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ON THE FAILURE OF VON NEUMANN'S INEQUALITY

by Anna Maria MANTERO and Andrew TONGE

Summary.- We examine von Neumann type inequalities for homogeneous polynomials

in several commuting operators on a complex Hilbert space. Our results simplify considerably

and improve slightly work of Varopoulos [7, S:I . We also generalise theorems of Dixon B] .

Résumé. - Nous étudions des inégalités de type von Neumann pour des polyndmes
homogenes en plusieurs opérateurs commutants sur un espace d'Hilbert complexe. Nos
résultats apportent une simplification considérable et une amélioration légere au travail de

Varopoulos [7,8] . Nous généralisons également des théoremes de Dixon E}] .

I. INTRODUCTION.
In 195".1 , J. von Neumann [9_] ‘proved that if T is a (linear) contraction on a
complex Hilbert spéce, then
| HQ(T)H < SUD‘“Q(Z)| : ZEC, 2| < 1}
whenever () is a complex polynomial. This result was genepélised by many people, and
are commuting

in particular by Brehmer [1_] , whose method shows that if T ., T

1 - N

operators on a complex Hilbert space H such that



(2 gl 2< bl vhen

‘and if Q is a complex polynomial in N variables, then
HQ(T1, ey TN)H < sup{lQ(zP ceey zN)I: 'an <1, 1=n= N}.
It was Varopoulos f’]] who first discovered that the more natural inequality
A N ,
HQ(TV R TN)H < sup{[Q(z1, R ZN)!: 21 lznl < 1}-
n=

is in general false. More precisely, he proved

THEOREM A [8] . Forevery K> 0, there exist commuting operators T1 yoos TN

on some finite dimensional complex Hilbert space H and a complex homogeneous polynomial

Q(z1 y ey zN) of degree 3 such that

N
(= HTnhHZ)V2 < ”h“ V h€H
n=1

- N
and HQ(T1,..., TN)H >Ksup{ |Q(z1,...,z )l: nf1 |zn!2s 1}.

In this paper, we shall give a simpler proof of the following more general result.

THEOREM 1. Let 2 =< p < o, For all positive integers S and N, there exist

commuting operators Tys oeey T

N on some finite dimensional complex Hilbert space H,

and a complex polynomial Q(z1 y ey ZN) of degree S such that

(EHTnth)Vp < bl vhen
n

and ”Q(T1,...,T )H > AN® sup{IQ(z1, e, zN)l: (::J lznip)T/DS 1}
@
o ol

where A ié a constant independent of N and <I> = % stz;q .

Here we have adopted the usual convention that (Z ‘an ip )1/ P pe interpreted as
n



sup Ianl when p=%. The symbol L:] means "integer part of .".
n
We note, following Varopoulos [8] , that the theorem for p = follows easily
from the case p =2. However, we de not pursue this point, since our method of proof
presents the same degree of difficulty for both cases.
Let us observe that a similar theorem may be proved for 1= p< 2. In this case,
the exponent @ is (g - l%) [&2'—1-] + (% - 113). The proof is the same.

Setting p =, we are able to throw some light on the precision of Brehmer's

theorem. A simple reductio ad absurdam argument proves the

COROLLARY. If p>4and K= 1, there exist commuting operators T1 g ooy TN

on some complex Hilbert space H and a complex polynomial Q(z 12 ZN) such that

(T HTnth)Vp <l wvnemn
n

ana oty .. ol >kl

The case p = of theorem 1 was proved by Dixon [3:' by a different method. In
this case, he also established an upper bound for the growth of the norm of a hbmogeneous

polynomial of contractions. We shall prove a similar result for arbitrary p, 1=<p=< .

THEOREM 2. Supposethat 1<p< o« and %+%, =1. Let T1, ceey TN be
commuting operators on a complex Hilbert space H satisfying
(= HTnth)Vp < |nll V heH.
n
Then for every homogeneous complex polynomial Q(z1 g seey zN) ‘of degree S =2 we
have
S-2

@ lor,...,moll s sk 2 ol e<psw



S-2
©) lotr,, ..., TN)”S, K(S) N f" o, ases2

where G is Grothendieck's constant (= 1.527, see [6]), and K(S)< (2e)S is the

symmetrisation constant of Davie [2_J .

In fact, part (a) is an obvious consequence of Dixon's theorem if we note that the
complex Littlewood constant is \/2— (see |:4_J ).
It should be noted that the case p =1 is trivial. However, it allows us to deduce

the pleasing, though superficial

COROLLARY. If T ., T are commuting operators on a complex Hilbert

17 " N
space H such that

el < bl vren,
then for every complex polynomial Q(z1 y ey ‘ZN), we have

llacry, ..., Tl < 2lioll).

