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1. Introduction,

1. Throughout this paper {x} = x~[x] denotes the fractional part of

the real number =x, We write ” x” min wakl and e(x) = eZnix.

Also, the implied constants'in the Q symbol of Landau and the

§> and & symbols of Vinogradov are absolute,
Finally, by a distribution function we always mean a distribution

function in the sense of probability theory, defined on the real line,

2, Let (xn) be a sequence of real numbers, The usual study of the
distribution modulo 1 of (Xn) -is essentially that of the distribution
of the sequence (e(xn)) on the circle T. The main problems are those

of investigating.
(i) the existence of the asymptotic (or limit) distribution measure

(1.1) p= lin

k> .

where

k-
(1°2) = % jz: e(x
n=7

with 6v denoting the Dirac measure at v ¢ T, and
(ii) the size of the discrepancy
(193) Sgpl“"k(w)“u(w)!

where  runs through those arcs of ¢ whose endpoints have

p—-measure zero,



It is classical that the existence of | together with the assump-
tion that the point 1 ¢ T has p-measure zero is equivalent to the
existence of a distribution function F such that
(1.4)  ¥or) =0, F(1-) =1

and

(1-5) F(a) = lim I%A([O,oc);k,(?(n))

-> 0

at every o at which P is continuous, the counting function

(1.6)  M[asp)sk,(x))) = card{n:1 ¢ n gk, ag {x} < p}

being here defined for all real numbers ¢ and g. The conditions (1.4)
mean that ¥ is continuous at 0 and 1, and imply that P is constant
on the intervals (- oo, 0] and [1, ). In this case F is called the
asymptotic (or limit) distribution function modulo {1 of the sequence

(Xn), and the discrepancy (1.3) is equal to

(1.7) sup | 2A([a,p) sk, (x ))-(P(p)-F(a)) |
0o Bg

where ¢ and g run through the continuity points of F.
In some situations it may be more appropriate to consider the
existence of the A- asymptotic distribution function modulo 1, namely

the existence (outside a countable set), and the continuity at o = 0

and ¢ = 1, of
k
(1.8) lim E ak,nga(xn)
kK - n=1

where

0& {u} < a
(1.9) ¢ (u) =
a 0 otherwise

is the characteristic function modulo 1 of [0,q), and A = ( ) is
? % ,n
?

a. positive Toeplitz matrix, Here by a positive Toeplitz matrix we mean

(o)
that ak,n > 0, E 1 ak,n { oo and lim E ak n= 1.
nN=



3. The sequence (Xn) is, of course, independant of k. Our object

is to investigate the distribution modulo { of xh(n) with x a large
real number, h(n) an arithmetical function, and the integer n
belonging to S M[1,k] where Sc N and k depends on x, For our

purposes it is somewhat more convenient to replace k Dby a real para-

meter y. We ca11?>4‘ = (an(y):y ¢ [1,»), n=1,2,...) a positive

o0
Toeplitz transformation if an(y) » 0 for all n and y, E“ an(y) <
for every y, and lim E~ an(y) = 1. We are particularly interested

in the special case where the ah(y) are the simple Riesz means

(R,a ) given by
(1.10) Ay > 0 (n=1,2,...), A >0
and
WO (mgy)

ny
(1.11) a (v) =

0 (m > y)
which we assume henceforward, although several of our proofs go through

in the general case (see Appendix). Let

(1.12) 2, ,lab) = i 8 (v)e (anln)).

n=1

A good deal of our attention will be taken up with h(n) = 1/n and

we wrive
(1.13) @X,y(a) =Z_; an(y)ca(X/n).»

The problems arising from the study of o y(a) as x and y = y(x)
“2
tend together to infinity are closely related to the Dirichlet divisor

roblem,



If there exisis a distribution function & such that

h
(1.14) o, (0+) = 0, @h(q—) - 1

and |

(1015) @h(a) = xliﬁw Qx,y(x)(a’h)

at every ¢ at which &

b is continucus, then we call @h the

JzL_.asymptotic distribution function modulo {, This situation is equi-
valent to the existence on the circle T of théx%-limit (or;*4'~

asymptotic) distribution measure

(1.16) v = lim i an(Y)ée(Xh(n))

X - oo D=1

together with the fact that the point 4 ¢ T has v-measure zero.
However, if there exists no distribution function @h satisfying both
(1.14) and;(1,35), then it is more agppropriate to investigate the dis-

tribution modulo 1 of xh(n) wvia (1.16).

4, Qur interest in this problem arose from investigating the asymp—
totic behaviour of

E:: ca(x/n).

gy

During our investigation it became obvious that fthere were methods
which could be applied in a much more general situation, In this paper
we present these methods, deferring to the sequel the study of special
methods,

As an example of the application of Theorem 2, consider a subset

A of W* such that the counting function

Ax) =Y 1

agx
ach



satisfies
A(x) = x°L(x)

" where ¢ is a constant with 0< o 1 and L is a slowly varying

function, that is

. L(cx)
lim —'—(-—)'::}
X——)ooLX

for any positive constant ¢, Then

oo
(1.17) lim —-(——v1 S e (x/a) =) (0 %(n+a)79).
X -0 ME agx ¢ n=1

achA
Moreover, there exists a function yo(x) such that if y > yo(x)

and y = o{x) as =x - oo, then

N . 1
(1.18) lm oy > ¢ (x/a) = q.
X - o0 Ay agy @
ach
Relation (1.18) means that the fractional parts {x/a}, where a runs
- over [o,y] M A, are asymptotically uwniformly distributed, whereas

(1.17) means that if a runs over the whole of [o,x} N A, then the

{x/a} have the asymptotic distribution function

> (0O (uea) ).
n={



2, Theorems and proofs,

1. We first of all state a theorem which gives a sufficient condition
for the (R,xn)- asymptotic distribution to be wniform, This is essen-—
tially due to Erd0s and Turan [1], [2] and is a finite form of Weyl's
criterion, It is also possible, of course, to give a neéessary condition
corresponding to Weyl's criterion, and to give results when the asymp-
totic distribution is non-uniform but continuous, but we have no

épplications in mind for these,

Théorem 1 is somewhat divorced from the following theorems. However,
it clearly applies to the general situation, As an application we have

in mind the case

(2.1) h(n) =

THECREM 1. Let the discrepancy D_ y(h) be defined by
2

(5,h)ﬁ® (a,h)“(ﬁ*a)l-

(2.2) b, (W)= suw |o

X
T gt

Then, for any positive infeger m,

(2.3) b, (n) < 72 Z(k mﬂ);y_‘ (3 )elien(n))]

Theorem {1 is a generalization of Theorem 2,2.5 of Kuipers.and

Niederreiter [3], and can be proved in exactly the same way,

2. The following theorem (together with the observations made in
Lemmas 2, 3, 4) shows that the (R,xﬂ)‘ asymptotic distribution function
modulo 1 of x/n can exist under very general conditions provided that
Yy is not too small compared with x,

Whenever g > {1 and g » 0 define



0 ‘(oc\< 0)

1 (a > 1)

(2.4)  Fa; g,0) = {6la; g)(1—g°([g]+a)"»")+g°g:(k’ ~(k+a)”%)
>E

(0< < 1y 6> 0)

a (0<a< 1, o= 0)

where

1 it (graz]lOn £ g
(2.5) ola ;Hg) =

0 otherwise,

THECREM 2. Suppose that for every real number t with 0< t < 1

the 1limit

(2.6) lim ) aly)
Yy 2> n\(‘cy

exists and for at least one value of t is non-zero, Then there is a

non-negative real number ¢ such that for every real number ¢ with

0< g <+ there is a real number yo(a,c)u} 1 so that whenever

Yo(e,c) ¥ x we have

(2.7) 2, () = Fa s x/v,0) +Q (%7 ") + 0 (2%°).

Lemma {1 below will show that the limit (2,6) is- tc, which defines
6. We observe that when g = 0 Theorem 2 fails to give nonutrivial
information. Very likely o y(a)‘* o still nolds in this case, at

]

least when E Ay ™ but even when Ay = 1/n this is a deep result.
0y

Before proceeding with the proof of Theorem 2 we state a corollary
concerning the case when the integer n is allowed only to run through

a shorter interval [y,z].



