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CHAPTER I - HYPERBOLIC SYSTEM OF CONSERVATION LAWS

1. Introduction

Many physical laws are written in the conservation laws and if we
ignore the mechanisms of dissipation such as viscous stresses, heat conduc-
tions etc, then we have the following first order system of conservation
laws in the one space-dimensional case :

(1.1) ug + Fu), =0

where t is the time, x is the space variable, u is a n-vector of the physical
state variables and f is a n-vector smooth function of u. We consider the
initial value problem for the system (1.1). When the smooth solutions to
(1.1) are considered, the differentiation of (1.1) gives a quasilinear
system of first order equations :

(1.2) Uy + A(w) u, = 0 s A =grad f

Definition 1.1 - The system (1.1) is called hyperbolic if the system (1.2)

is hyperbolic, i.e., if the matrix A = grad f has real and distinct eigenvalues
Ak = Ak(u), k=1,...,n, for all values 0fl1€{2CFp which are arranged in

the increasing order

(1.3) A <Ay < < A

The corresponding right and left eigenvectors of A are denoted by Py = rk(u),
/Q/k = Q,k(U), k = 1,2,...,n'

Definition 1.2 - The k-th characteristic field A = Ak(u) of the system
(1.1) is called genuinely nonlinear if for all uegQ

(1.4) - grad & #£0.

"k

Definition 1.3 ~ The k-th characteristic field A = Ak(u) of the system (1.1)
is called linearly degenerate if for all ueQ

(1.5) vy grad Ay = 0

Definition 1.4 - A function z = z(u) is a k-Riemann invariant of the system
(1.1) if it satisfies the condition




(1.6) re - grad z = 0

for all values of u & Q .
These definitions and the following proposition are due to Lax (1957).

Proposition 1.1 - There exist n-1 independent k-Riemann invariants for each k.

Here the independence of functions means that their gradients are linearly
independent. The proof is given by the classical theory of single first order
homogeneous partial differential equation (1.6) for z as function of u.

(cf. Courant-Hilbert, vol. II, Ch. IIL.).

Example 1.1 - The equation of ideal compressible flow in the Lagrangien
coordinate : (cf. Courant-Friedrichs, Guel'fand )

(1.7) up + Py =0
2
u =
(e+5), +(pu), =0,

where t 2 0, x = Lagrangian coordinate, v = 1/p = specific volume,
u = velocity, p = pressure, e = internal energy and s = entropy.

The equation of state p = p(v,s) depends on the gas and the polytrro-
pic gas has the form :

(1.8) p=a’ v exp ((v - 1)s/R),

where a,R are positive constants and y > 1 is the ratio of specific heat. [t

follows from (1.8) that e = $:¥ + constant and p = RpT, because T = eg and

p=-e,. Here the energy conservation law of (1.7) may be replaced for the

smooth solutions by s, = 0. Then the conservation laws (1.7) gives the follo-

t
wing quasilinear system for the unknowns v, u and s.
v o -1 0 v
(1.9) u + | py 0 P u =0
s 0 0 0 S
t X

This is hyperbolic in = {(v,u,s), v>01} if Py< 0. The eigenvalues
and the corresponding right eigenvectors and Riemann invariants are given by



i

= s and

)\1=-ﬁ~f)—.,

v rq (1,V/ - pv,O),

4

v
u_f,/—pvdV; )\2'—'0, r‘2=(ps,0,"Pv)

(1.10)

N
n

p=uandp; A= V=B, ry =(1, -/*:ﬁﬁva 0)

1

v
z3 =S and u + 'f V- Py dv .
It 1is genuinely nonlinear for Al and x3 if Pyy # 0 and is Tinearly degene-

rate for AZ.

Example 1.2 - Isentropic gas motion (s = constant)

(1.11) Vi Uy = o , uy + p(v)X = 0,

where p(v) = a2 vy (a >0 and y >1 are constants) is usually
assumed, Y~ 1.4 for the air and y = 2 for the shallow water wave
equation.

v
A, = - /:’5; s Py = (1,/ - pv), z u-jr /:“BQ dv

(1.12)

. \')
Ay = V=B s Ty = (1, =V )s W=t ~/' /=p,dv

If pv-<0 in v>0 , the system (1.11) is hyperboli¢ and if pVV;£ 0, it is
genuinely nonlinear for xl and AZ.

Example 1.3 - Nonlinear wave equation

(1.13) Yer =0 (V)

where o = o (v) is a nonlipear function of v, for example o0 = v + a vz,
vV o+ av3 (a>0), or v/v/1+ v2. If we put v = Yo U = Vi then the equation

(1.13) gives

(1.14) Vi - U, = 0, u



a'(v) > 0 is the hyperbolicity and o"(v) # 0 is the genuine nonlinearity.

2. Development of Singularities

Here we see in details that the genuinely nonlinear hyperbolic system of
two equations developes in general the singularities in finite time.cf.lax (1964).
This means shock wave formations in gas dynamics. For the genuinely nonlinear
hyperbolic systems of n equations we refer John (1974). Consider the system

ug + a{u,v) u, * b(u,v) v 0

X
(2.1)

1
(]

Vit c(u,v) u, d(u,v) Vy

1

Assumption 2.1 - The system (2.1) 1is hyperbolicin an open set Q & R2 i.e.,

the matrix

A= (a b \ has real distinct eigenvalues :
c /

(2.2) Au,v) <  (u,v) for all (u,v) € Q .

Let (21, 22) be the left eigenvector of A corresponding to the eigenvalue ) .
Multiply the first equation of (2.1) by 295 the second by L5 and add. We
obtain the characteristic equation

(2.3) 2 u' o+ Lo vi=0, where ' = 3/ 3t +XA. 3/3 x.

Let ¢ = ¢ (u,v) be an integrating factor for (2.3) such that W, =9 25

W, = ¢ % for some function w = w (u,v). Multiplication (2.3) by ® gives

(2.4) who= W o+ A W, = 0.

For the other eigenvalue y we get a similar equation

(2.5) “z = zy +pz, =0

where 9/ 3t  + p 3/ X

The functions z and w are the 1- and 2-Riemann invariants of the system (2.1)
respectively. (cf. definition 1.4).



Assumption 2.2 - The map (u,v) € @ > (w,z) e Ql ={(w,z) € RZ‘; w = w(u,v),

z =2z (u,v), (u,v)e Q} 1is one to one, onto and € -class.

The Riemann invariants w and z diagonalize the system (2.1) to the system (2.4)
and (2.5), where x= A(w,z) and p= u(w,z) by assumption 2.2.

Now we consider the f}— solution for the initial value problem of
the system (2.1), i.e., for the system (2.4) (2.5) with the Kﬂ- initial data :

(2.6) w(0,x) = wo(x), z{(0,x) = zo(x),
where (WO’ZO) (x) e @ 1 for any x ¢ R.

Lemma 2.1 - The gl. solution to the system (2.4) and (2.5) with the initial
data (2.6) has the a priori estimate :

(2.7) lw(t,x)] < Wo= suplw0 (x)] 5 |z(t,x)| g2y =sup] zy(x)|
Proof : The characteristic equation for (2.4) is given by

dx _ dw _
Y A (w,2z) , P 0
, i.e.,

t
(2.8) x(t.,8) =8+ _g A(w(s,x (s.8 1)), z(s,x(s,B)))ds, w(t,8 ) = W, (B)

for BeR
For (2.5) we have a similar expression. ged.

Remark : It follows from lemma 2.1 that if there exists the '61 solution for
the system (2.4) (2.5) with the initial data (2.6) which belong to Qs then
the solution also belongs to 91 and the hyperbdicity remains to hold.

Assumption 2.3 - The system (2.1) is genuinely nonlinear in Q , i.e.,

(2.9) x>0, wu, >0 for all (w,z) € Q

w y4 1

This genuine nonlinearity is equivalent to that in definition 1.2. In fact



r.grad A = (AW W, ot AZ zu) ryt (AW W, + Az Zv) r, -

= Aw (wu ry oty rz) + Az r.grad z = Aw ¢(er1 +2,r,) #0

2 '2)

Therefore changing the sign of w or z if necessary, we may assume (2.9).

Theorem 2.1 - We suppose the assumptions 2.1, 2.2 and 2.3. Let the initial
data (2.6) & el and the rectangular (+ Wy, * Z5) € 0, where W, = suplw0 (x)|,
Z.=sup |z, (x)] . Ifwy, >0 and z, . >0 for all xR, then the

O O O,X O,X 1

initial value problem (2.4) (2.5) (2.6) has a unique ¥= solution in the

large in time. If Wy < 0 or Zg « < 0 somewhere x € R, then the solution
for (2.4) (2.5) (2.6) developes the singularities in the first derivative

in finite time, i.e., We>-® orz >-as t-+tO <+ o,

Proof : cf. Lax (1964), Keller and Lu Ting (1966), Yamaguti and Nishida (1968)
Cifferentiation (2.8) in B gives

t t
(2.10) X (t:8) = 1+ [ A ds =1+ /’ (A, ¥

+ Az X, ) ds
0 R b z "x "B

»B

Define the function h(w,z) by

A, (w,z)
(2.11) hz = e
A - U

If we note by (2.5)

Z, + Az z'
(2.12) 2, =+ X. =

A= A=
ve have

oh(s,x{s,B)}/93s = ah(wO(B), z{s,x{s,B)))/3s

= h, (z, + Azx) =h_ z' =2, 2

2 ( t 2z z "x°

Sunstitution this into (2.10) gives

t
Xg (ts8) = 1+ jg Mo Yo.g *hs X ds .

Therefore we can differentiate this in t for fixed B.



+ h, x

X 0,8 " "t 8

T

The integration in t gives

t

h(t,X(t,B))(e'h(O»B) A o 8
w ’

e-h(s,x(s,B)) ds)

Xs& it’B) = € +

0

tus we arrive at the following expression for the first derivative

(t,X) (e-h(osﬁ)

_ _ _ h
W, (t,x) = WB /xB = WO,B /XB = 1/e /WO,B +
t
~h(s,x(s,B
+ Jg AW e ) ds),

where h(t,x) & h(0,8) are bounded continuous if w and z are so. Also

kw >8>0 1in the rectangular (i_wo,.i ZO). Therefore the theorem follows.

3. Weak Solutions for the Initial Value Problem

The initial value problem for the nonlinear hyperbolic system of
conservation laws can not be solved generally in the class of smooth func-
tions in the large in time as shown in § 2. Thus in order to construct the
solution in the large in time one has to introduce weak solutions to the
initial value problem for the system

(3.1) ug + f(u)X =0 int>0, xeéR,

with the initial data

(3.2) u(0,x) = uO(x) in x& R.

A

Definition 3.1 - A bounded measureable n-vector function u(t,x) is a weak

soTution of (3.1) (3.2) if it satisfies the following integral identity :

(3.3) J( ( U. gy o+ flu). Ly dx dt + }, uo(x). z(0,x) dx = 0
tx0 t=0

for all smooth n-vector functions z(t,x) with compact support in t > 0, x€ R.



Of course if the solution u(t,x) of (3.1) (3.2) is smooth, it satisfies
(3.3). In fact multiply (3.1) by z and integrate it in t > 0, x € R, and
the integration by parts with (3.2) gives (3.3).

Our definition of a weak solution implies that the following "jump
conditions" must hold across any smooth curve x = x(t) of the discontinuity
in solutions :

(3.4) D [uj] = [fj 1, i=1,2,....n,

where D = dx/dt 1is the velocity of discontinuity at the point in
question, and [ u; ] denotes the difference in quantity u; across the dis-
continuity curve. If the k-th characteristic field A = Ak(u) of the system
(3.1) 1s Tinearly degenerate, then the corresponding discontinuity in solu-
tions is called a contact discontinuity and it is characterized by (3.4)
with

(3.5) A (Ug) =2 (u) =D,

where Uy and u, are the left and right hand side quantities of u on the
discontinuity respectively. If the k-th characteristic fieldA = Ak(u) is
genuinely nonlinear, then the corresponding discontinuity in solutions is
called a shock wave, the relation (3.4) is called Rankine-Hugoniot shock

condition and it is also required that

Meaq (ug) <D< Ay (ug )

(3.6)
A (ur) <D < Akfl (ur) (cf. Lax (1957)).

This comes from the stability of shock waves physically and is required for
the uniqueness of weak solutions mathematically.

There is a celebrated theorem by Glimm (1965) on the existence of
weak solutions in the large in time for the initial value problem of the
general system (3.1) with n conservation laws, which may be summarized
as follows :



Hypothesis 3.1 - The system (3.1) is considered in a neighbourhood £ of a

constant vector ¢ =(c1,...,cn) and f is smooth in ug Q. The system (3.1) is
hyperbolic and its characteristic fields are genuinely nonlinear or linearly
degenerate in Q .

Honothesis 3.2 - The initial value UO(X) is given in Q for any x € £ and
:5 the finite total variation onR. Put

(2.7) d=llug(x) - cll, + TVuy ()

where | . || is the L™= norm and TV means the total variation on x € R.

Theorem 3.1 - Under the hypotheses 3.1 and 3.2 there are a K < + « and

a o > 0 with the following property. If the initial data uo(x) are givan so
that d < S, then there exists a weak solution u(t,x) of (3.1)(3.2) in the
large in time such that

(3.8) lu-clly <k llup-cll,

]

(3.9) TV u(ts.) < KTV g (.)

(3.10) /fw lu(ty,x) = u(t;ax) [dx < Klt,m t] TV ug (2)

The proof (Glimm (1965)) relies on the solutions of the Riemann's initial
value problem and onthe use of the Glimm's finite difference scheme with a
nonlinear functional on the approximate solutions which enables the uniform
estimate of total variation of approximate solutions and gives its conver-
gence to a weak solution. (cf. Kuznecov & TupCiev (1975) for a generalization).

Tor the genuinely nonlinear hyperbolic systems of two equations Glimm and

Lax (197C) show the existence and decay of weak solutions to the Cauchy problen
with the initial data which are bound measurable functions with the small

L"- norm.
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4. Riemann Problem for the System of a Polytropic Gas Motion

The equation of ideal compressible flow of a polytropic gas has
the form (cf. example 1.1) :

i

ut + pX 0
vt - = 0

(v + (v-1)u’/2)y + (v-1) (pu), =0

(4.1)

where the equation of state for gas is assumed polytropic :
Y _ -1
(4.2) vi=a"p = exp ((y-1) s/R),

a,R>0 and vy >1 are constants.

Here the unknown variables u, p, s are considered basic ones and
its quasilinear form is given by the following :

u 0 1 0 u
(4.3) p + -1/vp 0 0 p =0
S t 0 0 0 S X

The characteristics, eigenvectors and Riemann invariants are summarized
as foilows :

1 P
[ = -I/JTVB, ry = (-1g¢rvp> 22y =S and u + jg /:Vp dp ,
(4.4)4, . = =
v =0 , ry = » 2z, =uandp,
1
1 p
u = 1//-vp , ry = I/OVCV; » Zz=sandu- j; /:Vp dp

where v = v(p,s) is given by (4.2).
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Définition 4.1 - Denote the Riemann invariants which are not the unknown

variables as follows :

-1 -1
(4.5) Z = u+a(s) (P%—Y—‘ -1/ (y-1) , W =u-a(s) (p h"l)/(Y"l)’

where a(s) = 2 al/Yyl/Z exp ((y-1)s/2yR).

They give a one to one mapping from Q = {(u,p,s)e R3,p > 0}
onto  Q, = {(M,Z,s) € R3, Z-UW>-2af(s)/ (y-l)} .

The Riemann problem for system (4.1) is an initial value problem
for system (4.1) with the special initial data
(ul, Py sl) inx<0

(4.6) (u,p,s) (0,x) = .
| (UZ’ p2, 52) inx >0 s

where (“i’ Pi> 51.)1.=1’2 are two constant states in Q 1i.e., P; > 0

(i = 1,2). The Riemann problem (4.1) (4.6) is invariant under the similar
transformation x ~ax, t »at, it has the selfsimilar solutions which are
functions of £ =Xx/t. In fact the substitution of (u,p,s) (t,x) = (u,p,s)(&)
into (4;1) gives

- & u, + Pg = 0
(4.7) - v_-u. =0
£t 5
= g(pv + (y-1)u /2)g + (y-1) (pU)g =0

in £ €R

The initial data (4.6) turn out to be a boundary condition as follows :

| (ul” pls 51) g > -

(4.8) (u,p,s) (&) =
(UZ’ pzs 52) £ > 4o

So we want to solve the ordinary differential system (4.7) with the boundary
condition (4.8). It is solved by the following elementary waves (i) . (vi).
First the system (4.7) has the constant solutions :
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(i) (u,p,s) {§) = constant vector & ©

Next, if we seek the smooth solution of (4.7), then we can differentiate
it in & . Remembering the reduction from (4.1) to (4.3) we have the
quasilinear system :

0 1 0 u
d _
(4.9) (- &1 + -l/Vp 0 0 ) Eé P =0
0 0 0 S *

Thus for the smooth solution we have

(4.10) s(&) = constant,

and so the system (4.9) reduces to a system of two equations

0 1
(4.11) (-g1+< ))%(“):0 ,
-1/v 0 p
P
which can be diagonalized by the Riemann invariants (4.5) with s = constant

as follows :

(- £+ A) dW/dg = 0
(4.12) (- £+ y) dZ/dE = 0

s (§£) = constant

Therefore the diagonal system (4.12) gives the nontrivial smooth solutions
of the system (4.9), if

constant or

1t
1l
It

(ii) & =X, di/dg>0, Z = constant S

v, dZfdE>0, WU constant.

(iii) € constant, s

Definition 4.2 - Let (ui, Pis si)e Q ,1=1,2 be given. The Rl-curve with
the initial (ul, Py Sl) is defined by

(4.13) Rl(ul’pl’sl) = {(u,p,s) : Z(u,p,s) = Z(ul,pl,sl), S =5, ;J<p1}
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The Rz—curve with the initial (”2’p2’52) is defined by

(4.14) RZ(UZ’pZ’SZ) = { (u,p,s) : W(u,p,s) = w(uz,pz,sz), S =5, P <P }
Then any (ul,pl,sl)esz can be connected to (u3,p3,sl) € Rl(ul’pl’sl) on
the right by the backward rarefaction wave and any (uz,pz,sz)eﬂ can be

connected to (u4,p4,s € RZ(UZ’pZ’SZ) on the left by the forward rarefaction

2)
wave as foliows :

(i1) R1 - wave (the backward rarefaction wave)

(4.15) (ul’pl’sl) ing< A (pl’sl)
T (wpes) (8) = 4 (u(E), p(E)ss)) on £ = (p(E)ss))
(ugsPgs5,) in &> 2 (pgss,)

where (u(£&), p(&), Sl) € Rl(ul’ P1s sl) for k(pl,sl)< £ < A(p3,sl) .

(iii) R,-wave (the forward rarefaction wave)

(u43p4’52) in g« U(p4952)
(4.16)  (uspss) (&) = { (u(g), P(E)s sp) on £ =u(pE), s,)
(UZ’DZ’SZ) in E>u (DZ’SZ) s

where (u(€), p(E), sy) € Ry(uys Pys S,) for U(PysS,) < & < u(PysS,) -

Definition 4.3 - Let us denote the Riemann invariants (4.5) with a fixed

s =5 by

v-1
Z=u+a (p 7—§:1) / (y-1)
(4.17) v-1
w=u-ag (02 -/ (1),

where a, = a(so).

This is a one to one mapping from (u,p), p > 0 onto (w,z),
z>w - 2 ao/(y-]).

Lemma 4.1 - Let (ui, Py Si) € 9, s;2> s (i =1,2).
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Then the Ri-curve, i=1,2, is the straight half-line in the plane
(w,z) given by the following :

al—a

] T '
Rplupspyosy) = L(w.2.8)): 272y = 5 3

0

378
R, (u2’p2’52) ={ (w,2,5,): W=, = '32156-(2-22), z< 22} s

(w=wy)s Wy }
(4.18)

where a. = a(si), (W, Zi) = (w(ui,pi), z(ui,pi)), i=1,2.
Proof : The Rl-curve with the initial (ul,pl,sl) is defined by (4.13) i.e.,

B vy

-1)/(y-1) = u1+a1(p1

U+61(p -1)/ (y-1) .

Also by the definition 4.3 we have

“‘]i

up +ag (py 2y -D/A(v-1)

.

21

Wl Ul - ao (pl 1) /(vy-1)
If we eliminate the constants Uy and Py in these three relations, we have
a relation in u and p

-1

u+ a,(p%Y -1)/(y-1) =4 {(1-31) w, + (1 +.flo z, }
1P U E L 3 1
0

Substituting u and p in terms of z and w by (4.17) into this relation

we arrive at the first expression in (4.18).
ged.

