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Preface

Like the others in this collection, the present book has different aspects : history,
classical mathematics, contemporary mathematics. The period of time extends from
1807, when Fourier wrote his first memoir on the Analytic Theory of Heat, to 1994
and the last developments on wavelets. The work is divided into two parts. The
first, written by Jean-Pierre Kahane, deals with Fourier series in the classical sense,
decomposition of a function into harmonic components. The second, by Pierre-Gilles
Lemarié-Rieusset, expounds the modern theory of wavelets, the most recent tool
in pure and applied harmonic analysis. There is an interplay between these two
topics. Some common features appear in their history, their linkage with physics and
numerical computation, their role and impact in mathematics. Since the first part is
more classical, emphasis was put on the historical aspect ; how problems appear and
move in the course of time. The history being shorter in the second part, the purely
mathematical exposition - including original contributions - plays a central role.

From the Fourier point of view mathematical analysis originates from the study
of Nature and expresses natural laws in the most general and powerful way. At first,
Fourier series are a general method, including a good numerical algorithm, to describe
and to compute the functions which occur in the heat diffusion and equilibrium. Then
they become an interesting object by themselves and the germ of new theories, devel-
oped by the followers of Fourier. In succession we see Dirichlet and the convergence
problem, Riemann and real analysis, Cantor and set theory, Lebesgue and functional
analysis, probabilistic methods, algebraic structures. Classical Fourier series are still
a seminal branch of modern mathematics, as well as a tool of constant use by physi-
cists and engineers. The fast Fourier transform extended this use enormously in the
past thirty years.

Interaction with physics and construction of efficient algorithms for numerical
computation, which appear in Fourier series from the very beginning, are also at
the heart of wavelet theory. Here the initiators were engineers and physicists, and
mathematicians came later. But in no time wavelets became a unifying language and
method outside and inside mathematics. Now they play a decisive role in the new
network which expands between mathematical analysis, theoretical physics, signal
analysis, image analysis, telecommunications, fast methods of computation, thanks
to which new applications were found for purely mathematical theories.

The book is meant to give an idea of these movements as well as solid information
on Fourier series and the state of the art about wavelets. On these matters the authors
have personal experience and personal views. This is clear in the choice of the original
papers by Fourier, Dirichlet, Riemann, Cantor, reproduced in the first part of the
book, as in the choice and treatment of purely mathematical questions, both in the
first and second parts.

The authors are grateful to a number of colleagues and collaborators for their
help in scientific, linguistic or bibliographic matters, among others Fan Ai-hua, Olivier
Gebuhrer, Monique Hakim, Geoffrey Howson, Lee Lorch, Yves Meyer, Héléne Nocton,
Hervé Queffélec, Jean-Bernard Robert, Jan Stegeman, Guido Weiss.
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Josette Dumas had to convert our handwritten manuscripts into a real book. If
the reader appreciates the presentation of our work the merit belongs to her.

The figures of Part II haven been drawn with help of MICRONDE, a software
developed at Orsay by Y. and M. Misiti, G. Oppenheim and J. M. Poggi as a pre-
liminary version of a MATLAB wavelet toolbox.
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Chapter O

WAVELETS : A BRIEF HISTORICAL ACCOUNT

Before proceeding in the following chapters to a detailed mathematical presentation
of wavelet theory, we begin with a historical sketch of the how and why of wavelets.

Wavelets have a very short history ; they appeared some ten years ago and from the
very beginning they became a popular and promising tool for various scientific applica-
tions. Ten years later, a striking feature of wavelet history is the following point : as
we shall see, most of wavelet theory (according both to theoretical ideas and to actual
applications) has been known for long before its appearance as a new mathematical tool.
The reason why wavelets became so popular is therefore not that much the novelty of the
theory itself, but the easy way it gave to the unification of former ideas which were used
in a wide variety of scientific fields (as e.g. Littlewood-Paley decomposition in real har-
monic analysis, coherent states expansion in constructive quantum field theory, pyramidal
algorithms and multiscale filtering in computer vision, subband coding schemes in signal
processing, refinement schemes in computer-aided design, and so on). This unification
has its own dynamics, allowing scientific cooperation between searchers from very various
fields and modifying deeply the scientific perception of many issues in each of these fields.
An excellent introduction to this aspect of wavelet theory is the little book by Y. Meyer
“Ondelettes : algorithmes et applications” [MEY7], and his recent survey paper in the
Bulletin of AMS [MEYS|.

1. Jean Morlet and the beginning of wavelet theory (1982).

In the beginning of the 1980’s, J. Morlet developped a new time-frequency analysis,
using what he called “wavelets of constant shape”.

Time-frequency analysis has always been a challenge in signal processing. In the
study of transient signals, which are evolving in time in an unpredictible way, the notion
of frequency analysis can only be local in time. Functions cannot be represented any more
as a superposition of waves (i.e. of sinusoids with infinite duration), but as a superposition
of wavelets (waves of short duration).

A strong limitation for the development of a time-frequency analysis is the fact that
a wavelet cannot have a frequential dispersion and a time duration both arbitrarily small.
This is related to Heisenberg’s inequality and thus often presented as an uncertainty prin-
ciple in books on signal processing. This limitation is expressed by the inequality

o0 >

[ R
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where o; is the time dispersion of ¥ :

(f(t—to)2 | w(t) |? dt’)”z
TTo@) P &

and o; its frequency dispersion (defined by the same formulas as o;, where 9 (t) is replaced

by its Fourier transform ¥ (¢) = [ e~**¢¢(u)du, and t by ¢). The minimum value is attained
only for Gaussian functions

Ot — inf
to

b= Ceiwte—)‘(t—to)’.

[Note that oi0¢ is invariant under the three following operations :
e shift in time : ¥ — ¢¥(t — to)
e modulation (i.e. shift in frequency) : ¥ — e**¢(t)
e dilation : ¢ — ¢(At) (A > 0)].

In 1946, D. Gabor introduced a time-frequency analysis, which is often called the
short-time Fourier transform. The idea is to use a window function ¢ in order to localize
the Fourier analysis, then to shift the window to another position, and so on. The striking
features of this analysis are the local aspect of the Fourier analysis (with resolution in
time equal to the size of the window) and the fact that it deals only with a discrete set of
coefficients (which allows numerical processing of those coefficients). In Gabor’s formalism,
one analyses the signal f(t) by help of the window g(t) and compute the coefficients

(1) C(m,n) = / f()g(t — nto)e"™°tdt, meZ, n € Z.

It means that we have localized f around nto with help of the window g(t — nty) (where
to is roughly the “size” of the window), and then computed the Fourier coefficients of our
localized f(t)g(t — nto) corresponding to the frequencies mwo (where the wavelength -Z—;’E
corresponds to the size of the window). If we want the representation to be complete, it is
necessary to choose towg < 27. Gabor’s choice for the window function g was the Gaussian
function ¢(t) = 2%e~ ™" with ¢, = 1 and wo = 27 ; the choice of the Gaussian function
was motivated by the desire of minimizing the joint resolution oio¢. Other windows have
been proposed in signal processing, mainly compactly supported and regular windows (the
regularity is required in order to avoid the creation of important high frequencies in the
signal f(t)g(t — nto)).

Another very popular tool for time-frequency analysis is the so-called Wigner-Ville
transform :

) W (t,w) = f F(e+2)T(e-3) eias

2 2

Though not positive-valued, the Wigner-Ville transform is often looked at as a density in
the time-frequency plane, since it satisfies

[wioa=1i@r wma [wiagk=-rer.
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But the non-linearity of the transform creates interactions between distant times or distant
frequencies which makes this “density” very delicate to use. However, the Wigner-Ville
transform has remained since its creation by J. Ville in 1947 [VIL] a very popular tool in
signal analysis (and seemingly a very efficient one for short duration signals).

In 1982, J. Morlet modified the Gabor wavelets in order to study the layering of
sediments in the geophysics of oil exploration. He was a French engineer, a former student
of the Ecole Polytechnique, and was working for the French oil company EIf Aquitaine.
The problem he was working on was the following one : one generates acoustic waves at
the surface of the earth and records then the reflected waves ; in the data which are thus
received, one tries to find the influence of each sediment layer, which can be found by
the instantaneous frequency of the reflected waves (since some waves are trapped inside
the layer and some not). Since there are different layers, one seeks to determine different
instantaneous frequencies. Morlet tried to use the Gabor wavelets, but he was dissatisfied
for many reasons : the Gabor wavelets oscillate too much at high frequencies (leading to
significant numerical instability in the computation of the coefficients) and too little at low
frequencies, while they don’t allow a practical reconstruction formula.

Then Morlet had the idea of using dilation instead of modulation. He decided to use
analytic signals F(t) instead of real valued f(t) (F is related to f by k&) = f ©if¢>o0
and 0 if £ < 0) ; if f belongs to L? then F belongs to the Hardy space H? of complex
valued square integrable functions F such that Supp F' ¢ [0,+00] ; this is an usual tool
for defining the instantaneous frequency (if F(t) = A(t)e*?(®), 4 bemg the modulus and ¢
the phase of F(t), then the instantaneous frequency is defined as dt £2). Morlet worked with

the wavelet ¢ defined as z/)( ) = &% —&/25 ¢ >0 (which is the analytic signal related
to the second derivative of the Gaussian) or as $(£) = Elg (me—(§—50)2/2 + e“ﬁg/ze“'fz/z)

for £ > O (related to the difference of Gaussian functions E‘gi}?e(-——e”"g"'“ + e~45/2) =" /2,
0

a good approximation to the second derivative (z2 — 1)e~= /2 of e=="/2 if €o is near to 5)

; for practical computations, e —£&/2 ig neglictible and thus the Morlet wavelet can be seen
as a modulated Gaussian function. Then Morlet decided to filter the signal F(t) by help
of the filters ¢(al*¢) (m € Z) :

F{t) = Folt) = / F(t — s)az™(—ag™s)ds.