COROLLARY 2.1, With the assumptions of Theorem 2, if

2
vleso) ¢ ¥ < z2gx/2, (3/2)° ¢ 1=e70, ez gy, and > < A, > 0, then
yngz o

y<ngz

S xnca(x/n)

(2.8) o« £

A
y<ngz

& (@ ey 2% ) (192 )

We remark that, in this case, the asymptotic distribution is always
the uniform one, at least when o > 0.
3,  The proof of Theorem 2 requires the following lemma,

LEMMA 1. On the hypothesis of Theorem 2 there is a non-negative real

number ¢ such that for every real numbef g with 0O { e < 1/2 there

-is a real number 'yo(g,g) > 1 so that whenever y yo(g,g) we _have,

for every t with e t ¢ 1,

(2.9) [£-3> & (n)] < *°.

ngty

Proof, The existence of (2,6) for every real mumber t with 0< % < 1
together with the assumption that for some t in this range the limit is
non-zero imply that there is a non-negative real number ¢ such that for
every t with 0« t\< 1 .we have
. ‘ _ 40
lim ) an(y) = £,
¥y = nsty
Let
..2....S
N =[2e® max(1,0)]+1

and choose yo(g,g) > 1 so0 that if y ) yo(e,g), then for every integer

r with 1 rgN we have



(2.10) (§)°~§ an(y)’ < -;:52“’.

ngry/N

Now choose an integer gq such that

at
N

~ 1 g
(2.11) St

N N

=

which is always possible if ¢ ¢ t ¢ 1. ©Note that

—f (a+1)/%

g+iyo_r3yo _ o1 g g+1y0—-1 (Qyo—t
(2)%-(5) ou dusﬁmaXQN) ,(N))

< o max(81,179) ¢ max(on T, (e 1oz N)"’)

Thus, by (2.10) and (2.11),

E an(Y) SE;_____,an('.Y) <»(%*1)6+%E:2+0 < (%)‘6-1-524.0 RS tc;t-a2+c
ngty ngla+1)y/N

S _al)y 2:__ L) > (Bo-leBro, (2H) 2o, go_ 240,

nsty n< qy N

and

These last two inequalities give (2.9) as required,

4., Proof of Theorem 2. Since (2.7) is trivially true when ag 0 or
a1, wemay assume 0< g< 1. Let K= [}E;-a]. Then, by (1.13),

(1.11), (1.9), Lemma 1 and (2.5),

MOED SIS - <x/n>+o(z:a<y>

ng2ey
K‘;-CKY
-.5* > a (v) + 0 (2%°)
k=1 ngy

x/(kcra)<ngx/k



10.

= ola s %) (S a (-3 _ <D

ngy ogx/([x/y Jva)

£y ST a(y)- an(yD + 0 (29%9).

x/ygkgK \ ngx/k n n¢x/(K+a)

. Hence, by Lemma { and (2.4),

) ‘('a) :' Fa ; x/y,0)+ Q‘(52+GK)+ Q (2%9)+ O(Z (X Ok %= (ka)°

X,y k>K

The proof of (2.7) is completed by observing that eK g x/y and

Z (k_c-(k—!-a)-o) —Zf “0-1du Zf o -o—idu

K. oK KK
= (K+1)7% < (2e7/%)°.

5. Proof of Corollary 2,1. We use (2.7) and Lemma {1, The condition

that (y/2z)° < 1—€2+0 means that we can assume that ¢ > 0. Suppose

that g > {. Then, by (2.4),

o ;5 £,0) ¢ (2] u %u + O G(a ; £) 1 °*’a9
[e] a/([aﬁ!w)

R a(g/[i]) <(a H %;)cs 1-£/( [i]ﬂx)) max ( ( ar )0—)

= o+ Q (626{1),

Similarly

T+1+a _ » B
Mo s g,c) >k f Gdu o1 +_1j;_g) o 5 @ §a(1+a)‘
E+1 g g

Hence, if ¥y (s,o) < ¥ € ¥/2, then by (1.11), (1.13) and (2.7),

> Ac (X/n) <a+ C (02%x iz oy 1,00 G)
oGy

ngy



11.

%, then

> Ao (6/n) = o At O Q‘cz"yX"1+>ca1+°y'1+2"e°)§ :»9 .
ngy
N

y<ngz y<ugz

Thus, if ¥ (e,0) ¢ ¥ < 2 ¢

We complete the proof of (2.8) by observing that by (1;11) and Lemma 1,

3o o™ () < romn )

ngy 6{z

6. In this section we make some observations concerning the nature of

F(a ; F,:O’).

LEVMMA 2. Suppose that 0K a1 and g 3 1. Then

(2.12) o ; £,0) = ocfQ (026‘2“1) (¢ > 0),
(2.13) lim  Fla; £,0) = a = Fa 5 £,0)
> O+
and
(214)  Fos 1) = (K (kee)™) (s> 0.
. k=1

By (2.14) with o =1, Fa; 1,1) = r'(a)/rla)+y+1/a where T is

the gamma function and y is Euler's constant,

Proof, The asymptotic formula (2.12) was established in the proof of

(2.8), (2.13) then follows trivially, and (2.14) is immediate from (2.4).

LEMMA 3, For each £ » 1 and o> O the function T« ; £,0) is a

continuous function of o and is analytic on R\{0,{g},1} mith

(2.15) F'(a) =402 (k)™ (0< a<{g})
k>g
g&c([g]m)-o_ucgck‘: (k4q) ™0 ({g} < « < 1).
. >g ‘

The points 0, {g} and 1 are angular points of F.




12.

LEMMA 4, Suppose that 0< g < 1 and o > 0. Then considered as a

function of &, F(a ; g,o) is continuous on [1¢o)\\ {2,3,4,...} and.

for each integer n 3 2,

(2.16)  1im Fa s £r0) = 2°5 (K% (krg) ™)

§ - n-— k=11
and
. PO ;
(2.17) lim ¥q ; £,0) = nGEZ:ZCK-q-(k+a)_U) = o ; n,0).
£ - n4 k=n
7. We now establish upper and lower bounds for the mean square of
éx,y(a)”a which in turn imply respectively
(i) that if ¥y is small compared with x then the only possible
(R,An) asymtotic distribution modulo { is the uniform one, and

(ii) that the discrepancy cannot be too small.

THEQREM 3. Suppose that xo and x are non-negative real numbers,

y31 and 0< a< 1. Then

XO+X
(2.18) f I@u’y(a)—a]’zdu ¢ win(1,,1,)
XO
- where
(219)  1,= ‘<x+y2)2“_< 2 0))?
and

(2.20) I, —Z (-X+2yn> ( (y)>

This theorem can be thought of in a rather loose way as a law of

the iterated logarithm, This will be discussed further in a later paper,

(see [5]).



13.

THEOREM 4, On the hypothesis of Theorem 3,

X 4X

(2.21) fo l@u’y(a)—algdu;,max(J1,JZ)

- X
O

where

(2.22) 3, = n 2(z-y° i t - é (v) (1-e(am))i

and

(2.23) 3, =((20)72 HZ: (ex-3ym)|>

g ) (-elam) ]

By taking the real part of the innermost sum in (2.22) and (2,23)
and then discarding all the terms with m > 1 one obtains in (2.21) the

particularly simple lower bound max(L1,L2), where

L, = 2n Asin 7o) y?))_ a2(y)
n=1
and
Ly = 7 %(sin na)4g;;,(2x—3yn)a§(Y).

Bowever, in certain circumstances this loses a factor as large as

loglog vy,

COROLLARY 4.1, Let the discrepancy DX v be given by
’ H

(2.24) = sw |o _(p)=, (a)-(g-o)].
X,¥ O$a<5\<1 Xyy X,y
Then
N X0+X 2
(2.25) f D, ,4u» sup max(J1,J )

X a€[0:1]



14.

By analogous methods it is possible to obtain corresponding ine-
gualities for
M+N 5
z l@n’y(a)"a[

n=M41

but the bounds obtained are more complicated and not so illuminating,

8, To prove Theorems 3 and 4 we require the following lemma which is

Theorem 2 of Montgomery and Vaughan [4].

LEMMA 5. Suppose that x ,x sesasX

17%5 R are R distinct real numbers,

and that vi,vz,»...,vR are R complex numbers, Also, let
(2026) 6 = mln]xr—xs] and 6r = mln]Xr~XS].
r,s a8 .

ris sfr

Then
R - R vr;; »
(2.27) el NG min(K1,K2)
r={ 8=1 r
r#s
where
‘ 1 2
(2.28) Ko=8 ' ) |v]|
r=1
and
- _3 2 -1
(2.29) K, =% ;l"r 5

9. Iroofs of Theorems 3 and 4, Let K be a positive integer, Then it

is easily seen that the function ca(u) given by (1.9) can be written

in the form



(2.30) °a("‘)
B

Clearly

X 4+X

(2.31) fo min( 4 y=———— )dué(xm)

X
O

15.

§ 1= e(-—ak) (uk)

k]K

0 min(t,fnlﬂrD + 0 Qnin(i,in—;_—aﬂ—')) .

(ogpg 1).
- K| -“BH

Hence, by (1.9) and (2.30),

X 4X |
(2032) ‘fx - n(y)cd(u/n)-d 2w = I+ O <(x+y)loi K)
where
X E a (y) (1-e(=gkm)
(2.33) I=f S Y ( ) >> Uk)IZd ‘
, x ‘o=l k(K ngk/ | k|

Clearly, if nj ¥y 0L [kjf K, (n;‘;’k-‘;) =1 for j= 1,2 and

k1/nT # kz/nz, ’chen‘ lk1/n1—k2/n2] 5 1/(yn1) >/y"2,

Therefore, by (2.