In addition to the smooth solutions (ii) and (iii) for the system
(4.7) the discontinuous transitionsare possible, if the jump conditions (3.4)
are satisfied across the discontinuity, which are written in our case as
follows :

D [ov + (v-Du%2] = [ (1) pul

(4.19) E\D (W] = » D) =- [u  and
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where D = £ is the velocity of discontinuity and [.] 1is the difference

in quantity . across the discontinuity. The jump conditions (4.19) give
the following three discontinuities according to the characteristics fields
Vo, A, M.

(iv) Contact discontinuity (D = 0)
(Usys Pas Soq) ing < 0

(4.20)  (u.pss) (£) = Y
(u3’ p3s 34) infg > 0 s

where p3> 0, Uzs S35 S, are arbitrary constants.

(v) Sl-wave (the backward shock wave)
(uss Pys Syq) ing < D
(a.21)  (uwps) (g) = U !
(u33 pss 53) in E > Dl s

where (u,, p,» S,) €  1is an arbitrary constant state,
R 17y 11/2 .
D, = - {((v+1) pg + (v-1)py) 2y py™ " 1% / a(sq)» and (ug.pg.s5) is
any constant state on the Sl—curve with the initial (ul, Pys sl) defined by
the following :

(4.22) Sl(ul’pl’sl) = {{u,p,s) : s > Sy j.e., p> Py and

(p - py) alsy)

u-u = s
! (((r+1)p + (v-1) py) 2y p, /Y 172

- - -1 1
exp (v=1) (s-s4) _ Py (v=-1)p + (v+1) py }v }
R Py (vil)p + (v-1)pg

(vi) 52 - wave (the forward shock wave).
(U4, p4: 54) in E < DZ

(4.23) (u,p,s)(g) = .
(UZ’ Py 52) in £> DZ ?

where (u2, Pos 52) e Q 1is any constant state,
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Dy = L+ 1)y + (r-1)py) 2v 1, " 3% 7 a(sy) . and (ugepyasyy

is any constant state on the Sz—curve with the initial (”2’p2’32) defined
by the following :
(4.24) Sz(uz,pz,sz) = {(u,p,s) : $>s, i.e., p> p, and

(b - py) alsy)

U= U, =

{((v#1) p + (1-1) py) 2y p, "/ MHI/2

(v=1) (s-s
exp R

2 _p . (v=-1)p + (v+1) p, Y
P2 (yv+1)p + (v-1) p,

In both cases (v) and (vi) s>sy or s>s, is required by the entropy condi-

tion. The global geometry of shock curves S1 and S2 are given by the following :

Lemma 4.2 : Assume that 1 <y < 5/3 and Tet (w;,z;) = (w(ui,pi), z(ui,pi)),

a; = a(si) for any (ui,pi,si)esz and S; 28> 1= 1,2. Then the Sl-curve

is expressed in terms of w,z as follows :
(4.25) S1 (ul,pl,sl) = { (w,z,s) : 247z = f(w1 - W3 pl,sl) s
S -8y = g(w1 -W pl,sl) . W< Wy }
The Sz-curve is expressed as follows :

(4.26) S2 (u2,p2,52) = { (Wyz,8) = w - W, = f(z-zz; p2’52)’

S-S, = g(z—z2 ; p2’52) , z > 2z, }

Here the functions f and g have the properties :

(4.27) f(0) = g(0) = g'(0) = £"(0) = g"(0) =0, O<f(y), a(¥), o' (¥),Ff"(y),a"(y

a,i - a
.+
a ao

fory >0, 05 f'(0; p;ss:) =
i*>q i

< f'(y; Pi,si) <1 forys>0,

0 < £ (O), gm (0).
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proof : It follows from (4.17) and (4.22) that

(P -pq) 3 . 3 (p =P )
77,172
1

{((v+1)p + (v-1)py) 2vp

) 3; Py . a-=-1 . ag (2y)

ORGSR G D LA T
where o = p/p1 > 1.

It is easy to see that for a»1, wy = w30 and d(w1 - w)/da >0
and so that o = oc(wl-w) 2 1 for Wy W, a(0) = 1. Thus we have for y>0

. d(z1 - 2) d(z1 - 2)/da
fily) = d(w1 - W) d(w1 - w)/do

and f'(0) = (a1 - aO)Aal + ao).

Then using the assumption 1 < v < 5/3 the direct calculation
shows that f"(0) = 0 and f"(y) > 0 for y > 0. Therefore we have for y > 0
a; - a
L0 ¢ ey < 1L

0¢ f'(0) = e
+ a
0

The other inequalities in the lemma are shown by the analogous computations.

ged.

Now, we can solve the Riemann problem (4.1) (4.6) i.e., (4.7) (4.8)
by these six elementary waves (i)~ (vi). Let us consider the projection of
two points (ui,pi,si)e Q ,i = 1,2 on the plane (w,z) i.e.,

(wi,zi) = (w(ui,pi), z(ui,pin, i = 1,2 defined by (4.17). Draw the four curves
Rl(ul’pl’sl)’ Sl(ul’pl’sl) and RZ(UZ’pZ’SZ)’ SZ(UZ’pZ’SZ) in the plane (w,z)
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which are characterized by lemma 4.1 and 4.2. They intersect exactly at one
point (w3, 23), which belongs to one of the following five cases : The
solution consists of four constant states (ui,pi,si) i=1,2,3,4, where
(u3,p3) = (u4,p4) = (u(w3,z3), p(w3,z3)) defined by (4.17), which are
connected by the elementary waves as follows :

. (W3,25) € RyAR, N {z>w -2 ap/(v-1) }

The solution consists of four constant states (ui,pi,si) i=1,2,3,4 which
are connected by the Rl-wave (4.15), by the contact discontinuity (4.20) and
by the R2-wave (4.16), where S3 = 54 and Sp = So-

(w3,z3) € S1 n R2
They are connected by the Sl-wave (4.21), by the contact discontinuity (4.20)
and by the Rz—wave (4.16) , where S = So-

(w3,z3)e §.0 32
They are connected by the Sl-wave (4.21), by the contact discontinuity (4.20)

and by the Sz—wave (4.23).

(w3,23)e Rln So
They are connected by the Rl-wave (4.15), by the contact discontinuity (4.20)

and by the Sz-wave (4.23), where S3 = Sy.

. (w3,z3) € R; AR, N{zsgw-=-2 ao/(y—l)}

(= (ul’pl’sl) in £ <A (pl’sl)

€ Ry(u15py58) in A(pyssq)< &< 0
(upss)(ef T ,

J€Ry (up:py55,) in 0 <& <u(p,,s,)

= (u2’p2’52) in U(pzssz) < g s

when the solution attains the vacuum p =0 on £ = 0 and has a discontinuity
in u there, which should be considered in the Eulerian coordinate.
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5. Glimm's Difference Scheme and Interaction of Elementary Waves

We are going to solve the initial value problem for the equation of
the polytropic gas motion :

t X
(5.1)
2 _
(e + u /2)t + (pu)X =0
in t20, xeR,

where

Yy _ .2 -1

vi =a”~ p " exp ((y-1)s/R) , a,R>0, gy <5/3
(5.2)

v-1

e = (pv - a?Vy/(y-1) = 2% (p ¥ exp ((y-1) s/R)-1)/(y-1)

with the initial data

(5.3) (u,p,s) (0,x) given in xeR.

We seek the weak solution (u,p,s)(t,x) which are bounded functions and
satisfy the integral identity :

£%Z; [u bp POtV U - uP + (e+u2/2) Xp *
(5.4)

2 _
pu XX] dx dt + _/f ud + vy + (e+u/2) xd x = 0.
t=0

for any smooth functions ¢, ¥, x with compact support in t>0, x& R.

The weak solution in the large in time for the initials with finite total
variation is obtained as the Timit of the approximate solutions constructed
by the Glimm's difference scheme. To simplify the argument we restrict our-
selves to treat the system (5.1) withy=1+0 i.e.,

(5.5)

where
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(5.6) vV = az/p, e = a2 (Tog p + s/R).

In this case the characteristics and the Riemann invariants which are not
the unknown variables u,p,s are given by the following :

A

(5.7) 4
W

- p/a, v=20, ¥ = p/a

N
il

u-a logp, u+alogp

Since these quantities are independent of s, the entropy s may be considered
as a secondary independent variable for the system (5.5) (5.6). Also the
Riemann invariants w,z define a mapping :

(5.8) & = {(u,p,s), p>0} — Ql = {(w,z,s) € R3 }

The shock curves and the rarefaction curves are given by the following :

fS ( ) a(P-Pl) R (1 Pl
luap sS ={U'U = o= e———= , §=5, = og —+
1°71°71 1 (p pl)1/2 1 D
2 2
p--p 1
fTeey )s P> P } ,
Py
Rl(ul’pl’sl) ={u-u1 = a log B S =51, PPy } s

(5.9)1‘ a(p_pz) b,

Sz(uz,pz,sz) ={u-u2 = 173 » S-S, = R (1og-p—~+
(P Py)
p2 _ p22
4+ -"Z"W)s D > p2 } ’

=§ ey = Y =
\Rz(uz,pz,sz) -{u Up= a Tog-52 s S = Sg, P< Pz}

Lemma 5.1 - The Riemann problem (5.5) (5.6) for the initial data

(u_, p_» s_) x <0
(5.10) (u,p,s) (0,x) =
(u+, Pys s+) x>0 .
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where p: > 0, uz, sy are constants, has a piecewise continuous and piecewise
smooth weak solution in the large in time and satisfies the estimate :

w(t,x)

m

w((usp,s) &x}) = Wo»
(5.11) '
z(t,x)

1l

z((u,p,s) (t.x))g Zg

where
(5.12) Wg = min w ((usp,s) (0,x)), zq = max z((u,p,s) (0,x)).

Therefore the speed of propagation is bounded as follows :

(5-13) | A | susmax p/a < a”lexp ((zg - wg)/2a)

The proof is a special case of that given in § 4. However the case V there
does not exist here because of 0 = R3 by (5.8), and so the Riemann problem
is always solved without the vacuum. If we note that the quantities (5.7)
are independent of s, the estimate (5.11) and (5.13) follows from the consi-
deration of each case I, II, III, IV in the (w,z)-plane and from the proper-
ties of the rarefaction- and shock-curves (Temma 4.1, 4.2j.

Definition 5.1 -

(5.14) qg=2"Y_ - 3a10gp
2

This define a mapping (u,p,s)e @ ={ (u,p,s), p>0}—>(u,q,s)eQ, = RS,

Lemma 5.2 - Let (ui, Gis Si) = (u;, a log Py si) for any (u;, ps» si)esz >
i = 1,2. The shock-curve Si(ui’ Pis Si) and rarefaction- curve
Ri(ui’ P;» Si)’ i=1,2, in terms of (u,q,s) have the same figures respec-
tively and are independent of the initials (ui, 945 si) i.e.,

/Sl(ul,ql,sl) ={(u,9,s) @ u - u; = - 2a sh(q-q,)/2a,

s-s; = R(~(a-q;)/a + sh(g-a;)/a), q>q;}

H

(5.15){
Rl(ul’ql’sl) = {U'ul - (q“ql)s $ =54, 0<qy }os

52(U2,q2,52) = {U"Uz 2 a Sh(Q'qz)/zaa

s-s, = R (-(q-95)/a + sh(g-9,)/a), a>q,}

\ Ro(up,0p,Sp) ={ U-Up= G-Q, » $=55, G <0}



22

The proof is easy if we note that q-q; = Tog p/pi and the fact that the
shock - and rarefaction- curves depend only on p/pi in (5.9).

Now we introduce the Glimm's difference scheme to get the approximate
solutions (Glimm, 1965). Suppose that the initial data (5.3) are bounded
and have bounded total variations and define

[(U_TJ Pz S_’;) = Tim (u, p,s) (0,x)
X-» F0

Py = inf p(0,x) >0 » Sg = 1inf s(0,x)
(5.16) { X
Wg = inf w ((u,p,s) (0.x))

X

| Z0 = sup 2 ((uspss) (0.X)).

The initial data are approximated by the step functions with the mesh length

2h(0<Vhsh@

(5.17) u"(0,x)

U(O,mh) in (m-1)h<x<(m+l) h, m : even,

h h
( h

where Uh(t,x) u,p ,s') (t.x) and U(0,x) = (u,p,s) (0,x) .

Let us define the time mesh length £ by

(5.18) o/ = al exp ({wy - z) / 2a)
and set
(5.19) Y ={(n,m) 5 n,m are integers, n+m is even and n31}

Definition 5.2 - (Glimm's difference scheme)

We choose any random sequence of equidistributed numbers in (-1, 1) :

(5.20) a = {un }ﬂad R a € (-1, 1),
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and set the mesh points as

anm = (n& mh + anh) for (n,m)e Y,
(5.21) 0

a = (0, mh), m : even .
The approximation Uh (t,x) on the mesh points aom is defined by (5.17). Sup-
pose that our approximation Uh(t,x) has been defined for (t,x) = a;:% and
for (t,x) = an%il (some (n,m)€Y). We define Uh (ag) as follows :

Let U = (u,p,s) (t,x) be the solution of the Riemann problem for (5.5) in
t>(n-1)%, xeR with the initial data
U(an-1 ) in x <mh
U((n-1)2,x) = m-1

-1

n
U (a m+1

}in x>mh .

Set the approximate solution as

h . | (n-1)2gt<ng,
(5.22) U'(t.x) = U(t,x) in (m-1)h < x < (m+1)h
and define the approximation Uh(t,x) on the mesh point (t,x) = anm by

(5.23) Py =@

Since the Riemann problem for (5.5) is always solved by lemma 5.1., our
approximate solution is defined for all anm, (n,m) €Y. Furthermore the
approximate solution Uh (t,x) 1is the exact weak solution in each strip
(n-1)2<t<nf, xeR. In fact it follows from the estimate (5.13) and

from the choice of (5.16) and (5.18) that there never intersects the two
waves coming from the neighbouring discontinuity points (t,x) = ((n-1)%,mh)
and ((n-1)2, (m+2)h) for any m such that (n,m)€Y. Thus the approximate so-
lutions for any o and for any he (O,ho) have been defined in t >0, xeR.

Before we prove the convergence to a weak solution we need to consider
the interactions of elementary waves and to get some preliminary bounds for
them. Remember that the solution of the Riemann problem has four constant
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states Ui = (ui, Py Si)’ i=1, 2, 3, 4, connected by three of the elemen-

tary waves : l-wave (Sl- or R.-wave), O-wave (contact discontinuity) and

1
2-wave (82- or R2-wave). We denote this vector of three elementary waves
joining four constant states U1 (i =1,2,3,4) by B = (Bl, By> 82), y and

SO on.

Definition 5.3 - The magnitude of each i-wave Bys i=0,1,2, in B8 is

measured by the difference of q or s as follows (cf. (5.15)) :

1
w
t
(%]
(A

BO— kY
(5.24)
= - > - - i
61 9 - 47 2 0 for S1 or R1 wave respectively,

By = 43 - 9 2 0 for 52- or R2-wave respectively.

Its absolute value is called the strength of i-wave.

lsol !53 = Szl s

(5.25)

8;1 = lay = ay| and |8, = Jag - q;]

The increase of the entropy in the i-wave i.e., in the S;-wave (i =1,2) is

denoted by
€

81 =S, = 5; > 0

(5.26) 882 =5, -5, > 0

The interaction of elementary waves is considered in the following way :

Suppose that seven constant states Ui(i = 1,2,...,7) are connected by two
vectors of three elementary waves R = (81,80,82) and vy = (Yl,yo,yz). The
solution of the Riemann problem (5.5) with the initials Uy and U7 inx<0
and in x > O respectively has the four constant states Ul’ U8’ Ug, U7

which are connected by a vector of three elementary waves denoted by

a = (al,ao,uz). Our aim is to estimate a by B and y in the above interaction
denoted by B + y» o . There are the following basic interactions of

B + y+ a, into which the others of B + y» o can be reduced :
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(1) If Bi’ Y; >0, i = 1,2, there are three cases in a.
a) ui:>0, i=1,2 i.e., (Sl, CO, 52) + (Sl, CO’ SZ)P*(Sl, CO’ 52),
where C0 denotes the contact discontinuity.
b) oci>0, azgo i.e., (Sl’ CO, 52) + (Sl, CO, 52)'-> (Sl’ CO, Rz) .
c) a1=s0, Qs >0 i.e., (Sl, CO’ 52) + (Sl, CO’ Sz)h» (Rl’ CO, SZ)’
which is symmetric to (b) and can be reduced to (b) for the estimate.
(I1) If Bl’ y1>0 and 62, Y, < 0, then ocl>0 and oc2<0 i.e.,
(Sl’ CO’ R2) + (Sl’ Cos R2)-> (Sl, CO’ R2).
(I1') If Bl’ Yy € 0 and 62, Yo > 0 , then ag < 0 and a, >0 1.e.
(Rl, CO’ SZ) + (Rl’ CO’ 52)~> (Rl’ Co> 52), which is symmetric to (II)
and can reduced to it for the estimate.
(IIT) If Bys By > 0 and Y12 Yo € 0, there are four cases.

a) Qg 50, >0 i.e., (Sl’ Co> Sy) + (Rl’ Co> R2) - (Sl, Coo 52).

b) aq >0, azso i.e., " > (Sl’ CO, Rz).
c) a1<:0, a, >0 i.e., " - (Rl’ Cos 52).
d) oc1\<0, azso i.e., " - (Rl’ Co> Rz).

(I11') If By By € 0 and Y10 Yo > 0 , there are four cases which are symmetric

to (III) and can be reduced to it for the estimate.
(Iv) If Bso yiszo » 1 =1,2, then a1<;0, i=1,2 i.e.
(Rl’ Co» RZ) + (Rl’ Co» Rz)va (Rl’ Co» Rz).

Lemma 5.3 - Suppose that the interactions of elementary waves of B + Y= «
occur in a fixed bounded region Q OC{ (u,g,s)e R3} . Then there exists a
constant G > 0 such that the following estimate holds :
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(I-a) There exist 0<Q<min (31 Yy By * yz) such that

0!.1=81+'y1—Q>0
uz = BZ + YZ -Q>0 .
(5:27) ¢ se e
> and ¢ 2>¢, +e -G} or
% B M % By Yy
€ 2€, +€  ~-6Q and € _>€e, + ¢ s
% B M G By Y

ol S By l+lval +1e, -€e, -e |+e -, -e_ |
0 0 0 0q Bl Yy 0o 82

(I-b)  There exists 0<62 Yy < Q <81 * Y, such that

G =By - 020
a, =B, +Y, - Qg0
(5.28) 2"z 2 7%
€Ot > 88 + €
1 1 Y1

M o)

(II) There exists 0 <Q < Yl such that

oc1=81+'Y1-Q>0

0‘2=-| BzI'I'YzI“Q(O

(5.29) e se
> + €
L T
laOlSIBOI-’. ‘YO‘+ €u - €B_ €Y .
1 "1 "1

(III-a) There exists max (-81,-IY1f)<(3<HBX(0a|Y2| =lv;1) such that

I
1]

1 81 +Q>» 0

o = By =7, 1 + |yl + Q>0
(5.30 i -
) €a1 > 881 + min (0,60Q)
euz 3862 + min (0, G (-|Y2| + |Y1| + Q)

<18 | le, - -
log <18yl + | vyl + 6, €a1l+ I*EOL2 €821
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(I1I-b) There exists max(-Bys = |y7]) < Q< max (0, [y, 1=1v{])

o =B +0Q>0

(5.31) o, = By <[Vl + vl + Q<0
E >€ + min{0,6Q)
]

lo [ <18 |+ |val +le,—e | + € .
ol SR 0 8, %oy 8,

(III-c)  There exists B;< Q <|v;| such that

0L1 = Bl - Q < 0
a, = B~lv,| +lv.l -Q=3o0
(5.32) p = BpriMpl +Ivy
e, 28 +min (0, G(=|v,| +lv;| -~ Q)

2 2

loagl<l 851+ Ivpl +ley ~eg |+ g

% 2 1

(I1I-d)  There exists B; < Q<|v,| such that

p
@ = Bl -Q0<0
o, =8 ~ [v,l + |yl -qso0
4(5.33) 27 "2 2 1
lagl < 1851 + Iyl + 831 + 882
\.
(Iv)
ocl = 61 + Y1\< 0
Jog <ty + Iyl

Proof. First we remember that the shock curves (Si-curve, i = 1,2) have the
same figures independent of the initial point in the variables (u,q,s) by
lemma 5.2, which is essential in the proof. In the case of (I-a) the existence

of @ >0 1in the first two equalities comes from the convexity of the S1.-curve
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in (u,q) plane by (5.15). The fifth inequality is easy if we note that
for the entropy it holds

€ + BO - 88 + € + YO - € =€ + ao - €a

The third and fourth inequalities for the entropy follows from the following
Temma.

