notetofind M for M« &:S(]R ,R"), convert to the orthogonal

then M' = diag{m;r, . .,,m+ }

basis of M sb that M = diag(m N

.,m

1’ b N))

and transform back to the original basis.

Remark 1.15. The orderings of Examples 1.11 and 1.12 are lattice orders,

that is given u ¢ H there exists v = sup(ul, uz) > ul, u2 satisfying

Y2

w>u and w>u_ implies w>v forevery we H. The order of

1
3 J . 1 0 - 0 }.
Example 1.14 is not a lattice order; for example if A= (0 0), B = (1 ol

2

then  sup(A, B) does not exist. To see this, note that an easy computa-
w,oow,
tion shows that W = > A if and only if

#1580 ‘ : -11-



-~ 1w, .

(1.22) w, >1, w 1 4

] 20, and w, <(w

4 2

Furthermore W > B if and only if

(1.23) : wlgo, w4_>_Q', and (wz-—l) SwWW,
It is impossible for both (1.22) and (1.23) to hold if w, = 0, however
for every 6 >0, (1.22) and (1.23) hold if w, = 5, wl=zlg+l, and

w, = ’I‘hereforé sup(A, B) - does not exist.

2

N

To avoid this difficulty we will henceforth employ a different

gefinitionv of sup which coincides with the usual concept for lattice

orderings, but is also defined for nonlattice orderings.

jon 1.16. If up,u, e H, sup(ul, uz) =u + (uz - ul)+ =u, + (u1 - u2)+‘
Definition 1.17. If up,u, € H, mf(ul,uz) =y - (ul - u2)+ =u, - (u2 - u1)+.
Note that sup(u,0) = u, inf(u,0) = - (-u)+ = -u_.

-12~
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2. Variational Inegualities

Let V,H be real Hilbert spaces with VC HC V', where V'
denotes the dual space of V and H is identified to its dual. As
usual, ”H will denote the ﬁorm in V, l*| the norm in H and
” . “ % the norm in V'. Let H be ordered by a convex cone P C H.

If fe V', £f>0 will meanthat (f,v) >0 forevery ve VI P. This

is the induced ordering on V'. We make the following assumptions:
(2.1) a is abilinear formon VXV satisfying a(u,u) 2«a f!u”z, a > 0.
(2.2) If ueV, then u e V.

(2.3) If ueV, a(u,u)<0.

L
Theorem 2.1. Assume (2.1) - (2.3) hold. If fe V!, £>0, then the
solution u of
a(u,v) = (f,v) forevery veV
(2. 4)
ueV
satisfies u >0,
Proof. Since u eV, u, € V, so u_eV. Taking v =u_ in(2.4) we
obtain
a(u+ -u_,u)=(ffu)>0
since £20 and u_eV N P. Hence, by (2.3),
a(u_,u ) < a(u+, u)<o.
So, by (2.1), u_=0, and u= u, 20.

Example 2.2. Let H = LZ(Q), V= HI(Q),

#1580 -13~



- . du  a g J
(2.5) alu,v) = f _>__J aij“;g:—*z_, a, ;}?v«‘»budiv)—%aouv)dx
Q Vi, i i i i

+ f buvde - ff m(x, y)u(x)v(y)dxdy
QQ

o o X
where m >0, n >0, aij,ai,b.,a ,beL (Q), mneL (@2XQ). If

there is C >0 such that i_', a, (x)ij, § >C Z g for gi € IRN, then
i,] ’ «

-7
there exist o,B >0 such that a(u,u) > aﬂu“z - B lul®  An example of
this type is

~-Au +\u - {f u(x)dx)e = £ in Q
(2. 6)

u=0 on 8Q.
Theorem 2.1 may be used to deduce that if f>0, ¢ >0, then there

exists \. >0 such that for \ > xo, (2. 6) has a solution u satisfying

0
u>0.
Example 2.3. Let H = (t4(@), v = (H (2",
(2.7) a(u,v) = 2, a (u,,v. ) + Z m, (xju (x)v (x)dx
% K'"K’ 'K Kt {_2 Kt K b4

where the bilinear forms 3y are of the type given in Example 2.2, and,

in order that the compat1b111ty condition (2. 3} holds, we assume that
mKﬁ <0 if K# £. In this case, the variational mequahty (2. 4) gives

rise to coupled equa’uons of the form

~-14- #1580



AKuK+§‘ mK£u£ = fK in @
(2.8)

uK=0 ‘on a2 .

A particular example of this type is

1]
Py

—~Au1 + au1 - bu2 |

(2.9)

1]

f

-Au_ - Cu1 + du‘2 5

2
where b, C >0. If the coercivity condition holds, then Theorem 2.1
1?92 > 0. Note that if a Green's function

in terms of U, then (2.9) becomes an

says that if fl’ f2 >0, then u
is used to solve for u,
integral equation.

We will now prove a monotonicity result for the evolution equation

g—% v} +a(u,v) = (f,v) forall veV, O gt__{'l‘
(2.10)
u(0) = u, -

Theorem 2.4. Suppose that each of the following hold:

2
(2.11) There is a constant o« >0 such that a(u,u) 3&%“ .

(2.12) If ueV, then u e V and there is a constant C >0 such

wat lu,l <clull.

(2.13) a(u+, u) <0 forevery ueV.

If fe LZ(O, ;V'), Uy € H, £>0, u, >0, then the solution ‘

0
u € LZ(O, T;V) 1 C(0,T;H) satisfies u > 0. The proof will require the

aid of the foliowing lemma.
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Lemma 2.5. Suppose V satisfies (2.12), u e LZ(O,T;V) N C(o, T;H),

and g—-t‘i ¢ 1%(0, T;V'), then

12 2l ml®.

(2.14) [ & u W)t = 5w (0% - 3
0

L 1 1
Proof. We first prove (2.14) for u e C(0,T;V). Suppose u e C(0,T;V)

and extend so that u e CI(IR;V).