The operator F — (Frn)mez could be seen as a filtering with a filter bank of band—pass
filters ¢(a3‘f) with constant quality factor : the filters kills nearly all the frequencies
outside of a band { - 5,?- Wy + —m] where wy, = 2%, Ay = ai,% so that the ratio
(4] [+
—3—*3: is constant. Moreover, the key observation of J. Morlet was that for small enough
ao the quantity > .z | P(al*€) |* was near to be constant : indeed if we define p as
snpz ez PO ) .
p = mf Z NG Or then for ap = 2 (a convement value for computer processing)

p < 1 1 in case of the second derivative of Gaussxan and p < 1.3 for the difference of
Gaussian (with § ~ 5.336). Those values of p allowed stable and fast reconstruction
algorithms of F from F,,’s, even for ap = 2.
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The second idea of J. Morlet was the way how to get a discrete sample (for numerical
processing) providing a good representation of the F,,(t). Since (2™ ¢) was to be seen as
a band-pass filter with band-width A,, proportional to -2—%,;, Morlet decided (according to
Shannon’s rule for the sampling of band-limited signals) to sample F,(t) on a regular grid
with a mesh proportional to 2™. He found experimentally that the mesh b,, = 2™ was
small enough to allow still a good reconstruction for the choices of his wavelets, so that he
dealt finally with the coefficients

(3) C(m,n) = Fp(n2™) =< F(t) | 27927 ™t —n) >.
The wavelet transform was born.
2. Alex Grossmann and the Marseille team (1984).

In 1982, J. Morlet had already constructed his wavelet transform, which he found to
have remarkable numerical efficiency. But he wondered to which extent this transform was
mathematically correct, and in order to answer this question he began to work with Alex
Grossmann, a theoretical physicist working at the Centre de Physique Theorique (C.P.T.),
a C.N.R.S. laboratory located in Marseille.

A. Grossmann and his co-workers (as e.g. Thierry Paul and Ingrid Daubechies) related
the Morlet wavelet transform to the theory of coherent states in quantum physics. Instead
of looking only at a discrete set of dilations, they introduced the so-called continuous
wavelet transform [GROS] where all dilations are to be considered :

1 z—b
VAL

Now, the mapping Usp : ¢ — 7{; - 9(22) is unitary on H? and (a,b) — U,y is an
irreducible representation of the affine group az + b into L{H?2, H?). Then it was easy to

see that there was an unbounded operator A on H? such that for all ¢ € D(A) and all
f 1, f 2 €H z ’

f— Cla,b) =< f| )>,a>0, beR.

@ L<ﬁlmdw><mdwLh>@w@=<MH¢%dﬂﬁ>

where G is the affine group az + b and ‘du is the Haar measure on G : du = -jf%—db. [Of
course, formula (4) holds for a more general class of representations of groups ; it allows the
decomposition of f € H as a superposition f = ’<Tﬁ%T¢—> fo < £ 1 U (%) > Uy(¥)du(g) of
elementary “states” U, (1), the so-called coherent states]. In the az + b case, the operator
A is defined by Af =| ¢! f, and ¢ satisfies (4) with a finite < Ay | ¥ > if and only if
1 satisfies the admissibility condition :

[ 1o P % <.
0 £
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Thus, the Morlet transform appeared to be a sampling of the coherent states expansion
f =< f | Usp(¥) >, and a way to compute back f from this sampling. I coherent
states for the affine group were not new (they had been introduced in 1968 by Aslaksen
and Klauder [ASL]), the efficient algorithmic reconstruction formulas of J. Morlet were
however both new and far-reaching.

The second important idea introduced by A. Grossmann was that the problem of
stable reconstruction of f from its discrete wavelet coefficients (as processed in the Morlet
algorithm) was to be related to the theory of frames. The notion of a frame was introduced
in 1952 by Duffin and Schaeffer for the study of non-harmonic Fourier series [DUF]. They
dealt with the problem of non-uniform sampling for band-limited functions : if f satisfies
Supp f C [~7,7] and f € L2, when can we have stable reconstruction from a sample

(f(An))nez ? They showed that this problem was equivalent to the existence of two positive
constants A such that for all f € L2([—~,])

/ f +tA“tdt

then they defined a frame in a Hilbert space H as a familly (en)nez such that for
some A, B >0andforall feH :A| Fl4<Sgz i< flen>P<B| % .
At that point, the problem of stable reconstruction of f from its wavelet coefficients

A {f(t ) [Fde< Y

ncZ

<B K | F(£) |? dt ;
it |

< I \/sz (z“"i"“ )> was reformulated as the problem of estimating the quantity

S (11 g0 (=22 )|

in 1986, which could even compute numerical estimates for the frame bounds A, B for a
large variety of wavelets ¢ [DAU2].

This cooperation between J. Morlet and the Marseille University went much further
than reshaping the Morlet wavelet transform in the language of coherent states and es-
tablishing its mathematical safety. Physicists understood very quickly that the Morlet
algorithm, decomposing a function on the whole family of scales, could be an efficient
tool for multiscale analysis. The need for such an analysis emerged in the 1970’s and the
80’s in the field of non-linear physics, where chaotic dynamical systems lead to the study
of the multifractal structure of strange attractors (see [ARN] for an introduction to the
case of wavelets in this setting). Around Morlet and Grossmann, a network of scientists
from various fields began to explorate the use of wavelets as a multiscale tool ; among
them, we may quote Richard Kronland-Martinet, working on acoustics at the Labora-
toire de mécanique et d’acoustique (Marseille), who wrote a software for wavelet analysis
which has been extensively used, Marie Farge, working on turbulence at the Laboratoire
de météorologie dynamique (Paris), and Alain Arneodo, working on critical phenomena at
phase transition at the Centre de Recherche Paul Pascal (Bordeaux).

Marseille has remained an important center for wavelet theory, with an important
financial support of the C.N.R.S., organizing two international conferences on wavelets in
1987 and 1989 [COM], [MEYS6] and regular workshops at the C.LR.M. (Centre Interna-
tional de Rencontres Mathématiques). One of the most impressive achievements of the

. This could be done successfully by I. Daubechies
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Marseille team is the development of the ridge-skeleton algorithm, a method for extracting
the modulation laws of asymptotic signals [TCH]. In the meantime, A. Arneodo and his
co-workers have developped an impressive program for proving the hypothesis of Frisch
and Parisi (1984) on the multifractal structure of the singularities developped in turbulent
fluids. In 1989, they published in Nature a paper entitled “Wavelet analysis of turbulence
reveals the multifractal nature of the Richardson cascade”, [ARG], and now are develop-
ping the numerical setting for a wavelet-based calculus of the spectrum of singularities of
the turbulent signals [BAC], [JAF4]. '

3. Yves Meyer and the triumph of harmonic analysis (1985).

In 1985, wavelet analysis entered the mathematical field. Y. Meyer was teaching
mathematics at the Ecole Polytechnique, and his researches were centered on the theory
of Calderén-Zygmund operators, a generalization of a class of operators studied by A.
Calderén and A. Zygmund in the late 50’s. The class studied by Calderén and Zygmund
can be roughly described as (in dimension d) convolution operators with distributions
which are homogeneous of exponent —d ; equivalently, we may describe them as operators
commuting with dilations and translations. Jean Lascoux, who was chairman of the Centre
de physique théorique at the Ecole polytechnique, then drew the attention of Y. Meyer to
the wavelet transform of A. Grossmann and J. Morlet, an analysis which is itself invariant
under dilations and translations.

Y. Meyer understood immediately the deep connection between his sophisticated
mathematics and the algorithm developped by J. Morlet. The formula

1 da
(5), f= 0+°ol§i’(€) 12 %{// <f’¢a,b>¢a,b;§‘db

was a well-known formula in real harmonic analysis, the so-called Calderén’s resolution of
identity introduced in 1964 in the context of Banach space interpolation [CAL] and exten-
sively used for providing “atomic decompositions” in Banach spaces of distributions. The
striking novelty, however, was the vindication that this formula led to efficient algorithms
in order to explore the multifractal structure of nature. Meyer was deeply impressed and,
according to his own words, “took the first train to Marseille.”

Y. Meyer was the right man at the right time. His mathematical knowledge, and his
ascertained acquaintance with Calderén’s formula, allowed him to give a mathematical
foundation to wavelet theory, mainly based on the Littlewood-Paley-Stein theory of spaces
of regular functions. This theory is presented in the books of E. Stein [STE1], [STE2]
who developped it in the 1950’s and the 60’s, using as its main tools the Littlewood-Paley
decomposition of functions (generalized from the work of Littlewood and Paley in the 30’s),
the Lusin area integral (another variant of the wavelet decomposition formula (5) using
the wavelet Gﬁg), the Calderén-Zygmund convolution operators and covering lemmas
for open sets using dyadic cubes (those lemmas are connected to dyadic martingales and
to the Haar basis (1909)).