Lemma 5.4 - Let (u2, Ao 52), (u3, d3> 53)5;51 (ul, qqe Sl)’
(u4, Gy 54)6 S1 (“2’ A 52) and Ug = Uy with 45 > 4.
Then there exists a constant G such that
(5.35) Sp = Sy ZS3"8; - G(q3 - q2)
and also it holds

(5.36) S3=S; > Sy -8, (52 - Sl)'

The inequality (5.35) is an easy consequence of the mean value theorem.

The second inequality is shown as follows, where we put 9, - Gy = 81,

A = 92 =Yg and 93 = 4; = %q- The representation of Si-curve in g-variable
(5.15) gives the following identities.

uyp - U, = 2a sh (81/2a), u, = u, = 2a sh (Y1/2a)

u; - ug 2a sh (a1/2a).

Therefore if we use Ug = Uy here, we have
(5.37) sh (al/Za) = sh (61/2a) + sh (Y1/2a).
On the other hand it follows from (5.15) for the entropy

S3 - Sy - (s4 - S, (s2 - Sl))

R{- a,/a + sh (al/a) - (- Bl/a + sh (Bl/a) - Yl/a

+

sh (y}/a)} > R[ 2 ch(a1/2a)'{ sh (a,/2a) -

sh (Bl/Za) - sh (yl/Za)} + (51 +Yq - al)/a ] >0,

where lemma 5.2 and (5.37) are used.
qed. of lemma 5.4.
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We return to the proof of Temma 5.3. (I-b) can be treated analogously to
(I1), which is proved as follows. The existence of Q>0 comes again from
lemma 5.2 and the fact that Sl-curve in (u,q)-plane has the gradient

greater than 1 and is convex and that Rz-curve in (u,q)-plane is the half
straight line with thegradient -1. The third inequality comes from lemma 5.4
and from that Rz-curve has the gradient -1. The fourth is easily obtained

by the entropy equality.

Bl + 80 + €Y + Yo = eal + gy .

(III-a) The existence of Q>0 follows from lemma 5.2 and if we remember
the gradient of the Si- and Ri-curbe in (u,q)-plane. The third and fourth
comes from Temma 5.2 and 5.4. Also we have the entropy equality

881 + Bo T tYgEE, tOUg e s which give the Tast inequality.

2 1 2

(ITI-b) and (III-c) can be treated analogously to (III-a).
(IIT-d) and (IV) are easy to get.

ged. of lemma 5.3.
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6. Bounds for the Approximate Solutions and the Convergence to a Weak Solution

h

The approximate solutions U = U by the Glimm's difference scheme

[e3
will be estimated on thepiecewise linear curves called I-curve j.

Definition 6.1 - I-Curve 0 1is composed of the all line segments joining
° ' ' 0m+2 for all even m, An immediade successor

a to a mtl and a mel to a

I-curve j2 of I-curve jl is composed of the same line segments except two
n n-1 n-1 n .
m to a m+1n " and a mt1 to nam+2 » Which
* » - n
are replaced by those joining an to a 1 and an;il to a 2 Then
all I-curve j are obtained by the successive procedures to take an immediate

successor starting from I-curve 0 .

segments joining a

The bounds for the approximate solutions are obtained by means of a functional.
The functional F = F(Uh/j) = F(j) 1is defined on the approximate solutions

Uh restricted on each I-curve Jj. It dominates the total variation of Uh

on J and decreases as function of j in the partial order introduced by

the immediate successor. Since Uh/j consists of various shock and rare-
faction waves and contact discontinuities as seen in §5, F 1is defined as

a function of these elementary waves as follows :

Definition 6.2 - Let us use the notation for the strength of waves in Defini-
tion 5.3.

(6.1) FUI) =218yl + [8y] + Mg (l&g] - e = eg )

where the summation is over all vectors of three elementary waves
R = (81, Bys 32) in Uh crossing j and a constant MO > 0 will be chosen
later.

Hypothesis 6.1 - The initial data (u,p,s) (0,x) are bounded, have bounded
total variation and

(6.2) Pg = inf p(0,x) >0

From (5.14) it is equivalent to that (u,q,s)(0,x) are bounded and have
bounded total variation {.e.,
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TV

[ET VL) (0,7) <+

(6.3)
TV

9 TVs(0, °) < +

where TV means the total variation in xeR.

We define the intervals in g as follows :

1 = {qeR ; q-Z'Wlsqga +2 TV ) )

(6.4) .
2q" {qeR;q-4TV1<q<q +4TV1 } i

where q = min{ "0 q(0,x)} , § = max{ _lim q (0,x)}
- %> Foo X>F

Hereafter we excludethe case Tvl = 0 , which is not interesting at all,
because its solution

U(t,x) = Y(0,x) for any t > O.

Lemma 6.1 ~ Under the hypothesis 6.1 we choose M0 in the functional (6.1)
as

(6.5) M0 =min{1 , 1/2 G, TVl/Z TV2 }
where G 1is the constant in lemma 5.3 for IZq‘ Then we have for all Uh
(6.6) F(0) ¢ 2 TV1 for I-curve 0

(6.7) FU )< FGE) s

where I-curve jZ is an immediate successor of I-curve jl. As a consequence
it holds

(6.8) { qh ljtcl for any I-curve j ,

q
where '{qh[ it = { qh (tsx) 3 (t.x) €F 1}
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Proof. First lemmas 5.1 and 5.2 give for I-curve 0
h ‘ . wrah h -
TV {q| O}sz{lsll +[8,1 5p0n 03¢ TV(u'Hq") (0,°) = TV
where 2. denotes the summation taken for all g on 0. Thus

h
{qg |0} c Iq .

Therefore we can estimate by lemmas 5.1 and 5.2

F(0) = z{|8, | +|82| + My (IBO}-E%;i -e )38 on 0}

B2

h

< 0", g (0,0) + My (6TV(M,aM (0,0) + TV sP(0,0))

3

where (6.5) is used.

The inequality (6.7) is proved inductively by lemma 5.3. Let

(6.9) Fl3) <FO) and £4" 3y} € I,
The difference of I-curve j1 and its immediate successor I-curve 32 is

. c e n n=1 n n+l
a diamond composed of four segments joining a B T P and a m1°

The waves B8 and y enter in the diamond and interact there and the wave o
goes out of it. A1l the other waves crossing j1 and jz are common to both
of them. If we remember each interaction in lemma 5.3, the second hypothesis
of induction (6.9) gives

(6.10) {q" FAR IR A

Therefore lemma 5.3 with the constant G for IZq applies to the interaction
of 8 and Y to o 1in the diamond. Thus we treat each case of I-IV.
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1,2.

(I~a) B+ Y+~ o , where By Yio % >0, i

F(jz) - F(jl) = 0 + qz + Mo([ qo! - eal - SQZ)

-1 B+ B, + My ([gg] - g, " 862) typ oy, + M (gl - oy, " sYZ) }

]
m

)
M

1
m
+
4
+
™

£=20+M (e =-€, - |+ ]e
0% "a; 7B M o

-e +eg, teg )<« -2Q+2MOGQ

-2Q (1-M, 6)< 0,
% B T 8

where (5.27) and (6.5) are used.

~eds

(I-b) B+ vy~ a , where Bi’ ¥; >0, 1=1,2 and o > 0, oy < 0.
F(3,) - F(3p) = o +|oc2| +M (] ocol- €°°1) - {8 + 8+ MO(IBOI - 831— 882) +

Y1 + Yo + Mo(lYol' EYI - €Y2 )<= Q+ (Q - 32’ Yz) = 82 ) +

= -2 By * Y2) (1- Mo G) < 0.
(II) B + 'Y"* o o WheY‘e Bl’ Yl, O‘l ? 0 and 82’ Yz’ 0('2\< 0
Fip) - F(jl) =o0p + {azl + MO(Ioaol - €°‘1) -

")

- {81 +l82| + Mo(IBol - 881) + Y1 + IYgl + Mo(lYol - €Y1

<=0+ Q48,1+ vyl -18y] ~lvpl + Mg ( Ca; "%y T %y Eo‘l + 881 + €Y1) = 0.

(IT1I-a-1) 51, 32>0, yl,yzso and Oy 2% >0, 05 Q <|Y2‘ - lYl! y

) -

Fl3g) = Flig) = oq + oy + My (gl -5, -



34

-1 8y + B, + My (1 BOI - EBI - 562) +!Y11 +ly,| + MO[ yol } <

£Q "[Ylf + (IY1|'|Y2| +0) ) -]YZl- + M (Eal" 881 +l€oc2 - 882[ -

"oy TS, 882) $ 72 (Ivpl =lygl = 0) = 2fyg| + 2 M(lv,| ~lvq1- Q)
<= 20yl =lvgl = Q1 ~ My 6) -~ 2]y ] <O,

(III-a-2) lel - IY11\<Q < 0.
F(jz) - F(jl) = Q 'lYll + (IYll "lel + Q) 'I'Yz] + MO (leal“ 881' +
le -e, | -e, +e, ~e +8&,)<~2|Q] ~2]y,] +
% 6 o By T TR | 2!
+2M, 610 = -2 [Q] (1M, 6) - 2|v,l< 0
(IT1-a-3) max (- 51"|Y1|) < Q< ]Yg' "Yliso-
F(Jp) - F(3y) = -2 Q] - 2]’y2| +2 M ( €g." Ca.t S, " Ey )
i 1 2 2
s = 20Q] - 2]y,| + 2 My (61Q) + G([v,] -[vq] + Q1))
== 2(]v,| + 0] )(1-M, G) - 2M, G([yll - |a] ) < 0.
(III-b) Bl’ 823 0, Yo stO and oc120, Ay < 0.
This can be reduced to the case (III-a) with a, = 0 and then to the case (I1).
(III-c-1) Bys By > 0, Y15 Yo § 0 and aq< 0, Qs > 0,
where By < Q <lY]_l - IY2|

F(3p) = FQqp) =logl t oy + My (logl =, ) - {87 + By + My([Byl- €61 ) 862) ¥

0!
2
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[yl #lvyl + Molvg 1 s @ - 2 8 =Iyg | + (=l +lv,] = Q) =l | +

+ e -€, + - + +
M0 ( o F e £ € £

<=2 B, (1-MEG) - 2]y,]< 0 .

s,

(IT1-c-2)  By<lyql =lvpl<Q <|vq]

F(J,) - F{3jds - 28 - 2|Y2l + MO(IeO‘Z - eBZI + 861 - eaz + 881 + 882)

$ =2 8y(1-Mg 6) - 2[vp| + MGB(Iy| vy + Q) = - 20 8y +ly, D (A-ME) -
- 2 MG(lvq] - Q) < 0.
(I11-d) 81> 8220, Y15 Yo < 0 and ap < 0, ay < 0.

This can be reduced to the case (III-c-2) with a, =0 and then to the
case (IV).

(IV) B:s v; 50 and a; <0, i=1,2.
F(d,) - FUIp) = Loyl +lopl + Molag-Ce I 418, + My 8]+
+ 'Yll '*'!Yz! + MolYol }< 0.

Thus we arrive at the key estimate (6.7). At Tast it follows from (6.10) and
(6.7) that for the same G,

TV {q" | dpds (1 - M8) ™! Flipd< 2 F(dy)

(6.11)
< 2 F(0) < 4'!'V1 ’ and so

h, .
(6.12) @1 ¢ I

ged.

Lemma 6.2 ~ For any hE(O,hO) and any random sequence ¢ = {an}’]>1
the approximate solutions U = (uha, qha R sha) has the following uniform
estimates with a constant K < + « 1{ndependent of h and x ,
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(6.13)
TVs(t,) € KTV +TV)
(6.14) o

f_mIU(tZ,x) - U(ty5%) |dx s K([tymty [+ 38) (TVy + TV,)

proof - It follows from lemma 6.1, (6.11) and (6.12) that

(6.15) qh(t,x)e Iq for any t > 0, any x € R.
h _ 9 h
TV g (t,-) = 1im TV {q (t,x)]| |x] < X}
X + 4o
< (1- MOG)'1 F(3) < 4 TV1 forany t»0

From lemma 5.2 (5.15) and (6.15) we have

Wl (t,) ¢ TVLCQ (8,)) ¢ BCTY
_ max )
where C = 400, € Iq |2 a sh (9, q_l)/Za\

In the same way we have

TV sh(

3 pon J}

t.r) < T {[gy] + 861 + 862

s T {8yl +6([By} +I8 1) 58 onJ}

s—,ﬁo . % Mylegl + (18] +1B,1)/2 5 8 on 33

< F(3)/ Mys 2 TV /Mg + TV,

Next Tet t, > t

5 1 in (6.14) and set

tg = max {t; tgt, ,t=nd} and
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U(tz,x) = Uha(tz,x) for any x is completely determined by the data
U(t;sy) » y€[x-Nh, x+Nh] . Therefore by lemma 6.1 the same argument for
(6.13) gives

|U(t2,x) - U(tl,x)ls (K+1)TV {U(to,')| x-Nh g y< x+Nh} .

Thus we have by the integration

(m+2)h
N
4; [U(ty,x) = U(tyx)[ dxg 2 (K+1) h jE_NTV {U(tgs") [mej)hgy < (mej+2)h}
and so
o (m+2)h N o )
D f |U(t2,x)-U(t1,x)|dx<2(K+1)h T3 TV{U(tOs')[(m“;J)h$¥<(m+J+2’)h}
Mm==c mh m Jj=-N

= 2(K+1)h(2N+1) 5 TV {U(t,.")Imh<y < (m2)h)

< 2K (K+1) (h/2) (2N+1) £(TVy + TV,)

+32) (TV, + TV

1 gt V)

qed.

Now we turn to prove the convergence of the Glimm's approximate
solutions to a weak solution for the Cauchy problem. Remember that the diffe-

rence approximation depends on h€ (O,ho) and also on the random choice
n

of mesh points a - (ng, (m-1)h + 2h an), (n,m)€Y, where g = {an}n> 1
is any sequence of equidistributed numbers in [0,1] . o is consideréa as
an element of

+co
(6.16) A= n§1 [0,1] s

which is a probability space as an infinite product of the interval [0,1]

with the Lebesgue measure. Let us denote Uh = (uh‘, P sh h =v(p .S
o Cl (o3 o} o

i h
u)’ v

o
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and ez = e(p

+ (uha )2/2).

Remembering the definition of the weak solution (5.4) we consider the
integral quantity for the approximate solutions :

h h - 2 h _
oS a)‘ Let V= (u,v,e+u”/2) and V . (u o Vgt

(6.17) a(h,a,@)E{[[Uu‘i’t“P@‘f-’x*th‘”a"’x*
o—
h (2 h h f h
+ (eha + (u o )7/2) Xe ¥ P Wy Xx [ dedes 0 ‘e o
t=

+

h h 2
va¢+(ea+(uha)/2)xdx s

where & = (Y, y, x) 1s any smooth function with compact support. Since
Uha is the exact weak solution in each strip (n-1)2 ¢t<nf, xeR, we can
compute
o h h
§(h, as = Z @(nﬂ x). (V' (nE,x) - V (n€-0,x)) dx
(6+18) n=1 =~ a o

— X 6n (h9 Qs @)
= n3l

Here &(h, o, @) and 5n(h, as ®), nxl , are functions of o€ A.

Lemma 6.3 - There is a null set NC A and a sequence hj + 0 such that

for any achA ~N and for any test function ¢ , we have

(6.19) s(h,

0 0 3) » 0

The lemma is given in Glimm (1965) and Glimm-Lax (1970) and is essential to
the convergence of the Glimm's difference scheme, which is valid in general

under the uniform estimate on the total variation of the approximate solutions.
First we have for any bounded continuous function ¢

(6.20) 118, (hs - 50 || < Kn [lo[{_ (TVy + TV,)

This follows from (6.13) and from the inequality
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(m+1)h
| /{' 8 (nd,x) . (V0 (ne,x)-V" (nd-0,x)) dx|
(m-1)h

< 2h|[¢||mTV{:Vha(nE-0;')}

Now suppose that ¢ has compact support and piecewise constant on each
segment {n¢} x [ (m-1)h,(m+1)h] for (n,m) € Y and Tet h =27, =1,2...
In this case we have the following

(6.21) 8, (hs.52) L §(h,.-.2) n#k

(6.22)  |ls (h,..0)||% »0 as h=23950 ,

where the orthogonality in (6.21) is with respect to LZ(A) and the norm in
(6.22) is that of LZ(A). Let k<n and let A, d§ be the measure space
product with a factor corresponding to n omitted. Put

AV(ngx) = v“a (n,x) - vg (ne-0,x) .

The inner product of &y and Sk is a sum of terms of the form

(m+1)h

1
(6.23) { o[ Caday 270 B (120) ).

. (J[' o(kE,x). aV(kt,x) dx) d o d&

“ Qo
Q0
Since C = ,['=¢(k£,x). AV (ke ,x) dx is independent of oy and ¢ 1s
constant on

{ne} x [(m-l)h,(m+1)5] » (6.23) is equal to

1 (m+1)h i
é C ¢(n?,mh) (‘g doy, _f AV(nd ,x)dx) da

(m-1}h
(mtl)h

(V(nZ-O,(m~1)h+an) -
(m-1)h

n
e

2h
1 .
C &(ng,mh) [z— {
7h ,é f
- V(ne-0,x)) dx }daJda= 0 ,

where an = 2h o
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Also if we use (6.20) and note that & has compact support, we have

sth, . 0)l% = 5 llg, (@)l s Lo, (hae.o)If = 0(n).

In the same way we obtain for & with compact support
(6.24) [[s(h...9)|[ , & const. || o]

Thus for each piecewise constant ¢ with compact support there is a
subsequence hj - 0 such that S(hj,.,Q) -0 a.e. . By the diagonal
process we can achieve this for a dense set {@i}“}zl . Let N be a
null subset of A such that for 1= 1,2,...

G(hjs-:(p,i)” 0 on A N as hj » 0
We can apply (6.24) with ¢ replaced by & - ¢; and conclude that as j++w

(6.25) a(hj,., ) >0 on A™N for any ¢

ged. of Temma-6.3.

Let Uj = Uh& for any oaeA~N. By lemma 6.2 Uj is uniformly

bounded and has bounded total variation on horizontal Tines uniformly in j

By Helly's theorem a subsequence of Uj converges in L1 on bounded inter-
vals of any given horizontal 1ine. By the diagonal process we can achieve

the same result for the countable number of horizontal lines at rational times

t = k/n . For an arbitrary t we have from (6.14)

f LU, (t.x) = U (tax) fdx < f U, (£,%)=Us(k/n,x) | dx
xlgm x| !

~

+[k{;M|Uj(k/n »X)=U; (k/n ,x) | dx +k{£M U, (K/mx) -y (£5) | dx
$ C(!t-k/n l + h,i+hj) +IXIf<MlUj(k/n,x)—ui(k/n’x) |dX

Thus a subseguence Uj converges (uniformly for bounded t) to U=(u,p,s)
k
on the intervals ]x[<VM on t = Vto. Therefore we have



41

(6.26) i H e Ujk = U = (u,p,s) a.e. and boundedly,

and the same is true for V = (u,v,e+u2/2) and pu. Also the limit function
is a weak solution of the Cauchy problem (5.1) with (5.6). In fact
J’ /’ (U gt P g +V gy - U+ (eH7/2) xp +puy, ) dxdt

O o0

+ j‘ 0 ud+ vy + (e+u2/2)x dx
t= '

= 1im {&(h; a0 ,0) + j’ (u=u; ) o+ (v-v; )y +
h >0 Ik t=0 Ik Jk
k

v (e +ué/2-e, -u, 2/2)y dx} =0

I Ik

Hence we arrive at the following existence theorem in the case ¥ = 1, when
the assumption (6.27) is trivial.

Theorem 6.1.- Under the hypothesis 6.1 there exist two constants ¢ >0 and
K < +o such that for any adiabatic constant +ye[1,5/3]) satisfying

(6.27) (v-1) TV, (1 + TVy)<e

the Cauchy problem (5.1) with (5.2) has a global weak solution (u,p,s) which
has the properties :

[(usp,s) (t,x)] <K in t »0, x€R
(6.28)
0 <psgop (t.x) for a constant p
1A (UsP) (ts-) < KTVI
(6.29)

TV s(t,.) < K(TVy + TV,) ,

where ¢,k are independent of ye[1,5/3]

The theorem is due to Liy (preprint) and in the case 1< yg[5/3] it is
proved by a kind of perturbation from y = 1 under the condition (6.27), which
is the same idea as Nishida and Smoller (1973) for the isentropic model
equation.
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Remark : The above presentation of the weak solution to the hyperbolic
conservation Tlaws for the polytropic gas motion is an introduction to it and
we have to consult for the full theory and problems on it the works in the
references, which are not complete though. Especially in one space-dimension
we refer to

(i) Lax (1957), Glimm (1965) and Kuznecov-TupCiev (1975) for the existence

of weak solutions to the general system of n equations, v

(ii) Oleinik (1957), Lax (1971) and Dafermos (1973) for the entropy condition
and the uniqueness question,

(ii1) Guel'fand (1959), Foy (1964), Kruzhkov (1970)and Conley-Smoller (1972)
for the relation to the system with the viscosity,

(iv) Lax (1957), Glimm-Lax (1970), DiPerna (1975 and preprint) and Liu (pre-
prints) for the asymptotic behaviors of weak solutions as t - + o=,

(v) Vol'pert (1967) and Di Perna (1976) for the structure of the weak solu-
tions.
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CHAPTER IT - QUASILINEAR WAVE EQUATIONS WITH THE DISSIPATION

1.