(2.34) 1= Z

=1
and
(2.353) 1= f
n=1

where {91] < 1
letting K —» o,

the terms with

3%) and Lemma 5,

(x+e .'Y )

a_(y) ~e(—okm)
Z nm yznigm km) ’2

K/ K]

o< k£\<
(n k

E (x+—e HY)

o< [E[<K
(n,k)=1

a (y) 1-6(—akm)) |
st (b)),

ngK/ [kl

162] & 1. Theorem 3 now follows from (2,32) on

Theorem 4 follows in the same way on discarding all

x| # 1.
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Sometimes, when the simple Riesz means (R,xn) are specified,
it may be more appropriate to use (2.34) and (2.35) rather than appeal

to Theorems 3 and 4.

10. By (207), (2,8) and (2013) we see that if y is small compared

with x but not too small, then under very general conditions

(2.36) lim o (a) = a.

X - oo :Y(X)

We now show, as a consequence of Theorem 3, and again under very general
conditions, that even if y is very small compared with x, then (2036)

still holds,

THEOREM 5, Suppose that 0< 0 < 1, 0< a < 1,

30— 1
(2.37)  1im (Gay 20)(2 n )2 b 3 =0
¥y > (36-1)/20 ™ ngy \mgy/n &8 '
nSy—y b N
and
(2.38) lim & e(a)
X 2> o0 X,,X
exists., Then
(2.39) lim @ () = a.

)
X >0 X,X

We remark that (2.37)>is rather a weak condition,., For instance, if

xn = { for every n, then it holds for every ¢ with 0 << 1.

(30-1)/20

Proof, Let y Dbe large and define 2z = y~y . Then by Theorem 3,

(1.13) and (1.11),

(2.40) fi;:e S an:a(;‘i)—o)

ngz

210 & y2+y1/e__z1/e) S N
ngy \gy/n
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Fmrthermore, by Cauchy's inequality (inégalité de Schwarz en francais !),

’E A “au <§'<%1/e—z1/e:)(1+y52) E:::Ai.

z¢ngu’ i

¢ (}é)-a
o

1/@

Hence, by (2 40):

(2.41) }Zx Ga(;‘f)w

1/9 niu

38 1
<if y +(y1/e 1/9) (\ ;) :)
ngy m<y/n

It is easily verified that

<

52 é(y1/e_z1/e)yv(3e—1)/2e.

Taus, by (2.41) and (2.%7),
inf {@ (a)=¢] - 0 as ’Y'*‘”-
1/e /6! u ue k
z gy !

This gives the desired result,
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3, Appendix,

1, Theorem 4 does not require that the

ah(y) be the simple Riesz
| means (R,xn). It is valid provided that E an(y) = 1.

n=1
2. ‘Theorem 2 can be generalized in the following way. We say that the
positive Toeplitz transformation ’4- = {ah(y)) has asymptotic (or limit)
distribution function ¢ witﬂ respect to the ordfnary Cesaro method

(¢,1) if there exists a distribution function such that
’ : ¢

(3.1) Lim Y s (y) = olt)

¥y — oo ngty
at every t at which ¢ is continuous, For example, if the ah(y) are
the simpie Riesz means (R,xn) and if ¢ exists, then by Lemma { it is

either a continious function given by

o (¢t ¢ 0)
(3.2)  olt) = {%° (0<t<1) (with g»0),
1 (t 3 1)

or is one of the "Heaviside" functions YO ‘and ‘Y1‘5fwhere Ya(t) =0
if %< a, Ya(t) =1 if t 3 a. (In the general case, necessarily

Q(t) = 0 fof t ¢ 0). On examining the proof of Theorem 2, one sees that
provided @ exists, is continuous and satisfies ¢(O) =0, ol1) =1,
‘then it is possible to replace‘Theoremvz by a similar Buﬁ more genéral
statement, In particular F(q 3 g,c} is to be replaced by

(0 (e g 0)

(3.5) cla; gr0) = 41 (a3 1)

0(a,2) Q-aﬁ-ﬁ) +§>‘_‘§_ @(5)-@—3)

(when 0 ¢ a< 1),
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but some care is needed with the error terms., Besides the above éxample
where ¢ 1is given by‘(}oz), there are other interesting instances in

which @ exists;‘

%. Theorems 3 and 4 do not require the (y) to be the simple Riesz

a
n
means (R,\_). They remain valid without modification provided that

an(y)‘z 0 for n >y, Otherwise, there are extra error-terms involving

E a.n(y)o Thus one can still obtain meaningful information in case
n»y

lim E::'an(y) = 0,

¥ oIy
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On the fractional parts of X/n and related seguences, IT

B. SAFFARI and R.C. VAUGHAN

1. Introduction and sfatemen‘b of theorenms,

1.1. In this paper we assume the notation of [9] Throughout, the
implicit constants in the Q, << and >> notations are absolute
unless otherwise indicated, In addition, we use the symbol =< .
By U »<V one means that U & V and V & U. The letter p<

always designates a prime number,

1.2. The standard case, In this section we study the case

h(n) = f/n. We afe primarily interested in the behaviour of

(1) o () =y Y o (x/n)

ngy

where x and y ‘tend to infinity ‘together., We observe »that th;’.s is
essentially the same as taking the simple Riesz means (R, }‘n)
with Ay =1 for ngy and Ay =0 for 'n > y. In fact, we are

considering the positive Toeplitz transformation

A= (e ) :ve[the n=12..)

with an(y) =y ' for ngy and an(y) =0 for n>y.

We recall the definition of ¥ a,g,0) (cf. [9], (2.4), (2.5)).



0 (e g 0)

1 (ay 1)

(1.2) Bopg,0) = { olaz)(s - g“([gj+a>"c)+g°’kz<k“ - (k4a)™O)
| =

(0<a< 1, 6> 0)

C (0<a< 1, 6= 0)
where
1 it (g-a,g] AN 74 o

(1.3) ola,g) =

| 0 otherwise,
and write
(1.4) Fa,g) = Fa,g,1).

The connection between ,ex and the Dirichlet divisor problem

H

can be seen, for example, via

1 | |
(1.5) alx) = 2:3[0 OEACEIN-10]

or

1
(1.6) alx) =x[ (o (a) = Fla,1))de +Q (1)
o :

where
(1;7)‘[.\(3() = Z d(n) - x log X —- (2}/_.1)3@
n\(x‘

and as usual d is the divisor function.an&' Y is Euler's constant,

THEOREM 1. sSuppose that 1{'¢ 'y  x. Then
1

(1.8) 6, (@) = Fayx/y) + o7 v 20 x).




3.

By adapting the Van der Corput method of trigonometric sums it
would be possible to improve the error term here, much as in the
Dirichlet divisor problem, However, we have carried out no detailed
calculations in this direction, partly because we do not believe
that the small improvements that could be obtained are anywhere
near the truth. In fact,‘Theorem 2 below suggests that ax,y(a)'» «
€.

even when y = x~ where € is any fixed number with 0 <¢ e < 1.

There are three immediate consequences of Theorem. {.

COROLLARY 1.1, 48 X - oo,

‘ _2
‘ =y o 3
(1.9) OX,X(OC) = — era) t O (x “log x).

COROLLARY 1.2. Let t be a fixed number with 0< t < 1, Then
> . —_—

- —

(1.10) o, 4,(a) = ¥, 1 +0 (x J1og x).

COROLLARY 1.3. Suppose that y/x - 0 as X -» oo, Then
1 ‘

—

(1.11) ex,y(a) =a+Q x4+ x5! 10z x),

If y is quite close to 'x, £he error term in (1.11) is not
very good, and at first sight one might hope to do better, However,
on inspecting F(a,f) one finds that the error can indeed be this
large, and is essentially due to the irregular behaviour of F(a,g)

as a function of g -at the points 2,3,... (see Lemma 4 of [9]).



The next theorem suggests that Theorem 1 is some way from

being best possible,

THEOREM 2. Suppose that y = y(x) is increasing, y = o{x) and

(@)

y - &8 X - oo, Suppose further that 0 ¢ @« ¢ 1 and lim GX

X = o

b4

exists, Then

lim g, y(a) = a,
, -

X -> oo

The next three theorems put some limitations on how good the
error term can really be in (1.8) and on how small y .can be for

there to be an asymptotic distribution,

THEOREM 3. Suppose that y(u) is increasing and y(u) - _as

u-—so, Let & =s8(a) be sufficiently small, and suppose that x

‘and X satisfy the inequalities

(1.12) 0< X ¢ %,
(1.13) (y(x4x) - y(x))@og(y(=+x)))* < sy(x)
end
1
(1.14) 2¢yx) ¢ -;xz.