The first contribution of Y. Meyer (with Daubechies and Grossmann) was the con-
struction of a “painless” wavelet decomposition : he constructed a (real-valued) wavelet ¢
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such that :

(6) ViELXR), F=3 5 <fldik>bin

JEZ kEZ

where 1, p = 27/2¢(27z — k), P € € and 0 ¢ Suppy [DAUG]. This is easily done by
adapting the Littlewood-Paley-Stein decomposition f= Zje% K;f = Zjezzf)(%) f (&)
where @ =| ¢ |2 and 3 6)(—2-57) = 1. Such a construction had been independently explored
by Frazier and Jawerth under the name of the p-transform [FRJ] in the context of harmonic
analysis. ;

In-this construction, the frame (4;x) was a redundant system of analyzing functions.
Y. Meyer believed this redundancy to be unavoidable (by analogy with the Balian-Low
uncertainty theorem for Fourier windows [BAL]) and he tried to prove that there was no
Hilbertian basis (¢;x = 27/29(27z — k))jez kcz of L*(R) with ¥ localized in space and
frequency. Then he was very much astonished to discover such a basis, with P € C® and
0 ¢ Supp® : % was as regular, oscillating and localized as possible ! (He was very lucky
in the finding of his basis : if he had tried to find a basis of H%(IR) instead of L?(R)
or a basis with another integer dilation factor than 2, he would have failed : there is no
such basis with ¢ € § !). Using the machinery of Calderén-Zygmund operators and of
Littlewood-Paley theory, he was able to prove that his basis was an unconditional basis for
several classes of Banach spaces used in harmonic analysis. He exposed his construction
at the Colloque Peccot organized in September 1985 at the Collége de France and at the
Séminaire Bourbaki in February 1986. Thus, a large echo was given to wavelet theory
among mathematicians.

This connection between wavelets and functional analysis has been very important,
not only for mathematical foundation of the theory, but also for applications. The 2-
microlocalization of J. M. Bony, a tool introduced for the study of the propagation of
singularities in non-linear PDE’s, has been turned in an efficient tool for the analysis of
the chirps in signal processing or of the multi-fractal singularities in turbulence (S. Jaffard
[JAF4], Y. Meyer [JAM]). The analysis of Calderén-Zygmund operators has been turned in
an efficient algorithm for the calculus of the matrix of parametrices of differential operators
(G. Beylkin, R. Coifman and V. Rokhlin [BEY1]). The scale of Besov spaces, which was
mainly used in approximation theory or in PDE’s, has been introduced in statistics as a
convenient tool for estimation or compression problems (D. Donoho [DON1]).

From 1985 up to now, Yves Meyer (who moved to the Université Paris IX) and -
Ronald Coifman (Yale University) accompanied all developments of wavelet theory and
applications in every direction, and their strong commitment to meet scientists from various
fields and countries and discuss with them about the specificical issues of their field surely
played a great réle in the rapidity of the diffusion of wavelet theory among scientists.

4. Stéphane Mallat and the fast wavelet transform (1986).

In September 1985, Y. Meyer tried to extend his construction of a wavelet basis to a
multi-dimensional setting, in order to have a nice and complete theory established before
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his talk at the Colloque Peccot at the end of the month. Guided by the analogy with
the Haar basis (in dimension 1, the basis is given by (¢;x = 237 21,&(2’: z — k))jez kez
with ¥ = X[0,1/2] — X[1/2,1) and in dimension d by (¢;k, = 27%/24p (272 — k))jez kez
where € € {0,1}*\{(0,-,0)}, ¥e = ¥(e,) ® - @ P(e,)> Y(1) = ¥ and Py = © = X[o,1))>
he postulated the existence of a function ¢ completing his wavelet . This function ¢
was constructed by P. G. Lemarié and the analysis described by the new system was
reformulated by R. Coifman and Y. Meyer as a double family of orthogonal projection
operators : in dimension 1, the operators P; are given by :

(7) Pif =Y <fleix>eir (pir=2"p(2z—k)
| keZ

and the operators Q; by

(®) o Qif =S < fldik> vk (e =222z~ k) ;

keZ

the main relationships are then :

P;f—0 a j——oc0, PFPif—of as j—o+4o

+c0
Qj=Pjr1—P;, sothat f=Pof+) Qif = Qif.

7=0 JEZ

Some months after, G. Battle (working on constructive quantum field theory) and P.
G. Lemarié (a former student of Y. Meyer) announced independently the constriction of
spline orthonormal wavelets with exponential decay. One more time, one constructed a
“mother wavelet” 1 generating an Hilbertian basis ¢;,k of L?(IR) and thereafter a “father
wavelet” ¢ allowing the extension of the construction to RR%. The connection of wavelet
theory to spline functions seems afterwise very natural : in a way, this can be described
as a primitivation of the Haar basis followed by a Gram-Schmidt orthonormalization. As
a matter of fact, this had already been done in 1981 by J. O. Stromberg, who exhibited
spline wavelet bases as unconditional bases for real Hardy spaces H? (0 < p < 1) ; but
Stromberg’s construction had little echo outside of the circle of specialists of Hardy spaces.
Five years later, the quick expansion of wavelet theory in applied mathematics gave an

important echo to the Battle-Lemarié construction.

‘ The first consequence of this sudden blooming of mother and father wavelets was
produced in a seemingly remote scientific field. S. Mallat was preparing a Ph. D. in
electrical engineering science in Philadelphia. He understood very quickly the structure of
the underlying algorithms in these “¢b and ©” wavelet transforms. If we assume Pof to be
given and we want to compute its decomposition as Pof = P_.Nf + QN+ Q@-ny1f +
-«++ Q_1f, this can be quickly performed by the cascade of decompositions

Pof =P 1f+Q-1f,P1f=P_of +Q-2f, -, P_.ny1f =P_nf+Q-N/,
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and the decomposition
P—jf = P-—j—-1f + Q—j——lf

has a very simple structure : since P_j_yf = P_;_1(P—_;f), we have if we write P_;f=
Zke% sj,kﬂﬁ_j,k

z
Si+1,k =< Z Sj,eP—j,e | P—j1,k >= Zsz e<olz—L+2k) | == \/— (g) >
LEZ ez

= E s;,ehak—e.

e

Thus the projection P_;f — P_;_1 f was, in terms of the coefficients (s; ;) and (s;41,%), 2
convolution followed by an undersampling. Such algorithms were already used in computer
vision (as e.g. the Laplacian pyramidal algorithm of Burt and Adelson (1983) [BUR]) or in
signal processing (the subband coding scheme of Esteban and Galand (1977 [EST]). Even
the orthogonality of the projection operators could be formalized in former settings ; the
filters used in the decomposition P_;f — P_;_3f and P_;f — Q_;_;f were quadrature
mirror filters with perfect reconstruction (Smith and Barnwell (1984) [SMI]).
Thus, S. Mallat inserted the wavelet transform in a field which was at that time in
a full expansion. Following the Laplacian pyramidal algorithm, he was able to describe a
fast wavelet transform, which has deeply modified the algorithmic structure of the wavelet
transform. Natural applications of this new algorithm were data compression in signal or
_ image processing, edge detection or texture analysis in computer vision. Wavelets became
a common tool in signal processing, and the many journals edited by the IEEE began
to publish papers on wavelets (up to a special issue of the Transactions of the IEEE on
Information Theory in 1992). ,
' S. Mallat developped with Y. Meyer the formalism describing the sequence of projec-
tion operators P;. This is the formalism of the so-called Multi-resolution analysis : P; is

the orthogonal progectlon operator onto a closed subspace V; of L?(IR), where the spaces
V; satisfy :

() Vi CVi41, Njez Vs = {0}, Ujez Vs is dense in L?
(ii) (Z)'EVJ & J(22) € Vi
(iii) Vo has an orthonormal basis (¢ (z—k))xez With  rapidly decaying at infinity (Vk € N,
zkp € L?).

o is called “the” (orthonormal) scaling function associated to (V). It satisfies

z
fp(~2-) > <<p( ) | o(z — k) > (= - k).
keZ
The scaling filter mg associated to ¢ is

mo(f)‘—'%z <<,o( )Iep(x—-k)>e kg

k€Z
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and “the” orthonormal wavelet ¢ is given by

$(€) = e/ mo (g + w) é <§) :
5. Ingrid Daubechies and the FIR filters (1987).

Mallat’s work focused the attention on the quadrature mirror filters which were used
‘in the fast wavelet transform. In order to produce compactly supported mother and
father wavelets (or, in the new language, wavelet ¢ and scaling function ©), it was equiv-
alent to seek for a quadrature mirror filter (with perfect reconstruction) with a finite
impulse response ; it means to find a trigonometric polynomial mg such that mg (0) =1,

| mo(€) |2 + | mo(é +7) |*= 1 and such that H;-v:l mo (—2%) X{—,x] (ﬁr) converges
in L? to T2, mo (—25,-) , such a condition being requested in order to obtain that ¢,
‘defined by [I5Z; mo (5‘5;) = ¢(£), inherits the property Y iz | @(€ + 2k) [°= 1 [ie.
< p(z) | ¢(z — k) >= bk0) from the partial products HN 1 Mo (56;) X[—m,m) (5%') .