Introduction

We consider the initial value problem for the second order quasilinear wave
equations with the first order dissipation :

(1.1) Yip v0Vg =0 (¥s Yoo Yy)y in t30,xeR

with the initial data
(1.2) y(0,x) = Yo (x), Y (0,x) = yl(X) in x €R .

Here o s a positive constant and the equation (1.1) is related to a theory for
the heat conduction with the finite speed of propagation. cf. Cattaneo (1958),
Vernotte (1958), Lebon and Lambermont (1976), and also Gurtin and Pipkin (1968),
MacCamy and Wong (1972), MacCamy (preprint).

When o = 0 and o, =0, the equation (1.1) is a nonlinear wave equation in
the conservation form. Cf. example 1.3, Chapter 1. For the model of the heat conduc-
tion the equation (1.1) has the lower order term A with not small o > 0. In
this case Rabinowitz (1969) showed that there exists the time periodic smooth solu-
tion (so global in time) for the initial boundary value problem (1.1) with the
forcing term which is a time periodic function. In § 2 the simplest case (1.1)
with o = o(yx) is investigated on the global smooth solutions to the Cauchy pro-
blem with the initial data (1.2) which is small relative to~ and also on the
development of singularities in general for not small initial data by the method
of § 2, Chapter 1. cf. Nishida (1975). Its application to the integro-differential
equation of the heat flow in the materials with mémory, which is written in the
form

t
Uy (tox) = 6 a(t-s) g(ux(s,x))x ds + f(t) R

is considered by MacCamy (1975) on the existence of global smooth solutions and
on the asymptotic decay of solutions. In § 3 , the general case (1.1) with

o= oy, Yo yx) will be considered on the existence and decay of the global
smooth solutions for the initial (-boundary) value problem with the small initial
data by the L2-energy method, which is applicable to the n-space dimensional case
as shown by Matsumura (preprint).
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2. The Global Smooth Solution

The quasilinear wave equation with the dissipation is considered in the
simplest case :

(2.1) Yer * 20, Ve = cy-(yx)x in t20,xeR.

Hypothesis 2.1

o 1is a positive constant.
The equation (2.1) is hyperbolic in a neighbourhood of Yy = 0, i.e., for a
constant R >0
(2.2) do (v)/d v2> 0 in |v] <R ,
o (v) € € ( |v|] <R).
The initial data are given by

(2.3) y(0,x) = ¥y (x), Y (0,x) = ¥y (x) in xe¢R
First we transform the equation (2.1) by
(2.4) Ye = U Yo =V
into the system of two equations
(2.5)
Uy - o(v)X +2au =0
The principal part of the system (2.5) is the same as the system of the nonlinear
wave equation (example 1.3, Chapter 1). Therefore the characteristics and Riemann

invariants are given by the followings :

X =- /o' (V) , z= ¢ (v) -u

(2.6)
u = Yo! (v) w=-¢(v)-u ,
where o(v) = év vo' (v) dv

By the hypothesis 2.1 the system (2.5) is strictly hyperbolic in @ = {(u,v) ;
Ue€R, |v| <R}, and the Riemann invariants give a one to one smooth mapping
from 2 onto
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Ql = {(w,z) 3 2 ¢{-R) < z~w < 2¢(R)}

The Riemann invariants w,z diagonalize the principal part of the system (2.5) as

(2.7) W+ Aw, =-a (w + 2)
(2.8) Zp v nz, o =-o (w+2z) ,
where

A= A (z-w)<0 <u=yu(z -w)

The initial data (2.3) reduces by (2.4) and (2.6) to

{ w(0,x)
(2.9)
z(0,x)

]
"

w (yl(x)s d yO(X)/dX)
2 (y,(). d yy(x)/dx)

wo(x) R

Zo(x)

Hypothesis 2.2

wo(x), zo(x) € @1 R) and (wo('x), zo(x)) € O for any xe R as follows,

WtZy < min { 2¢6(R), - 2¢(-R) } ,
(2.100 90
where Uy = sup |wp(x)| » Zg = sup |z4(x)]

(2.11) W, = sup |d wo(x)/dxl 5 Iy = sup |d zg(x)/dx] < + =

Lemma 2.1 - Under the hypotheses 2.1 and 2.2 the Cauchy problem (2.7) ~(2.9) has
the a priori estimate for the %d-so1ution :

(2.12) sup |w (t,x)| + sup [z (t.x)] < UytE,
X X

for t>0 as long as the EJ-solution exists. Therefore the solution remains

in the region Ql.

Proof.- The characteristic equation of (2.7) is given by dxl/dt = A,

dw/dt = - a(w+z), i.e.,



49

t
X (t,8) = B+ (f) A(w(s.x1(s:8))s 2(s5x(s,B))) ds
2.13 t
( : w(t,B) = w(t,xl(t,s)) - e Ot (wy(B) - o g z(s,xl(s,B)) s ds),
in BeR .
In the same way from (2.8) we have
t
Xz(tsy) =Y+~8 U(W(Saxz(SsY})a z(s, xz(S’Y))) ds >
(2.14) t

-at (

z(tyy) =z(t.xy(tsy)) = e z5(v) -cEf W(ssx,(sv)) e*s ds) ,

in yveR.
Let W(t) = sup|w(t,x)|, Z(t) =sup|z(t,x) | .
X X
By (2.13) and (2.14) we have

t
(N(E) + Z(1))e™ < Wy + 7, + ol ((s) +2(s)) ™ ds

and so we obtain
W(t) + Z(t) < Wy + Zy<min {2 ¢R), - 2 ¢-R)}
ged.

Lemma 2.2- Under the same hypotheses as in lemma 2.1 there exist a e=g(o,0) > O
and C = C (a,0) < + @ such that if w0 + Z0 + wl + Z1 < e , then any f%l-solution
to the Cauchy problem (2.7) ~ (2.9) has the a priori estimate :

lw, (t,x)| < C MWy + C(Wy + Zg)

(2.15)
|zX (t.x)] < C Zy + C(Wg + Zj)

Proof - Since by (2.13)

wX (t9 Xl (t,B)) = M&M
b xl(t38)/68

is differentiable in t for fixed B , W, can be differentiated along the first
characteristic curve (2.13), i.e.,
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- -
(w)' = (at *A ax) Wy
(2.16)
= -d W - z, - Aw W, - Az Z, Wy
By (2.8) we have
2, + Az, + a(w+z) z' + a(wtz)
(2.17) z, = N = E)
Define

h=zlog (-3 (z-w))

Its differentiation along the characteristic curve gives

Ay W’ + Az z' -0 A A

(2.18) v . o = ZAW (wbz) + ;A z'

The substitution (2.17) and (2.18) into (2.16) gives

2
1 1 o o +Z
(wx) + (o +Aw W, + h') W =-—xz' - éx ) , namely
v h h
h ' h __ _ae v 9" e (wtz)
(2.19) (e wx) + (o4 %w w) e w, = 1 — Z 7%
Let fz-w eh(g) e
= =  yemrrew
s 0 2% (€)
Then by (2.7) we compute
h h 2 _h
g| - (zxi w' - Ote?\ 2! = - o zi (W+Z) _ 0(92?s 7!
Hence (2.19) can be rewritten
h ' , h -
(2.20) (e wx) + (o + My W) e w, =g

Put

(2.21) k(s) = o +A, W



51

along the first characteristic curve x = Xq (t,B). Suppose that |wx[ is soO
small that

(2.22) k(s) » /2 .

which is verified later. Then the integration (2.20) along the first characteris-
tics gives after integration by parts

-[t k{s)ds
(e w) (t.x)(t8) = (€M w) (0,8) - g(0,8)) e ° +
t ~£t‘k('r) dt
+9g (t,xl(’c,ﬁ)) - Of g(s,xl(s,B)) k(s) e ds
223 1wl < [MOFy 0]+ g0 +
+ lg(t.x) | + sup | g(s.x;(s.8)) |
Ossst
Since h and g are defined in Ql and are bounded in 520 = {(w,2) € Ql .

lwl + |z < Wo +Zg } , it follows from lemma 2.1 that

(2.24) { Ih(t,x)l
la(t.x)|

[h(w(t.x). 2(t.))] <
|9(w(t.x)s 2(t.x))| <aC (W + Zy)

»

where C depends only on o .

Therefore by (2.23) and (2.24) we arrive at the estimate
(2.25) [wx (t,x)] ¢ C Wy +a C(Wy + Zy)
In the same way we obtain

(2.26) |z, (tsx)| € CZy+ o C(Wy+ Zg)

Now in order to verify (2.22) we restrict W,, Zys Wy and Z1 so small that for
any t>0 , xe R

< af2

l>‘w WxI ’ Iuz %x |
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In fact since llwl , qul < C in Q4 , wemay take by (2.25) and (2.26)

2
NO + ZO < 174 C ’
My 2y < ofh c?

qed.
Theorem 2.1 - Under the hypotheses 2.1 and 2.2 there exists e > 0 such that if

wo + Z0 + wl + Z1 < € .
then the Cauchy problem (2.1) (2.3) has the unique smooth solution in the large
in time.

The a priori estimates in lemmas 2.1 and 2.2 and the well known local existence
theorem (cf. Douglis (1952) and Hartman-Wintner (1952) for (2.7), (2.8), (2.9)
give the theorem.

Remark 2.1 - When the more smoothness of the initial data is assumed in addition,
the uniform (in t) bounds for the higher derivatives of solutions are obtained
in the same way.

Remark 2.2 - If we do not suppose that wl and Z1 are small, the singularities
in the first derivatives W, Z develop in general in finite time. In fact for
example we can see it in the genuinely nonlinear case, i.e.,

(2.27) ‘Aw =W, 2 § = constant > 0 in 91

Under the hypotheses 2.1 and 2.2 the %%l-solution satisfies (2.12) and (2.24)
as long as it is in %%1-c1ass :

sup {w(t,x)| + sup| z(t:%) | s Wy + I
X X

(2.28) lh (t.x)] s €
lg (t.x)] < o€ (W + Zj) = C

Then we suppose that for the derivative of the initials (eh wx)(O,B) < -(2 C0+ aec/s)
-for some geR.
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The integration of (2.20) along the first characteristics gives

(" w (£ (£,8)) = (e" w,)(0,8) + g(t.x;(£.8)) - 9(0.6)

t
-h _h h
- 6 (o + Aw e e wx) e W, ds

t C h

h wx)(O,B) + 2 C0 - fo (ot Se "~ e wx) e

h

< (e W, ds

Therefore if we compare this integral inequality for eh

characteristics with the ordinary differential equation

Wy along the first

dH(t) / dt = - (o + 8e”C W(t)) W(t)

1}

h

H(o) = (" w) (0,8) +2Cy

8

we have as t » tO < +

h

(e wX)(t, X1 (tsB)) < W(t) » -

At Tast we may note that the weak solution for (2.1) and (2.3) should be conside-

red in the large in time for not small initial data, while the equation (2.5)
is not the conservation form.

3. The Energy Method and the Decay of Solytions as t - 4o

Although the LZ-energy method applies to the n space-dimensional case,
we restrict ourselves here for simplicity to consider the Cauchy problem for the
equation (3.1) in the one space-dimension and to describe briefly the idea to get
the global smooth solution by the method.
(3.1) Yep + Ry, = o (¥sYys¥y)y in t > 0,xeR ,

where

(3.2)  y(0.x) = yo(x)s ¥ (0.x) = yy(x) in x €R
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Hypothesis 3.1 - & =1 without loss of generality. o € (’;4(.(1) and ¢(0,0,0) =0,
where § = { (y,yt,yx) : Lyl . Iyt] , lyX|<R} . Set G(y’yt’yx)x = a(y,.yta.yx)yxX+

b(y’yt’yx)yxt + c(y,y,c yx)yx and suppose the hyperbolicity

(3.3) a(y,yt,yx) > a, = constant > 0 in Q.

Also we make a restriction
(3.4) c(0,0,0) = 0
We seek the smooth solution y(t.,x)e 82 (t>0, xeR) and

(3.5)  lly(t)ll 5 =ly(ts )]+ lyp ()] + lyg (6,7)] <+ o for t30 ,
g2 @l 0

where

()] 30<J-Z<k sup | o f(x)/d le
AR

By a direct calculation or by Sobolev's lemma in the one dimension, we have

(3.6) If()lgk < C”f()” Hk+1 s

where H" s the Sobolev space of L2-funct'ions in xeR with their m-th
derivative and

. . |
LTI I L O

Thus using the L2-energy method (Courant-Friedrichs-Lewy (1928)) we are going to
solve the Cauchy problem (3.1) (3.2) in the Banach space X35 which is defined by

(3.7) % = W(t)el” (t:HM), y (1) el” (™),

Yip (1) € L (H"%) L, o< ts VT ,
where L~ (t;Hk) is the space of functions which is bounded in t€[0,T)

with the values in H™.
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Hypothesis 3.2 -

(Yo(x)s ¥1(x)s ¥'y(x)) e @ for any  xeR,

Vo e WRL, y (e H ®

(3.8)
First we note that the classical local existence theorem gives the solution

for the Cauchy problem of the quasilinear wave equation (3.1) in the space

Xo (Ym 2 3) locally in time. Cf. Schauder (1935), Sobolev (1961), Dionne (1962)
and so on. In order to get the global smooth solution in t > 0 we only need
the a priori estimate in the norm (3.5), for which the a priori estimate in the
norm of X3 is sufficient by (3.6) i.e.,

2 2 2 2
(3.9 lly (©)l57 = 1Y 5 + Igl8) g+ lvgylt) g < +o for 5 0,
It is easy to see that the norm (3.9) is equivalent to

(3.10) E(t) =
J

0 E;(t)

ne1w

for the solution belonging to @ 1in each (t,x), where

(Eglt) =3 7 (552 + y y,) d

1 2 2
(3.11) < Eq(t) =5/ (¥, +ay) dx

1 2 2 2
Ex(t) =5/ (ygg +(L+2) ye  +ay,, ) dx

\ EB(t) =—% / (*ytit + (1+a) ytiz:x + (1+2) yt>2<x *a yx>2(x ) dx
Hence by (3.6) we note for y(t,x) with (y, Yo yx)esz
(3.12) ly() 1,2 < iyt il < ¢ E(t)
Lemma 3.1 - Under the hypotheses 3.1 and 3.2 there exists a ¢ = ¢ (R,0)>0

such that if the solution y(t)€X, to the Cauchy problem (3.1) (3.2) is small as

3

(3.13) ly(t) l, < e in O0gt<T
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then it has the a priori estimate

(3.14) E(t) < CE (0) in 0gts<T,

where C >1 depends only on o and R.

Proof : First we assume that the solution y(t) belongs to the space X4 with
yo(x) € H4 and yl(x) € H3. Multiply the equation (3.1) by y and y, res-
pectively and integrate them in te:[s,t] s XeR. After the integration by

parts we have

1t 1 b2
Eo(t)-Eo(s)+2 J foyxdxdt=-2—£ S Y dx dt,

t
Ey(t) = Ey(s) + £ ¥’ dx dt =

t
- 2 _ 2
= Sf S (at Yy /2 - a, ¥y Yt bX Y /2 + ¢ Yy yt) dx dt

We compute these by (3.3) as follows :

t
1 2
E,(t) + Eg(t) + 7 Sf Iy o+ c'yx) dx dt <«
t

SEL(S) + Epls) -4 FrE-la ) - 1b (- lcl) ¢
S

+ 5y, - Clagl + la ] + lel ) 37 dx dt
S Ey(s) + Eg(s) - SS’I 3 - 8)(y? +oy,) dxdt,
where by (3.3) and (3.4)
(3.15) 8 = 8(lly(t)ll 55 sup el ) =8 (ly(t)ll,)

Here there exists a € > 0 such that if (3.13) is true, then

(3.16) §< 1/2 in 0gtgT.
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Therefore under (3.13) we have in 0<stgT

t
1 2
(3.17) Eq(t) + Eg(t) + 'y sf Iy, +o Yy dx dt g El(s) + Eg(s) »
and also
t t
(3.18) Ej(t)ts/S Eq(s)dsgC/ Sy, +o Yy dx dt
' 0 0

£ C (El(O) + EO (0)).
In the same way we obtain the estimate for Ez(t).
E,(t) - E,(5) + 2 £ 1y 2ddt<~1-ftf!Cl(2+2)ddt
28) B8 g TS vyt vy dxdbsg JAIGH Oy + ) &

t

-3 MR ENERIN R (Vg2 + YD) - lag) v, 2 ax dt
6t t
<7 JJ yl+yldaxdt -1 £ 09 (il + ¥y ) dx dt,

where § is the same as (3.15).
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Therefore under the assumptions (3.13), (3.16), we have

1 t

2 2
(3.19)  Ep(t) +5 i I Yt

* Yy dx dt < E2(s) + C(El(s) + Eo(s)).

Furthermore for E3(t) in the same way we have

EL(t) - Eqfs) + + oy lay 20y 2 goat
3 3 2 Yeet ¥ Yetx T Vtx ¥

t

SoF L S0 (yyh + Ve * Yo
)

Yert * Yitx * Yixx ) dx dt + C(Ez(s) + El(s) + Eg(s))»

where & is the same as (3.15).

Therefore under the assumption (3.13) we have

t 2 2 2

(3.20) E ! yttt T Yeex ¥ Yixx

dx dt <

5(t) +-%- s
S

S E3 (s) + C (Ez(s) + El(s) + Eo(s)).

Thus we arrive at the a priori estimate (3.14) by (3.17) (3.19) and (3.20) under
the assumption (3.13). This a priori estimate is also valid for the solution
y(t) in X3 by use of the Friedrichs'mollifier (cf. Friedrichs (1954), Mizohata
(1973), Matsumura (preprint) under the same assumption (3.13). y

qed.
Theorem 3.1 - Under the hypotheses 3.1 and 3.2 there exists a constant ¢ >0
such that if the initial data are small as E(0) < e , then the Cauchy problem
(3.1) and (3.2) has a unique smooth solution in the large in time. The solution
y(t) decays to zero in the L™ - norm as t > + o

The existence of the solution in the large in time is a consequence of the local
existence theorem and the a priori estimate in Temma 3.1. cf. Matsumura (preprint).
In fact we choose the initial data so small that

(3.21) E() < ef/2c3 ,

where ¢ is the same as in lemma 3.1.
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First by the local existence theorem there exists ty > 0 such that the solu-
tion y(t)e X3 exists in Ogt<ty and satisfies the estimate

E(t) < 2 E(0) in 0gtsty

Then by (3.12) we have in 0Ogtxg t0

(3.22) ly(t) 11,° < ¢ E(t) < 2 ¢ E(0) < 2 €% E(0) < ¢
Thus by lemma 3.1 we have
(3.23) E(t) < C E(0) in Ogtg ts

Next by the local existence theorem for t>t, again there exists t = T(CE(0))>0
such that the solution y(t) exists in Ogtg tg + T and satisfies

(3.24) E(t) ¢ 2 E(to) in t0\< tg tO + T

By (3.12), (3.21), (3.23) and (3.24) we have in ty<tg tgt T
(3.25) ly(6) 11,7 < ¢ E(t) < 2 ¢ E(tg)<2 € E(0) < &° .
Therefore (3.22), (3.25) and Temma 3.1 give

(3.26) E(t)g C E(0) in Ogtgty+ 1

Repeating the same procedure with the same time interval t > 0, we complete the
proof of the global existence of small solution.

The decay of solution is an easy consequence of the inequalities (3.17) and
(3.18). In fact

2 X 2 2
yo(tx)g2 Sy y, | dxs 2 (Jy" dxJy, dx)

1/2

< © (Ey(t) + g2, ()2 o ortt/?
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2
yt (t,x)

1/2 1/2 172
< C (E(t) + E(t) + E ()€ E,(t)% < c/t
yxz (£,%) 2 1 0 1

ged.