T T
(2.15) | (%%,u_(t))dt = lim | ot hk)u = u(t) ,u_(t))dt
' 0 h-0 0
Tiu (t+h)-u(t) Tyu (t+h)-u ()
= lim f - h z yu (t)dt - f ( — o — ,u~(t))dt
h-0] 0 0

Suppose h > 0. Then since (u+(t +h),u (t)) >0 and (u+(t),u_(t)) = 0,

(2.15) implies that

T( u_(t + h) - u_(t)

T
(2.16) f (g%,u_(t))dtz lim (-— f 0 ,u_(t))dt}
+

0 h -0 0
Since lu_(t +h) - u (t) 1'5 fu(t + h) - uft) | and ue Cl(O,T;V), u_

has at least a weak derivative and satisfies

T (u (t+h) -u (t) fT du_
lim - — ,u (t))dt = - —,u (B]dt

h—-0 0 h - 5 \dt
1 4 2 1 21 z

=-3 { Slu 1%t = Slu @1 - Sl (l*.

This, combined with (2.16), yields

T du 1 2 1 2

g Shu(dt > 5 lu ()1 - S luml”.
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The opposite inequality is obtained by taking h < 0. This proves

2
(2.14) for u e CHO,T;V). For u satisfying u e L°(0, T;V) N C(0, T;H),

%’t"}' € LZ(O, T;V'), choose a sequence u CI(O, T;V) such that u -u
2 e 2
strongly in L7(0, T;V) 1 C(0, T;H) and & T at strongly in L7(0, T;V').

By (2.12), the sequence {(un)__} lies in a bounded subset of LZ(O, T; V).
Since v —v_ is a contractionon H and u —~u strongly in H

and uniformly in t, (un)_ —~u_ strongly in H and uniformly in t.
‘I‘herefo;e, taking a subsequence if necessary ﬁre have (un)“ - u_
weakly in LZ(O, T:V). Passing to the limit in (2.14) with u = u
completes the proof of Lemma 2. 5.

Proof of Theorem 2.4. We know that (2.10) has a solution u satisfying

the hypotheses of Lemma 2.5. By (2.12) we may take v = u_ 1in (2.10)

and integrate to obtain

S € u )+ [ a(u,(t),u_(D)dt- [ a(u_(t),u_(t)at
T
= [ (f(t),u_(t)dt >0
0

since £>0, u_>0. By Lemma 2.5 and (2.13) we have
2 a T
(2.17) [u 01~ Tu_@®1°- [ a(u_(t),u_(t)at>0.
0

Since Uy >0, u (0) =0, soby(2.11) and (2.17),

T 2
o [ llu(®lt<o.
0
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Hence u >0 as elementof LZ(O, T;V). This completes the proof of
Theorem 2. 4.
Remark 2.6 . Theorem 2.4 remains true if (2.11) is replaced by

a(u,u) > ellu 2

)eat

- B fu f2,~ by use of the transformation u(t) = w(t
which yields the same equation for w with { replaced by e—ptf
and a(u,v) replaced by ~a—(u, v) = a(u,v) + B(u,v). Hence a satisfies
(2.11).
We now consider a variational inequality |
a(u,v-u) >(f,v-u) forevery vek
(2.18)
ue K
where a: VXV-R, satisfies the coercivity condition a(u,u) > a llu HZ,
\ satisfieé the compatibility condition:bu e V implies u e v, kand
a(u 2 u)<0 forevery ueV. K Vis a nonempty, closed convex subset
of V. ' This problem is a special case of
alu,v - u) +j(v) - j(u) >(f,v~u) forevery veV
(2.19)
u e D(j)
where j 3V —(-%,+w] is lower semicontinuous, convex, and proper.
Here D(j) = {v e V:j(v) <+o}. The problem (2.19) becomes (2.18) if
0 for v e K

(2.20) iv) =
+o for v4{ K.

Theorem 2.7. Suppose a 1is a coercive bilinear formon VXV, VZT HC V',

and V 1is compatible with the ordering in H in the sense described
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above. Suppose ] is a lower semicontinuous, proper, convex function

on V satisfying the compatibility condition

(2.21) ~jlinf(u, v)) + j(sup(u,v)) <j(u) + j(v) for every u,ve V.
Let u, be the solution of (2.19) with f = fi’ i=1,2. Then f1 < fz
in V' implies Y < u, in V. V

Proof. Recall that inf and sup are defined by

inf(u,v) = u - (u - v)+ =v=-(v- u)+, sup(u, v) = u-i—(v«u)+ = v+ (u- v)+.
The condition (2.21) implies that if u,v ¢ D(j) then inf(u,v),
sup(u, v) € D(j).

Taking v = inf(ul, uz) in the inequality satisfied by u, we obtain

(2.22) au, - (v = u,) ) +j(nf(up, u)) = j(u) 2 (), = (4 - u,) ).
Taking v = sup(ui,uz) in the inequality satisfied by u, we obtain
(2.23) a(u,, (u) = u,) )+ j(sup(uy, u,)) = j(u,) 2 (£,,(u - u,) ) .
Adding (2. 22) to (2.23) and applying (2. 21) we have
(2' 24) ‘ a(uz - ul? (u}. - u2)+) ..>.. (fz = fl’ (ul - u2)+) ..>... 0

since f2 - f1 > 0. Therefore

- - = - - - - <
'since the terms on the right are <0 by (2.24) and hypothesis. By
the coercivity hypothesis, this implies that (u1 - uz) + 0, hence

u < u,. This completes the proof.
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Remark 2.8. The above proof shows that the same results hold for the
problem

a(u,v-u) >Lv-u) forevery veK
(2.25)
uek

where L 1is alinear functionalon V and K satisfies the compatibility
condition

2.26 i i i
( ) u,u, e K implies inf(u uz) and sup(ul,uz) € K.

l’
Under the above hypothesis, if u, is the solution of (2. 25) with

L=1L1,1i=1,2, then Ll(V)“S LZ(V) forevery v >0 implies u

<u
i =

1 2’

1
Example 2.9. Let V=H(?), K={ueV:u>0 a.e.in Q}. Note

that the compatibility condition (2. 26) is satisfied. If one chooses
f,g ¢ V! and defines

a(u, v) = f grad u grad v + uv, L(v) = ffv + f gv
Q Q a2

then the variational inequality (2. 25) gives rise to the problem

(-Au-i-u-—fzo in
du

—= g >

< on g>0 on 3Q
>0

=

where equality holds in the first two inequalities on the set where u > 0.

Theorem 2.7 guarantees that if fl < fz and gl < gz, then the correspond-

ing solutions satisfy W < uz.
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‘Ifone takes K= {ueV:u>0 a.e. on 80}, then the same

problem arises except thatnow -Au+u-f=0 in Q.