We conjecture that the "correct" value of & in theofém 1 is in fact the exponent
of N intheorem 2. This would show Brehmer's theorem to be sharp.

The main tool that we use in the proof of theorem 1 is a probabilistic estimate of
certain norms of symmetric random tensors. We must first establish some notation.

Let {gk K 1<k_=<N, 1=s< S} be random variables such that
. 1,o-¢, R

S S
, 1
rob = 1) = prob =-1) =5, such that =
p ($k1,...,ks )=p (€k1,...,ks )=7 £k1,...,ks S0y, kg)
for every permutation ¢, and such that the family {g 1<k, <k, =< ...
k1,...,kS 1 2
o< kS =< N} is independent. If 1< p < «, we shall denote by Hg”L’(p;N;S) the

injective tensor product norm :



| (1) (S)]
€H VoA ¥ = sup {l z £ X .0 X
PSeP goP k.,..ko 'k "k
GG kysookg 177778 T S
where the supremum is taken over all S-tuples (x(1 ), ceey x(S)) of elements of the unit

1 1
ball of eIEI (g + %, =1). Here QIE] denotes the Banach space of complex N-tuples
1 1
(z1 yeens ZN) with the norm (2 ‘Zn ‘p )1/ P* If there is no possibility of confusion, we

n

srawrste el = el o= lell o

We can now state :

PROPOSITION 3. Let S be a positive integer andtake 1< p < «, Then for

all 1>6>0, andforall N, we have

prob(HgHL(p;N;S) < BN\I/) =>9.

Here B is a constant independent of N, and

D —
o~
o
[\
N
A

v = ‘I’(S,p)=

‘We shall see in section 5 that this proposition either contains or implies easily all
the probabilistic estimates of B:] -and [8] .

Finally, we urge the reader not to be too frightened by the necessarily cumbersome
notation. (S) he shéuld not hesitate to imagine throughout that S =3. This is moreover

the only case in which our results are precise

2. THE PROBABILISTIC ESTIMATE.

In this section, we prove proposition 3. The proof is essentially due to Varopoulos



l__7 ,8_‘ , but as we must make certain modifications, we give the details.

Proof of proposition 3. We retain the notations established in the introduction. First

define

= (1) (S) (1 (s)
=x 7, . ., x )=k1,.r.l £ xk1).“”kkS”

and note that
HgHL(p;N;S) < 2° sup{‘E(x“), - ,x(s))‘ } = ZS{H gm

where the supremum is taken over all S-tuples (x“), ey x(S)) of real elements of the

unit ball of  €P .

)
We observe that it is possible to cover the real unit ball of Q%. by M S(gj'—ee )N real

balls of radius € <1, whose centres a(m) ,

@) s)

Now, if we fix x*'7, ...

) ()

a ' ,...,a such that ”x(s)—a
generalisation of the identity
(xy = ab) = (x-a)y-b) + a(y-b) + b(x-a),

1< m< M, also lie in the real unit ball.

1
in the real unit ball of P, we can choose
(r.)
S H < g 1=<s<8S. Then, using the appropriate

we obtain
|E(x(1),..., x(s))— E(a(r1), 'a(PS))’

A

: (r.) (r)
1 (s 1 S
B R |

17 S 1

c(s) elllelll

A

where C(S)> 1 dependsonlyon S.

. 1 R
On choosing le =305’ - this yields |

(r.) (r_)
(1) el sZsul.:rUE:(ar1 s )|}
(r

)
where the supremum is taken over all possible choices of the a S

(s)

Now we claim that if x(”, e X are in the real unit ball of ep ' , then



- 2
(1) () J 2exp(-oc /28!) (p=2)
(2) prob l:l (x cees X 2o 2 exp(-a 2\S(1- 2/p)/ZS') (1sp=2).

To prove this, write

_sD . gs)

. X

U ..
k kg Jq is

17

where the sum is taken over all (;i1 e ey jS) which are permutations of (k1 y o ,kS).

Then
E(x“), R x(S))= z 3 . U K
k.<...<k £ R A~ T R e
1 S
It now A€ R, we have, on taking expectations
E exp D\E-(x“), R X(S)ﬂ = I cos h()tuk K )
k.<..<k 17°°°27S
i S
< exp [% A2 z (uk : Kk )2:|
k<. .<kg 7”7 g
'
<o S22k, L KSR
BN BN
exp 51 22/2] (b2 2)

< s(--1) -

explS!APN P 2] (1=p=2).
This, together with Chebyshev's inequality and a suitable choice of A, implies (2).

Thus, we arrive at

prob [:gHL( Nis) 25“ J < prob @gma 2«}

( (
Sprob[ sup iE(ar1),'...,arS))lzoc-l by (1)
’l —

=r <M
TS

1<s<S

2 E+4C(S)— NS exp E—ocz/ZS!:] (p =2)

2 -
DMC(S)_:NS exp [_0‘2 NS(1 —f))/ZS.'_] (1= p< 2).