On the other hand the solution in O0gt, 0<xg1l for the mixed problem (3.1)
(3.2) with the zero Dirichlet boundary data decays to zero exponentially as
t »~ + =, Because by the Poincaré inequality we have in this case

t
E1 (t) + Eo(t) +B£ E1 (r) + E0 (1) dr £ E1 (s) + E0 (s)

for some R = constant > 0.
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CHAPTER III - AN ABSTRACT NONLINEAR CAUCHY-KOWALEWSKI THEOREM AND ITS APPLICATIONS

1. Introduction

It is wellknown that the initial value problem for functions u = (u1 (tox)s..es
uy (tsx))

~ = f(txu, du) in teR, xeR"
(1.1)

u(0,x) = g(x) in xeR" ,

where ou denotes the first partial derivatives in x, is always solved by the
Cauchy-Kowalewski theorem uniquely in the class of analytic functions in a neigh-
bourhood of any point (O,XO) under the assumptions that f = (fl,...,fN) and

g = (91""’9N) are analytic in all its arguments.

Nagumo (1941) pointed out that it is not necessary to assume analyticity in
t, i.e., if f s continuous in t with values as an analytic function of the
other variables, then there exists a unique solution u(t,x) continuously diffe-
rentiable in t with values in analytic functions of x

Ovsjannikov (1971) and Nirenberg (1972) generalized this result into an abstract
form of the initial value problem in a scale of Banach spaces in a little diffe-
rent formulation, where f 1is not necessarily a differential operator on u and
it may be a non-local "quasi~differential" operator on u

In § 2, we improve the Nirenberg's formulation to get an abstract nonlinear
Cauchy-Kowalewski theorem in a scale of Banach spaces which includes both theorems
of Nirenberg and Ovsjannikov. The first application of it is of course to derive
the Nagumo's theorem. The second application concerns the nonstationary problem of
the water waves (the incompressible inviscid fluid flows under gravity) with free
surface. Although there are many approximate theories to the nonstationary problem
(cf. Korteweg and de Vries (1895), Stoker (1957), Benjamin (1974) and so on), the
precise results were not known until recently, i.e., the initial value problem
with full nonlinearity is solved in the class of analytic functions locally in
time by Nalimov (1969) and by Ovsjannikov (1971) using the abstract Cauchy-
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Kowalewski theorem, and by Shinbrot (1975), Reeder and Shinbrot (1976). Recently
Nalimov (1974) solved this Cauchy problem in the class of functions with finite
smoothness locally in time and justified the linear water wave approximation in
the 2 space-dimension. In § 3 by the abstract Cauchy-Kowalewski theorem a justi-
fication of the shallow water appfoximation is shown locally in time for the
initial value problem of the water waves with free surface in the two-space dimen-
sion in the class of analytic functions, which is an extension of Ovsjannikov's
theorem (1976) for the periodic initial data.(cf. Kano and Nishida (preprint).

. An Abstract Cauchy-Kowalewski Theorem in a Scale of Banach Spaces

Définition 2.1. Let S = {Bp}£>>0
o

p >0 be linear subspaces of BO’ It is assumed that

be a scale of Banach spaces and all Bp for

Bp c B A< -l for any o' < p

p
where H.Hp denotes the norm in Bp
Consider in S the initial value prob]ém of the form

(2.1) R CTO) B LIRS

(2.2) u(0) = 0

Hypothesis 2.1

(i) For some numbers R >0, © >0, e 0 and every pair of numbers p, p
such that 0 < p‘-<p-<p0, (t,u) — F(t,u) 1is a continuous mapping of

(2.3) {t; [t] <1} x {ue Bp ;||qu<l2} into Bp,

(i1) For any o' <p < pgand all u,ve B, with Hu[(p <R, Hv||p< R, and for
any t, |t|< T, F satisfies the following

C -
(2.9)  [IF(u) - F(ty) [ < —;HUT—V—”—P—

where C 1is a constant independent of t,u,v,p or p'.
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(iii) F(t,0) 1is a continuous function of t, |t|<t with values in Bp for
every o < p, and satisfies with a fixed constant K,

K
po'p

(2.5) I| F (t,0)||p\< , 0<p< pg

Theorem 2.1. Under the hypothesis 3.1 there is a constant a>0 such that there
exists a unique function u(t) which, for every positive 0<Pq and

It] < a (pg - °)» is a continuously differentiable function of t with values
in Bp , Hu(t)”p < R and satisfies (1) (2).

Remark 2.1. The assumption (ii) on F 1is simpler than those of Ovsjannikov (1971)
and Nirenberg (1972). The scale of Banach spaces is also Tess restrictive than that
of Ovsjannikov.

Remark 2.2. When t 1is a complex variable, Hypothesis 2.1 (i), (iii) must be
strengthened as follows :

(i)' If Osop'<p<py and u(t) is a holomorphic function of t, [tl< t,
valued in Bp such that |lu(t)]] o< R for all t, |t]|<t, then

(2.6) F(t,u(t)) is a holomorphic function of t, |t| < T, valued in Bp. .

(ii1)" F(t,0) is a holomorphic function of t, |[t|<T with values in Bp for
every p<p, and satisfies (2.5).

Then theorem 2.1 holds for complex variable t, i.e., the solution u(t) is holo-
morphic in t with values in Bp .

Proof - cf. Nirenberg (1972) and Nishida (preprint)
Let B be the Banach space of functions u(t) which, for every 0Ogp < o and
lt] <a (pg - P)» are continuous functions of t with values in Bp , and have the
norm

-0)

a(p
(2.7) Mu] = sup Hu(t)]k (—“T%T~——~- 1) < +e
O0g p<po

lt!<a (po - p)
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We seek a solution of
t
(2.8) u(t)*=6 F(s,u(s)) ds

with finite norm M[u] with a suitably small. Our solution will be obtained as the
1imit of a sequence Up defined recursively by

t
(2.9) ug(t) =0, U, (t) = 6 F(s,u,(s)) ds ,
where k =0, 1, 2, ...... and
(2.10)  flu(t)llg<R  for [tI<a, (e - o)
Set for k =0, 1, 2, ..
(2.11) Vi(t) = up 4 (t) -y (t)

Here, for every p<p, and |t|<<ak (pg-p)s up(t) and v (t) are continuous
functions of t with values in B~ for which M, [v/] are finite, where

a, (Py -P)
2.12 M [v] = t k0 7
(2.12) M [V] P vl )
It’<ak(po - p)

The numbers a, are defined by

-2
(2.13) 3, = 3 (1 - (k+2) ©) , k=0,1, 2,...,
so that
+m -2
(2.14) a = a, I (1-(k+2) ") >0 .
0

and ag will be chosen suitably small Tater.

1

Let us imagine that u. are determined for 1< k with Hui(t)Hp < R/2
in |t}<:ai (pg -#). Then by the assumption (i) v, (t) is well defined. Let
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(2.15) A= M [yl <t e
Then A
v, O s575 for [t]<a,,; (oy -0)
K oY CIVED lv k+1 0

and it follows for It]<<ak+1 (po -p)

A
k
lgey (B <5751+ Nyl
and so, by recursion,
A
k J
(2.16) u () < 3 _
k+1 o> R aJ./aJ.+1 1
We will require that
k A R
(2.17) % —-——J——~—1 < -
0 /% ‘

Then for |t| < a1 (pg -p) we havelluk+1 (t)[lp< R/2 and so F(t,u.,,(t)) is
defined.

Our aim is to estimate Ak so that lk +~0 as k—-+« and (2.17) holds for
any k » 0. By the definitions (2.9) and (2.11) we have
t
Vigp (B) = 6 Fss up,1(s)) - F (s,u (s)) ds

Thus for |t]<ak+1 (p0 -p), we see from the assumption (ii) that

t flv(s)
ey (915 < ] 5 K2

ds |

p(s) -o
for some choice of p<p(s)<pO - |s{/ak+l . We may set

p(s) = (pg =Isl/ay,; +0 )/2.
Then we find by virtue of (2.15) (assuming, say, t > 0)

t
1 1
Ve @l < €y o7 98/75 (3 (09 =0 - s). oo (ap,q (pg = 0) = s)
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t t
. 2
4 Capq 2 of sds/(ay,y (pg - P) - s) <4 Ca At Of ds/(ay,(pg -P) - 5)2

4 Ca

t (ke (P P

A
kel Mk F7 (g D) g~ 1)

Consequently

Aeg1 =M 4 [Vp,1]<4Ca,q A, sup b
kt1 = ksl Dka1 k+1 "k 0<p< 5, | 3,1 (g -P) |

[tl<ay 1(pg -0)
<4C 341 Ak.s 4 C ag Ak
Hence for k=20, 1, 2,...
(2.18) Aep1 S 4 C 8y A
Now we can choose ag. Using the assumption (iii) we know that

t Jt]
Ag =My [/ F(s,0) ds] < K W T
0 0 [OJ ( ) S] 0 <o< pO pO B

[tl<ay (pg-p)

(ao(po'p) - 1)\< a
t

0 K.
We shall require that for j =0, 1, 2,...

(2.19) 5. < 2t )74

j ag K (3+2

Assuming that this is true for kk we find from (2.13) and (2.18)

4 -4 4 -4 k+3,4 4 -4
Mp1$4Cag 27 ay K(k+2) "<2 ay K(k+3) * (4 C aO(Eii) )< 27 a, K(k+3) ,

provided ag < a' independent of k.

We have to verify (2.17). From (2.13) and (2.19)

g )\J. k. Ay k 2
WT—$ g‘ 1 -a; ,/a; =(Y, As (J+2)

k
4 e oy =2 4 . A
$ 2 ag K F(3#42)7° <2V ay KB (§+2)72 < vy
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provided 2 < a". If we choose aos a 3 < a", we find the functions Uy
defined for all k , with

(2.20) Huk(t)llp-<R/2 for [t] <a, (g -0)
Furthermore we have from (2.15) for |t] <a (po -0) <a, (0o =0)

Nugey (8) = u (€ A /(a (o =)/ 1t = 1)<2 /(aleg -0)/ t] - 1),

p
MLug,g - ud € Ay

Since % kk<-+«> , it follows that u, converges to some u(t) in B. From (2.20)
lu()ll, < rr2 for |t]| <a(oy -0)

u(t) is a solution of (2.8). In fact we have for |[t]|<a (pg - ©") and o'< e

t

Il '/ F(s,u(s)) ds - u (t)]]
0 P

t
< é”F(S,U(S)) - F(S:uk(s))” o ds +[u(t) - Ut (t) 1l o'

t
oL luGs) = )l ds + flu(e) = uy (11,

by (ii). A1l the terms on the right go to zero as k—><¢ , and it follows that
u(t) is a solution of (2.8) and is also a solution of (2.1) (2.2).

The uniqueness of the solution is proved as follows. Suppose v(t) is also
a solution. Then w(t) = u(t) - v(t) satisfies
t
w(t) = J F(s,u(s)) - F(s,v(s)) ds
0

For any fixed Py < Pg > the functions u and v have finite M1 norm, where

1
M- Ju] = 0 P o lu(e)l, (a(®y -p)/1t] - 1)

Itl<a(p1 -p)
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Hence for |t| <a (o -p) we find from (ii)

l }:‘ HW(S)” e (s)
p(s) - p

HW(t)HQS c ds |

for some choice of p(s) < p; - |s] /a.

The same argument to get the estimate (2.18) gives the inequality

o)l < 4 cam bl /Ga (o o)/ [t] - 1)

and so we obtain

M [w] < 4 cambo[u]

Hence we conclude that  M! [w] =0 provided 4 C a<l which can be always
assumed by decreasing a if necessary. Thus

w(t)i, =0 for |t|<a (oq -0).

Since this is true for every Py we conclude that w =0, and the theorem
2.1 is proved.

Remark 2.3- Instead of (2.1) and (2.2) or (2.8) we can consider the integral
equation in the form :

t
(2.21) u(t) = ug(t) + S F(t-s, s, u(s)) ds for Ogt< 7.
0

Here uO(t) is a continuous function of t, 0gt<t with values in Bp for
every p <p0 and satisfies with a constant RO

(2.22) lug(DIl, < Ry 5 Osp<pys Ost<ay (pg -p) -

F(t,s,u) satisfies the analogues to hypothesis 2.1, i.e.,

(1) For some numbers R:>W)>O,'r>0,p0>0 and any OSPkp<p0,
(tys,u) —F(t,s,u) is a continuous mapping of

(2.23) {0gt<tIx{0gss<tlx{ue ﬂ);Hqu <R} into Bpl
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and satisfies with a fixed constant K,

K 11Kl

(2.24)  IF(ts,0)l; s 55—  0<p<0 <oq
(if) For any o'<p <p, and all u,ve B, with Hul|d<R, Hvlh;:R, and
for any Og<t<rt and 0gs<t , F satisfies the following
Cllu - vl
(2.25) lF(tys,u) - F(t,s,v)|| v g8 ——n-— 5y
P 0-p

where C 1is a constant independent of t,s,u,v,p or p

Under these assumptions there exists a constant a > 0 such that the integral
equation (2.21) has a unique function u(t) which, for any P< P and

Ost<alpoy -0), s a continuous function of t with values in Bp . Hu(t)lh)< R
and satisfies (2.21).

The proof of this statement is an analogue to that of theorem 2.1, but this
formulation is a little more general than theorem 2.1 and it will be used to get
the fluid dynamical limit of Boltzmann equation in the Tevel of compressible
Euler equation in Chapter 4.

Now as the first application of our abstract theorem we rederive the Nagumo's
theorem as a generalization of Cauchy-Kowalewski theorem for the initial value

probiem
(2.26) 3U/Ot = F(E,XUsU, ..o, )s Jt] < T, xEDCR"
Xq X
(2.27) u(0,x) = g(x) , xX€D,
where D= H { |x;] <pp} s U =u(t,x)
g1 30

f and g are N-vector functions.

Here f s continuous in t with values in the space of holomorphic N-vector
functions of the other variables for xeD, Iuil <R, qu.l<<R. g is holomorphic
in D and may be assumed identically zero by a suitable dubstraction. If f s
also analytic in t , the same proof for a complex neighbourhood of |t] < tv gives
the classical Cauchy-Kowalewski theorem.
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First Tet us reduce the initial value problem (2.26) (2.27) with g =0

to a quasilinear form by introducing P; = uX , 1=1, 2,...,n. We have an
equivalent system to (2.26) !

dudt = F(t,x,u,p)
3p,/dt = fxi (tsxsusp) + f (t,X,u,p) uxi + £, (t.x,u,p) pxi ,
u(0,x) = Py (0,x) =0 > i=1,2,...,n

Thus it is sufficient to consider the initial value problem for a quasilinear
system of the form

(2.28) du/dt = I aj(t,x,u) u, + b(t,x,u)
X3

(2.29) u(0,x) =0 ,

where u 1is a N-vector, aj is a NxN matrix and b 1is a N-vector. We suppose
that the components of aj and b are continuous in t for \tlg v with values
in the space of functions which are holomorphic in a neighbourhood of

n N
Q = jgl-{lxj]§po}xigl{luils R} ,

where X5 and the components u; are complex values. Then ay and b and
their first derivatives with respect to Xk and u, are bounded by a constant

C on {|t]s<T} xQ

For 0K p < o let Bp denote the space of vector functions u(x) which

are holomorphic and bounded in D, = §<{|xj! < p} , and set
(2.30) lull )= sup Ju(x)]
De
By the Cauchy's integral formula for the holomorphic functions we have
(2.31) hu, 1o Ml for 0gpr <o
i P oo

Denote Zaj (t,x,u)uX + b(t,x,u) = F(t,u(t)), where u(t) = u(t,x), and Tet
J



73

us check the assumptions (i) (ii) (iii) on F. By the assumptions on aj and b
above and by (2.30) (2.31) F satisfies (i). F(t,0) = b(t,x,0) 1is bounded
by C and so satisfies (iii). Last by the mean value theorem we see that if

R in D s
|u(x)] < in D

then in Dp. » P <p

[F(t,u) - F(t,v)|= |¥ a:(tox,v) (u, =-v, )+
i X X
- d J
z
+ 3 aj’ui (t.x,v + 8(u-v)) (u; - Vi) uxj + bui (t.x,v+0 (u-v)) (u; - vi)l

szClu -v [+ IC (!ux.l + 1) Jup - v

J
llu - vl
s gt ey Gliheny w2
| Ju - vil,
£ —_—
pP=p

Thus (ii) is satisfied with C 1independent of t,u,v,p0 or p' . Therefore theo-
rem 2.1 applies to (2.28) (2.29) and gives the local existence of unique solution
which is analytic in x near the origin.

. Water Waves with Free Surface and the Formulation by a Conformal Mapping

The nonstationary water waves with free surface under gravity in the 2 space-
dimension can be described in the Eulerian coordinate by the following : (cf.
Lamb)

(3.1) 2267 %%+ 220/ 092 =0  in (x.y)eD(t)

(3.2) 38/3y = 0 ony =20

(3.3) s0/8t + ((30/3x)% + (s0/8y)2)/2 +gy =0 ony =T (t,x),
(3.4) ar/at + 38/9x.3T /3x -~ 3¢/3y =0 ony = T(t,x) ,

where y =0 is the bottom, y = I'(t,x) 1is the free surface, on which the
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pressure is constant, D(t) = {xeR, 0<y<T(t,x) is fullfilied by the water
(incompressible and inviscid fluid),the fluid motion is assumed a potential flow
and 9=0(t,x,y) is the velocity potential, g 1is the gravity acting downward
and will be assumed to be 1 hereafter.

The initial value problem of the water waves with free surface under gravity
is to determineT and ¢ satisfying (3.1)~(3.4) for t>0 and the initial data :

(3.5) {Fm¢)=rdx)>0 in xeR
8(0,x,y) = <I>0 (x5y) in (x,y)e D(0) s

where the potential & should satisfy (3.1) in D(t), t>0 and so it is deter-
mined by the equation (3.1) with the boundary condition (3.2) and with

(3.6) B(t,x) = &(t,x, I(t,x)) in t»0,xeR

The nonlinear shallow water approximation assumes that the depth of the water
has the order of € and the initial data (3.5) are so small that

(3.7) { r(0,x) =eT' (0,x35¢e)>0
1/2

®(0,x,y) = ¢ @' (0,x,y ; €)

for a small parameter >0, where T'> 0 and &' remains finite as > 0.
If we rescale the variables as follows :

X > x', y - egy', te e 1/2 ¢

(3.8)
el/2 g

T »¢el', ©&& , 3 V25

then the equations (3.1) (3.4) are transformed to the following

2 _ : -
(3.9) et o .+ ny =0 in D(t) ={xeR, O<y<T(t,x)}
(3.10) @y =0 on y=0
(3.11) e? (o, + @xz/z +T) 4 @yz /2=0 on y=T(t,x) ,

(3.12) &2 (Ty + 0, T,) -8, =0 on y = T(t,x) ,
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where the primes are abbreviated and the subscription means the differentiation
with respect to the variable. Now following Friedrichs (1948) we assume the ex-
pansion of & and T in o = 82

o = <I>0+ g <I>1+ 02 <I>2+.
(3.13)

0 1 2

T '+ o '+ ¢ I'2+...

Equating the same order of o in the equations (3.9)~ (3.12) we have the equa-
tions for @k, Fk, k =0, 1, 2,... successively. As the Towest order approxima-

tion we have by (3.9) and (3.13)

0

(6] =

Yy 0

and by use of (3.10) we have

(3.14) ®0y =0 and o0 s independent of y

The first order in o of (3.9) gives

) wx T 0 yy =0
and by (3.10) we have
1 . 0 _ 0
(3.15) ol y =" 6 ) XX dy=-y @ XX
The first order in o of (3.11) and (3.14) give
(3.16) o, + ()22 + 10 =0
The first order in o of (3.12) and (3.15) give
0 0 .0 o .0 _
r gt 2 X r X " r o Xx = o ., i.e.,
0 0 .0, _
(3.17) My + (® x T )X =0

Thus the lowest order approximation (3.16) (3.17) is the nonlinear shallow water
equation, which is a nonlinear hyperbolic conservation laws and is the same equa-
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tion as that describing the isentropic gas motion with the adiabatic gas cons-
tant vy = 2. cf. Stoker (1957).