Example 2.10. Let V = HI(Q)-, H = Lz(Q), with j(u) = f o(x, u(x))dx

Q

where ¢(x,v) 1is measurable in X, convexin v, and ¢(x,0) =
for every x ¢ 2. The compatibility condition becomes

(2.27) f (%, inf( u ,u )) + o(x, sup(ul,u N)dx < f (p(x,u ) + (X, u ))dx .

Since at each point x ¢ Q either inf(ul(x),uz(x)) = ul(x)‘ and

sup(ul(x), uz(x)) = uZ(x) or vice~versa, we in fact have eqﬁality in (2.27).

This setting gives rise to a problem of the type
o)
-Au +u + -a—‘g'(x,u) = f

(2.28)

du _
on g-

Example 2.11. We now consider a situation of the type considered in
L 1, _\\N 2, ..\N
Example 2.10 for a system. Let V= (H(Q)), H=(L(R)), and

J(u) = f cp(X,U. (X), o ,UN(X))dX

Q
where u = (ul, ees ,uN). We assume that ¢ is measurable in x and
that the mapping (ul, ceey uN) - o(x, Upy eees Uy és convex for each
fixed x e Q. For smooth ¢ this means that (—@—'2*) is a positive

i, ]
matrix. The compatibility condition requires that
o(x, inf(ul, Vl), ceey inf(uN, VN)) + o(x, sup(ul, VI)’ ceny sup(uN, VN))

(2.29) ,
_<_<p(x,u1,...,uN)+<p(x,vl,...,vN) fora.e. xe€ Q, yveV,
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To see what this means take u = vy for i=3,...,N, vy sy ta,

v, =u, +b, a,b>0. Define u(u,v) = o(x,u,v,u

> 2 - uN) where

3

u,. € HI(Q)» are fixed. Then the compatibility

Xe Q, and Ugy e eey Uy

condition requires that
(2. 30) Wy, v) +y(u +a,v+ b) < o(u,v + b) + ¢{u + a, v)

for every a,b >0, u,v e Hl (R). Comparing the Taylor expansions about

2
(u,v) of both sides of (2.30) we see that if (2. 30) holds then 'ﬁ% <0.
2
. O U
Conversely, if 5udv <0 then

v+b u+a 2
Y(u,v) + $(u + a,v +b) - U(u,v +b) - P(u +a,v) = f f aaa";dad'\'r <0

v=v u=u
so (2. 30) holds.
In géneral, for smooth ¢, the compatibility condition (2.29)

holds if and only if

52
22 <0 for i#].

(2. 31) w0y, =
i

This setting gives rise to problems of the type

ReXA _ oo s
(2. 32) Aiui + ou, (x, Upyees uN) = fi’ i=1,...,N, boundary conditions .

- 22 - | .
If Fi = bu, then (ul, couy uN) (Fi(u), coy FN(u)) is monotone and

aFi
—= <0 for i#j.
auj"' or i#j

This situation will be generalized to problems of this type which do

not arise from variational inequalities in the next section.
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3. An Abstract Fixed Point Theorem Applied to a Nonvariational Equation

In this section we will consider problems of the type

~Au+Fu) =f in @
(3.1) :
u=20 on 9%

where F is not necessarily of the form given in (2.32).
Theorem 3.1. Let 2 be a bounded open subset of IRN with f ¢ LZ(Q).

Suppose there is a constant K >0 such that
(3.2) I%E(u)] <K forevery ueR.

Suppose there exists two functions u_, u, ¢ Hl(sz) n Lw(sz) such that

-Au_+F(u ) <fx< -Au+ + F(u+) in Q
(3.3)

u_<0=<u, on 9%.

Then there exists a solution u of (3.1) satisfying u_<u<xu , e

in Q.

More precisely, there exists solutions u of (3.1) such

: , u
min® max

that u <u. . <u <u, and whenever u is a solution of (3.1)
-~ "min — max +

satisfying u <u<u,, then u ., <u<x<u . (Note that here the
- . A min max

notation u_,u, does not denote -inf(u,0) and sup(u, 0) as in

+
previous sections.)

- Proof. Choose \ 2K, "then by (3.2) Al ~-F is increasing on [u, u+].
Consider the problem

~Au+Au=Au-FUu)+f in @

(3.4) -
u=20 on 9%,
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where we have chosen u such that u_<ux u+. By previous results
(3.4) haé a unique solution u ‘and hence defines a mapping S given
by G = S{u). Itis not difficult to see that S has the following
properties: | |

i) § is increasing, i.e. if ul <u. then S(ul) 58(1.12). This

2

follows from the fact thatif u, <u

1 then \u, -~ F(ul) + ‘fgxu

2, l - F(u2)+

2
by above.

i) If u_<u Sug, then u_ < S(u) <u,. This follows from

~Au+u = \u- F(u) + > u_ - Fu) +£>~ Au_ +xu_,

H =02>u_ on .BQ, and opposite inequalities involving u+.
iii) S is continuous from LZ(Q) to LZ(Q) since \u - F(u) is

Lipschitz continuous.

To obtain the minimal fixed point Ui define uy = u_ and

u =S(un) for n=0,1,2,.... B}‘i)unﬂzun for n=0,L2,...

n+l

~ and by ii) u <u, for n=0,1,2,... . Since {un‘} is an increasing

+

: 2
sequence which is bounded above it converges strongly in L () to

L2 . ] . 2
some u . ¢ L7(@). By iii) U s S(un) S(umm) strongly in L°(R),

: . & < < . .
so that umin is a fixed point of S and clearly u_ < um in = uy The

fixed point umax is obtained in the same way, only taking v0 = u +

and taking the limit of a decreasing sequence {vn} which is bounded
below. Now suppose w is a solution of (3.1), i.e. Sw = w, and

u <w <u,. Then by definition u

<w <vwy
- + - —

and if u_<w <v_, then
n— T n ‘

0 Y
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u = Su <Sw=w<Sv_ <v

. Hence, by induction, u <w<v
n+i n n n+l » Y ’ n— -

for n=0,1,2,... and passing to the limit we have U <w<u
This completes the proof.

Our next objective is to prove an abstract fixed point theorem which
can be applied to mappings S which are increasing, but not necessarily

continuous,

Theorem 3.2. Let E be an ordered space, S an increasing mapping
from E to itself. Assume the ordering on E 1is such that every bounded
nonempty subset of E has a supremum and an infimum. Suppose there

exist u_,u ¢ E such that

. u <Su <S8u, <u .