Then, for x > xo(a),

X

X4+X .
Ga1s) (oin n) oy ¢ [ ey (@ - o’ o ¢y

As an immediate consequence we have



COROLLARY 3.1, Suppose that 0< @< 1 and 0< g < 3. Then there

are numbers 51(05) and X1(6> such that, whenever X>x1(f§),

J/~X + 61(a)X(10g X)"4

(1.16) lo- B(a) - «|? au = xB(1og x)74,
X u,u

Moreover

(1.17) Lin sup xP/2|g 5(@) = a| > o,

X - XX

THEOREM 4. Suppose that the continuous function @{u) satisfies

the differential difference equation

(1.18) uwe'(w) = -~ cluw-1) (u> 1), Hw) =1 C(ogug 1)

Then, for each u > 0,

(1.19) 1imsuwp e (o) y0(u) (0<act, y= (1og x)™).

X = oo
Theorem 5 is an:immediate corollary of Theorems 2 and 4.

THECREM 5, Suppose that 0<¢ o <« G(u).‘iégg;

o, (a) (v = (1og x)%)

does not have a limit as x - oo,

The function @, often called Dickman's function, has been
studied by a number of people (see references in Norton [7]), who

have shown that it is monotone decreasing and satisfies

(1.20) 0 < ¢(v) ¢ rluen)™!



and
O
(1.21) f a(u)du = €Y,
(o]
It is easily seen that
(1.22) Mu) =1-2ogu (1<ug2)
and |
w av )
(1.23) ca(w) = 1 ~logu+f Log(v—1)=— (2<vg3).
2

1.3, The *'logarithmic case'", As one might expecf, when one considers

1imit distributions of {x/n} in the sense of the logarithmic density,

things can be pushed a good deal further, wWrite

(1.24) 0. (a) = (Log y)"! Z:gi ca(X/n),

XY Ny

There is a close connection between ex' ¥ and the error term
. T

2
B(x) =Z o(n) - 3:__X2

ngx 12

where ¢ 1is the sum of the divisors function, It is easily seen that

1

E(x) = x(1og z) (o. (a) - w)da +
‘ 1

+ %Xzz-z fo (.q’x,x/z(a) - a)da

+0 (x) + 0O (X22-3)

where z { x and

tpx,y(oz)_ = oy 2 Yy ncd‘(x/n),

ngy



il

When x2 £ 2 & x this reduces to
1
5(x) = x(10g 5) [ (o (a) = a)ae 4O (x).
O s
There.is also a simple relation connecting 9y v with ‘E, namely
~-¥

' 1
5) = 52 [ (g (@) - Fay1,2))a0 +.0 ().
O b

We do not study '?x - in detail, since its general behaviour can
i

be easily deduced from that of 6, v’

’

The next theorem shows that, not only does one obtain the

uwniform distribution for ex when y = xe, but even when y = x,.

s

THECREM 6. Suppose that y « x. Then
2

(1.25) 6. (@) = «+Q ((rog x)3(10e y)71).

We would conjecture that 6, y(a) —» a providing that
t] .

loglog x = o{log y).

THECREM 7. Suppose that y = y(x) is increasing to infinity and

¥y £ %x. Suppose that 0 < « ¢ 1. Then, whenever o, y_(oz) tends to a

H

limit a8 X - oo, the limit must be «,

In the opposite direction we can do somewhat better than the

analogue of Theorem 4. (Note that by (1,20) and (1.21), for u > 1,

a(w) ¢ r(1+u)~ 1 ¢ 1/u

u ru
whereas f glv)av > 1 and j‘vG(v)dv - eY as. u - o),
o o



THEQOREM 8, For each u > 0,

u
(1.26) lim sup ex y(a) > %‘/‘ G(v)dv (O Cal i, ¥y= (log X)u)
X - o0 ’ o}

where G is given by (1.18).

As an immediate consequence of Theorems 7 and 8 we have

u
THECREM 9, Suppose that w > 0 and 0 ¢ o ( é‘/‘ G(v)dv. Then
o

o, (a) (v = (10g x)")

X,y

does not have a limit as X — oo,

It is very likely that both Theorems 5 and 9 hold with the

upper bounds { for o for every fixed wu,

t.4. The prime numbers, The following theorem shows that the mrime

numbers, suitably normalized, behave in much the same way as the

natural numbers, Let

(1.27) V7 (o) = y 'S (1og p)e (x/p).
’ BT ¢
6
—+E

THEOREM 10, Suppose that € > 0 and x! <y ¢ *. Then

1
(1.28) % (o) = Hax/y) +Q (expl= ole)(rmrets)?)

where C(e) is a positive number depending at most on e.




We remark that on the density hypothesis concerning the distri-
bution of the zeros of the Riemann zeta function the é% could be

replaced by %. The 2 arises as EEZ where ¢ is such that

11
(1.29) - we,1) & pol1mo) + e
and where N(g,T) dis the number of zeros p=p + 1y of the Riemann
zeta function with 3 ) c andk iYI & T. The € in Theorem {0 could
be made an explicit function’of x, but there is little point in

doing 80,

As far as the un-normalized case is concerned, providing that

the conditions of Theorem {0 are satisfied, partial summation gives

: y Y w(a,x/fv),
(1.30) %;; CQ(X/P) = §g§"§F(a,XﬁY) +‘/; (oo v)2 v o+

.1 .
+Q b exl- o(e)(FeEE5)7).

The asymptotic distribution is the same, but there is a second order
term which has no very simple closed form, although the main terms can

be combined to give

a° oxdu
[X/y (w- (-0){u})Zog(x/(u - (1-a){u}))

It is trivial that y(oc) does not have an asymptotic dis-
]

tribution when ¥y = (log x)u with 0<ug 1. (Indeed, this is so for
all choices of kn . We hope to discuss this further in a later paper),
However, we have not been able to extend this to the region u > 1.
It is a simple application of Theorem 5 of [9],‘that if
0<06< 1, ¥ = x° and 'U: y(a) has a limit as x tends to infi-
’

nity, then the limit must be a, Moreover, this can be sharpened along

the lines of Theorem 2.



10,

1.5. A"law of the iterated logarithm", In all the applications of
A A AP e A A e e A e e e e e e N e e N N PN i

Theorems % and 4 of [9] hitherto, the expressions

p(zla (5))2

(7)1 - e(am))|?

1
LjZgean
n m

have behaved very much like ¥ ai(y). We now show that this is not
n

always so, even under fairly reasonable conditions, In particular,
the following theorem justifies our remark below Theorem 4 of [9]
to the effect that taking ¥ aﬁ(y) in that theorem can lose a factor

n
as large as loglog y.

THEOREM 11, There is an infinite subset & of N* with the

following property, Let

A= (a () : ¥ € [1p0), n=1,2,...)

be the Toeplitz transformation where the an(y) are the simple Riesz

means (R,xn) obtained by taking kn to be the characteristic

function of P . Then there are arbitrarily large y such that

whenever x 3 0 and x ) 0,‘

. Xn XO+X
2 ny 2 2
o9 ¢ Ty [, ) - 9 e g
o

1.6. In conclusion we mention an example with h(n) = 1/n in which
the asymptotic distribution function differs from F(a,g). Suppose
that k ¢ N* and let kn =1 if n is a Xk th power and xn = 0

otherwise, Then trivially by the method of the hyperbola,



-—

1

1
() = Fayx/y),1/k) +0 &y )

’

o)
Xyy
and deeper methods doubtless enable one to improve a little further

the range of validity for y.

11.
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2. Proof of Theorem 1.

2.1. The following lemma is implied by Satz 566 of Landau [4].

ARAMASAA

LEMMA 1, Let

fz} -1 (z. ¢ 2)

b(Z) = 4

0 (z ¢ 2).

Suppose that u < w, f(v) is positive and twice differentiable

for ugvgw and f*(v) is non—zero and always has the same sign,

Suppose also that for ug v w we have 0 < A £r(v) < pooami

3

that p is any real number with p > 1, p > X- and

oy [T (1w £1(@0)D/2 (ugvgw.

Let. N be the number of pairs of integers m,n  for wich ugmgw

and 0g n ¢ f(m) where any pair m,n for which either m = u,

m=w, =0 O n = f(m)~ is counted with weight %. Then’
W . 2
v= [ £l - s « b +0 (o).

u

2.2, To prove Theorem 1, consider six sets .s1 ,,32 s 8,8, , 8

- 2’737 73
and $4 of pairs of integers m,n, defined as follows ; 

8 ¢ Zemge Eangk

S, ¢ X,1/2 (_11’1\<’x2/3, E}f_& ¢ n\<§

St ¢ §<m\<;;2/3, ﬁ'&<nx<"



St s X omex¥3 XL X x 1/2
X1;2+a h T RSy y<n<{x

. ' 1/3 x X

S4. mygx , ﬁ—a<n\<ﬁ’ x2/3<n\<x.