Here instead of considering the full expansion (3.13) we solve the initial
value problem (3.9)~ (3.12) for the unknown functions &%(t,x,y) and T°(t,x)
with the initial data

Fe(O,x) = To(x) >0 in x &R,

(3.18) @E(O’x,y) = (I)O (X,y) in D(O)

for all ¢ € (0, eo), locally in time te (O,to), ty independent of e , in
the class of analytic functions and will show that there exists

tin PE(t,x), 05(tsxsy)) = (TO(t,x)s 0 (t.x,y))
£ >

and that the Timit functions FO, ®0 satisfy the nonlinear shallow water equa-

tion (3.16), (3.17) with the initials (3.18).
At first in order to avoid the difficulty that the domain filled by the water

D(t) depends on t we use a conformal mapping of D(t) onto a fixed strip inde-
pendent of t . Let

(3.19) z=2z(t,2) =x+ 1y, where C = & + in
give the conformal mapping of the strip
(3.20) Dé={c=g+1‘n;€6R,0<n<6}

onto the domain D(t) ={z=x+1iy; xeR, O<y<T(t,x)1} s

where n=0w y=0 and n = §—y="

Set the complex velocity potential F =& + i ¥ , where ¥ 1is the complex conju-
gate of the harmonic function ¢ , and Tet the complex velocity be
W=U-1V =F,. Then we define the functions in the variable ¢ by

(3.21) f = f(t,z) = F(t, z = z(t,2)) =¢(t,8) + i v(t,g) ,

and
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(3.22) w=w(t,g) = W(t,z = z(t,7)) = F, (tyz = z(t,%)) =f_ / z
T

The equation of the water surface (3.4) may be written in the variables t,z by
the following

- X, V. +y. X Uy. +V x
t g t & g g -
2] - 7] onon=e
4 T
and so it has the form
z f;
(3.23) Im t - - 5 on n=38§
z, |z,
Alsoby @, = Re F, and IFZI2 = @Xz + @yz the equation (3.3) can be transformed
into
f f
(3.24) Re(ft -—ng Zt) =<-€%| —€?F -y on n=32§

The boundary condition (3.2) on the bottom is given by

3 %t
(3.25) Im ’E;f = Re (ft - f 75;—) =0 onn= 0.
Here 2z, f and zt/zC . ft
they can be constructed by the boundary values, which are given on the right hand
side of (3.23)~ (3.25) . Especially we take the following construction. (cf. Woods

(1961)). Let

-z fg/zt are considered analytic in D6 and

(3.26) w(gE,n) = u(E,n) + 1 v(&n) be analytic in D, ,
continuous on T?

5 and v(£,0) =0 on n =20, and Tet u(g) = u(£,6),
v(g) = v(&38) be Holder-continuous in & € R. Then we have for any 5043 R.

402
(3.27) v(gy) = Ag u(gy) = ?%_ /’ u(g) dg ’

m
=0 sh 73 (g'go)

where the integral means the principal value. The inverse operator of A6 which
gives u(EO) from v(§) 1is given by
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+%
| V(%) d§ 1
3.28 = - IRAYZ . T < ,
where
1 - L
(3.29) o (U, - u,) = Zé_j v(E) d%

Therefore if v(¢) 1is summable in € € R and Holder-continuous, (3.28) has the
meaning as the principal value and is rewritten in the form

400
“(‘50) = '%Sf V) 45 +% (Ut U )

"% sh _21% (§- go)

1 fT v
-—sz v(§) thg5(-5,) d5 by (3.29)
1 AT T
= - A v(5) + 53 [oo vE)(L - th 3 (5-5)) d§+u_,

where u__ 1is an arbitrary constant.

Thus
(3.30) u(y) = Bg v(§,) = - A; v(50) + G v(5y)
where
+ 00 -
(3.31) Cg v(?o) =%§ [wv(‘g) (1 - th E(§«§D))d§+ u_,,

By the analyticity of z and f and by the definition (3.26) and (3.27) we have
onq:S

(3.32) y = Aé X, V=As and the same for their derivatives.

By these operators for (3.23) (3.24) (3.25) we have the equations on vq=<§

IZ

( 2.z =-B(\v/\z\2)—1\?/1z

t s

(3.33) { 5 5 5 B
t

1 2
f - zt g g = ‘F/Z;‘ A(S (é“fS/zg{ +y)’
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where ‘Pg/]zglz € I_laR) will be verified later. The separation of (3.33) into
the real and imaginary part, using (3.32), leads to the system of two equations
for x = x(t,&38) and ¢ = ¢(t,5,8)

A

5 Xg’ A6 ¢€ ¢

X - X. B( Aa 3 )
t - 3 2 g 8\ 2 2 >
(3.34) Xg + (A(S xg) XB + <A6 Xg)
(A, 9.)%- 7% A, ¢
by = - Ay x g — 5 §2'¢£ By (—— 7 )
X§ + <A8 xg) x5 + (Ag Xe )

Thus the problem (3.1)~ (3.5) 1is reduced to the equation (3.34) with (3.32)
to be solved in t >0, Z£& R with the initial data

Re z(0, £ + i8)
(0, z(0, &+ i6))

(3.35) x (0,&,9)
b (0,5,6)

Before we consider the shallow water Timit in the formulation (3.34) with
(3.32) we note the following properties of the operators A(S and B(S = - Ad + C(S s
s € (0, 50]

Definition 3.1.- Let B(R) and B°R), 0<o<l be the space of functions
which are bounded continuous and bounded Holder-continuous with the Holder-expo-

nent ¢ ,in £ eR respectively. The norm is given by

luly = sup lu (g)]

(3.36) lu(g,) - u(E,)]
lul4 = luly + sup -
51 7£ 52 lgl - 52’

Let L1 be the Lebesque space of summable functions in & € R with the norm
+o0

(3.37) lulp = lu@)] d

Lemma 3.1

(i) If ueﬁc, 0 <o<l1, then

(3.38) |A6 ulc < C |ul ,
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where C s independent of &€ (0,8, 1.

(ii) If U 1is continuous and u eLlr\éBG » 0o <1, then for a constant C

g
independent of 6e(0,6, 1
Ag U .
(3.39) | - R PR C Iugl0 , and especially
A(S u
(3.40) 7 () —~ ug (€) as 60
A(S u
(3.41) ==t s clul

(7ii) If ve Llng®, O<o<1, then

(3.42) |8 Cs v|0 § Cyv |L < Clv] L1

+ | = ag
and specially
(3.43) 5 Cyv (E) ~ /% v (£) d as 8-0

s B has the same limit as § -0 by (3.38).

6V
(3.44) \ GCvl < c]vl(j

Proof - (i) The proof is standard for the principal value. Set £y - 51 =d>0

Ao u (E,) - AuEy) fz o - ey L) U
u - Au = i -
8 2 §-\=1 £, -d 2 8 sh 55(2- €5) 2§ sh ——(g £)
o0 (g ) - U(E )
pr (s by ) - e, 2 dz
5,4d %0 shos(E- £,)  shogs(e- £p) 28shz(e- &)
£,-d ] u(g,) - u(g,)

1
+ S ?é( __'g_(g EZ) sh _‘(E‘E ) ) (U(E) = U(El)) dg

-0

26sh2 (e~ £,)

= 1 + I, + 1

+ I, + I, + 1 5 6

1 2 3 4
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Eo-l & + (f%gfrjf d g—é— <

for E% > 1

oo
1,1 2s.
Llsf 7 (G S ) lu (g + Bo- )l @
25 |
d
2
s 7 2211 ) i sc M ul d L = lul
rd S ad
78 2
I4 + 16 =0 and 15 has the same estimate as I3
(ii) Since
o u(g, +22¢) - u(g)
A Y () = a
—— U T/ sh g
+o0 28
-5 L %‘(fﬂ ug (&1 +n) dn) S g
+00 i&s
. 1 [T
RORNCS BN ] -t ) (o {65 ) - ucly +n) e G |
lus |18, - &q17 e
2 2 -1 1 25 gdg _
A N fr 8 7  shg < C luglo[EZ Ellcr

g

dO
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For any €>0 we have

g 2 d
A u _ 21 L/m _ g
%2 (5g) - vy ()= 1 6£ (ug (€9 +n)-uy(5g)) dng |
1 2 gde 4 £de
Soosw fuglEo ) - ugleg) | - S Tl o R
Inj<=M E|<M £ |>M
for sufficiently large M and sufficiently small §&.
A u
Thus ‘ég_.(go) - ug(io) as §->0 .
For (3.41) we have by Fubini's theorem
o, 5
IR ESy/Iu (G mtint o
] d 1 Z‘Slil
Fflshgl 6' fflug(goﬂlldgo Idn
1 dg 2
< =7 28 £de
™ e (lugd J__TT[ 3 Igi 17 7she
(ii1)
lscsv (£9) 1=] 2V(E) (1 - th sle-tg) el IvI g
For (3.43) we have
£ %o
[8Cv (gg) = /7 v (E) dg |=] ZGI v(g) (-1- thz,(E-€g)) &

1
T a{) v (g) (1-thyz(e-gg)) d€ | >0 as 60
by the Levesgue's theorem.

For (3.42) we have by the definition (3.31)

+oo
R -1 . 45, , d
[w |ag06 Csv(&g) 1429 =7 fdéoif V(g FTE) —%:E |
1 _g_
5/ Sy den, < C |v
27 ch’e el dgg < | L1

‘A
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If we define the functions FO and <I>O by
0 (£, (t,8)) = ¥0 (t.8)
(3.49) 0 0 0
o (t,x (tag)) = ¢ (t’g) ’

then the shallow water wave equation (3.16) (3.17) follows from (3.48). Inversely
if we introduce an auxiliary variable £ by the first equation of (3.48), then
the other equations of (3.48) follows from (3.16) (3.17). Therefore for a justi-
fication of the shallow water equation we are going to solve (3.46) (3.47)

for 6 € (0, 65 ] and to get the limit (3.48) of (3.46) as & » 0. They are
accomplished in the space of analytic functions Tocally in time.

cf. Ovsjannikov (1974) for the periodic initial data and Kano and Nishida
(preprint) for the pure initial data.

Supplements to definition 3.1. and lemma 3.1. Let L (0<&<1) be
the space of summable functions which have the o -Holder continuous integral,
i.e.,

+ oo ¥ Qo
1
(3.50) Jul = J’ u (&)} d§+ sup —. Jﬂh (&+d) ~u ()] dx<+=
o Ll a5 s T s 5 ¢%
It is easy to see that if uge L®, then for any given u( -)

g
(3.51) u=u (-e) +[ ug dg

- Qo

is well defined and has the estimate
(3.52) [u-u(-M)lo. SluglLe-.

. . o . e
Furthermore the functions in L~ have analogous properties to those in G
as follows :

i) If uelL¥, 0<o<l , then

(3.53) \Aéu | L <Clu ‘L" ,

L
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where and in (ii) and (iii) C 1is 1independent of 56(0,801.

i) If uge 1T, 0&o<1 , then

Ar u
3.54 § <C Ju and
(3.54) |22 ¢l

Ac u
3.55 S e as -0
( ) S »ug(g) a.e -

i) If ve L9, 050 <4 then
(3.56) | &C. vl +l__a’_~ 3C v] £Clv] e and
5 o dg s (&7 L

§
(3.57) é%v(%)""[x(g)d§ as >0

The proofs of these properties are the same as those for the functions in R
except that the integration in % and the integration by parts are needed.
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4 - THE CAUCHY PROBLEM OF THE WATER WAVES AND THE SHALLOW WATER APPROXIMATION

The equation of the water waves with free surface for the unknown
functions Xg =V and d’g = u 1is given by (3.34) after differentiation
in &

vt=.;§{wA vA6u+vA8 (wAg u)-vCS (wA5 u)}

(4.1) 8
uy .= -%—A(S v - %{—‘% (u2 - (A5 u)z) -u Ag(w AS u) +u Cé (w AS u)}
where t >0, E€R and
(4.2) we=1/{v%+ (Ag v)? } -

and A_ , Bo=-A + CS are the linear operators defined in (3.27) and
(3.30) for 0<§ £ §y=constant. The initial data are given by

(4.3)  v(0,%) = vy (E), u(0,%) =uy (§)  in geR

Définition 4.1.- Fix o & (0,1). For any p >0 we consider the analytic
functions u(g) in the complex neighbourhood of the real axis

0, ={E +in:fe R.inl<el

with the norms :

lul__=sup | ug+in)| _=suplul+ sup sup\U(§2+1nz~x(§l+1n)|
,(’ \q\(? o De \qung%i \'gz ~§1
(4.4)

4+ o

+00

\ulg~ 2sup {u( +ih ) e = sup f\u( +1‘r1)ld + sup sup J |u(% +d+in )
L ’P\HKP E \L MIKP Lo % g tnKpdro ™ E

- u(§+ iv)| dg

& * °
(B(,= {u(%) ; analytic in Df, , Iulv’?< +00}

L‘F’,' ={ u(’;) 3 analytic in DF,lulLe‘,[> <-1—o=}

_ & & .
XP -{ ue@? and uge L? with the norm
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(4.5) ]luUF = max{lule,_,?,[ugl L€, P} < * oo}
S =€L>Jo {(v,u) 3V, ue)(e } will be our scale of Banach spaces.

It follows from (3.51) and (4.4) that if u eL? , then for any u(-«)

: §
u<§)=u<-oo>+f 0 (%) 4%

is well-defined and

(4.6) lu-u (_w)[°‘9 g|u§\L6~

) ¥

It is easy to see that for ¢ > 0

<lul \vi for any u,ve(ﬁ: P)

\uv\ﬁ_’? 5.0 o0

(4.7)
o &
tuv]  <lul vl for any ue®,,ve Lo -
) )
It follows from the Cauchy's integral formula for the holomorphic functions
that for any O<p'<o

\ug\c,p' g__‘_ﬂ?::.f for any ue@: ’
(4.8) P-e
\v%(Lo__ . “'t‘_@’ o' for any ve Lb% .
) ] = ?_Pl

The properties of the operators Ag and Ba = - As + CS in lemma 3.1 and
in (3.52) (3.53) and (3.55) can be extended to the spaces of analytic func-
. o <
tions %P and Lg
Lemma 4.1.- Fix o € (0,1). The operators A§ and CS R O<S\<$o = constant
have the following estimates in @g and LGQ » ©>0, with a constant C
independent of Se (0,8,] and of 0.

(i) If ue@)z andveLGé for @ > 0, then

(4.9) lAéulo—,? < C]ulo__'? , \AS v]Lo,<C\v1 -

P L% ¢
(1) If u_€ LS  for >0 , then

e €ty

As u
(4.10) (T[Lb’_

< C\lu
AR 1

?
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-
(i) If ve Lo for p >0, then

(4.11) 6 C v\l <Civlg
L% P
This lemma is a consequence of Temma 3.1 and the supplements to it (3.52)

(3.53) and (3.55) and of the definition of the norms (4.4). Here we note that (ii)

and (iii) in Temma are valid also for & = 0 because of (3.54) and (3.56)
with (4.6).

Now we consider the initial value problem (4.1) (4.3) in the scale

of Banach spaces S. First we assume that the initial data (vo,uo)(§)e S,
i.e.

(4.12) Vo» Yp € )(?° for some ©, > 0.

Then (v+, u+)=lim (vasu )(%) exist and it may be assumed that
- = 0°70
E_;-_k;eo

(4.13) Vo V_>0  and vo(g) > 0 for any EGR

to avoid the dried bottom and the singularities of the free surface. The
solutions v(t,.)> 0, u(t,.) are.sought in S for 0< P<€’0, 0st<a(Py-f)
with some a > 0. They sat1sfy§hm (vou)(t, %) (v+, u+). In fact for

the solution (v,u)(t,.) €S with lim (v,u)(t, §) (v_ , u_), we have
>~

(4.18)  Tim (vou)(E.F) = (vy . uy)

'%—a*@
Because since for any (v,u) € S we have v§ s UE and A5 Y, Aé u-—20
as ?.>_‘i_‘ov we can compute

d +ow Yo
VSRR Vet 4%7 f Ve

d x 00
=[g-(w Ag v Ag U+ VA (w Ag u))- v‘E Cs (wA u)-v &'t Cs (wAg )] =0,
where y-%ﬁ—u— € L‘g is used in the last two terms. -

Thus for the solution (v,u)(t,.) in S, (v+, ut) are constant in t,
and so it is sufficient to seek the solution (v,u)(t,.) in S; < s, where

(4.15) S1 =f§o {(v,u)(g) 3 V,UE X?’ (Vou) (+ <) =(v+ ,u+) §

Furthermore we assume a little more than v > 0, i.e.
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Y
(4.16) ! V(t,%) - V_ ]6‘ Psmin{;— ’;EE—}E RO

for the solution a priori, where C is the constant in (4.9). In this case,
we have the estimate for w = 1/{v2 + (A<§ v)2 }

Lemma 4.2. let vE& XP and [v - v \r?gRO . Then we have for a constant

C0 =C (RO) indépendent of 86(0,60), where w is defined in (4.2) and
w_ = w(v_),

(4.17)
el LA

(- .
Also Tet v,  €Llp , =12 and \Vi -y | &Rg.  Put wy = w(vy),
j = 1,2. Then we have !

lwz"wl‘o—'eg CO\Vz'VllG.'? >
(4.18)

\wz‘g- Wy g \LE:() &Gy \Vz,r,, "V lLs,—P

for a constant Cp=¢C (RO) independent of de (0, SO ] .

Proof - By (4.7) (4.9) and by our assumption we have

|v2 +(A¢S V)Z\ >v§ - Vave + (v-v_))(v-v_) +(A5 (V'V-))Zio o

]

- {(Zv_ +v_/8) + ¢2 v_/4 c? }]v-v_\ = v_2 -2 v_ lv-v |

2
- 50 2 50

AV
>

Therefore w is bounded for |v-v_| <v_/4 and we have

G‘,P
5] v-v )
1 - 1
S¢  v_ 2 v 1-568" 73,3 -l

g = Ty wp (% = 0, 4 (A vi)” = (s ") |

= Llwg Wy ((vq + Vo) (vq-vy) + (Ag v+ A Vo) (Ag (vq - vz))\&? < Colvy - vz\@? .

The other inéquaHties are proved analogously.
ged.
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Lemma 4.3. Let w,v,ue X? for some ©>0. (cf. (4.5)). Then there exists

a constant C independent of & ¢(0, 60] such that the following estima-
tes hold for any O<p'< p

-~

c
(4.19) “WAav%“EHw<E$N“¥“”%““% ,

C
(4.20) (v A§ (w As u))‘,g \\?,S-—-e-, v \\? HW\I§> HUHe 5
C
(4.21) (v Cé. (w Ag u))% \(?,4.6__{)_,1{“19 \lw\\? \\u\\\D
Proof - By (4.7), (4.8) and by (4.9) in lemma 4.1

llw Ay A u)% o] (w Ag v A u) 1 ;P'+ | (w Ag v Asu) ]

s

-
L,?'

< \ \
+ (wl \vgllﬁp\u\w? + \wl \v\ \uE\ }\ P-?'“w“? iv\l? Wu

1Y '

P

The inequality (4.20) is proved ana]ogous]y by using (4.9).

The last inequality (4.21) is proved by (4.10) and (4.11) :

“(VC (wA u))\\,\ ! | C ( A u)l + (vC wA u))
ie {V W \'e\ g\ ,(‘}

3
LW{(W)«'+ \V§ 6_)\C (w A u)\G, 6_? a% u)l o
wAcu
< vl s ¢ (Rl < |
e ?\ W< ?e Wil 'Li?
\\v\ é.,__\\v\\ wil Hull
?—9 Ve 0 f-¢' ¢

qed.