(3.5) | _S8Su_<8u, <u,

Then S has minimal and maximal fixed points u_, ,u satisfying
min’ max

u <u , <u <u,. (Once u ,u, are known to exist, the remaining

-= "min— max~— + -+

hypotheses need only hold on the interval [u_,u +‘] .

Proof. Define X_ = {uce [u_',u+] lu <Su} and X+ = {ue [u_,u_{_] [u > su}.

e

By (3.5), u_eX and u+€X+, hence X has a supremum v and

* *

X+ has an infimum u . Forevery ue X, u<Su and u<v, so
* * *
that u < Su <Sv . Since this holds for every u e X , we have v <Sv.

Since S is increasing, Sv < S(Sv"\) so that Sv X_ and hence

e e
<

- * * =+
Sv <v . These results show that v = Sv . Similar arguments show

* *
that Su = u . Finallyif ue {u_,u+] and S(u) = u, then ueX 0 X+

alx e

so that u <u X< v . This completes the proof.

#1580 | -25-



Remark 3. 2. An increasing mapping S : E - £ still has a minimal fixed

point in [u ,u ] if the partial ordering on E 1is assumed to have the

- e

weaker property that bounded nonempty subsets of E are inductive, i.e.
eveary totally ordered subset of a bounded nonempty setin E has a
maximal element. If moreover, sup(a,b) exists for every a,b e [u_, u+],

then S also has a maximal fixed pointin [u ,u ].

-7+

Proof. It is an easy consequence of the Hausdorf Maximality Principle»
that under the above conditions every nonempty, bounded subset B of
E has a maximal element m in the sense thaf if beB and b>m,
then b = m. Define Y = {ueX :u<v forevery ve X+}. Y

is nonempty since u_e¢ Y so let u* be a maximal element of Y .
Now S:Y —-Y sinceif uxv for every v ¢ X+ then Su < Sv and

Sv <v forevery ve X+ so Su<v forevery Ve X+. Furthermore,

. % % %
Sue X whenever ue X, hence SueY . Since u e¢X, u <S8u,

so the maximality of u  and the fact that Su « Y, ’ imply that

* * * ] ) ‘ )
u = Su . The fixed point u is minimal since if w 1is another fixed

e s

eY,u <w.

point then w e X+. Therefore, since u

uly

R

Now suppose sup(a,b) exists for a,b e [u-,qu]. let v bea
wts >b e

R /3 b .\
maximal elementof X . Then v <Sv since v ¢X, and

e by

S:X —~X imply that v = Sv . We will show that v is a maximal

fixed point in [u_,u_ ]. Suppose w e [um,u+} and Sw = w. Let

o,

o

* * . :
u = sup(v ,w), then Su>8v =v and Su>Sw = w. Hence
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o sk

Su>sup(v ,w) = u, SO ue X . Now u>v, so u=v and
she
therefore v > w. This completes the proof.
Example 3.4. We will show that the space LZ(Q) with the usual ordering

possesses the property required by Theorem 3.2. Thatis, if u_, u ¢ LZ(Q)

. and {ua ta €A} is a collectiqn of elements of LZ(Q) in the interval

[u,u ], then infu and supu existas elements of LZ(Q). Before
A o o o o

proceeding to the proof, note that the try (inf ua)(x) = inf ua(x) fails
o o

since the function on the left is undefined on the union of uncountably
many sets of measure zero.
Proof. Instead we employ a proof using measures. Without loss of
generality, suppose u_ = 0. For v e LZ(Q), v >0 define
| N N
(3.6) L{v) = sup{ Z fu vdx :a, € A,v, >0, Z v, <v, N=12,3,...}.
=1 4 7 =

We will first show thatif v >0, w>0, then L(v +w) = L(v) + L{w).

Let ¢ >0 be given, then there exist N,P >0, {ai}’ {p},} C A, and

N P
{vi}, {wj} with Z, v, 2V, Z; w,<w such that

i=1 j=1
N
Lv) < Z fu vidx+e

izl e %

P ,
and L{iw) < Z, f u. w.dx + ¢ .

=1 0 Py
Hence,
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L{v) + Liw) <L{v +w) + 2¢ forevery € >0,

or L{v) + L{w) <L(v +w) .
Conversely,
- N
(3.7) Liv +w) < Z fu <pidx+e
i=1 @ %

-where Y ¢. <v +w  and some appropriate choice of N and {a,}. Let
L% ~ i

o,v(x) |
v (x) = { v(x) + w(x)’ v(x) + w(x) # 0
0 otherwise

and define w, similarly with v replacéd by w. ’Ihen o, =V, T W,

and Z v <w, Zwl <w. Substituting in (3.7) it is easy tQ see that

L{v +w) <L(v) + L(w)’ +e¢ forevery € >0, or L(v+w)<Lv)+Liw).
Nexé we extef;d L to all of LZ(Q) by defining L(v) = L(sup(v,0))

- L(~inf(v,0)). By, above, L is linear, and since

[L(v) | 5[2 lu,vlax < ou’“LZ(Q) llvﬂL?_(g) ,

L 1is a bounded linear functional on LZ(Q). Hence there exists u ¢ Lz(SZ)
such that
* 2
L(v) = f uvdx forevery velL (Q).
Q

Since f uvdx = Lv) < f uv dx forevery u>0, u _<5u+. Furthermore,
Q 194

sl

fu‘pvdx:L(v)}_fuvdx forevery a €A, v>0, so u >u for
0 Q 44 @

-28- #1580



every « ¢ A. Finally, if w > u for every « ¢ A, then

wadx;_L(v): fu’rvdx for every v >0,
Q Q

*# A
so u <w. Therefore u = sup u the inf u, ~may be found similarly.
¢4 124

This completés the proof.
Remark 3.5. At the beginning of this section we proved the existence of
maximalband minimal solutions for the problem (3.1) under the assumption
that IP' [ < K. By useof {he preceding fixed point Theorem 3.2 one may
weaken this assumption to considering a function F of the form
F = FO - Fl where PO is maximal monotone and Fl is mondtone‘ One
applies Theorem 3.2 to the mapping Su = u given by
(-am+ PO(E) = F(u) in @