I. Daubechies showed that it was enough to deal with | mo(¢) |2 instead of mo (and
then use the Riesz lemma on the “polynomial square root” of non-negative-valued trigono-

metric polynomials), and that the so-called maximally flat filters of O. Herrmann (intro-
duced in 1970 [HEM]) could be taken as such filters | mo(&) |* . In that case, we have

k=0

it is a polynomial of degree 2N — 1 such that

P 5\ N-1
m1,(7f)'" a—fml( M) == <3_5) my(7) = 0,
N-1
while m;(0) =1, 3 €m1 (0) = ( aae) m1(0) = O (this flatness of m; at 7 and at 0

up to order N characterizes m; among all trigonometric polynomials of degree 2N — 1).
Hermann’s ﬁlters were intended to mimick the ideal cut-off filter m; (§) =0if § <| E|<
1if | £|< %, § if | £ |= §. They were designed in the purpose of signal processmg, and
the fact that m, (&) +my (& + 7) = 1 was in a way accidental (Hermann introduced indeed
a more general class, in order to mimick other ideal cut-off filters such as m,(§) = 1 if
| €< co, 0if co <| & |< 7).

I. Daubechies showed that this choice of | mo(&) |? of degree 2N — 1 leads to a

compactly supported orthonormal scaling function o of support[0,2N—1] and whose reg-
ularity was increasing linearly with N (py € C*¥ with ay ~ (1 2Ll'_?og32) N when

N — +o0). Moroever the flatness of | mo(£) | at 7 could be rewritten in terms of the
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celebrated Strang-Fix conditions in numerical analysis : every polynomial P(z) of degree
< N — 1 could be written as

P(z)= ) <P|on(z—k) >on(z—k).
keZ

Her paper presenting her construction was published in 1988 in the journal Commu-
nications on Pure and Applied Mathematics [DAU1] and has remained the basic reference
about wavelets for most numerical applications (since it provided tables of coefficients of
the filters for the first values of N and presented an algorithm to plot the scaling function
©n). I. Daubechies, who began as a theoretical physicist sharing her time between Bel-
gium and Marseille, joined the AT&T Bell Laboratories at Murray Hill (New Jersey) and
developped the application of compactly supported scaling functions to signal or image
processing. The Daubechies functions are now intensively studied through the world and
enter the family of special functions (with quadrature formulas, algorithms for tabulating
-the functions and their derivatives or their primitives, and so on ...), and a special section
of the celebrated book of mathematical routines Numerical recipes has been devoted to
the wavelet transform.

Thus, between 1982 and 1988, wavelet theory was deeply and constantly modified by
its interaction with more and more scientific fields, and each time the focus was shifted
from one field to another one connections were found with most recent and promising de-
velopments in the new field : the multifractal hypothesis of Frisch and Parisi was published
in 1984, the Calderén-Zygmund operator theory has been deeply renewed and illuminated
by the David-Journé theorem in 1983, the Laplacian pyramid of Burt and Adelson ap-
peared in 1983, the quadrature mirror filters with perfect reconstruction were introduced
in 1984. Wavelet theory doesn’t unify these theories or algorithms, which have their in-
trinsic motivations and applications, but it gives them a common language, which allows
quick interactions between pure and applied mathematicians, between mathematicians and
physicists, or between theoretical physicists and engineers, and so on.

The history of wavelet theory doesn’t end in 1988. Much work has been done since
1988, which is exposed in the following chapters. Bi-orthogonal bases instead of orthogonal
bases have been introduced in 1990 by J. C. Feauveau, in his thesis in computer science
prepared at Orsay (France), and became very useful in image processing (because the filters
involved in the calculus could be chosen with linear phase). Other bases were introduced,
which were no more wavelet bases (in the sense of the Grossmann-Morlet-Meyer wavelets of
constant shape); e.g. the wavelet packets (a full library of orthonormal bases constructed
from a quadrature mirror filter and equipped with an algorithm for best basis selection)
or the local sine basis of Malvar and Meyer.

Wavelet theory has become a scientific field. The third edition of the Wavelet Litera-
ture Survey (by Pittner, Schreid and Ueberhuber) in August 1993 contains around 1 000
bibliographical references ; the authors underline the exponential increase of publications
on wavelets, the number of which doubles each year. A journal devoted to wavelets has
been founded in 1993 (Applied Computational Harmonic Analysis), while the journals of
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the SIAM and of the IEEE publish regularly papers on wavelets applied to numerical anal-
ysis or to electronical engineering. The Revista de Matemdtica Iberoamericana publishes
most of the pure mathematical papers on wavelets. Many books have been published
recently on wavelets (the Wavelet Literature Survey quotes 19 of them). A “Wavelet Di-
gest” is diffused by e-mail (subscribe by sending an e-mail with the subject “subscribe” to
wavelet at bigcheese.math.scarolina.edu).

Wavelet theory has thus encountered a very large echo. But it is still a very young
theory and it is very delicate to foresee which form it will take in the future (even in the
very next future) and in which field it will be really successful. We try to give in the
following chapters a mathematical “state of the art” as it is now in the first half of 1994.
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Chapter 1

THE NOTION OF WAVELET REPRESENTATION

The wavelet representation was introduced by Jean Morlet in the early 80’s as an
efficient time-frequency representation algorithm. The main difference with the Gabor
representation is the fact that the wavelet representation has a more and more acute
spatial resolution (and a less and less acute frequency resolution) as the frequency grows
higher ; the reason of this specific stress on acute spatial resolution for high frequencies
is the connection between high frequency components and existence of singularities in the
analyzed signals {(which is mainly a local phenomenon). Thus, the wavelet representation
was introduced as an algorithm for detecting singularities (as edges in image processing or
attacks in signal analysis') and has turned to be a very efficient tool in functional analysis.

In this chapter, we will introduce the integral wavelet transforms, which deal with a
continuous set of analyzing functions. Discrete wavelet transforms will be discussed in the
next chapter. We consider only univariate square-integrable functions (i.e. functions in
L*(R)) and postpone the study of multivariate wavelets to chapter 7.

1. Time-frequency localization and Heisenberg’s inequality.

An important feature for the Fourier transform f(z) — f(¢), where

A +w -
o fo= [ raeietas,
—00
is the fact that the integration of the analyzed function f is performed over the whole line,
so that every point contributes to the calculus of F(€) and that it is difficult to recover

local information on f from f A very simple but enlightening example is given by the
reconstruction formula :

+o0 .

(2) fle) = f(g)e=tde ;

in this formula the integrand f(£)e'*¢ has the same modulus for all z and the local infor-
mation is therefore contained in the phase. Assume by instanc¢e that f is vanishing on a
neighborhood of a point zo but has some irregularities for away from zo ; | f (€) | remains
important for big values of £ and the flatness of f around z is due only to cancellation
between big integrands of opposite signs, a property which is known to lead to highly
unstable numerical computations.

This is a reason why local Fourier analysis has been developped, in order to limit this
numerical unstability to the neighborhood of singularities instead of spreading it over the
whole line. Moreover, the notion of instantaneous frequency, as in frequency modulated
signals, requires also local Fourier transforms.
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In order to catch some local Fourier information, we may use an analyzing function ¢
which we require to be localized both in frequency (around some mean frequency &) and
in time (around some mean time zy). Such a function is generally called a wavelet, which

means a wave of finite duration. As a matter of fact, due to the Plancherel formula, we
have :

1 A A
(3) <fle>=o-<fld>

(where < - | - > is the scalar product on L%(IR)) ; therefore, the number < f | ¥ >, which
is an average information about f on a neighborhood of zy, is also an average information
about f on a neighborhood of &y.

If we define z4 and £y as the mean values of z and f for the probability measures

) I*

1
112 | «/3 112

_ +oox N dz _ +co . . d¢
I L L= P T B Ol

a measurement of the resolution of the analyzing function ¥ in time or frequency is com-
monly given by the quadratic deviations :

Azy = ([:’ |2 — 2y [2] () | Wﬁ)/

. +o00 . 5 1/2
A€¢~(/_ | €— & P19 | ”M)

and the joint resolution is given by the product Azy - A&y. This means that in the time-
frequency space (or phase space) the information conveyed by % is located on the rectangle

(5)

1 1, 1 1
Ry = {x,‘(, — —Z-A:c,;,,x'p + EA:C,/,] X [f‘(, - EA&‘L"&'{’ -+ EA&;,]
and the joint resolution is the area of Ry. [We have to use a definition of localization in
terms of momenta, since ¢ and ¥ cannot be both compactly supported : if ¢ has compact
support, ¢ is analytical and cannot vanish identically on an interval].

Heisenberg’s inequality states that the joint resolution of % cannot be arbitrarily small:

THEOREM 1 (Heisenberg’s inequality). - Let ¢ € L*(IR), ¢ # 0. Then :
: i
(6) AzyAly 2 5
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and the minimal value —;— is attained only for Gaussian functions.

Proof. Define H to be the Hilbert space {feL?/zf € L? and ¢ fe L?}, equipped with

the norm (|| f I3 + || zf |12 + || €f ||2)/%. Then (6) is meaningful only for ¥ € H
(otherwise Azy or A€y is infinite). If 9 € H, we may change ¢ in Y(z+zy)e™ z{y which
doesn’t change the values of Azy and A€y, and thus suppose z4 = £y = 0. We have thus

" to show that || % [|2]| & [2< 2 || z¢ ||2]| €9 ||2, or equivalently that :

(7) 9 l2< 21l 9 ll2ll #' [l

If ¢ € CS°, this is obvious since :

| ¥ Ng—»ft/)z/)dx—— /m—(¢¢ =~2£e[x¢£;—g-dm |

so that we may conclude by the Cauchy-Schwarz inequality. Moreover, we may extend
inequality (7) to any ¢ € H because C2° is dense in H : just pick some ¢ € C°(R) such
that f ¢wdz =1 and ¢ =1 in the neighborhood of 0, then for any f € H we have :

Glim [ {7e(5)} * Ne(Na) ~ f |z=o.