Now we can apply the abstract Cauchy-Kowalewski theorem 2.1 to the
Cauchy problem (4.1) (4.2) (4.3). Set U(t) = (vl(t,g), ul(t,§ )) = (v(t,% )-v0(§)
u(t,§ ) - Ug (%)), where (vo,uo) are the initial data given in (4.12). Since
the solution (v(t), u(t)) is sought in Sl’ (vl,ul)(t,ioo) = 0. Define for
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U(t,teo) =

(4.22) N u(t) \lP= max (nvl(t)lle, \\ul(t)lle )
The equation (4.1) with (4.3) can be rewritten in the variable U :

du_

(4.23) 3= Flygsugsl) 5 U(0) =0,

where F(vo,uo,U) satisfies, in the scale of the Banach spaces S with the
norm (4.22), all conditions (i)(ii)(iii) in § 2 by Temmas 4.2, 4.3 proyided
that (4.16) is satisfied. But if

(4.24) vg() - v_\G. 0 < Ry /2 and

1

(4.25) L vy (t,.)\w < Ry/2 ,

[

then (4.16) is satisfied, i.e.,

| v(t,.) - v"c’,o < \vp(.) - v_\o"; \vl(t“)\b‘,Q <Ry

Therefore if the initial data v, quX P, and vy, satisfies (4.24), then
we can take = RO/Z in the theorem 2.1, which gives us a constant a>0
such that for any 0<8 <é there exists a unique solution U(t) of (4.23)
which is analytic in t, \t] <a (Py-9)s 0L P< e, with the value in
XP@ XP and has the bound

(4.26) Wull, € R

Theorem 4.1.- Let v, uy€ X for some ©,> 0 and suppose (4.24).
Then there exists a constant a > 0 such that for any 043 < 5 the
solution (v(t),u(t)) of the Cauchy problem (4.1)-(4.3) exists umque]y, which
is analytic of t, \tl<a (Pg -®)s 0<®<@, with the values in X, ® X?
and has the bound

(4.27) Wy(t,.) - v‘“e s Wu(t,.) - u_ \l? <R

for \t|<a(fy - ¢), OéP<oo

Remember that the solution of (4.1) depends on S and write it by (yé(’c),u‘S (t)),
8 €(0,8;) . By theorem 4.1., the solution (v2(t),u® (t)) has the uniform
estimate (4.27) in the fixed region
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%2y e «(Itl <ae, @), 059490}

independent of § ¢ (0,8, ). Thus by the equation (4.1) we have the uniform

estimate for the time derivative, independent of S,

S
(4.28) W (@)l ol

| < CR
)l < ;
t()e' e-e

for 0gLp'<p, (t,Q)e Da,?O

Therefore the Ascoli-Arzela's lemma for the space Xo gives the existence of
a convergent subsequence (vg> (t), u (t)) in X_ as d&'-0 uniformly on

e
any compact in D s i.e.,
as ¢
(4.29) tim (v (1), u® () = (0 (1), Wt
8'—90
Also by lemma 3.1 we have uniformly in any compact of Da 0
>0
%Aé' us's (15 5 uo+31 Ag,(u8 -u)——> uo R
(4.30)
\ \ 1 0
c,v® =8¢, o (V- —af d
Sé,v S oV +4§" v) v d¥ ,

in X as & -—-so0.
£

Along this subsequence we can pass to the 1imit of the integrated form
in t of the equation (4.1) :

c

5 ] J’ 3
wan ve (t, §) Vo (§)+‘> 5_{{}
u3(t,§)=u0(§)+{b--§-,Aa,v —-;% ...... } ds

By (4.29) and (4.30) the integrands converge as & —0  to

{V('ﬂouod?} W= 1/00)

0 & wO 0,2 0[2 0 0 .
- - —— - d t 1
v‘E % { > (u +u ) W u§ g } respectively

which are by (4.28) continuous of t, |t]|<a (¢g -€) in XQ . Therefore as
the limit of &' = 0 we have after differentiation in t
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0_.0 0_ .0 0 _ 0
y ? v X} N U (‘P E s
0 0
quC = - v0§, - ((u )2/2(v )2 £ 0 J;wo ug d§ )? s

which is the same as the differentiation ir1‘§ of (3.48). Since Temma 4.1
(4.10) and (4.11), Temma 4.2 and lemma 4.3 are valid for 8 =0, the limit
equation (4.32) has the unique solution in Xg for D P by the same
abstract theorem. Thus the whole sequence v9 , u$ convgrges to this limit
as & - 0.

Theorem 4.2. - Let vy, uy € X. for some §,> 0 and suppose (4.24) is
sat1sf1ed Then there ex1sts a constant a > 0 such that the solution v§ (t),
u (t) of the Cauchy problem (4.1) - (4.3) converges to vO(t), uo(t) in Xe

for (£, 9) € Da a,§y as 8- 0, the Timit of which is the unique solution of

(3.48), i.e., the corresponding T' (t,x) and @()(t x) satisfies the non-
Tinear shallow water equation (3.16) (3.17).
Remark - In the solution above yo = x? (t, &) vo(t,g) and‘fg (t.%) =
uo(t,g) may have the different values Vo(t,iOo) volt ), n (ty+ o) = uo(_f_w)
as ¥+ o , which contains the shock wave type solution Tocally in time
though.

There are many naive questions, for example,

(i) the convergence of the full series (3.13) ?

(ii) the limit globally in time as 8->0, or the 1imit in the class of less
regular functions as 80 ? cf. Nalimov (1974).

(iii) Korteweg and de Vries equation as the limit ?
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BOLTZMANN EQUATION IN THE
RAREFTED GAS DYNAMICS

CHAPTER IV

1 - INTRODUCTION

The nonlinear hyperbolic conservation laws are treated more or less in
chapter 1 for the macroscopic description of the compressible inviscid gas
motion. The compressible viscous fluid motions are considered by Nash (1962),
Itaya (1971,1976) and Tani (preprint) on the existence of solutions to the
initial (-boundary) value problems locally in time. The global existence of
the solutions to the Cauchy problem of some model compressible viscous fluid
equations are given by Kanel' (1968) and Itaya (1976). The relations between
the compressible Euler equation (nonlinear hyperbolic conservation laws) and
the compressible Navier-Stokes equation (the compressible viscous fluid
equations) are not well considered in general. cf. the last remark (iii) in
chapter 1.

In contrast to the macroscopic descriptions of the gas motion mentioned
above Boltzmann (1872) and Maxwell (1867) used the distribution function in
velocity as well as physical space to describe the microscopic behavior of
rarefied gas. Here we consider the initial value problem to the Boltzmann
equation in the rarefied gas dynamics and the macroscopic 1imit as the mean
free path € tends to zero at the level of the compressible Euler equation. The
dimensionless Boltzmann equation can be written for the mass density distri-
bution function F(t,x,v), t>0, x€ R3 : the space variable, ve R3 :
the velocity variable, in the form : cf. Grad (1958)

3 3F
(1.1) 3%+'2'_ Vj SX—J‘ =-¢’1‘Q (F,F) ,

where ¢ is the mean free path and

1 p ' -
(1.2) Q(F,e)-zf(F G +F, G-FG -F G Vrdrdédv, ,

1]
where V = lv—v*l , Vv' and v, are the velocities after

the collision of the molecules with the velocities VsV r.¢ are the polar

coordinate in the impact plane, Fy = F(t,x,v*), F' = F(t,x,v'),

Fe = F(tsx,v, ) and G, G', G, are defined analogously.
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Define the summational inyariants

na { ¥

which satisfy

fLvya=123, ¥}

i

(1.4)  S4r Q(F.6) dv =0 for §j=0,1,,..,8

The macroscopic (hydrodynamical) quantities are defined as follows : The mass
density and fluid flow velocity are given by

f F(t,x,v) dv,

% v F(t.x,v) dv,

(1.5) ¢ (t.x)

L]

(1.6) u(t,x)

il

Set the velocity relative to the mean ¢ = y - u. Then the stress tensor
and heat-flow vector are defined by

(1.7) Pij Efci ¢ F(t,x,v) dv = Pis * P 61.j

(1.8)  q, =% fci c? F(t.x,v) dv,
. _1
where p is the scalar pressure =3 b2 Pk

The internal energy per unit mass is

(1.9) es .-g-. f—% c? F(t,x,v) dv .

The conservation laws for © ,u,e can be written in the form by (1.4)

[ 88, & °FY9
at+zaxj

0 u.
1, N i(?ui uj+pij+p31’j)=o

1.10
(11001 5

— e

\B—?: Qe + u2/2) + za—?g {?'Uj (e + u2/2) +Y up (pkj + pSkj) + qj} =0,

where the equation of state of gas is that of the ideal gas, i.e.,
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(1.11) RT s p/e =% e

If the distribution function F is locally Maxwellian, i.e.,

2
(1.12)  F(t,x,v) = € (t.x) exp ( - LultX)v)
2TeRT (£.x)) 2 2RT(t,x)

then the conservation laws (1.10) can be simplified to Pij = 95 = 0

ro o8 Zé?uj

-+ :0
ot éxj

(1.13) 1 o fu;

5
57 D an (5 Uyt p oy =0

\ —a%p(e + u2/2) +Z£§ (¢ us (e + u2/2) +p uj) =0 ,

which may be considered as the compressible Euler equation derived from the
Boltzmann equation and is the same as the system for the ideal compressible
gas motion in the Eulerian coordinate. The system (1.13) of the nonlinear
hyperbolic conservation laws is also the first approximation of the Chapman-
Enskog procedure. The second approximation of the Chapman-Enskog expansion is
the compréssib]e Navier-Stokes equation. cf. Chapman-Cowling (1952).

Following Grad (1963 a) we consider the Boltzmann équation (1.1) for
the gas molecules with the cut-off hard potentials around the absolute Maxwellian
state :

(1.14) Mv)-= (2T) 32 exp (-v2/2)

The initial value problem (1.1) with the initial data
(1.15) F(0,x,v) = F(x,v) ,

whose deyiation from the absolute Maxwellian M(y) is assumed small, was solved
for fixed ¢locally in time by Grad (1965) and globally in time by Ukai

(1974, 1976), Nishida-Imai (1976) and then Shizuta (preprint). The solutions
decay to the absolute Maxwellian M(v) as t tends to infinity. It is descri-
bed in § 3 after the preliminaries on the linearized Boltzmann equation in

§ 2. The initial-boundary value problem in the bounded domain is solyed in

the large in time for the small initial data by Guiraud (1974) with the
boundary condition of random reflection and by Asano-Shizuta (1977) with
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the specular boundary condition. The stationary shock wave solutions are
obtained by Nicolaenko-Thurber (1975) and by Nicolaenko (1974).

The asymptotic problem of the Boltzmann equation (1.1) as the mean
free path € tends to zero and the relations to the hydrodynamical equations
by the Chapman-Enskog expansion are considered by Grad (1965) for the
"semilinear" Boltzmann equation locally in time and by McLennan (1965), Ellis-
Pinsky (1975) ans Pinsky (1976) for the linear Boltzmann equation. In § 4
we solve the initial value problem of the nonlinear Boltzmann equation for
any 0<& < 1 with the small analytic initial data locally in time. This
is done by use of the abstract Cauchy-Kowalewski theorem in the form of remark
2.3. chapter 3. Then in § 5, the asymptotics of the solutions as the mean
free path £ tends to zero is invéstigated in a finite time interval and it
is shown that the Boltzmann equation with small analytic initial data can be
approximated locally in time as € —» 0 by its compressible Euler equation (1.13).

2 - NOTATIONS AND LINEARIZED BOLTZMANN EQUATION

X,V € R3 are the space - and yelocity - variables and ke R3 is
the variable for the Fourier transform in x. Lp(.) (. = x,v or k) denotes
the Lebesgue space of measurable functions whose p-th power (1£ p<& + =) s
summable in RS with the norm 1l . H (x), 230 denotes the
Sobolev space of L2(x)-functiongp(') together with the g-th derivatives,
ﬁe (k) ds the Fourier transform of HQ’(x) with the norm

\f -1+ B2 = 1.,
lHQ(X) (1 +k") ()ILZ(k) | IHQ (K)

Let H be the Lebesgue space of square summable functions in (x,v)e:lR6
with the norm

(2.1) WAL =( [Fxon? dx av) 2

Let us introduce the (partial) Fourier transform in x of feH by

(2.2) F(k,v) = ———é—/z— f e Tk.X f(x,v) dx
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and denote ,P\l =.{?’ ; fe H} with the norm

172

(2.3) i ?‘ll =( fl ?‘(k,v)l 2 dk dy) = \fll

Définition 2.1.- Let the Hilbert space Hy » £>0 be a subspace of H,
which consists of H® (x)-valued L —functwns inv € R , i.e.,

= LZ(V;H’L (x)) with the norm
(2.4)

l[fllz-(gf(»,v)[Hz(x) dv)
- (f(l + K1 E ()] 2 dk dy)Y/? -UFI < v e

Also we use the space L2 (v;Lr’(x)) » lgpg? which consists of LP(x)-valued
Lz-function in ve R3 with the norm

) 2 4172
(2.5) llfllLZ’p—((f(.,v)le(x) W2l

where H= L2 (v;L2 (x)) =

Définition 2.2.~ Let B s Myl >0 be a subspace of Hy_ , which consists

of H¥ (x)-valued cont1nuous function in v, with the property

(2.6)  (1+ vVV)"Z 1 £(,v)| Q() 50 as (Vi + <

The norm for fe Bm o s defined by

b

(2.7 WL = sup (A2 1 FLL))|
me v H*(x)

sup (Levey/2 \’%(.,v)\,\ ( 4 o
v H (k)

It is easy to see that by Fubini's theorem

(2.8) WFl, < ClWF, . for mY3/2, 230 ,
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and that by Sobolev's Temma fe Bm . for m,e > 3/2 is continuous
in x and v.
Definition 2.3.- S, =?§g Hp,e for some 220 s a scale of the
7
Hilbert spaces such that HQ 0° Hp and
- ) (klg 2
(2.9) e, g { fE€H, 3 Il fll\ _.\(e Fkawll, <+ o |
Sm 0 —e\>)0 Bm L .0 for some m,t>0 is a scale of Banach spaces such
that B me,0 = Bm’c and
- . = KIS 2
(2.10) Bm,e @ —{ fe Bm’% ; 1 fmm,n,g"“e f(k,v)\lm’Q<+°°

with the property

Tim 1+\r2)m/2 Lklf ?(k,v [,\Q = 0 }
[Vi=+o H™(k)

Lemma 2.1.- The scale of the Hilbert space Se. for any £ » 0 has the property

C

{‘ N
(2.11) Wikl®  flky)M € —~ _Wf Il
‘Qrg (?—Q')s‘ ‘Q:g
for any fGH‘L’Q and any ?l‘? , 0O<ox 1.

In order to linearize the Boltzmann equation (1.1) around the absolute
Maxwellian M(v) we set

1/2

(2.12) F(t.Xx,v) = M+ M7 f(t,x,v)

If we substitute (2.12) into (1.1) and follow Grad (1963) (1965) for the gas
molecules with the cut-off hard potential, we have the equation for f(t,x,v)

ot dX.

(213 E+g v 5F -Lirevresy .
|

Here L 1is a nonpositive linear operator acting on vc:‘lR3
(2.14) (Lf.F) , %0 for  f, Lfel?(y)

L=(v)

and
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, 4 1/2 172 2 1/2}
(2.15) Lf=0  iff f {qu}Jw MHEL v vZ M

It can be decomposed as
(2.16) L=-v(v)+K in 1%(v)
where v (v) is a monotone nondecreasing function in |v| and

- (2.17) 0V, s VY(y) £ 91 (1+yvl),

0
K 1is a compact self-adjoint operator on Lz(v), which has the smoothing pro-
perties :

WKEW o 5Kmf\\\jm1,2,g for any j>1 ,

§

(2.18)

WKFW < KULE

0,4,¢ §

for some constant K = K(j) <+ and any £30, ¢>0.

The nonlinear operator

' - 1/2
L g) M(v*) V rdrd ¢dvx

(2.9) VD (f.9) =4 f(f' ¢’y +f
acts on ve R3 and is bilinear in f and g.

Lemma 2.2.- Let f(x,v), g(x,v)e B , ¢ for some m >5/2,% > 3/2 and
€ > 0. Then we have a

(2.20)  w~L (.U < cW T (f,ol
ﬂ,? TU>Q—9§

< Ccu fi Watd and then
- m,L 9 my L,8

(\) r (fsg):\v'j) 2 =0, J=0,1,...,4.
L™ (v)

Proof - The first inequality is easily obtained by (2.8) and (2.17). The
second is proved by Grad (1965) and by Handsdorff-Young's inequality. In fact
for £ =2 we have
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WEEU = s (w2 14d) KSPg ],
m,2,¢ v - L

<£¢C {sup 1+v )m/zlle k(g % f(k,v)l| 4 (k)}'

..{sup (14v%)™? 1} (1+k%) ‘klgg(k vl 20k } +

m/2

2 2, 1kig
C 1 I (1+k Fk,v)l
+¢ $sup (1vH)™2) (10k8) R Mz ]

.{SUP (L+v?)" /2 e 1K1 CICR 1(k)}
L

<¢ fsup (1?72 ) (1) el "‘”“Lz }

{sup (1+v )m/2 I (1+k2 \kiS A\[ » }
L™ (k)

=c WFW g, Mally 50

Now our aim in this section is to summarize some results on the linear
Boltzmann equation.

of _ . of L1
(2.21) 5T ‘ij 373+ = Lf.

Consider two operators

1, _ . af 1
_E_AE- vy 3%, <= V()
(2.22) )
1 _ f _1
. . 1 _ 1 . .
with the domain D(-E— Ae) =D (-%. B, ) maximal in Hp, £>0.
%- A¢ generates a strongly continuous semigroup in Hp i.e.,
t t
A - =v(v)
€
(2.23) e ff=e F f(x- % V,V)

, t ~
g 1)3/2fe"<=" e AR F vy dk,
271

where
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(2.24) A‘Zk =-igky - v(y)

Since B, =Ag; + K and K is a bounded perturbation, the Tinear Boltzmann
operator ?BS generates also a strongly continuous semigroup

t
T BE .
{e (3 }t>/0 in He for any € € (0,17

Then we have

Theorem 2.1.- The linear Boltzmann semigroup is represented by

t

t + & B A
(2.25) e €t BE f = (_2_..1:_;._3_/?- (e"k.x e € "tk ‘F(k3V) dk
1

for F(kwv)e Hp
where for each kC:'R3

(2.26) B£k=-1'£ k.v = v(v) + K

is a unbounded linear operator in L2(v) with the definition domain

D(Bs_k\ = (f-‘e LZ(V\, B‘c'_k fe L2 (v)% and generates a strongly continuous
semigroup such that for fe L2(v)

< Bgy
2.27 ’ f f
(2.27) | e lem <l 2,

Furthermore there exist &, ﬁl’ £o >0  such that the following (i) (ii) are
valid for any fe€ D(Bq’k).

(i) for any k, lek}< S

t
B 5 .
(2.28) et K £ T € (e; (-€K),F) , e (£K)
J 12(y) 9

t

E Ay "€ F
+e f+e Zl(ék,t/E)f,

wheré °<j’ e.

j are the eignevalues and the eigenfunctions of BE K such that
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. n 4
A(8k) = X a; (G slkl)"+ D (le K7

(2.29)

e (£K) = = es  (k/1kI) (ielkl)" + O(Ig k 4,

M TMeo
iMew =

aj,n are constants, aj,2>0 and

(e5(-€Kk)s en(&k))LZ(v) - Sj,n ; jon = 1,....5

(ii) for any k,lek] > &

t t t
=8 A -= B
(2.30) e "tk foe®E £ ET2 7 (e tre ),
where ir .
i—Y
.1 I .
Z, (€ k,t/e )f = 1lim 5T e Z(-B. + i¥,ek)f d ¥,
J ¥-» 0 . J
‘1Y
(2.31)

Z(Aek) = (A- A, O ake- A )h k- gt
and

WZ. (£k), t/€ )f £c lifl ,
5 (£K) ) “Lz(v) 2

where C 1is independent of £ , k , t >0

Proof - cf. Ellis-Pinsky (1975), Ukai (1976) and Nishida-Imai (1976).



105

3 - THE INITIAL VALUE PROBLEM OF THE BOLTZMANN EQUATION

First we obtain the decay of solutions to the initial value problem
of the linear Boltzmann equation

Of(t) _ af -
(3.1) W)-—‘zvj‘,;;x—j"‘*'l.f:Bf s

where and in this paragraph € 1is assumed to be 1. Let the initial data

(3.2) f(0) = f(x,v)  H, for some £ >0

This Cauchy problem is solved by the linear Boltzmann semigroup in § 2, i.e.,
(3.3) f(t) =e® s in tx0

which is strongly continuous of t >0 in H‘Q . By theorem 2.1 and by
Planchrel theorem we have

(3.4) \\f(t)llz < Wflly in t>0.
Theorem 3.1.

(i) Let the initials f belong to He for some £ > 0. Then the solution
f(t) of (3.3) decays to zero :

(3.5) \lf(t)\\L——)O as t — +

2 .1
(ii) Let f e HQ, nL (viL™(x)) for some £2>0 and
(3.6) f\Pj(v) f(x,v) dv = 0 for a.a.xeR3, j=0,1,...,4.

Then the decay estimate has the order as follows :
Cq ( tfly, + WFll l_2,1)
(1+ t)°/*

(3.7) \\f(t)\b’ <

Remark - If fe Hz o Lz(v;Lp(x)) for some £ 20 2 > p > 1, then the
decay estimate is better than (i), i.e.,
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C(ufl, o+ NF Lz’p)

o
“bx fi)l < (1+t)@+ﬁ*' /2

for I |<s 2,

o x
where B;‘= (3/5)(1) o (a/axn) n o) = 0(1 ...+ e(n and

[ =-% c% --%). And also these estimates can be carried to the solution of

nonlinear Boltzmann equation, but here we restrictourselves to the basic gene-
ral case (i), (3.5).See Ukai (1976) and Nishida-Imai (1976).

Proof.- cf. Arseniev (1965), Scharf (1969) for the special case and Ukai (1976),
Nishida-Imai (1976) in general. By Fubini theorem and by Planchrel theorem
we can compute for f(t)

tB
\lf(t)l|£2=g(1 + k) e ¥ fkv)|? dv dk

- f(f\ 12 dv) dk + [(ﬁlzdv)dk = 1+1,,
|k|<d [kI>s

where & is defined in Theorem 2.1. By theorem 2.1 (ii) we get the estimate
with ]%0 = min (f,, ¥(0))

2
-2f ¢
I, < e ﬁof 1462 1 $ik, )| dk
, w1 Rk,
tki>8 LE(v)
2 "2t 2

which means the exponential decay.