Let ISI denote the number of elements of the set g, zy (1.1),

X X 4
(2.1) ex,y(a) = (5] - [5 - «D([¥] -+
. [S;] 4 O J:‘] J
where
IS"“ if X2/3'<y‘\<x
(2.2) u, =
0 ity ¢ <23
EX ir 22 ¢y ¢ x
(2.3)  m,=1¢ |8y it 23 ¢y < x1/2
0 if 'y\< x1/3
1831 if Xz/g(ygx
(2.4) M3'= . ]Séf if. XT/Z <y ¢ x2/3
0 if y ¢ xV/?
‘and

0 ity ¢ x'/3.




Suppose first of all that <23 <y x. By (2.2) and (2.5),

(2.6) =Y om0 e ¢V

x 1/3
§<me

1f x1/2 < mg x2/3, then there are ¢ 1 integers n with
\) N\

X <n<x
m+a S’

and the number of pairs m,n with either n(m+oc) =X O0r mn=2X

is < x®, Hence, by (2.3),

— 1 € . t 1 1
(2.7) My =+ Qx®)  with = ST
1/2,_2/3 x _x
X \<mgx msnsl?l

where the dashes are used to indicate that if the pair m,n is on
the "boundary" of the region under consideration, then it is counted

with weight %. The same argument is applied to MB- Note that there

. . . x 1/3 . ) .
is at most one integer n in [—7—, b'd ] and likewise in
x2 3

[X/(X1/2+a), X1/2]- Hence, by (2.4),

(208) M, = M' + O (xe) where M' =y—- S—.' 1.
3 3= 3
1/2 2/3 x x
x /Tgmgx I-I-l—agngl-ﬁ
Now write
! = - ’ ! = -—
(2.9) Hl = N2(o) Nz(a) and My N3(o) NB(a)

where, for g with 0 B¢ 1,

(2.10) N2(5)=§—_' DYNEE
—x2/3\<m$—x1/2 O\(n\(-é-iiﬁ

and



(2.11) n(p) =2 D
=« a1 ogae-Ep

It is now a straightforward application of Lemma {1 to intervals of

the kind _2h+‘§X1/2 Lmg -2h:x1/2 to obtain
23 1 2
v, (p) af Zau « b<x2>-7——" - b<x3)—7——x *
2 X?/E u+p ‘ X1 2+;5 x2 3+5
+0 (3108 x)
and
x2/3 11 2
N3(B) ==f (f—lv gldu + b(xz)(xz—-g) - b(x3—5~) +
X1/2

+ 0O (Xi/glog x).

Therefore, by (2.7), (2.8), (2.9), (2.10) and (2.11),

- ox 1/3
M2 —Z_7_——(—-——-—5m ] * 0 (x' 710z x)
m>x‘1 2

and

1

M, =kcx(x2/3 - x1/2) +0 (x2Log x)

» ; x o 1/3
= : log X). -
m{ o) +0 (x
%! 3(111\()(1 2

Hence, by (2.6),

Z M. mz___mgxm +Q (x‘1/310g x)

=1 9 “mxfy

15.



and Theorem 1 in the case x2/3 <y & x now follows from (2,1),

2
The cases x1/2 <7y g x2/3 and x1/3 <Y« x1/ are treated

similarly,

16.
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3, Proofs of Theorems 2, 3 and 7,

%.1. First of all we state a lemma which is a consequence of Theorems

3 and 4 of [9].

LEMMA 2, Suppose that x and X are non-negative real numbers,

yy1 and 0< a< 1. Then
X

(sin 7a)*(x2)y << Jf ¥ [Z(ca(u/n) —‘a)lzdu < (xs372)y.

X ngy

3.2, We require a result in which in the integrand y can be made
a function of © u, In order to obtain this we first of all require

some information concerning short intervals,

LEMMA 3, Suppose that x,z and X are non-negative real numbers,

¥y 1, Y=max(z,y) and 0< « ¢ 1. Then

XX |
f 1> (Ca(g) - o)|%u & (x+1°)y(10g 21)2

x ZLNEZHY

Proof, By Theorem 3 of [9], the left hand side is

LAY (5T 42

z(nm$z+y

< S Deg ey

n- z(mn\( Z4y

< (x+72)3 XI: %llog oY
n[q

2<aga+Y

& (x+Y2)y(log 21)%,

as required,
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LEMMA 4. On the hypothesis of Lemma 3,

X+X
Jr suptE (¢ ( ) - a)x du <: (X+Y2)Y(log ZY)4

X VY z<ngz4v

where the supremum is taken over all non-negative rezal numbers with

Proof, This uses a technique which goes back to Menchov [5]‘and
Rad emacher [8]. It may certainly be supposed ﬁhat the surremum is

taken only over those numbers of the rtorm
k T
=y &2
r=0
where g =0 or {1 and k= [log y/log 2]. For such a ¥ let

L1 R .
— — E T3 _
mr = mr(v) = ¢ ejz ’ n = 0.

Then
n <2v/yg2 Ky,
oo | -1 -
mr+1 =1m2 4 §r2
and
oy
e o

Now for given wu choose some Vv = v(u) for which the Supremum
occurs, Then

sup|y (C( =)= a)| <§:_l§:(c 2) - )|

VLY ZNgE4+V



where the inner summation is over those integers n such that
zaym 2 <ngz+ (m o+ e )y2
HYm, R + AL, + EJY .

Hence,

( X+X u 2
) [ ey (e () - 0% ¢

X VY ZKOLEHV

X k| . 5
o an [ 3T (e @) - )P
X Ir'=0 «
where the inner sum is over those n such that
- -
paym 2 <n gz +y(m+1)2.

The right hand side of (3.1) is

k 21'_1 [-X+X u 5
(3.2) ¢Qegar)y 5 [ [ple(D) - o)
=0 =0 X

where the inner summation is over'those n such that
-1 -I
z4ym2 < n ¢ z + y(me1)2

and, by Lemma 3, (3,2) is
k r 2\ -T 2 2 4
& Qog 2v) ) 2" (¥ )y2™ (10g 21)° ¢ (xv%)y(Log 2v)%,
=0

as required,

3.3, First of all we prove Theorem 2, (bserve that

AnsArAIN

Lim ipe ¥(2x) - y(x)

yix ¢

X = co

for otherwise y(x) S> X, Therefore the set
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y{2x) = y(x)

(3.3)  s=f{x>1: ="

< 2}
is unbounded, By Lemma 4,

ca(u/n) -a

(3.4) inf | ‘> S eyl B

X$u52X ngy\u

T xy(x) ngy u)

1 ZJF [ ) - a)} du

<g X+Y(2X)

rlen)aos 2(22))".

xy(x

If S contains en unbounded subset . S* such that

(3.5) y(ez) RS g(log g)”S whenever g € S%,

then by (3.3), (5.4) and (3.5)

lim inf|) -—«—-;rgj—wlv; 0.

X -0 ngy(x)
This gives the desired conclusion if such an §* exists, Otherwise
there is a constant Xo > 1 sﬁch that
(3.6) y(zx) > x(1log x)-S whenever X €8, x> X .
‘Then, by (3.6) and Corollary 1,3,
lim @

X -» oo
X €3

2x,y(2x) =

This completes the proof of Theorem 2,

3.4, To yrove Theorem 3 we use both Lemma 2 and Lemma 4, Ry Lemma 2,
AAAARAA,

(s:m mx) (x)<f IZ_(_T(C ) - a)} du< ¢ xy(x),

and by Lemma 4,

xX4+X
(c ("‘) - a)|%au x),
[ e - e

Thus, if y is sufficiently small in terms of x,‘then
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(sin ma)* X <fX+X 0y ()@ = ¢ |20y ¢ X,

This gives (1.15), provided that x > xo(a).

3.5, The proof of Theorem 7 follows the same pattern as that of

Theorem 2, We observe that Theorem 3 of [9] gives

2X
[ e 8- alf g

X ngylu
Thus

c(w%)—a

(3.7) inf | 1° ¢
xgug2x ngy(u n log ylu)

2X
! fx = e (@) - @))%

<
x(1log y(x))2 ngy(u
<< (1og ¥(x))7%(1 + 1oz 13(7(2_2%)2.

If there exists an unbounded set of real numbers x > { on which
y(2x)/y(x) is bounded, then Theorem 7 follows at once from (3.7).