Now (7) is an equality if and only if the Cauchy-Schwarz mequahty turns to be an equality,
and so if and only if the functions :cz/) and 3% are homothetic (% —= = Azt with A € R). It

occurs if and only if ¥ = Cexp(— A’; ) for some positive A. m

In some cases, it may be useful to modify the definition of the resolution of ¢ in time
or frequency. For instance, we may define for € > 0, Am,;,,e as

(8) Ay, = ot (/j“’ lz—-ylzf! () “ f‘g)%

and similarly Ay .. We still have an Heisenberg inequality for those modified joint reso-
lutions :

PROPOSITION 1. - For any positive € and ¢’ there exists a positive constant C¢ ¢ such
that for any ¥ € L*(R), ¥ # 0,

Aqu,e - Aftli,e’ > Ce,e'- k
Proof. Proposition 1 is equivalent to show the following inequality :

) 1o 1 T < yeo Izl v 1}
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where v, o = (27r)”2_lJ . We define H, ¢ as the space of tempered distributions f €

~ §'(R) such that f and f are locally integrable, | z |¢ f € L? and | ¢ | f € L?, equipped
with the norm :

I fllee=llzlfllz+ €1 Fll2.
LEMMA. - H, . is complete.

To prove the lemma, we consider a Cauchy sequence f, in H, o and we want to prove
that it is convergent. We first show that the sequence converges in $/'(IR). We pick some N
such that N is bigger than € and €’ and some ¢ € S{IR) such that [ pdz =1, [ zPpdz =0
- for any p > 0. For weS, we define

N-1 (N+p)(
= N¥ (=)
= =

(“1)N+p/ Yw(y)dy and wy =w—w, ';
p=0

by construction wo have S € S(R) and (since [ sPus(e)ds = 0 for 0 < p < N~ 1)
92 € S$(IR). Now we write

1 oA
<w]fn>=<w1|f,,>+—2—7-r—<w2|fn>

the convergence of [ z |¢ fn in L? implies the convergence of < wy | fn > and the
convergence of | £ [e fr in L2 implies the convergence of < @3 | fn > . Thus fn converges
in §' to a distribution f. Clearly f is locally integrable outside of {0} and ||| = || fn —
f llz2(r=)— 0 as n — +o0, and similarly for f 3 we just have to prove that f and f are
indeed locally integrable on the whole line to conclude that f € Heee and f, — fin He o
as n — +oo. In that purpose, we write f <pf +(1—-¢) f where ¢ € C2 is identically
- 1in a neighborhood of 0 ; the inverse Fourier transform of ¢ f is a C* function and the
inverse Fourier transform of (1-9) f belongs to L?, so that f is locally integrable. We
prove in the same way the local integrability of f . The lemma is then proved.

Moreover the proof of the lemma shows that any f in H, o is indeed square-integrable:
we already know that f is square integrable far away from O and we have seen that f is
locally square integrable (as a sum of a (™ function and a square integrable function).

Since H, . is a Banach space, we may apply the closed graph theorem to the inclusion
H, o C L? to get :

(10) Hrle<c (Ml sla+ el 7 i)

for any f € H, e, where C is a positive constant depending only on € and €. Applying
(10) to fr = F5f(§), we obtain :

I legc (BNl £l +R™ M €1 £ 1)
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¢+a’

for any positive R. Now we get (9) by choosing R = ( ”ili ; l:) .m

We may now define the notion of a wavelet representation :

DEFINITION 1. - A wavelet representation is a fa.zﬁi]y (Yw)weq of functions in L?, indexed
by a measured space ({1, 1), such that :

(1) each v, hasnorm1: [ |, |*dz =1}
(ii) w — 1, is weakly measurable (i.e. for any f € L?, w —< f | 9, > is measurable) ;
(iii) there exists two positive constants A, B such that for any f € L?,

ANFIE [ 1< T 1o >P du@) < BT I
iv) For some fixed €,€' we have : sup Azy, Ay, o < +o0o.
o Y, Yu,s

Condition (i) is only a normalisation. Conditions (ii) and (iii) express that we may
recover f from the coefficients < f | ¢, > in a stable manner : this point will be developped
in the next section. Condition (iv) expresses that the coefficients < f | 1, > are time-
frequency informations and that the joint resolution of these informations remains bounded
as w runs in {1.

2. Almost orthogonal families, frames and bases in a Hilbert space.

In this section, we will precise the meaning of conditions (ii) and (iii) in the definition
of a wavelet representation.

DEFINITION 2. - An almost orthogonal family in a Hilbert space H (with scalar product

< |>pg and norm || ||g) is a family (,)weq of vectors in H indexed by a measured space
(Q, ) such that :

(i) w — %, is weakly measurable (i.e. for any f € Hyw —< f | Yy >p is measurable) ;
(ii) there exists a positive constant Co such that for any f € H :

() [n (< £ | %o >rl? du(w) < Co |l £ 1% -

The reason why we call such a family an almost orthogonal one is the following : if we

consider a linear combination fn m(w)v,du(w) of the ¥, with coefficients m(w) € L2(Q),
then the combination takes sense as a weak integral :

< /;zm(w)z/:wdp(w) | f>= /Qm(w) < f | Y0 > du(w)
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and defines an element of H ; moreover we have :

I [ mludi@) < Vo | m e -

It is easy to see that if (¢,,) is an almost orthogonal family in H; and T a bounded operator
from H; to another Hilbert space Hg, then (T'(tu)),eq is also an almost orthogonal
family. Moreover, if (¥»)weq is an almost orthogonal family in H; and (pw)wen an almost
orthogonal family in Ha, then the operator S : f — §f = [ < [ | Y > pudu(w) is
a bounded operator from H; to H,. (If H; is separable, every bounded operator S from
H; to H; can be written in that form : take 1 = IN, u the counting measure, (¢, )wecq 2
Hilbertian basis of H; and ¢, = S(¢,)). We may also define a bounded operator U by
inserting in the integral a bounded multiplier m(w) € L*°(f1) :

Uf= Lm(w) < F 1o > pudu(w).

An important case is the case of {1 being a countable discrete set and x the counting
measure ([ fdp =3, cq f(w)). I (Yu)wen is an almost orthogonal family in H and if
(Aw)wea € £3(Q) then > wea Aw¥w is not only weakly convergent but is also summable in
H :indeed for any set J C (1 we have

1/2
1) At l2< VCo (Z W 12) )

weJ weJ

We thus are dealing with strongly convergent series.

DEFINITION 3. -

(i) A frame in a Hilbert space H is an almost orthogonal family (Yw)wen of vectors in
H such that there exist two positive constants A, B such that for any f € H,

(12) ANSIES [ 1< 7100 >al dul@) < B 1 1
(ii) A dual frame of a frame (Y, )weq in a Hilbert space H is a frame (hy,)wen such that
for any f € H,
(13) f= / < f | % > hodu{w).
o

‘ Foxfmula (13) is to be meant as a stable reconstruction formula. The following propo-
sition expresses that every frame has a dual frame :

PROPOSITION 2. - Let (¥,)wea be an almost orthogonal family in H and G be the
Gram operator defined by :

(14) af = /ﬂ < £ |0 > 5 bodn(w).
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Then :

(i} G is a non-negative self-adjoint bounded operator on H.

(i) G is invertible if and only if (¥, )weq is a frame.

(iii) The family (hw)ueq, with hy = G~ {¢y), is a dual frame for (¢.,). _

(iv) Moreover G™! can be computed as a Von Neumann series. More precisely, if A, B are
the frame constants in (11), we have

2 B—A
—1d ||,,< th p=2_4
”A—i-BG Id |op<p<1 with p BT A

so that

_ 2
¢ A+BZ

Remark. - Whenever A = B, we have f = -1-G f. Such a frame is called a tight frame
and has ( +%w)wen as a dual frame.

A+B

Proof. The proposition is quite obvious. By definition, G is self-adjoint and non-negative.
If G is invertible, we have

1 2
<Gf!f>H.Zm”f”H

and the v, w € {1, are a frame. Moreover we have :

/Q < flYw >a< G ', | g >5 du(w) =/ﬂ <flYo>a<to |G lg >y du(w)
=< Gf |G lg>p=<f|g>n,
so that (G~ 1(4w)) is a dual frame of (¢,,). Last, we ‘have :

A-B B—-A

since 725G —Id is self-adjoint, we get || ZT?TEG Id ”oza< B+A =

Of course, frames have not in general a unique dual frame. If (’l/)w)weg is a frame with
dual frame (hy)wen, we have the redundancy formula (or reproducing formula)

(15) Yo = /Q < Yo | ho >H Pudu(w)

(since the operator [, < - |y >g Ydu(w) is the adjoint of [ < - | Y >g hydu(w) and
is therefore the identity operator). ’ .
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In case there is some a and §, a # f, such that < ¥, | hg >7# 0 and 1 is a countable
discrete set with counting measure px, we may express ¥g.as a linear combination of the

Yo, w# B :

1 ,
¢B=W ¢a_0§8<¢alhw>¢w

and we have another dual frame (kw)wea for (¥) with kg = 0,

1— < tYq | ha >
<¢alhﬁ>

< Yo | hw >

ko = ho + —<‘¢'alhﬁ>

elsewhere. ' We have thus proved the following proposition :
~ PROPOSITION 3. - Let H be a separable Hilbert space, (1 a countable discrete set with

counting measure p and (,)wen @ family of vectors in H. Then the following assertions
are equivalent :

() (Yw)weq is a frame and has a unique dual frame in H.
(ii) (Yw)wen is a Riesz basis, i.e. the operator (Ay) = 3_,cq Aw¥w is an isomorphism of
£2(0) onto H.