(3.8) -

u=0 ~on 3.
The existence of this décomposition implies that F is locally of bouhded
variation. If F is known only to be continuous, the same results still
hold, - however now the mapping S arises from a decomposition of

F which depends on u. This situation is related to quasi-variational

inequalities which will be studied in the following section.
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4. Quasi-variational Inequalities

In this section we will consider a quasi-variational inequality
of the form
a(u,v - u) > (f,v - u) for every v e K(u)
(4.1) :
u e K(u)
where now K(u) is a family of closed, convex, nonempty sets depending
on u. This, as before, is a special case of the more general quasi-

variational inequality

alu,v - u) + .ju(v) - ju(u) >0 forevery veV
(4.2)
u e qun ju ,
where ju is a family of convex, lower semicdntinuous, proper functions
from V to (~-%,+®].
The problem (4.1) is equivalent to finding a fixed point for the
~mapping T(u) = ; given by
a(a,v - G) >(f,v - ’5) for every v e K(u)
(4. 3)
u ¢ K(u)
and (4.2) is equivalent to finding a fixed point for the mapping T(u) = u
given by
a(z,v - E) + ;‘u(v} - ju(G) >0 forevery veV

(4. 4) -
ue Dom j
u.

where (4. 3) and (4. 4) are variational inequalities for each u € V.
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Definition 4.1. Let j,k bel.s.c., proper, convex functions on an

ordered space V. We write j«k if
j(inf(u, v)) + k(sup(u, v)) < j(u) + k(v)

for every u,v e V. Recall that inf(u,v) =u -(u-v), = v-(v-u)

+ +

and sup(u,v) = v + (u - v)Jr =u+(v- u)+.

The proof of the main theorem of this section will require the
following lemma.
Lemma 4.2. As usuallet VT HCV', with a coerciveon VXV,
u, e V forevery ue V and a(u+,u_) <0 forevery ue V. Consider
the variational inequality

a(u,v - u) +j(v) - j(u) >(f,v - u) for every v eV
uevV.

Suppose u is the solution of (4.5) with j = ji’ i =1,2. Then jloc j2

: fas i L,
implies u <u,

Proof. Take v = inf(ul,u2 in the inequality for u, and v = sup(ul,uz)

1

in the inequalify for u_ to obtain

2
or a(u1 - u,, (u1 - u2)+) <0.
Therefore, a((u1 "), (u1 - u2)+) = a(u1 - u, (ul - u2)+) + a((u1 - uz)_, (u1 - u2)+)
<0, and since a is coercive we obtain (u1 - uz)+ =0 or u <u,.

Theorem 4.3. Let the hypotheses of Lemma 4.2 hold with a coercive on

V X V in the sense that
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a(u, u) Za”uuz - ﬁ]ulz for every u e V and fixed «a>0,8>0.
Suppose that {ju tueV}) is afamily ofl.s.c., proper, convex functions
on V which satisfies the compatibility condition

4, j } <
(4.6) by =y whenever u <u

1 Y 2

For p >p we can solve the variational inequality

a(G,v - :) + M(G -u,v - E) + ju(v) - ju(E) >0 forevery veV

(4.7) _
ue Domij .
u

Let the mapping Tp. be given by Tp(u) =u., Then T is increasing.
B
(Note that a fixed point of Tp. is a solution of the quasi-variational

inequality, (4.2).)

Proof. Suppose u 5u2, u T u,. By hypothesis,

1 17 LYy 4= 1Y,

a(u,v) + u(u,v) is coerciveon V for p>p and satisfies the compatibility
condition a(u+, u )+ p(u+, u ) <0. Itis easy to see that :i satisfies

the variational inequality (4. 5) with ji(v) = j‘_1 (v) - p(ui, v), i=1,2.
i

Since jul & juz, and -p(ul, V) « -p.(U.Z,V) we have jl e jz. Therefore,

or Tu <Tu

. u <_ .
by Lemma 4.2, u _uz, W1 W2

1
Remark 4.4. If

(£,v) v e K(u)

j(v) =
¢ + 00 v ¢ K(u)

as in (4.1), then the compatibility condition (4. 6) means that if Y < u,

).

and v, ¢ K(ui), i=1,2, then inf(v,v.) ¢ K(u

V2 ) and sup(vl,vz) e K(u

1 2
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Proof. The above condition implies that if the right~-hand side of Def. 4.1
is finite, then so is the left, and, in fact, equality holds by direct
substitution.

Example 4.5. Let V= H(Q), H=L7(2), and

(4.8) Ku) = {veV: Mju<v < Mzu}

where MI’M are increasing functions from H to V. The compatibility

condition amounts to proving that if ul < Uy M}hu1 < vy 2 < M?.ul’ and

) <M,u

Mu, <v_, <M_u then Mu <mf(v v ), and sup(vl,v Uy

1'2="2=""2""2" 11 2

i M. is i i > > M i
Sl_nce Ml is increasing, v, 2 Mlu2 1u1 so, since. Vlelul’

1nf(vl, v.) > Mlul The remaining inequality is proved similarly.
Note that if Miu is not always in HI(Q} for ue LZ(Q),
(i=1 or 2), then we must add the condition that K(u‘) #¢ for
u e LZ(Q). For example if u(x) = {2 for 0 <x <1, then
0 otherwise
K(u):? {ve Hl(Q) tu<v<u+l}=
To apply the fixed point theorem of Seciion 3 to the increasing

mapping T we require two elements u_,u of V satisfying u‘_gu_i_,

+

BT R
conditions for the existence of u_, similar conditions may be formulated

and u_<Tu <Tu + = <u 4 The following theorem gives sufficient

for u+. We will work in the setting of the quasi-variational inequality (4.1).

Theorem 4. 6. Suppose the hypotheses of Theorem 4. 3 hold and there

exists u_ e V such that a(u_,v) <(f,v) forevery veV, v>0.
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Suppose sup(u ,v) e Ku ) forevery ve Ku). Then u <Tu
- - - - b=

where T“u_ = u is given by

a(u,v-u) +pu-u.,v-u)>({v- E) for every v e K(u )

(4.9)
ue Klu).

Proof. By hypothesis sup(u_,u) ¢ K(u_). Putting v = sup(u_,u) in

(4.9) and letting - g = (u - u)+ we obtain

a(u,q) +pu(u-u ,q) >(£q .