Otherwise

(5.8) y(x) $ x,

and Theorem 7 follows from (3.8) and Theorem 6, which we shall prove

in Section 5,
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4, Proofs of Theorems 4 and 8,

Let

(1) x = s> a(e))

r=1

where A 1is Von Mangoldt's function, and

(4.2) v, = (Log x )%
Thonb
; : . nu
(4.3) S e lx/m)=3" ¢ (x/n)+0 (=3
msyn ¢ m(nu ¢
nU.
ke Z_ca(xn/m) *0Q (log n>
mSnu

where Z’ means that the sum is restricted to those m which have
no yrime divisor exceeding n, (Very probably the part bof the sum
thrown awsy contribubtes an amount infinitely often as large as

(oc - e)(1 - G(u)), and if this is so, then Theorem 5 also holds

when a{u) L a< 1). B (4_1), the number of these m not exceeding

u . .
n  and not divising x is at most

u -k u=3
E np & n .
P,k ‘

ky2, p)nvk

Thus we have

S u
(4.4) S e b /m) s 140 (53
mén

ngy

de Bruijn [1] has shown.that if v(X,Y) is the number of natural
numbers not exceeding X which have no prime factor exceeding 7Y,

then
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(45) vE%1) = alw)r® + 0 (" Wwr1)? max [R(x)])
2¢xKY

uniformly for Y » 2, u 3y 0, where R(x) = n(x) - 11 x is the
error term in the prime number. thécrem, This with (4.4) and (4.2)

gives Theoren 4,

The proof'of Theorem 8 proceeds in the same manner., Thus

> g e (x/n) Z:_'l o (x,/m) + O (55)
msn

m(IY
and
YIRS WD i L
~U, K omp
m<n 1/ . ogn /P
m,{’xn k>,2? pon
Hence

(4.6) | Z:j- ¢ (x /m) +Q(

< lov n
Va m<n
Ry partial integration,
, e pu
() e Ehe) « Gogn) [ AT s,
u o]
mgn

Combining (4.5), ‘(4.}6) and (4.7) now’establishes,ffheorem 8,



5. Proof of Theorem 6.

Suppose that

(5.1) 0<B< 1.
Let
(5.2) ne =[5 - 6]
and
(5.3) s(p) =3 S 1.
MB<mSX_§ nsx/(m+5f
Then
(5.4) o, (@eey = 5(0) - s(e) + (u - m) Y L
s ng)’
Let
(5.5) N = [XVZ}-

s(p) = (os e v+ 0 GN+S HF-p]-m
M_<mgN T
B ° iy

providing that XN MB. This also holds when N ¢ MB, providing that

the convention

> .-
IR S

B

is adopted, Hence

24.
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s(0) = (o) = 1og(1+ £) = () = M Jlog o= + 0O (1)

M o+ a
M0<mgN o]

5T GeD-iy
T e et s

ST LS daE -

S v

where B(u)'= {u} _.%, Therefore, by (5,4),

‘ y(M_ o+ a) .
(5.6) ex,y(a)log,y = (1, - M Jlog ———— 4 alog Ty +0 (1)
£ odlog — - 7(0) + T(a)
Ne-a
where
_S 1o _
(5.7) 7(g) = ns(n 8).
n$X1 2
B (5.2)

Y J
og 1+ (a1 g2 + @) <2

and
AP R .
2 "M (Nea) & Txq N e
e 5]
Hence, by (5,6),
(5.8) ex’y(a)log y=oogy +0(1) +o(a) -~ 7(0).



The proof is completed by observing that a trivisl modification of

the proof of satz 3.2.2 of walfisz [11, p. 98] gives

(g) & (log X)2/3.

26,
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6. Proof of Theorem 10.

6.1. We require a lemma which has some independant interest, Let

(6.1) (x) = log p.
KX

LEMMA 5, Let N(G,T) - denote the number of zeros p=24p+ iy of

the Riemann zeta function with 8 3 o, |Y| & T. _Suppose that there

are positive constants B,C (with € 3 2) such that

(6.2) wom) ¢ 10 (15 2.

£ -

Then, whenever x 3 4 and x - 2/c < 8 1, we have

(6.3) f

X

2x |
|j7(u+ue) - Hw) - w4 & 0% exp(~ 01(i3§%%§§§)1/3)’

where C1 is a suitable positive rumber depending at most on €. If

the Riemann hypothesis is assumed instead, then whenever x 3 4

6.0

X

X ‘
[V(wu0) = V(w) - we| %an & ex*(10 )

uniformly in ¢ with 0< 6¢ 1.

This is essentially due to Selberg [10]. It differs firstly in
that in (6.4) the bound is wniform for g close to { whereas Selberg

apparently requires ¢ < x—e, and secondly it is slightly weaker when.

~C , _
e x 2 with 0< C , < 1 since Selberg obtains

-1/¢

© "2 o 42.-2 2\2
(6.5) [ [0(wme) - () - wo| A ¢ ol1es D2
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Moreno [6] has observed (6.3) with C=5/2 eand 'E?"replaced by v

(where

(6.6) v(x) =5 Aln)

nSX
and A{n) is von Mangoldt‘s function), and given only a weaker result
for W, In fact, there are at least two obvious ways of deducing a

corresponding result for U7,

Proof of Lemma 5, Clearly

(6.7) f (v(usou) - w(u) - ou)iu ¢
X

2 v o
& f (fx‘}/z(?(meu) - w(u) - eu)du)av,

Let E:_ denote summation over all the complex zero ofV'c grouped in
) oo

complex conjugate pairs, that is, lim ‘E . Then, by the explicit
| T - e |Y[KT

formula (Ingham_[B], Theorem 29), whenever ¥ > 2
| ' P o :
(o) 1 -2
> An) =y - Y & - -2 log(1 -y %)
ey o P g(o) 2

where the dash means that if y ¢ Z, then Aly) is to be replaced by
é A(y). The sum over the zeros is boundedly convergent (cf, Ingham [3],

p. 80). Thus



oxv
(6.8) f (v(usou) - wlu) ~ gu)du &

xv/2

2xv
< (1+e) upl du 4 (1og(1 -
[T [ et

29,

(140)° - 1))2

P xv/2 Cw?(140)% - 1
and
(6.9) Jf t}:: (3+e) p[ du =
xv/2 p
p P
=>—:Z(1+e) "o 1 (1x0) 2 -
Py Ps Py P2
21 + Py +’p27— 2-,1 T~ Py TPy |
- 14+ p, +P, Cev)
Trivially
2V ‘ 2 _ _
(6.10) [ (oglt - L= L))Zy ¢ A7,
xv/2 u(1+0)° - 1 |
By Theorem 25a of Ingham [3],
(6.11) n(0,7+1) = n(0,7) { log T (T 3 1).

Thus, the double sum on the right of (6.9) converges absolutely, and

uniformly in v - on [1,2]. Thus, by (6.6), (6.8), (6.9) and (6.10)

| 2x
(6.12) f (vluren) - w(u) - ou)au ¢ 6%~ + Z

X

where
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Z1 Sy (1+‘e)p1 -1 (1+e_)_p2 -

o] [9)
Py Py 1 2
1+ p, +p, - 1= Py~ Py 2 + Pyt P, t+ Pyt Py
L2 - 2 2 il
1+p1+p.2 ‘2+p1+p2

.. . . 2 2
By the trivial inequality ]z122[ << [z1| + |z2|
1428
1 . 2 -2 =2
1, & ;pzx min(e%, v ) (1 + |y, = v,|)7"
172

Thus, by (6.11),

(6.13) ‘;« ) x*%Pnin(e2, y"%)10g v.
P

Y>0, By1/2

If the Riemann hypothesis is assumed, then at once from (6,11) and

(6.13),

Z< Y elogY+X§ l°§Y<ex2(log§)2.
Y

0<Y<9 >0 !

This with (6,12) establishes (6.4) with % replaced by . To deduce
the corresponding inequality involving \}/, observe that for y 3 1,

y £ 2,

¥(y) - Vy) - y1/2 + 1

-1-+iT

2 s
1 4 gi(2s) 1 log p y
=53 lim f ( C(ZS) 5o + Z-—-————-————S )i—ds.
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Let
a(v,0) = (w(e"(1+0)) = w(e") = V(e (146)) ~ W(e") -
a2 Ty
and
7(t) - - —(——;-g"iizii“ g T Qf S
2 (Ml

Then, by Plancherelfs theorem,
o o 2 —-3it
Jf [A(v,e){zdv<(f J.EL‘Q.LEI(H@_)? ~ 1]t
0 Yoo (14]%])

<{ f_m, (Log(1+]]))2min(e?, (1+]t]) %)at

-0

2
& olros 2)2,
3]
This combined with the observation

./‘23‘(111/2(”9),/2 - a2y & 6°c°

X

enables one to deduce (6.4) from the corresponding result with

replaced vy, Another line of approach is to use the relation

V) = 3 w()u(x /%)

where L is the NUbius function, but in the proof of (6.3) this gives

rise to complications of detail,

To prove (6.3) note that by (6.11),

Z X1+23 12%_1<1‘

P Y
:Y>x4
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Thus, by (6.13):

(6.14) 5:1 ¢ 1+ x(0%(Log 5)5:2 + 5:3)

where

E::Z = E - x2B

1

0<YLO

By1/2
and
(6.15) L=y : 27200 1.

o cyex?