Moreover, in that case, the dual frame (hy)weq is given by the coeflicient functions : -

(16) <) Autu | ha >= Aae
we
3. Fourier windows, Gabor wavelets and the Balian-Low theorem.

A very simple and useful way to perform local Fourier analysis is the following one :
in order to compute local Fourier coefficients for a function f around a point zo, choose
a window function g which is rapidly decreasing far away from 0 and compute the usual
Fourier coefficients for the windowed function §{z — z¢) f(z). Then moving the center zo

of the window g(z — zo) along the real line allows one to catch informations at any point.

DEFINITION 4. - A Fourier window representation, with window function ¢ € L?(IR)
(g #0), is the family of analyzing functions (gz,,¢, ), (%0, €0) € R2, defined by :

(17) Gzo,80 (:B) = g(:r; - mO)eifox'
The point is that this representation is a tight frame :
8 [ [ 1< 1 Vomas >I7 dmodto = 2x 1 9 181 113
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This is very easy to prove. Indeed, < f | gz,,6, > is the Fourier coefficient at £ = & of
the windowed function f(z)g(z — zo), so that we get by Plancherel equality :

/ [ < £ | goo.60 S| dzodto = 2 / / | F(2)3(z — 20) |? dzods
R2 R2
=2x | g i3l 713 -

(Notice that for almost all zo, f(z)g(z — o) is square integrable in z).

Of course the requirement on g that g € L? is a minimal one. If we really want to get a
local Fourier analysis, g has to be localized both in time (so that f(z)g(z — zo) is localized
around z,) and in frequency (so that the windowing by g doesn’t introduce unwanted
high frequencies). The Fourier window representation is then a wavelet representation
(according to definition 1, up to normalization || g ||2= 1). _

Time and frequency play exactly the same role in the Fourier windows formalism.
- Just notice that < f | (¢)zo,80 >= a;‘:o < f1(8)eo,~zo > - This symmetry between time

and frequency and the minimum joint resolution property of the Gaussian functions has
turned those Gaussian functions

1 1 -1 z2
(19) g(z) = (2m)i74 Vo 2ot

(where o = Az,) into a very popular choice for Fourier windows. -

In 1946, D. Gabor proposed to use a family of Gaussian wavelets gy, » =

g(z — an)e™®™*, n € Z, m € Z, with a Gaussian g (as given by (19)) and with time
sampling mesh a and frequency sampling mesh b satisfying the Nyquist rule ab = 2x
[GAB]. Instead of dealing with the whole family of wavelet coefficients < f | Gzo,0 >
(zo € R, & € IR), one deals with a discrete sample of them, for which the sampling points
are located on the regular grid aZZ x bZL. As a matter of fact, every square-integrable
function may be represented as a superposition of Gabor wavelets but this representation
is unstable. M. J. Baastians has computed explicitly the coefficient functions of the Gabor
basis and exhibited the singularities of these functions [BAA]. The point is that the gm
don’t constitute a frame. If we take more functions (ab < 27) we obtain a redundant frame
and if we take fewer functions (ab > 27) the system is no more total in L?, as shown by I
Daubechies in her thorough discussion of the subject [DAU3].

In order to get rid of unstability in the Gabor wavelet representation, R. Balian
- tried in the early 80’s to construct an orthonormal wavelet basis (gm,n)mez,ncz With
gm,n = g{T — am)e*™** for some fixed function g. It is very easy to see that we must have

203



ab = 27. [By instance, let xy = X[N 2 ,(N+1)2z] and write

XN=XN D, Y <XN|9mn>0mn

meEZL ncX
b 2km, _ 2kw
= E;XN(x) > (Z xn(z+—=)3(z — am + —5—)) 9(z — am)
mEZ \keZ
~n(z) Z | g(z — am) |2
meZ
We get 3.z | 9(z — am) |*= 2F a. e., and ab = 27 by integration on z € [0,q]]. A

very simple example of such a basxs is given by g = X[0,1), @ = 1, b = 27 : we just cut
the real line in disjoint intervals and use for each interval the ordinary Fourier basis ; this
window g however is not localized in frequency : A§; = +o0o. Another example is given by
inverting the role of time and frequency : we cut the frequency axis in disjoint intervals of
length2x (b = 27) and then use the cardinal sine basis (g = g‘-?,;:—‘”, a= 1) ; of course, for
. this window we have Az, = +o0. This unlocalization property (Azg; = +o0 or A€y = +o0)
is in fact a general feature of Gabor wavelet bases, as it was noticed independently by R.
Balian and Low [BAL}, [LOW]:

THEOREM 2 (Balian-Low theorem). - If g is a function such that

(9(z — m)e* ™) ez nez

is a Hilbertian basis for L>(IR) then Az, = +o0o or Afg = +oo0.

Proof. There is a very short proof by G Battle [BAT3]. Let us assume that such a basis
exists with finite Azy; and A¢;. We then have :

< zg | g >=
= Z Z <29 | gmpn >< gmpn | 9 >
MmEZ ncZ
= }: Z {<o|(@dmn>+m<glgmn>}H{—< (gl)m’n | g > —2imn <gmmn 9>}
meZ ncZ
= Z E <g|(zgmn><—(9)mn 9>
meZ ncZ
=Y ) <gm-nlz¢><—¢"|gom-n>
meZ ncZ
=-<g|zg>.

But if f € C®,wehave < zf | f' >=— < f' | zf > — || f ||2 and we already know that
CY is dense in H = {f € L?/zf € L?, f' € L*}. We thus get || ¢ [|3= 0, which is absurd.
- .
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I. Daubechies has shown how to adapt Battle’s proof to show that if Az;A&; < +o0
the gmn cannot even constitute a frame [DAU3]. One may circonvene the Balian-Low
theorem in two ways : on one hand, R. Balian has constructed for every € < 1 a basis
(9m,n = g(z — m)eF ™) ez nez With Azg Afy . < +oo [BAL] ; on the other hand, J.
Bourgain has constructed an orthonormal basis (¥n)nez of L?(IR) with uniformly bounded
time and frequency resolution (sup Azy, < +oo and sup Ay, < +oo) [BOU]. This

result cannot be improved with better uniform locahzatlon Stegers has proved that for
any orthonormal basis (¥n)nezof L*(IR) and any € > 1, we have sup Azy, = +oo or

neZ
sup Ay, e = +oo (a result quoted in [BOU}).
nez

4. Morlet wavelets.

We have seen there was no basis for LZ(IR) with good uniform localization both in
time and frequency. Moreover, there are another disturbing points in the Fourier window
formalism : the analyzing functions g, ¢ are more and more oscillating as £ tends to co and
this leads to numerical unstability ; the functions g, ¢ are still mixing the contributions
of every point lying inside the window and this is an obstacle to the isolation of the
singularities of the analyzed signal ; the coefficients < f | g,,¢ > give information on the
mean values of f at one fixed scale (the size of the window g), and those coefficients will be
strongly correlated for the low frequencies (for wave lengths much bigger than the window
size) and will suffer from important computational noise for the high frequencies (for wave
lengths much smaller than the window size).

Therefore, J. Morlet has defined in the early 80’s another wavelet representation,
namely the wavelets of constant shape [GROS].

'DEFINITION 5. - A Morlet wavelet is a real-valued function ¢ € L? (]R) (v # 0) satisfying
the admissibility condition Cy < +oo0, where Cy is defined as :

(20) co=[ 1001 %

The Morlet wavelet representation associated to % is the family of analyzing functzons
(¥a,b)a>0,cr defined by :

(21) Ya(z) = '{}"a‘b (”’ = b) :

vides a tight frame :

(22) [+°°["'°° [< 7 [es > S2ap =y | £ 13
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This is very easy to prove. Just notice that if g.(z) = %d) (=2), then f % go(b) =< f |
"/’a,b > so that

+oo 1 +oo .
[ <t 1 bes P = 5o [ @) Pl va(a) [ dt

-—c0

since

(22) is proved.

In the Morlet representation, the wavelets have no uniformly bounded time or fre-
quency resolution (Azy, , = aAzy and Ay, , = L1A&,) but the joint resolution remains
constant. The requirament for a Morlet wavelet to be real-valued has two reasons : the
first one is that in signal analysis most signals are real-valued and therefore it is natural
to deal with real-valued analyzing functions ; the second one is that dilation acts similarly
on negative and positive frequencies so that we cannot separate a frequency w from its
opposite —w by mean of a Morlet transform (unless we deal also with dilations with a
negative factor a) ; if we only deal with real-valued functions, f(w) and f(—w) are linked
by the relationship f (—w) = f(w) and the coupling of w and —w is no trouble any more
for time-frequency representations.