Now, by hypothesis

a(—u_,d) >(-f,q) since geV, >0,
adding these results we obtain

alu-u_,q) -plal® >0,

50 by the} compatibility condition on a,

| a(q,q) +ulal? <0
which by coercivity gives g=0 or u_ = u = T“u_.
Remark 4.7. By a similar argument, a suffic»ient condition for the existence
of u, e V such that T“u+ <u, is that u, e V satisfy a(u+,v) > (f,v)
for every v eV, v>0, and inf(u+,v) € K(u+) for every Vv e K(u+).

Example 4.8. Let V = HI(Q), H - LZ(Q), and a(u,v) = fgrad ugrad v + fuv.
. Q Q

Suppose f >0 and consider the variational inequality
a(u,v) > (f,v) forevery veK

uekK
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where K= {veV: ¢ <v<u}, 9,0 ¢ H Suppose ¢ <0 <y so that |
K#¢. Inthis case we may take u_ =0, since a(0,v) = 0 <(f,v)
for every v >0 and sup(0,v) e K forevery ve K. Let w be the
solution of |

a(w,v) = (f,v) for every v« v
(4.10)

weV.
Since f >0, we know that w >0. Since, in particular, a(w,v) > (f, v)
for every v >0 and inf(w,v) ¢ K for every v ¢ K, we may take
u, = w, by Remark 4.7.

Example 4.9. Consider Example 4.8 in the qﬁasi-variational case

K(u) = {ueV:Muf_ngZu}‘

1
as in Example 4.5. Suppose the increasing mappings MI’ MZ satisfy

le <0< MZO where w >0 is the solution of (4.10) as before. Then,

as in the preceding example, it is easy to see that we may take u_ =0

and u = w.
+

Example 4.10. Let V, H, a be as in Example 4.8 but consider the more

general quasi-variational inequality (4. 2) with

ju(v) = f o(x, u(x), v(x))dx ,

2
‘ 2
. _ 2 o . .
where ¢ is smooth. We require that 5 >0 so that iy is convex.
To satisfy the compatibility condition we need that u <u, implies

2
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(4. 1)  o(x, ul’ inf(v )) + ‘P(Xy uZ’ SUP(VP VZ)) < o(x, U'1: Vl) t+ (X, UZ’ VZ)

V2

for every Vl’ v2 ¢ V, a.e. xe¢ Q. Byintegrating over a rectangle as
; 82 ;
in Section 2 it is not difficult to see that (4.11) will hold if =£ <.

ouov —

This setting gives rise to a problem of the type
— _8_2 ——
-Au + v (x,u,u) = 0

boundary conditions.

Example 4.11. Considér the case of a system, with V = (Hé‘(Q))N,

2 N
H = (L7())",
N N
alu,v) = Z fgrad u, grad v.dx + Z fx. u v dx
i=1 '@ - . i,j=1 @ 1)

e

satisfies a coercivity condition of the usual type and since

where u = (U, ..., uN), v = (vl, ceey VN). The bilinear functional  a

N
au,u) = ) [ au udx
i,j=1 2 7t -
i#]

we require )\ij <0 for i#]j so thatthe cdmpatibiiity condition
a(u+,u__) <0 holds.
In this setting, consider the quasi-variational inequality (4. 2) with

j v} = [ o, Upy ey Uy Vip ooy VO )AX

Q
where ¢ is a convex function of vl, vy VN’ We assume that
82 \ . . *
5;—5%* <0 for i#]j and, in order to satisfy the compatibility condition,
i
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2

*M* <0 for i,j=1,...,N. (See Example 4.10

we assume that 8 6 }

the case N =1 is discu'ssed.) This setting formally solves a

system of the form

A --Aui +Fi(ul,...,uN) = fi in @
(4.12) ‘
ui=0 on 9% i=1...,N,
where F veey U )" Z N }, ( l,...,uN,ul,...,uN). By

the above assumptions on ¢, Pi satisfies the compatibility condition

oF,

i
N ve 4o s s

-~ <0 if i#j since

Sl

aPi 82¢ a2

8u}. = 8ujav' (X,ul,...,uN,ul,.-.,uN)+ avjavi (X,ul,:..,uN,Ul,...,u )So
Conversely, if

1 aPi BPi
(4.13) FieC, satisfying 5&;50,1#;’,5;151(, K>0.
Then we may take
N 1 2
Plugy ey Uy, Ve V) = lgl ['2' Kv,' - (Ku, - F(u,... ’uN))Vi]
2 oF 82 aF,
so that ——¥% L <0 if i#j and —2— —+_x<o.
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Under the conditions.{4.13) is also possible to consider (4.12)

by a more direct approcach. Assume that there exist u_ = (ul poes Uy )

u, = {u

+

Uy )y u, u, ¢ V, satisfying

l,ov
-+

+

- - <f < -l i \
Au,”+Fi(u__)”_fi_ Aui++Fi(u+) in Q

[

u,. <0<u, on 3Q, i=1...,N.
i_ i,

of (4.12) (possibly equal) such

Then there exist solutions u_, ,u
4 ~min’ "max

< < < i
that u_ < Uoip Sup Suy and any solution u of (4.12) such that

u <u<u, satisfies u_, <u<u .
- + min —  — “max ‘
This is proved by considering a mapping T(u) = {; defined by
-AEi + K'{Ii =Ku -F(u)+f in @
(40 14) — . t : 1
u=0 on 3Q.
One shows that T is increasing and continuous and that T 'u_,Tu +

as n - «©, Note

converge strongly to the desired solutions u_, ,u
_ min’ “max

that this problem is not genuinely quasi-variational since (4.14) is of

variational type.

We conclude this section with an example which is gehuingly
quasi-vériational.
Example 4.12. We will formally discuss the problem of a plate heated
by a support, the shape of the plate being allowed to change with

temperature. Consider the problem (formally) |
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-Au=-6=0 in

-A8=g>0 in Q

(4.15) , au du _
< with, on 8, u >0, on >0, u o - 0
. b s
and 6>0, 6 =0 where u-=20, '—anzo where u>0.

Here 0 represents temperature and- u the displacemen’c‘of the plate.

These boundary conditions give rise to the sets

K(u,8) = {(v,n) :tv>0, n>0, on 8Q, and n =0 where u=0 on 3Q}.
We will show that K satisfies the compatibility condition. Suppose

(ul, 61) < (uz, 62), and choose (vi, ni) € K(ui, ei), i=1,2. We wish to

show that inf((vl, ql), (vz, nz)) € K(ul, 81) and sup((vl, ql),(vz, nz)) € K(uz, éz).