Now, setting 7
(4S)S! log [lﬂ:ﬂi(as—)- N (pz2)
2 -
X =
. 2
1-s(1-2
(4S)S! log [l“;ﬁ(g’l N P (1<ps?2)

we have the conclusion of the pr‘oposmon°

3. THE PROOF OF THEOREM 1.

We base our proof on a construction of Dixon Bj and on proposition 3. First we
state a lemma ; the theorem will follow as a simple conseq}uence.

Since it is enough to prove theorem 1 for odd integers S, we shall suppose
thr'oughout‘ this sectionthat S=2R+ 1. If 1<p< o, weknow, by proposition 3 that

there is a symmetric tensor & such that

\If(p )

and )—BN

A

where B is a constant independent of N.

LEMMA 3.1. There exist a complex Hilbert space H and commuting contractions

U1,..., on 3-(; [eJ SH®S® [_-—| such that

U ...U =C~ N"R/2

£
ks

f=17
1,<1,. kg =Tk, kg

and Uy ..Uy h=0 VheHQB]

where C is a constant independent of N.

(Here l:e_l denotes the one dimensional complex Hilbert generated by e, HeH =1).



Proof of theorem 1. With 7 and U,...,U as in lemma 3.1, we set

1 N
QAz,y...,z.) = z T Z, ...2
O T T N & Sy,
120 00%g (5’% E
- . %, =
and write T =N 1/p U, (1 = n<N). Clearly we have ‘%} %@;/
- R ™
= HTnh”p)Vp < |nll vhedh.
n
But HQ(’T,...,T )H=| by T (T, ...T e,f>l
! N kyonoikg K10tKs K kg
S R ]
Kypoongkg 17777708
- S
_c2\S/P R
-1 ((S/p")-(R/2)-Up")||..||
=2 (BC N T
> 80)”" N |
R/2 (p=2)
where a direct calculation shows that D = .
3 2 1 1
(2_5)R+(2_§) (1<p=2)
Observing that R = [%l] , Wwe have the result required.

We now follow Dixon's construction to give the

Proof of lemma 3.1. First of all, we define

H=E . & ...8E,®F,96 ... 8 F

1 R R 1

where E_, F_  are complex Hilbert spaces with -bases -{e
r r k1 goas
- P 3 < . < ’ K3 3
and {fj1, . ’jr ; 15;11 S...5),S N} respectively. Now, if 1= k1, e

let us write E<1 yeony kr] for the non-decreasing rearrangement. We define, for

1= n=<N, the operators Un:56 93{5 by



10.

Ue=e
n n
Ue T =e 1<r=<R-1
n E‘V'"’kr:l [n,k1,...,krj ( )

Ue . = z T . . f. .
n [k1”"’kR] J'1S...SJR ~n’k1""’kR’J1"“’JR Jis+--5dR
0 if n¢{j1,...,jr}

Unf['. o= _ (2<r=<R)
L Wl £[; . . .7 it n=ijg
J]’”’JS—1’JS+1’“’JI‘
U.nfj=6mf
Uf =0
n

By the symmetry of £, the Un' s are commuting operators. They will be contractions

if
lel . . ., sc®2,

But, by the proof of proposition 3, we see that it is possible to choose £ in such a way

that we have simultaneously

.
<BN
lell e oo
and lell .,
| p280% S0% < c NR/2
N N ‘
where C is independent of N. Since the products Uk ce U.k - evidently have the
1 S

required property, the proof is complete.

4. THE PROOF OF THEOREM 2 AND ITS COROLLARY.
It will be convenient to isolate two lemmas. The first resembles Crothendieck' s

inequality, but lies much more on the surface.



11.
LEMMA 4.1. Consider

1< p<2 and suppose that X (1=n=N) and Yim

(1=m< M) are elements of a Hilbert space satisfying

z ”anp s1 a2 Hymllps 1.
Then for any matrix (a mn) we have

23 o ) [ < B 2 s

where the supremum is taken over all s = (sn) and t= (tm) with

<1.

(r?lsnip)vp <1 and (nzi |tm|D)1/p

Proof. There is no loss of generality in working with the Hilbert space of finite

dimension D generated by the xn's and the ym‘ s. In an orthonormal basis of this

space, our hypotheses may be rewritten as

f(g lxnd.|2)1:>/2 <1 and ﬁ(f ]ymdlz)p/z <1

Suppose now that Ha” iv .1 = 1. Then
A1

P
N
If ﬁ anm<xn’ym>| = lf 1?1 ?anm %hd Ymd

<z Ixnd !p)1/p (z ‘ymd1p)1/l) by hypothesis
d n m
' | 2/a]1/2 2 ]1/2
SE (2 g P /p] E’f (2 'Ymdlp) 4l
2p/2] /P 2 /2:'1/13
< &3(5 lxndl P J [ﬁ(glymd‘ P

by Minkowski's inequality (since p =< 2)

=< 1 by the conditions on the xn's and the ym's.