The admissibility condition Cy < +4o0o0 means roughly speaking that f Ydz = 0 (it
does really mean it if | z |¢ ¥ € L for some € > 0, for instance if Azy 14, < oo for some
¢ > 0). Parameter b is a time-position parameter and parameter a a scale parameter. This
is illustrated by the following proposition :

PROPOSITION 4. - Let ¢ be a Morlet wavelet. Then :

(i) there exists a real-valued function h such that h € C, [ hdz = 0 and the family
(hap)a>0,bcr is a dual frame of (Pap) :

Cprt+oo  ptoo ,
(23) /0 /_oo < flvap> hg,b%dbz f forany f€ L2(IR) ;

(ii) ‘similarly, there exists a real-valued function k such that ke C°°(]R), 0 ¢ Suppk and
the family (kqp)a>o0,0er IS @ dual frame of (q,3).

Proof.We first characterize dual wavelet frames.

LEMMA. - If ¢ and ¢ are two Morlet wavelets, then (1,3) and (go,;L b) are dual frames if
and only if we have : [ % J(¢)@ (6)—i = 1.

The lemma is proved in the very same way as equality (22). We find for any wavelets
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¥ and ¢ and any square-integrable functions f and g :

T <rivear<vnlos Ga= L [ ][ dmew 2] feseme
0l
v [ [ Bmem 2] foaeae

by first integrating on b and using a Plancherel formula,. The lemma is then proved.

Part (ii) of proposition 4 is obvious. C2°((0,+o0)) is dense in L? ((0,+oo), %{) , SO
we may find w € C((0,+o0)) such that

" Mo % =

N. # just define k by k = w if £ > 0 and k(¢) = ®(—¢) if £ < 0.
Part (i) is quite so easy. Let k be the function described by point (ii), K the primitive
of k in the Schwartz class $(IR) (K = ) H,, be real-valued compactly supported smooth

functions converging to K in S(IR) and hn xH Then it is easy to see that hn — kin
Lz(%ﬁ) as n — 400, so that '

T Lo dE
lim hp— = 1.
Jim R
Let v, be v, = too 1/3}“; —sﬁ If some «,, is a positive real number, define h as b = Lk, ;

if noq, is a posmve real number, there are at least two complex numbers ~,, ana Yrq
which are independent over the real field and we may define b = Ajhy, + Aghy,, where Xq
and Az are two real numbers such that Ay, + A277n, = 1. Proposition 4 is then proved.

Proposition 4 is of constant use in wavelet theory, because it shows that the coefficients
< f | ¥ap > which are useful to reconstruct f at a point z; are located on a cone
{(a,b)/ | b — o |< Ma} over zo ; if b is too far from zo (relatively to the scale a),
< f | %a,p > will not convey information about zo. Moreover high frequency information is
located at small scales : the coefﬁmentS < f | ¥a,p > which are useful for reconstructing f
at §o are located on a band a | £, |< 2 < | & | . Thus singularities will be characterized
by big coefficients < f | 1, > for small scales ¢ and for points b close to the singular
points ; they don’t affect the coefficients of regular points, as we shall see later.

A related class of wavelet transforms is the so-called analytic wavelet transform where
the wavelet 1, instead of being real—valued has no negative frequencies (supp $C {O +00)).
We still define Cy as Cy = ! 1/)(5) |2 ——§ and .3 as Yo = ———z,b (”’_ ) Tte

(Ya,b)a>0,bem are then a tight frame for the subspa,ce of L? of the so—called analytic signals:
for any f € L? such that Supp f C [0, +o0] we have :

1 +00 -+ o0 _ ‘ da
f= 5“] f < f | Pap > ap—5db.
Y Jo  J-oo a
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There is a one-to-one correspondence between real-valued functions f € L*(R) and ana-

lytic signals F given by : f = 2Re F and F= X[0,+00) f if f is real-valued and ¢ is an
analytic wavelet then

f——Re(/+w/+w<f[¢ab>zl)ab 2db>

!lfl!2~—-/+°°/+°° I< f | Yap >|? -—-—db

The modulus |< f | e >| is therefore used for defining a time-frequency density of
the energy of f and that’s the reason why analytic wavelets are sometimes preferred to
real-valued one : there is a dephasage between real and imaginary parts of 1, ; which
avoids the pulsatory cancellation which is observed for real-valued wavelets ; the vanishing
of an analytic wavelet coefficient is therefore more physically significant than the one of a
real-valued wavelet coefficient.

and

5. Wavelet analysis of global regularity.

‘We will see in this section how to apply the Morlet wavelet transform to the study of
the global regularity of a function ; the study of the pointwise regularity will be discussed
in the next section.

The main requirement on 9 for regularity analysis will be that 1/ has enough vanishing
momenta. We begin with the easy example of the Sobolev spaces H®. (Recall that f € H®
if and only if (14 £2)%/2f(¢) € L?).

PROPOSITION 5. - Let s >0 and ¢ be a Morlet wavelet such that :

+o0
(24 [0 P g = Cue <+
Then for any f € L? (IR) the following assertions are equivalent :
(i) feH?
(i) o+°° j;o‘]<‘f | Ya,p >|? ag.,_z,db < +4o0.

Flla+ (5 S22 1< £ | o > limar) ™

Moreover || f ||g- is equivalent to |

Remark. - If | z |7 ¢ € L! for some o > s, condition (24) is fulfilled if and only if for all
pe {0,1,--,[s]}, [ zP¢ dz = 0. Thus (24) is mainly a vanishing momenta condition.

Proof. Since the integrand |< f | ¥ap >|° a2+2, —£2~db is non-negative, we may use Fubini’s
theorem and first integrate with respect to b. We obtain :

+o0  ptoo da +oo p4oo da
/0 /_oo 1< f 1 >| apgad =_’_/ / | F(¢ 1*| Vap(ag) |? prrs Tl
+o0
= Cpuge [ 1F@ et
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and the proposition is obvious. =

We thus see clearly that the regularity of a function is related to the decaying of
small-scale coefficients. As a matter of fact, condition (24) ensures that ¢ =| £ |° & where
w is still a Morlet wavelet, and “integration by parts” gives for any f € H?® :

< flvap>=a® <A®f|wgp >
where A® is the fractional derivative operator : IGi = £ f

A second example of regularity analysis is given by the Holder spaces C%. For a €
(0,1), a function f belongs to C* if f is bounded and if ||| f ||| is finite, where ||| f |||a=

sup L%)_—_'gré’m ; C* is a Banach space for the norm || f llca=|| f lloo + lll f llla -

z,¥; 57 Y
When o = m + p with m € N and p € (0,1), then f € C* if f is of class C™, if
its derivatives up to order m are bounded and if f(™) € C? ; C° is then normed by
I flloe=Tkeo I F¥) lloo + 11 £ |11, -

For integral values of a, we shall use the Zygmund space C*. The space C! is the
space of bounded functions f such that ||| f |||1,+ is finite, where

_ o LEth e+ se-h) -2 |
m f ml,*_ m’h?}f;o i h !

The space C™*1 is the space of functions f such that f is of class C™, its derivatives are
bounded up to order m and f(™) € C? ; it is normed with || f [lgm+1= 37 | F®) oo
TRCNT |

For technical reasons, we need also to introduce the Hardy space H! of integrable
functions f € L'(IR) such that the Hilbert transform Hf of f is also integrable (H f is
defined as Hf = VP-L * f, or equivalently Hf = —isgn ¢f). If f is such that f € LP(R)
for some p>1and |z ]5 f € LY(IR) for some ¢ > 0, then f € H! if and only if [ fdz = 0.

PROPOSITION 6. - Let a = m+p be a positive real number withm € Nand 0 < p < 1.
Let ¢ be a Morlet wavelet. Then : :
(i) fagN,if|z|*¢ € L1 and 1ff+ zPp(z)dz = O for p € {0,-+-,m} then for any

f € L? we have :
- f€C* ifand only if a=/3~% < f | oy >€ LP(Ry x R)
= I} £¢™) ||1, is equivalent to || a= Y27 < f | ap >]loo

(i) if @ € IN, if %4 € L* and the even part of > belongs to the Hardy space H' and
if [ zPypdz =0 for p € {0,---,0} then for any f € L*® we have :
- f € C% if and only if a=1/2~% < f | o >€ L® (R4 X R)
-1l f(m) [ll1,« is equivalent to || a ~1/2-o < Fl %ap >loo -

Moreover results (i) and (ii) are still valid if hypothesis “f € L*” is changed into “f € L*".
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Remarks.

e hypothesis “f € L®” is more natural than “f € L?” since the spaces C* and CZ
are included in L* and not in L? ;

e in case of « being integer, the extra requirement ’c"l’(”H(;z )"4(=2) ¢ H1 s satisfied
whenever [ 2% dz =0 and | z |*+€ ¢ € L! for some € > 0 (since ¢ € L?).

- Proof. We will begin by the sufficiency part. We consider the Besov space BY 7! defined
for N € N and € € (0,1) as : h € BY+%! if and only if h(P) € L! for 0 < p < N and
1l B4 ||(¢ if finite where

15 W= sep [ | 1) = f{a+3) | da.

LEMMA 1. - Let @ = m + p and let h be a Morlet wavelet such that h € BY+%! where

N=m,p<e<lifp#land N=m+1,¢>0if p =1 I u(a,b) 1sabounded
measurable function on R, x R such that | u(a,b) |< Cua'/?+* then the distribution I,

defined as
. 400 ptoo . da
<fll. >=/ / iz(a,b)<f|h,,,b>-;2-db

beIongstoC"" ifa g N and to C& if a € IN.

Moreover ||| I; 5 Hp ifp<1and ||| Ii i ll1,« if p = 1 are bounded by
Ch || a=1/3~2y ”Loo (R, xR) Where Cj, depends only on h.