By theorem 2.1 (i) for I we have

I-= 12 + 13 .

where the integrand of I? is the first term in the right hand side of (2.28)
and that of 13 is the second and third ones in that of (2.28) respectively.

Then theorem 2.1 (2.28), (2.31) with ‘ﬁo = min (ﬁ1,<v(0)) gives

2B, t . A 2
I<cfe " f(1+k2) | f(k)| ,  dk
1kI<d L™ (v)

£ C e \\f\hl
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If we set 0(0 = min X, >0 in (2.29)
§=0,1,..,4 J*

we can calculate for 12 as follows :

I f1+k2> 59 ey (0, B, ek
2 &3 2 2 dk
i< H T
2
o kE 2
< 2 f(1+k2)2 e O | f(kal, dk
1K1<$ L™(v)

—> 0 as t —>+ oo R

where the decay to zero is assured by Lebesgue theorem. The proof of (ii) is
given in the same way, if we note that for j = 0,1,...,4

e.(0),F(k,. f“k X(f F(x,v) d =0
(J() ))LZ(V) (2“)3/2 ‘lp‘ (x,v) dv) d
and that
tx, (k) 2
2 2 e; (-k)-¢5(0),f e.(k) dk
I<¢ f(1+k)12e ( )-e5(0),))] 2 ‘Lz(v)
ki< )
to kS .
< cszz e O 1F,012, d
Ki<S L™(v)
) R 2 ) -torokz
£ C% sup | f(k,.)| , f k® e dk
tkicd Lo(v
1ki<$
<c8yf

vt L x))/(1et) 572
qed.

Before we treat the nonlinear Boltzmann equation we improve the decay esti-
mates in theorem 3.1 into those in the space of B, ¢ (m >3,4>2).
Definition 3.1.- © ([ 0,m) ; X) denotes the space of functions f(t) which
is continuous of te{0,w) with the values in the B%nach space X and which
decays to zero in X as t-> . The norm of f(t) € &([0,+);X), where

X =H, or Bm,f, » (£, m>0), is defined by
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WeyMy = max 1 F(e)l
(3.8) 0<t< oo £
HEI@II = max NF(E)
m,2 0£t< o0 m, £

Theorem 3.2.- The Tinear Boltzmann operator B generates the strongly continuous

semigroup e)CB also in B L (m>2, £>0). Let feB R Then we have a
otB s

constant C1 < + @ such that for f(t) = f
f(E) | £ Cl U and
(3.9) m,L m,ﬂz
F(E)N ~> 0 as t >
m,4
Moreover define
t
(3.10) h(t) = f (508 Sla(s), g(s)) ds,
0

where g(t)e€ €([0,e); B, , ) for some mx3, L3 2. Then h(t)e€([0,+);B
and we have a constant C2<oo such that

m,Q)

2
(3.10) Mh(HWM < C, W g(.)m
m,L m,

Proof - Following Grad (1965) we use the representation

f(t)

. t
e“Bf+f (518, (g(s),g(s)) ds
0

tA
e f+%

(3.11) t

t
e(t)A r(g(s),a(s)) ds *4 e(t-S)A ke (5) ds

etB is a strongly continuous semigroup in B .0 (my»2,4£>0) because of the

definition of the space B - with (2.6) and by (3.11) with g = 0 and (2.18).
The decay (3.9) follows from (3.11) with g= 0 and from (2.18) :

-Vt t (t-s)A
WF(EN  <e oy flg p +f0 e Kf(s)dsﬂo L
O’Q/ s S
-t t/2  t -V (t-s
(3.12) <e 0 ufy  + C( + f e 0 \lf(s)lli ds
0,6 -0 t/2
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where (3.5) 1is used. Successively for j = 1,2,...,m

G.13)  Nepl <o O f ;o)
.13 f(t <e ufu +C F(s)H ds

— 0 as t—o e,

For the latter half of the theorem we note that if g(s) B for some m > 5/2
£5>32,then by lemma 2.2.

VI(9(s),9(s)e H_q  nLP(vsLh () Hpn L (vsL (x)
and

OLg(s)s9(s))s ¥y) p =0, §=0,1,..8.
L= (v)

Thus the rapid decay estimate (ii) in theorem 3.1 applies to this case and
we have

t oV (g(s), wila(s),
e sf (V1 (g(s)>9(s))l, +Uvl(g(s) 9(5))“L2,1 N
20 (1+t-s)"
) C[t g, 2 . t
< s < +
0 (Lst-s)/4 f t/2
Cloe Satyp Mool o )f max )2

*Clgpgs gt WG

(1+ t/2)/8 m,e

<C (wg(.)M Q)Z and tends to zero as t — + <.

m,

To get the decay of h(t) in B we use (3.11) with f = 0 in the same way as

m,2
(3.12) (3.13).
t -(t-s)vV(v)
Wh(t)i stsp f e » L £ (g(s),9(s))
s .
0 t —(t-s)\)0 J
+{ e clin(s)l  ds
0 j-1,%
-V t/2
<c{ ()<m2x<t/2 Hg(s )llnf . e 0 + t/znf’s‘<t“g(s)\[r§ 0
Va t/2

0
h
+ (0m4a>s<4t/2h(s) -1,8) e +Vrp?i>§$t th(s) 1,0 }
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for j =m,m-1,...,2,1 and also

-V t/2
max 2 0 max 2
llh(t)%’ascg(%ss t/zug(s)“m,e) e + (t/zésstug(s)um’g
< ¢, Mgl
m,L
-» 0 as t-» o

ged.
Now we consider the nonlinear Boltzmann equation
(3.14) %f—%k BF(t) + ~L(F(t),Ff(t)) in t 0 ,
in the space Bm,z (m>3, £ »2) with the initial condition
(3.15) f(0) = f(x,v) € Bm’e (m»3,232)
The solution is constructed by the successive approximation (n = 1,2,...)
(3.16) (M (t) = et 4 dgt e(t=5)B (M1 (5),¢("1) (5)) ds

o
in the Banach space C’([O +o); Bm . )s f(o) (t) = 0. Let the initial data

f(0) have E = ilf(O)ll < for some m> 3, £% 2. Then by theorem 3.2 and
by (3.16) we have for' the same m,AL

f(n) (t)e é([o,oo); Bm,e ) and

WeM (om gcp £+ e, que™D u )2,

m,¢ m,

ey e Mo o, @™ om + we™ Dy
n.g 2

m,0 m,¢

My - £y
m,%

1,2,...

n

for n
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Therefore if we suppose O<£E<1/4 (21 C2 and set a=1-V1-4 C1 C2 E<1,
we get

lllf(") (.M <a/2¢C, and
m,¢

ety o e <awe™Mey - D

m,e m,L
17
Then f(n)(t) converges in € ([ 0,o) ; Bm Q) to f(t), which is a unique solution
of (3.14) (3.15) and decays to zero in Bm . 2 tooe,

for some m2> 3,4£4> 2. Then there
the solution f(t)
uniquely in the

Theorem 3.3.- Let the initial data fe B m.2
exists a constant EO > 0 such that 1f E -\lfu Q O’
of Boltzmann equation (3.14) (3.15) exists in the space B

m,2
large in time and decays to zero as t—» o |,

Remark 3.1.-

(i) Theorem 3.3. means that the solution to the initial value problem for
Boltzmann equation (1.1) converges to the absolute Maxwellian distribution as
t+o, provided that the initial deviation from it is small in the norm of

. (m> 3, 2> 2).

°

(ii) If m> 3 and £ 3, the solution is smooth and satisfies Boltzmann equa-
tion in the c1ass1ca1 sense.

(iii) The uniqueness of the solution is just proved in a small (in the norm
of B m,L (m >3, £> 2)) neighbourhood of the absolute Maxwellian distribution
cf. Sh1zuta (preprint).

4 - THE FLUID DYNAMICAL LIMIT OF BOLTZMANN EQUATION: AT THE LEVEL OF COMPRESSIBLE
EULER EQUATION

Let us consider the initial value problem for Boltzmann equation
with & €(0,1]

oF_(t) SR (8) 4

(
(4.1) -—g—t—-=-2vj 3%, +'€°(Fi (t),r%(t)) in t» 0 |,
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(4.2) F! (0) = F(x,v) > 0O
First we note the non-negativity of the solution E (t,x,v) for fixed
€e(0,1]
Th - 1/2
eorem 4.1.- Let F(x,v) = M(v) + M(v) f(x,v) >0 and f(x,v) ¢ Bm 2
for some mY3,4£>2. Then there exist two constants E0 >0 and ty> 0 such

that if \lfum £:<E0, then there exists a unique non-negative solution to
(4.1) (4.2) in 0<t<g¢et

0 .

The solution is given by the iteration which preserves the non-negati-

vity.
OF . (%) 3F .. (t)

n+l n+1 _ 1 . v L
(4.3) 5t tVe —ax— =% I}Fn,* Fo ~ Fr.x Frep) dw
where dw = Vrdrdédv, ,
(4‘4) Fn+1(0) = F(XQV) £ n = 0,1,2’oo. and

(4.5) Fo(t) F(x,v) > 0

The proof of the convergence of the iteration uses a modified argument of
Grad (1965). By the uniqueness of solutions near to the absolute Maxwellian
for problem (4.1) (4.2) the solution as the 1imit of n-—»~= coincides to the
solution given by Grad (1965). See Nishida (preprint).

We seek the solution of (4.1) (4.2) in0 <t < tO’ where to is
independent of £ € (0,1] , again around the absolute Maxwellian distribution,
i.e., of the integral equation

to t 58
(4.6) £ (t) =e€%f0)+[ e = vI(f (s), f (s)) ds
13 0 £ € €

for ¢ €(0,17

Let f(0) < Bm ,f for some m 2> 3, £>2, £ > 0. The solution of (4.6) is
sought in the Banalh space B, which is defined by

Definition 4.1,-

B = { f(t) s continuous function of t with the values in %n 2.8 s Which

has the norm
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4.7 N, {fl = N ()l
(a.7) N [f] Oéseugeol (o,

0<t<alpy-¢)

[(1t/a(fg = €)) <

for a suitable small a >0}
Theorem 4.2.- Let the initial data have the norm

(4.8) E=lfO)W <+ for some m 33,432, §0> 0
m2 s €

Then there exists El >0, a>0 and C1<w such that for any f(0) with E <E;
and for any € €(0,1] the equation (4.6) has the unique solution fe (t),
which is continuous of t, 0 € t < a((o-e) with the values in Bm’ R
0<§< 8, and has the uniform bounds ’

(4.9) ME (e <C E in 0gt<a(t,-%), 0£8<¢,,
E m’g.’go 1 O 0

where (4 is independent of € €(0,1]
The proof of theorem 4.2 1is based on the following proposition.

Proposition 4.1.~ The solution of Tinear Boltzmann equation has a uniform

estimate :

t
(4.10) e €8 £(0)ll < clilF(o)Ml
mL ,R 0 m, L ’QO

for m>3,12>2,§’0>0 ,

where C 9s independent of € €(0,1] . Furthermore let us consider the func-
tion for any f(t), g(t)e€ B, m>3,2L>2,
t-s
t B
(4.11) h(t) =J’ e € %%vr(f(s), g(s)) ds.
0
Then it has a uniform estimate

(4.12) Ny [h] < C RN, [g]sCRBa [g] forany b<a ,
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where Nb [h] is defined by (4.7) with b replacing a and

(4.13) R= SUP We(s)
0<s<b (?0'?) m, £ »%

0€€< 9,

Proof of proposition 4.1.-

By theorem 2.1 (2.27) and Planchrel theorem we have

t
B,
B Mo 2 b2 g #(0,k v)l dk

L2(v)

t
e €Be f(O)NE 2. j]e (1+ +k? )

€0

2
g Weoy il for any 43 0, Fg>0.
1,9,

It is improved to the estimate in the norm of B m 2> 3, if we remem-

m,ﬂsfo ’
ber the representation

tBe < Ae bt « . ehe
(.14) " F(0) e CR(O) + | e X (e * T r0) ds

and the same argument used in the proof of (3.9).

The latter half of the proposition is proved as follows : since

(e5(0), L(f,9)) 2, =0 ,Jj=1,2,...,5, we have by theorem 2.1
t
h(t) fE*—wrf{ Mgk)k('(eek) D)) es(€ k)
= ik (e'.(- , e.
0 (2 ) J Y J
1eki€ 8
t-s t-s
o3 -2 8 R
ret VeV + £ '1‘21 (€ k,t/e Y(vI7) }dk

_t-s,

t-s
A &
( T ek r © 72 Llg ekt M lak] d
SERC Lor e Lz,(ekt/e YT k] s

The norm in H,Q ¢ has the estimate by the same theorem

t
Ih(t)ll <c 14k2)E 2IKIS 21y s iy /2
lin(t) k,; 4; K(J’( +k%) e | (vD) (S)\Lz(v) )
_t- S ﬂ
+ & v r‘(s)lH 1ds




115

t t-s

RN
ds+f e Mf(s) mg(sm ds
me,
0 (s) -e o E SRR

t

<l

for some choice of ¢ (s), ¢ <¢(s)< €0 - s/a, where we used lemmas 2.1 and
2.2.

WSy o, e (s)M90My g, ¢ (s)

It can be estimated by (4.13) in 0g t<b (yo -9), 0£¢ <§0 for
any b<coa

t-s

N

- =B
t Wg(su t € 70
Wh(t) <CR (J W9lMn, o, ¢ (5) ds + S & (s, , , ds)
Ls0 0 g(s) - € 0 2 R4
(ft ds ft e"z?' ﬁo ds )
CRN, (g + - —
Lo (€ (s) - )(1-s/b(§y-9(s))) 0 €  15/b(8g78)

with @ < R(s)< g - s/b.

Therefore if we choose ¢§(s) = (\>0 - s/b +¢)/2, we have

4.15 h(tMl  (1-t/b(g, -SN< C(4b+1/g,) R N
(4.15) Oégfgg W ()Q‘,g( /b(§y -$N< C(4b+1/gy) R N, [q]

05t<b(30 '?)

In order to obtain the estimate for Ny [h] from (4.15) we use the equivalent
representation

t-s

t-s
t LSg ¢ Es
€ € LT (#(s),9(s)) ds + j; e €

A
(4.16) h(t) =fo e ¢

K
+ h(s) ds

g

and the same argument as that for (3.10). Thus we arrive at
NpyChl =< CRN [g] < CRN, Tg]
ged of proposition 4.1.

Now we introduce the same approximation as (3.16) to solve (4.6), i.e.,



t
Folt) = e
t
t) =
90( ) .{;
fl(t) =
t
g (t) =S e
0
fn+1(t) N

Bg

t-s
= B 1

e
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£(0)

T \)[‘(fo(s), fo(s)) ds,

go(t) + Folt)s
t-s

= B

T (9,801 (8)) +9L (g (), Fpg(0) ] s

g,(t) + f,(t)

t "€
folt) + j; e

t-s B

€ Lor(f,(s), f,(s)) ds,

n=1,2,...

It is easy from proposition 4.1 to see that

(4.18) WF(E)|

m,L,p

and

(4.19)

M o2

0£¢<
0gt<a

<

sup

fo
O(?O—f )

CUF(O)M SCWF(OM, , =Ry

Q’? ’go

0 9oy o < € Ry

for any a, > 0,

0

Then it follows from (4.17) and (4.19) that

(4.20)

(4.21)

and

(4.22)

W F ()W < Ry + By

ms£ ¢
in 0\<?< 609 0$t<ao(€o -‘? )'

Define a; = 2 >0 and
2
3.1 = 2, (1-1/(n+1)") for n = 1,2,...
N, [9] = Nan Lg] for n=0,1,2,...

By use of proposition 4.1 and by the same argument as that for remark 2.3
chapter 3, we have for k=1,2,...
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= ] < M
(4.23) Brer FVa1 [ SCR WS 2)
provided
(4.28) R < (%)4/(2 » and also
2w y1iqy=2
(4.25) Mf (t)mm,JL R < Ry + C Ry™ Z (3+1) "< R

provided that Ry is small. Thus if we choose Ry small, (4.24) and (4.25) are
valid. Therefore there exists

Tim f t) = f(t s

the Timit of which is the solution of (4.6) for €€ (0,17 and has the
uniform bounds by (4.25)

(4.26) WF ()W <R in  0<t<a(gy -%)
m, 4 ,€
where R and a = 1im a are independent of €e (0,177 .
n->«

ged of theorem 4.2

In order to take the 1imit of f¢ (t) as e -+ 0 we need more than
the uniform bounds (4.9). The uniform continuity in t is given by the following.
Theorem 4.3.- Let the initial data f(0) & Bm 2, e for some m>3,2 ) 2,
0> 0 and let 0

E= Hf(OM < E1 s
m,2 , QO
where E1 is defined in theorem 4.2. Then there exist constants 0<E2$ E1 and
C,< ¥ such that if E < Ess then the solution f_ (t) of (4.6) has the
uniform Holder-continuity in t :
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t-s <
(4.7) e, (t) - f (s) <Gk { s(1-t/a(eq - e))}

m-¢,L-0 ,e
for 0<s<t and for a fixed o€(0,1/2),
where C, 1is independent of &€ (0,1]

The proof needs the Holder-continuity of the solution for the linear
Boltzmann equation and of the function h(t) (4.11). See Nishida (preprint).
We only remark that the H8lder-coefficient has the singularity of 1/t® as
t - 0, which corresponds to the initial layer of the rarefied gas motion
described by Boltzmann equation.

It follows from theorems 4.2 and 4.3 that by Ascoli-Arzela Temma
we can choose a convergent subsequence as € -0 such that

(4.28)  f, (t) — Fy(t) in B , 0st<algy-®), 0ge <Ry -

m-o, »0-"0“3?

The 1imit function has the bound

(4.29) | fo(t)mm . ?5 ¢, E in 0gt<alf,~¢), 0£€<¢,

and the Holder-continuity of & €(0,1/2).

(4.30) I fo(t) - f, (s)ﬂlm o, L- bfec SNGE t/a(e0 6)))}

Now we turn to the original mass density distribution function

(4.31) FE (tox,v) = M(v) + M(v)ll2 f"E (tsXx,v)

which satisfies Boltzmann équation (4.1) (4.2). Taking the Timit of the equa-
tion (4.1) in the integrated form in t along the subsequence (4.28) as
€ -» 0, we have by the uniform bound (4.29)

(4.32) Q(Fg (tsx,v), Fp (t,x,v)) = 0 in 0<t<ag¢,
where FO (t,x,v) = M(v) + M(v)l./2 fo (t,x,v)

If we assume that F(0.x,v) = F(x,v)>0 and ¢ (0,x) = fF(x,v) dy > 0 in xeR?’,



119

the solution has the same properties by theorem (4.1) and by the mass conser-
vation laws (1.10) :

(4.33) Fo (£s%,v) 3 0

(4.34) 3 (t,x) = YFO (tyx,v) dv > O

It follows from (4.32) (4.33) (4.34) that Fo(t,x,v) > 0 and then Fo(t,x,v)
is locally Maxwellian. Thus we can obtain the conservation laws (1.13) for
Fg (tsx,v) from (1.10) for F_ (t,x,v) as the Timit of € 0 along the sub-
sequence of (4.28). The uniqueness of the solution to the initial value problem

(1.13) guarantees the convergence of full sequence EE to Fpas &€~ 0.

Theorem - Let the initial data F(x,v) = M(v) + M(v)l/2 f(x,v) > 0 with

P(0,x) = § F(x,v) dv >0 in xeRS, and let f(x,v)eB for some

m, »Q,’ eo
m>3,2>2,¢,>0 andset Wfl 2,99 = E. If E<E,, where E, is

defined in Theorem 4.3., then the solution F. (t,x,v) of Boltzmann equation
(4.1) (4.2) exists uniquely in Bm,z e Ost<a(90 -€), Oé€<€0 for‘
any &€ (0,17 and is non-negative there, where a is defined in Theorem
4.2. Furthermore there exists

. - . N <
;Lrno F% (tsx5v) = Fy (tsx,v) in Bm,a,g o 0<t<alfy-%)s 0<R<%y >
where Fo(t,x,v) is locally Maxwellian distribution, Therefore its fluid
dynamical quantities satisfy the conservation laws (1.13).

At last we note that the system (1.13) with (1.11) is hyperbolic and
has two genuinely nonlinear characteristic fields (c¢f. Chapter 1), and so

it developes in general shock waves in finite time even for the analytic
initial data.
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