It should be noticed that a similar lemma is valid for all 1< p < « - except that



12.

we must introduce Grothendieck's constant into the inequality when p> 2.

- P ¥pP ,pP ’
LEMMA 4.2. Let 1<pse. Thenit I:8J®8y »07, is the identity mapping,

we have
] < miny'/P | M'/P).

Proof. This follows immediately from the observation that if Hah ” v =1
N "M
p p
then i |anml <1 ¥n and f‘anml <1 vVm

We may pass to the

Proof of theorem 2. We have already observed that it suffices to prove (b). Let us

then fix 1=<p< 2, andletus write

_Q(z1,...,zN)= z ay
k1, ..
where a is a symmetric tensor.
K,y.. ,kS

If g,h€H, thenitis clear that

n ol < WP ezl glP < lelp,
2 S k 1

Using lemma 4.1, we see that

‘(Q(TV...,TN) h, gl =|k1..2.ks akw .,kS<Tk2...TkSh,T;1g> |
< [l [nll Tlgl.
9;'5-1 éeﬁll
By a repeated application of lemlﬁa 4.2, we ﬁave
lacry, . mll < NSVl
_ n(8-2)/p! | (1 (8) |
=N z ,
p>) Ixs(gs)lp\<1 k1, .. ,ks ak1’ co ,kS Xk1 XkS
n

n



13.

< N(S—2)/p' K(S) su \ z ay, K X e X [
2|xn3"s1 S A T S
n A 3356/‘:#
by Davie's symmetrisation process l:2:[ . (§ 7, ”:
. , TN
This is exactly what was required. gy v

To prove the corollary, we simply have to express the polynomial Q as a sum of
homogeneous polynomials QS of degree S, and note that under the hypothesis, we shall

have
log(ry, ..., mll s 278llagll, < 278kl

The last inequality may be deduced easily from the well-known fact (see l:2:l for example)

mat g, < llell,.

5. THE DEDUCTION OF VAROPOULOS' ESTIMATES.
Since many of the proofs in [_—7] and [8] are either involved or use the Kahane-
Salem-Zygmund theorem, we feel that it is of interest to show how to deduce them simply

from proposition 3. Accordingly, we shall fix S =3 throughout.

PROPOSITION 5.1. For every integer N, there exists a symmetric tensor £

such that
- Eie =+ 1 Vi<i,jk<N
for which
(1) el S, L, s ka2
eN P’N® N
(2) ||€H 1901 Y 01 < KN°
QN®8N®8N
and
1
~ ~ > =
(3) ”5)’91‘3@9;@@; z N
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for some constant K indeperident of N.

Here ® deriotes the projective tensor product.

Proof. Choose 6§ > l, p=2 and p=1 inproposition3. This yields (1)and

(2). (3) follows, as in [7:, , from the observation that

3 _ . _
ooz e lceolslell oo lel
1)) N° NN NN N
One may deduce proposition 1.1 of [SJ as an immediate corollary.
Ifnow a and b are elements of the algebraic tensor product 92 Y 92 &® 92,

wa may define a multiplication by

ab = (a5 b1 § k<o

It is known [8] that when 92 ® 92 ® 92 is given the injective tensor product

norm, this multiplication is not continuous. Let us prove a more precise result.

PROPOSITION 5.2. Under the above multiplication, we have

(1) lbll g,y < N2 Nlll bl iy 2 €02 S02 802
and
(2) There exists a tensor a € Q; @ 91% ® Qli such that

HaZH ) 2 AN1/2 HaHi(

L(2;N 2;N)

where A 1is a constant independent of N.

Proof. For (2), we need only choose, as in proposition 3, a random tensor £
with ||¢ HL(Z) <BNY2. Then

2 3/2 1/2 2
oy - W72 = w20kl

e
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‘We pass to the proof of (1). Suppose then that HaHL(Z) < 1 and that Hb“L(z) <1.

Take

Elsi‘ZST . zlel2<1 and z|uk|251.
i j J K
Then |2 T a;q by s tou l =z (sl i( z lai‘k Uy ‘2)1/2 (z |bi.kt. ‘2)1/2
i j K kI j ; jx jx kT
and this will be <|/N it we can show that
' 2 2
z la.. u } <1 and z ‘b.. t.l < 1.
. ijk "k . k
ik Y ik O
However, it follows at once from the hypothesis that Z I z aijk u |2 < 1 whenever
i k
luk 12 < 1. But, replacing . by + U and averaging over all possible choices of

z
k :
+ , We obtain the desired result.
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