By1/2
Hence

1 ~1 : 1 2u -1

(6.16) T, = e w2 [ 5P (os 0o e,

/2

By (2), page 226, of Walfisz [11], we have

(6.17) N(g,x*) = 0 whenever ¢ 1—03(10g X)—z/B(loglog X)_1/3.

This with (6.2) and (6.11) gives
1

1
Y <é x0 (log ) + 2‘/‘ C x®(10g x)e” (1og 2)au +
2 , 5 1 6
>

3

1= (10g x)"%3(10g10s x)~
. 2.]~ Slog | oglog qu(log_x)e—ch—u)(log g)aiu..

1
LG
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Tt is assumed that XQSC > xE > 1. Thus

2 1

o= ¢ (Clog = ~ 2log x)

(6.18) T, <: x Y6 Tiog g + x%(Log x) P exp(~2~ 2?3 : 1/5)-
(1og x)/“(1oglog x)

The sum 5:5 is estimated in the same way. By (6.16), (6.11), (6.17)

and (6.2),

3<§‘; (o) (5L - £ X) Lo 2 oo 22

o leyext
B>1/2

& ex(log 2) +./’ {/) x“*(21og x)n(u,t)t8 Tt 3 %3t )du

2 ¢ (C log 1 o10g x)

| C 242 2 B+2 s
x “(log £) x“(Llog x (
<g ° G 5 *) (Log X)Z/B(loglog x)1/3

This, with (6.12), (6.14) and (6.18), gives (6.3) with 3 replaced

by w. The deduction for \J is the same as in the proof of (6.4).

Q&g: It is possible to deduce Theorem 10 directly from Lemma 5, or even
from the corresponding result with 5 replaced by w. Howevef,‘the
argument isbthen somewhat more complicated than with the metho we are
going to use, Moreover, the following two lemmas also have some interest

of their own,
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LEMMA 6, Let h be any real number with O h < X ;E,(6.2) holds,

then

loglog x

(6.19) [ “(0lam) = V) = 1) g nx exalec (22 )%)

whenever X <hgx and x 3 3, (n the Riemann hypothesis,

2% '
(6.20) [ " (Wuem) - V) - m%u ¢ n3xios Z)2

X

uniformly in h,

Proof, It suffices to prove the lemma with h x/6. Suppose that
2h { v¢ 3 and x ug 2%, so that h { v=h ¢ 2h and x ¢ uth £ 3%,

Then, since
(V(uh) = W) - 0)“g¢ (V) - V(u) - v)% 4
+ (V(ww) = Uum) = (v-h))?,

on making the substitution w = gu (h.g w %h) and on observing that

h 3h  3h
a =L

1
< oL T TS 2!

h
=
one has

2X
hf (\(ush) = W(u) - h)%u €

X

3x p3h
(| = (M usw) - V() - w)%w)du
<g‘/; j21 ¥

3x o 3h/x 5
xf ( (V(urue) = V(u) - ou)de)du,
x Yh/3x

The integrand in the last double integral is continuous on
[x,3x] x [h/3x, 3h/x] except on a subset having zero content, Thus the

order of integration can be inverted, Hence



2.

X
(.20) [ (Wum) - V) - n)%u g
b'q
3h/x o 3x
CELTT T wrtuon) - V) - owZauae.
h/3x “x
Using this, (6,20) follows from (6,4), 1f x < 32/8, then (6019) is
trivial, Thus it can be assumed that

: C
h>/3>(2 .

Combining (6,%) and (6,21) then gives (6,19).

LEVMMA 7. Suppose that (6.2) holds, Then

2x
(6.22) f max |W(wv) - V(u) - v|%u &,

X 05v$h
2 log x 11/3
<ge h%% exp( C4(TB§15§—§) )

€ - % + 1
whenever x <hgx and x 3 3, Moreover, on the Riemann

hypothesis,

X
(6.23) Jr max I\}(u+v) - Hu) - v|2du.<§ hx(1log x)4

X osvgh

whenever o ¢ h ¢ x,

This follows from Lemma 6 by a similar argument to that used to

deduce Lemma 4 from Lemma 3,
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6.3. We now proceed with the proof of Theorem 10. By ) ' it is meant
m

that possible terms with m < [x/y] are omitted, [x/y] is only
counted when x < y([x/y] + @), and if [x/y] is counted, then
x/[x/y] 4is replaced by y in all the appropriate places. (bserve

now that, by (1.27),

. = ' l
(6.24) y\}k,y(“) ) - }X _ 08 P +
’ msx e

AR

+ ) E log p
2 m
pgx1

X—op<mpgx

-y }:;_____7_log ».
m\<x1/2 X pex /2

X
m+a 2N

glearly the contribution from the second double sum is O (x1/2), and

from the third is Q (Log x). Thus, by (6.24),
1 X X 1/2
Y'\?;C’y(a) =Y : 2(’\)’(5) - V(m)) +0 (X )
mgx /©

so that, by (1.2),

(6.25)  y(V, (o) = Fox/y)) =

- ) - VD) - ) <0 ='/2),
msx
Suppose. that

(6.26) 0<6< 1

and



X ¢ bXa
mo ¥ m(mea)”

og u-

then

(6.21)  WE) - V(=) - ET§§E7 -

ma
= V(f—;) - V() - (E - u) + 0 ((% + 1)log x).
Let X be of the form
(6.28) x = (148)5,
where k 1is a non-negative integer, and suppose that

(6.29) X g x.

Then

(6.30) 3 VG - Vas) - sl €

XmgIA6X
%2 x/X
<§ = sup I\}(u+v) - V(u) - v|du
x/(X+6%+1) v\<xX_2
+y ! (& & 1)10g x.

XmX+6X m2

Before proceeding further with the proof consider the consequence of

assuming the Riemann hypothesis, By Lemma 7 and (6.30),

> ' Jve) - v(mja> - m(gj_a)l«

X<uX+8X

2
XX x x 4y1/2 o
<g =5 = - 3(1os x)%) +.§ 5+ 1)10g x.
X XKKX+6X I

37.
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Thus, summing over those X, given by (6,28), for which (6.29), holds,

one finds that

I aorX x
V@) - V(m+a) B m(lﬁa)l €

1/2
m¢x

<< X1/26"3/2(10g X)3 + &ylog x + x1/210g X,

which with (6.25) and the choice § = y—2/5x1/5(log x)4/5, which is

consistent with (6,26), gives

W gle) = Hex/y) + 0 (v7/5x1/5(10g X)9/5)

whenever y > X1/2(108 X)z.

To return to the proof, suppose that (6,2) holds, Then, provi-

ding that

= - &
C+2
X x ,

one has, by (6.30)’, the Schwarz inequality and Lemma 7,

L_'IV(E) B V(mfa) - m(ﬁa—)l <

X< X+6X

2 2 ”
CEE T T aploo (ZEENI)Y2,

6x X X4 X 5'loglog x

+ E (% + 1)log x.

XKmgX+6X m

Thus summing over all the numbers X of the form (6.28) for which

(6.29) holds gives
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> V) - V) - il 2 (5 + 1)108 x

-4
1/2 £ m
n¢x L0+2 <%XV2

- 1 ‘
+ Y5 5/2 eXp(~C6(53§%B§-§)1/3) + (6y+x1/2)log x,

This with the choice ¢ = exp(— 4¢ (=28 %

%6 l__—_—oglog X)1/3) and Huxley's

theorem [2] that (6.2) holds with ¢ = 12/5 establishes Theorem 10,
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7, Proof of Theorem 11.

Define Nj inductively by

(7.1) N, =3 an Ny, = TP

where the product is over all those primes p such that

(7.2) pge .
Let
(7.3) Dy = {n: 0Ny, log N < ng N}
and
(7.4) D= D.-
=1 Y

Further, let j be large and write

(7.5) y =N,

Let Ay be the characteristic function of ) and

Xy /YA (ngy)
msy
(7.6) caly) =

0 (n>y).