The first amounts to showing that inf(ql, qz) = 0 where u, =0, which

1

is true since m = 0 where u =0 and 1, 20. The second amounts

1

to showing that sup(ql, nz) = 0 where u_, = 0 which is true since

2

=0, ) = 0 wherev u

l=0’ and u <u

n, = 0 where u 1

2 2

The methods used above give that (4.15) has a solution (u,8) such

that (0,0) <(u,6) < (;, _5) where (E, 5) satisfies

-AB =g in 2, 6=0 on &%

I}

il
1)

-Au = 6 in , 0 on 80 .
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5. Qrder Relations on Symmetric Matrices

In this section we will consider the space SS(H, H), with H = IRN,

of symmetdc matrices ordered b} P>Q if (Px,x)>(Qx,x) forevery

X € }RN.‘ We will apply the ‘theorerns‘ of this chapter on increasing maps

to generalize the results obtained in [ 4] on the Riccati equation.
Cénsider the linear problem |

: P'+PA+BP=F
(5.1)

P(0) = P, -
. * * * £
Recall thatif B = A, Py =Py, F=F, then IP(t) = P (t), and more-

over, if IPO 20, F>0, then P >0.
We wish to generalize (5.1) to the nonlinear case

P+ PA+ AP = F(P)
(5.2) |
P(0) = P,

*

where F is a function from £ .(H,H) to itself satisfying F(IP) = F(IP)

gl
* , -
whenever P = [P . Consider the iterative process P - [P where
o . s .
el (0, T;SS(H, H)) and P is the solution of
P — s '
P + PA+A P = F(IP)

P(0) = P,

or, more generally, introduce M ¢ £ (H, H) and consider the equation
- - . * ¥ = B *
, P'+PA+M)+(A +M)P=FP)+PM+M P
(5.3)

IP(Q) =P, -
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We seek a fixed point of the mapping P - IP defined by (5. 3).
To this end we would wish to know whether it is reasonable to require
that F(PP) + PM + M P is increasing. In the case of the Riccati

equation F(P) = -PD,IP + D,, which is not increasing since 0 < Q<P

1

2
does not necessarily imply that Q < IPZ. For this reason we will

consider a quasi-variational setting

: * *
t -
IPn at Pn +1(A + Mn) + (A + Mn)IPn q- }PnMn + Mn)Pn + F(IPn)
(5.4)
]Pn+1(0) = ]P0 .
Consider the more general problem
* : _
P'+PA+AP+et,P) =0
{5.5)
IP(0) = lPo .

We will prove the following existence theorem:

Theorem 5.1. Suppose ¢(t,P) = a(t)P + ¢ (t,IP) + IPrpZ(t, IP)IP where

1
P - goi(t, P) is decreasing for i = 1,2. Suppose there exist
o0

(

P_,P, L (0,8

S(H, H)), P_(t) _<_]P+(t) for te [0,T] satisfying

% *

P! +PA+AP +ot,P)<O0<P +PA+AP +o,P)
(5. 6)

P_(0) <P, _5]P+(0) .

Moreover, assume that there is a constant K such that

(5.7) e B -0l <kle- el

for P_<P, Q<P, 0<t<T, i=1,2.
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Then (5.5) has a solution P suchthat P_<P < JP+ and if IPO

increases in the interval [P _(0), IP+(0)], P(t) increases for every
te[0,T]. |

Remark 5.2. If a(t) <0, a(t)lP is decreasingin P so can be put in
the term %) JIf a(t) >0, é(t)IP = IP(a(t)IP_l)IP, and since a('c‘)lP.1

is decreasing in P it can be put in the term ¢ except that a false

2’
singularity is introduced.

Proof of Theorem 5.1. As suggested earlier, we will employ an iterative

method on the problems

'
r + ]Pn+

1l A+ Mn) + (A + Mn)IP

k.
-P M -MTP +et,P)=0

l( n+l

(5.8)

]Pn+l(0) B }PO

where Mn = (,az(t, an)IPn +\I, and \ satisfies

(5.9) 2x > sup {a(t) + [P (1) - P_(t) Imax(lle,(t, ® (D, o (t, P_() 1)} -
0<t<T |

We will say that Q is a lower ’solution of (5.5) if Q satisfies the
same inequalities as P_ in (5.6), and an -upper solution if it satisfies
the same ‘inequalities as P + in (5. 6). |

The proof is accomplished in three steps:

Stepl. If P_ _sang Pf, then IP_ 5an+1 < ]P%.

Step 2. If ]Pn is a lower solution, then IPn _<_]Pn+l and IPn , 1sa

lower solution. If }Pn is an upper solution, then an Z}Pnﬂ and

P is an upper solution.
n+l PP
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Step 3. If IPl =P, then {]Pn} is monotone increasing and converges

to the solution P. If P, = P

! .» then {]Pn} is monotone decreasing

and converges to the solution IP.

Note that uniqueness is guaranteed by the Lipschitz hypothesis.
(S_ee Remark 5.3.) We will only prove Step l; the proofs of Step 2 is
similar and Step 3 is easy. We will-show that if IPn >P , then

P

4l > }P_. The analogous statement with ]P+ may be proven similarly.

. s ) <P = ' .
Since P ., satisfies (5.8) and P _(0) < P, ]Pnﬂ(o) it suffices to

+1

show that P_ satisfies

3 < ’
}Pn + o(t, IPn) <0

o SIS

*H *
P +P(A+M)+(A +M )P -PM -M
- - n n - nn

By (5. 6), this will be true if we can show that

3

IPn + olt, IPn) -o(t,P_ ) <0,

=

(5.10) PM +MP -PM -M
- n - n n

o

Using the definition Mn and the decomposition of ¢ a simple computa-

tion shows that

(5.11) PM_+ M:IP_‘ -P M - Mi}Pn +olt, B ) - o(t, ) =
(- A)(P_-P) - (B_- P )o,(t,P)(P_- )
Fo)(B) - 9, (B)) + B_(0,(B ) ~ o, (P )P_.