By (7.1), (7,2), (7,3) and (7.4), all the elements of I are odd,

Let a = 1/2. Hence, by Theorems 3 and 4 of [9],

(7.7)  max(o, x-y2) ZO: T2 (1)% &

N=1 m=1

(@) - @)% ¢ (xay2) }:(}__—_ —a (y))2
wy <

n=1{ m=1
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By (7.1), (7.2), (7.3), (7.4) and (7.5), it is easily seen that y

is squarefree and the elements of

D N (log Ny, W]

are precisely the divisors of y in the range (log Nj’ Nj]‘ Since
Ay is the characteristic function of D ,

(7.8) S A, =2"+0 (logy)
ndy

where ‘P 1s the number of prime divisors of y. Also,

> (3 _h o 0P=3 (5 D20 (e y)?)
ngy mgy/n n m
"/ log y<ngy mnly

=Y (Y1240 ((1eg ¥)?)

n|y m |y

=2 T T (e d e 1) w0 ((os 3)7).
ply

Poop

Hence, by (7.1), (7.2), (7.6) and (7.8),

i |(1 + 7+ %p—z)

(7.9) = (5T la (5)2 = 2l -
E;; g;; momn YA

gy

Theorem 11 now follows in a straightforward mamer from(7.1), (7.2),

(7.5), (7.7) and (7.9).
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on the fractionnal parts of x/n and related sequences, IIT

B. SAFFARI and R.C. VAUGHAN

1. Introduction,

The object of this paper is o investigate the behaviour of &_ y(a,h)
2

(n> 1) and

: : 1
(for no#atlon see [2] and [3]) when h(n) = Toz n
h(n) = log n, In contradistinction to the case hin) = 1/n it is immedia-
tely apparent that the behaviour of o, . is non~trivial even when y is
32
as large as eX. For simplicity we only investigate the situation'when3zé.isl
the Toeplitz transformation formed from the simple Riesz means (E,hn)
with A = 1,
n

Theorems 1 and 2 deal with the case h(n) = 1/log n, whereas Theorem 3
deals with h(n) = log n. yhile it is well known‘([i], Example 2.4, p.8)
that the sequence log n is not wiformly distributed modulo 1, Thecrem

3 shows that it is uniformly distributed in the present context,

2. Theorems and proofs,

2.1, Let
r— -1 ‘
(2.1) o (@) =y " § ca(X/log n).
X,y 2£11$Y

| pre

THEOREM 1. Suppose that 0<¢ a¢.1 and. ‘log y<X2- Then

=) (@) =a+Q Gy og 1)) + 0 (N 10s%).



COROLLARY 1.1.

X >0 , Then )

Suppose that x = oy log x) and log y = o(x

(d)-—a(x

r—--v'
el as X » oo
— as ;

'Y

Proof, (learly by (201),

(2.2)

where

(2.3)

and 0¢ B < 1.
(2.4)

and

(2.5)

Theﬂ’ by (203)’
(2.6)

By (2.5)’

where H is a real number at our disposal, Hence, by (2.4),

y:g;; y<¢> = 5(0) - 5(a)

sg) =Y > 1
| =1 XY
nge™/ (248)
Let

) = 2 1.
B¢ - B onge™ 28
s(p) =7(p) + ([y] - 1)&15 .

1) = Z ex/(m+8) N

M_<m{H~
B N\ B ‘

+ logn~HeX/H+Q(H)+Q(eX/H)
5 x/H

{nge

1

?)

as



(2.7) 2(0) - 2(a) = ) ex/m, - &/ (mea) +

M _<mgH i <mgl-a
+0 (@) +0 (&)

whenever H > I*io 4+ 1. Thus

(2.8) 7(0) = (@) = 1(0) - 1(a) + Q (H) + O (5/9),
where
H_B‘ b4 (u ) xdu
(2.9) 1p) = [ ([u] - )/ leep) xdu_
o) = [ iB [ -, s

Let Db(u) denote the first Bernoulli polynomial modulo one,

b(u) = {u} - 1/2. Then, by (2.9),

(2.10) I(B):f (v - Mﬁ —'5 - 1/2)ex/v’xv_2 av
MB + B |
. ‘
-4f ' b(u—-g)ex/v. XV~2 dv,
Mﬁ + B

The argument now divides into two cases according as 'MO =M - or
. , o

M0=Na+1o

The case Mo = Moc . Write M for the common value, Then,. by (2.10),

M
1(0) - 1(e) =f '

Iv4 ' H ,
(v -u- %)GX/V v 2 av + cxf ex/v w2 ay

M , - Mt
H . H
-f b(v)ex/v xv 2 ay +f b(v-—a)ex/v xv 2 av,
M - Y Mya

"They first integral contributes . & ex/M XI-’I..E,- the second is
a(éx/(M'*‘“) - eX/H) and by partial integration the last two are easily

seen to contribute é‘eX/M XM—Z, Hence, by (2.8),



4.

(2.11) 1(0) - (o) = ae®/ (), o (7)) +
+0 (eX/H) +Q (" xi2).
Recall that 1 = N = [x/log y] and logy & V2 s
&/ (a) eXP(log vy +0 (1 10g%y))
~y(1 v (71 1062 1))
and &M g2 =0 (3x ' 108% y). Hence, by (2.2), (2.6) and (2.11)

y (¢) = oy + O (H) + O (5/H) +0 (yx7! 108% ).

X

The choice H = log(x/log )

now gives the desired conclusion,

The case My=M, + 1. write M for M, . Then, by (2.10),
H
1(0) - 2(0) = (1) [ &V w2 ay
M+1

M+1
-./‘ (V - M- - é)ex/v xv"2 dv
M+o

X/(M+a)

+ 0O (e ‘2).

x(Ma)

Now proceeding as in the previous case we obtain

(0) - T(a)

i

(=1)y + O (H) +0O (/) | o (yx""108% ).

since M_=M_+ 1, this with (2.6) and (2.2) and the choice

X

H = log(x/log x)

gives the required result once more.

2.2, (me might expect that the theorem holds even when y is close to ex,

but this is false, In fact the next theorem indicates that Theorem 1 is
essentially best possible, at least as for as the upper bound on y is

concerned.,



THECREM 2. Suppose that 0<¢ a« < 1, % <6<t and y= exp(xe)_ Then

- * . -
lim sup =~ (a) = 1 - and lim inf, (a) = 0.
X = X,y X - Xy

Proof, We begin by following the proof of Theorem 4 as far as (2;7),

Suppose that 0 < B < 1,

(2.12) v = exp(x®)
and
(2.13) H=x.

Then, by (2.4),

_ 4261

X ' “11 e )2

Tty Pr e )= .
| B B
Thus, by (2‘.13)3

x/(l_ + 1+ 8) |
5™ x/ (n+p) & xo' P g expl-c 2251,
M+ 1<EgE-p !
B
Hence, by (2.7) and (2.13),
(2.14) T(O)*-f(a) =) X )
/(M + 1 XAM, + 1+« -
=(e - € . )(1+Q(X 3))+Q(X).

To obtain the inferior limit, let N be a large natural nunber and let
A
{2.15) X =x. = () 170,

Then, by (2.4) and (2.12), M =, = N. Hence, by (2.2), (2.6), (2.12),

(2.14) and (2.15),

y:;;: (o) = /(1) = ofy)
Xyy

as N - oo ,



For the superior limit, take instead
1

——

I B
(2.16) x=x =N ".

Then, by (2.4) and (2.12), M =M - 1 =1N-1, so that, by (2.2), (2.6),

(2.12), (2.14) and (2.16),

| i |
v, (a) ~ =
Xy

eX/(N+a) + ¥ ~Y

as N —» oo

2.3, The latter part of the paper is devoted to h(n) = log n. It is well
known that the sequence log n is not uniformly distributed modulo 1, and
in view of this the next theorem is perhaps rather surprising, However,
one can take the view that x being permitted to go to infinity, however
slowly by comparison with  y, crushes any unruly behaviour of the loga~

rithmic function.

Let.

(2.17) o, () =y 1§ ¢ (x1ogn).

ngy

THECREM 3. Suppose that 0< a< t, x ) 2 and y ) 2, Then

o (@) =a+Q (" logx+ 213 5723108 x9)%?).

COROLLARY 3.1. Suppose that x1/210g X = o(y) as X —» o , Then

Qx,y(a) - as X >,
Proof, Let
(2.18) M= [y2/3 <13 (10g Xy)_z/S] + 1.

Then, by Theorem { of [2] and (2.17),



(2.19) e, (@) -« &
< y—1 =1 Zk_wz::e(k_xlog n)’
1 ngy
Let
(2.20) Y=[v]+1
~and
(2.21) T = 4ukx,
Then, by Lemma 3,12 of Titchmersh [4],
Ze(kxlog n) =
ngy
1 .
+ 17
1 1og y YS v
- 5h f (e-zmikn)Cas 4 0 (& + 1)10g x)
1 + 7 1 - 1T
log y

where ¢ is the Riemann zeta function., By moving the path of integration

to the line ¢ = 1/log y , one obtains

\:_e (kxlog n) =
ngy

N

1+27IlkX log y s
1+2n1kx .é?tz f

+0 ()2 4 y 1og 1)771).

Hence, by (2.21),



E::e(kxlog n) 3

ngy

UK !
2 dt - 1 kx
<(kx)‘/ f e ¢ (k) 1/2+3’—-——~k§g
O t+ TRy

< (kx}i/z(loglog ¥ + log kx) + y(log kx)(kx)" 1.

Thus

M _ «
> ¥ 1!2:6@3 log n)| 3 (MX)?/Z(lOglOg y + log x) +yx | log x,
k=1 ngy

Therefore, by (2.18)fand (2.19), we have the theorem,
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