Since ]Pn >P, ¢, and ¢, decreasing, the last two terms of (5.1l)

1

are nonpositive. To show that the remainder of (5.11) is nonpositive

2

we will make use of the following

Claim. If A,Be ,s:S(IRN, RY), B>0, then BAB< [|a]l[lBlB.
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Using the claim with A = @Z(t, P ), B= }Pn - P_ we have that

(B, - P)oy(t, P )P, - P ) <(P - P Je,(t, P (B, - P)

< llo (1, IP,_)»H e - N(IPn - P )

<leme)lle, - P @ -®) .

Therefore, by (5.9),

(22 - &)(P_ - B) - (B - P (t, P )(P - P)
< -a - le,t, )P, -P_Ih@®_-2)<o.

Given the truth of the claim, this completes the proof of Ste§ 1.

To prove the claim, note that we wish to show that

(BABx, x) < “A f HB“(BX, x) for every x e IRN .
Now, (BABx, x) = (ABx, Bx) < lal [Bxfz, so it will suffice to show that
(5.12) Ix|? < IBli(Bx,x) for every x ¢ R .
Defining a new scalar product, (X, y)* = (Bx,y) with corresponding
norm qui = (x, x)* = (Bx,x) we have by Cauchy-Schwartz that
l(Bx, %), 1% < IBx 2 112
 which implies that
IBx|* = [(Bx, Bx) | < (8%x, Bx)(Bx, x) < IBIl |Bx|%(Bx, x)

and proves (5.12). |

The fact that the solution of (5. 5) is an increasing function of

the initial data IPO« is an application of the above proof, since if
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3P0 < IPO, the solution P of (5.5) with P(0) = IPO is a lower solution

for the problem (5. 5) with solution P satisfying IP(0) = }PO. Hence

IP <P. This completes the proof of Theorem 5.1.
Remark 5.3. Consider the problem
P! = ]P%

(5.13)
P(0) = 0 .

i

is increasing, but not Lipschitz continuous.
2

Uniqueness does not hold since P(t) = Y Q 1is a solution for any
N

The mapping P - P

Qe £S(]R ,]RN) satisfying Q2 = Q.

Example 5.4. Let ¢(t,P) = IPDIP - F, independent of t, so that

l(]P) =-F, ¢,(P)=D, D,F fixed. Then (5.5) becomes the Riccati equation
*
P'+PA+AP+PDP=F
P(0) = P, .

Suppose P

0’ D,F>0. Thenone maytake P =0 and IF'+ to be the

solution of the linear problem

Q' +QA+AQ=F
(5.14)
Q) = P,

which is known to be positive. Then

k3
1 - = >
]P+ + ]P+A + A ]P+ + ]P+D]P+ F IP+D]P+ >0

so that ]P+ satisfies (5. 6).
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Example 5.5. Let ¢(P) = alP +PDP-F. If 'a>0, D>0, onecan
find a lower solution’ P_ even for small negative values of P, and

and F the solution IP(t)

F. However, for large negative values of IPO

may tend to -], If one can find an upper solution PP + such that

IP,+(t) - -] as t-t then, of course, the solution P must tend

02

to -®I as t-—t for some t <ty

V : noo ‘
Example 5.6. Let ¢(P) = - Z B,B, + PDIP - F, then

n
:pl(IP) = - Z 'Bi }PBi - F, @Z(IP) = D are decreasing and we are led to
i=l 7 ‘ : ,

the problem

P' +PA+A P - ) B IPB +PDP = F
. . i1
i=1
_P(O) = P .

n
' K * - N
Example 5.7. Let goi(lP)s -F, qoZ(IP) = (M + }J CilPCi) 1 where M >0
i=l

is invertible. (This comes from a stochastic control problem)
n

’ % A‘ N * . |
P'+AP+PA +PB(M+ ), DPD) P=F
i=1

P(0) = P, -

If ]Po >0, F>0, we vmaly« take P_ =0 and IP* to be the solution of

the linear problem (5.14).
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N _
Example 5.8. Let ¢ (IP) = (M + ) D, PD,) ! as in the preceding example
2 ~ i

and let
N. * | N % N *
@) (P) = - 1;1 B PB, + (1;1 B, IPDi)goz(lP)(iZl D, PB,) .

To show that ) is decreasing suffices to show thatif P, Q ¢ SS’ Q=>0,

then

(5.15) | 4 ?(P+1Q)| <0.

dt +=0

' < s
For brevity, let R= ), D/PB, S, = D QB, L = ¢,(P). Computation

i=1
shows that
N N
d * #
<o (P+tQ)| =- ) B QB +(), S)LR
ael lt;o =S B S
£ N *® I\i %k . N
+R L('Z 5,) - R L(.Z D, QD )LR = Z] X,
i=1 i=1 izl
% % b3 % b3 1
where Xi = - BiQBi + SiLR + R LSi - R LD, QDiLR. Since Q>0, T = Q?
N

exists. Choose xe¢ IR andlet a = TBix, b = TDiLRx. Then

(Xix, X) =~ (Bi QBix, x) +( Bi QDiLRx, x} + (R LDi QBix, x)

% %
- (R LD, QD,LRx, x)

i

- (TB,x, TBix) + (TD,LRx, TB,X) + (TB,X, TD, LRx)

- (TDiLRx, 'I'DiLRx) = - (a,a) + (b,a) + (a,b) - (b, b)

i

-(a-p,a-b)<o0.

This proves (5.15) and shows that ) is decreasing.
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Remark 5.9. Consider again the Ricatti equation
[113' +PA+A P +PDP = F
| »(0) = ®,
where we take F >0 to be independent of t. Suppose FP_ and lP+

may be found, also independent of t. If lPo =P, then P(t) is

min , .
increasing as t - ® tends to ]P00 , @ solution of the corresponding

stationary problem. If IP0 =P then IP(t) decreases and converges

+’

max , ,
to ]P00 a , a solution of the stationary problem. Let us consider an
example in which the stationary problem has more than one solution.
2
Pr-P+P =0

P(0) = P, -

If P =0, IP+ = kI, k >1, every orthogonal projection is a stationary
solution and there are infinitely many stationary solutions between P_
and IP+. If P =¢gI, 0<g<l, the I is the only stationary solution

between P_ and ]P+.

max
0 ’

If IP::un =P any solution P with P_< IP0 _<_]PJr must

i X
converge to IPQIjlln = ]Por:a as t = . In the above example, P, 2 el,

implies that P(t) - I as t - o.
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