The lemma is quite obvious. We first see easily that I, is well-defined and has bounded
derivatives up to order m :

+oo +oo
I(?) / / u(a, b)( },,(10))‘1 b_l_ffﬁ“.db

Indeed, for 0 < p < m, we have :

+oo ptoo .
P@isc [ [ mf(l,a1/2+“)i|h<P>(” )| S
0 —00 \/— a

aP a?

+o0 -
=C ” h(p) ”1/ mf(l a1/2+°‘) 3+ < +00.

We may therefore suppose m = 0 (by replacing p with a~™u(a,b) and h with h(m)) and
try to control ||| I, |||, or ||| Iy ||l«,1 - X p < 1, we have :

l Ip(x) - (w+y) l

R

J1/2+pg1/2 oo Ql/2+pgl/2 ly|¢da
<C, fa 2|lh“1—~+c " o’ bl =2
Yy

= A}
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If p =1, we have :

+00 +°°3
<o [

but we have :

| Iu(z + y) + Iu(z — y) — 21,(=) |

:z:+y b b z—b.|da
ZEV0) 4t =

db ;

/le+®+hhz+M~2MM]@

g

<[] IR@-we-s) ddo < g
t—2<b<t

btz
/ (W'(2) = h'(t — 2))dt| db
b

so that :
| Iu(z +y) + Iu(z — y) — 20u(z) |

s da Foo y|**da
<cn [ atvatnl B vo, [ o 11 lg oo L
y

alte a2

=Gty 1 {4101 +2 11l

and the lemma is proved.

The sufficient part is now straightforward if f € L?, because we know that there is a
Morlet wavelet h which is C*® and compactly supported such that f = f *° +°° < f {
Pap > ha »3db and we know also that < f | .5 > is bounded (by || f ||2]| 1,[) H ). W
may then apply lemma 1 to get that if a=1/2=* < f | ¢, 5 > is bounded, then f belongs
to C* (a¢]N) or CZ (e € N).

If f is assumed to be bounded instead of being square-integrable, we know that
fo ®<f | Ya,p > ha b33 db will be well-defined and belong to C* or C7 if a~1/2-a <

I ¢a » > 1s bounded. We may then conclude that f belongs to C* or CZ by the following
lemma :

LEMMA 2 (The infra-red cut-off lemma). - Let f € L*, ¢ be a Morlet wavelet such that
| z |* ¢ € L' and h be a C* compactly supported Morlet wavelet such that (k) is a
dual frame for (o). Then

. 1 pt+o0 da,
- ] / < F 1 Yap > hapoLdb
Q —o0 a

is well-defined and f — f belongs to C* (a & N) or C& (a € IN).

To prove the lemma, it is sufficient to check that for every interval I of length 2
(I=[zr—-1,z1+1)), f— f belongs to C*(I) or CZ(I) and that the derivatives of f — f are
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controlled independently of I. Let M be such that Supp h C [-M, M] ; we choose p € C°
such that 0 < ¢ <1 and ¢ =1 on [~2(M +1),2(M +1)] and define f; = fo(z — z1). On
I, we have f = fr and therefore :

. . 400 400 da 1 400 da
f=f=trmf= [ [ < sl ben > hap gt [ <=1 1%en > hap S,
1 -0 a 0 —_—0 a
Since |< f1 | Yap > 2VM + 1| f llcoll % ||2, the first integral is a C* function. In the

second integral, we may restrict integration on b to the domain | b — zy |[< 1+ aM (for
other values of b, hyp =0 on I) ; in that case we find :

- e oo op | dz < 1/2+a__.l.|_f_,“& o
<ir=f a2l o | (bep [ de S @ g 6
and th'us 1 pzr+idaM da
[/ < fr=f ey > hapoedd
0 Jzr—1—aM a

belongs to C* (or C2). Lemma 2 is proved, as well as the sufficiency part of proposition
6. .

For the necessary part, we begin with the case m = 0. If p < 1, the result is straight-
forward : we just write

<fl¥en>= [(70) - 1) 720 ( - ”) dz

a

- to get

< £ 1bas I < Tl [ 12=81 2219 (252) 4o
= 24 | 1l 2 1% s

If p =1 and % is an even function, this is also obvious :

<F Yo > = [(100) - 10) Jov (252 s

=va [ (16+as) - T O (s)dy
= vay [(76+a) + 10— ) — 206 wl)dy

and thus .
|< fl%ap >I< a? ||| £ lllell 29 (1

We now have to study the case of ¥ an odd function such that z¢p € H'. We may write

9 = Hw ; w is then computed as w = —H and is obviously a Morlet wavelet and an even
function ; moreover zw € L! because

sw = —zH = —% ( / ¢dz> — H(zy) = —H(z9).
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Now we have

< flvap >=< | (Hw)ap >=< f | H{wap) >=< Hf | wap >

since H commutes with translations and dilations and is a unitary operator. The only
thing we have to check is that if f € L? N C! then Hf belongs to L?N C! and that

WHS 1,+< C I flll1,« - This is a well-known result, but we may easily prove it : we
know that f can be written as ' ’

1 [t [t da
f“'a;/o ﬁm <flka,b>ka’ba—2-db

where k is an even Morlet wavelet such that k is C*° and compactly supported ; we have
(in the distribution sense) '

1 [t [t da
Cr Jo —o0 a

with < f | ke > bounded by || f ||2]| k¥ ||z and by a% ||| £ |||1,+]| =k ||1 and Hk belongs
to Bi¥e1 for € > 0, so that Hf belongs to C! and ||| Hf |||1,«< C ||| f |l|1,« by lemma
1. If f is not square-integrable, this proof doesn’t work any more, since H is not bounded

onto C! ; but we may approximate f by fi(%) where p is C°°, compactly supported and
© =1 on a neighborhood of 0 ; as R — +o0 we have

< fw(%) | Ya,p >=< | ap >

and for R > 1, ~
| fo(%) llor< Ol lloo + H S Nlis)s
so that we obtain o,
|< £l ¥ep > Caz(]| £ lloo + Il £ {lla,0) 5
we get rid of the || f || term by homogeneity : if f(£) = fr, we have obtained

< fr | $ap >I= VR I< f g 2 > < Cai (]| fz lloo + Il f2 [l1,0)

= Ca¥ (| £ loo +5 1 £ lle)

so that .
la72 < fl¢ap >llee@em)S C (R Flloo + Il fre ll) 5
if R goes to 0, we obtain the required estimate.
The case of a general m is then proved by integration by parts. All we have to do is

to show that under the hypothesis of proposition 6 ¢ can be written as ¢ = (—1) m,(m)
where @ satisfies the same assumptions with m replaced by 0 : if p < 1, then ¢ is a Morlet
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wavelet such that | z |? ¢ € L1, if p = 1 then p is a Morlet wavelet such that zp € L! and
the even part of zp belongs to H'. We will then have

< fl$ap >=< F™ | 0ap > a ™ and |< f | tap >|< Ca™a™ P72 ||| £ ||, if p < 1]

and .
1< f | Yap >I< Ca™a2 ||| £09) ||ly,e if p=1.

We first integrate i) one time. We define w as w = : * 4(t)dt. We have as well
w=—[%_1(t)dt, since [ P dz = 0. Thus:

[ 12wt

<[ [ [T e v e

[ fulmre
- [T sw

We get | z |1~ w € L' and, since w is bounded by || ¢ |1, we have also w € L*n L.
We may compute in a similar way [ zPw dz and find for 0 < p<m —1, '

P d p+1 d
/:z:w z—/p+1¢ z = 0.

In particular, w is still a Morlet wavelet. If p < 1, we have finished : it is enough reiterating
m-times the integration to get . If p = 1, we have still to prove that the even part of z™w
belongs to H! ; we may as well suppose that z™+14 belongs to H'and try to prove that
z™w belongs to H!. This is straightforward : since f zPip dzr = 0 for 0 < p < m, we have
H(z™t1y) = 2™+ 1 Hey ; if Q is defined as

400 z
Q= Hyp(u)du = —-/ H(u)du,
. z —00
we know that
| 270 1< —— || &L H |1
—_ m+ 1 9

now it is obvious that ! = Hw by use of the Fourier transform and that z™Q = H(z™w)
since f zPwdz = 0 for 0 < p < m — 1. We may then reiterate m-times the integration to
get . Proposition 6 is entirely proved.

6. Wavelet analysis of pointwise regularity.

The spaces C* or H have given us a criterion for global regularity of functions. The
wavelet analysis allows us to characterize as well the pointwise regularity. S. Jaffard has
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proved the following theorem [JAF2] (see also M. Holschneider and Ph. Tchamitchian
[HOT]).

THEOREM 3 (Pointwise regularity analysis). -

(i) Let o € (0,1), f be a function such that | f(t) |[< C(1+ |t [)* a. e. and ¢ a Morlet
wavelet such that | z |* ¢ € L. Then:

* if for some zo € R we have | f(z) — f(zo) |< C | £ — zo |* where C doesn’t depend
on z then foralla>0andbe R :

|<fl¥ap>ISCVa(la|* +[z0—b]%);

** conversely, if |[< f | $a,p >|< C\ﬁi (I al* -+ 1“:;-5 . ) and if moreover f € C*¢
[zo—-bf

for some € > O then | f(z) = fzo) |SClz—z0 |*.

ii) Let f be a function such that | f(t) |< C(1+ |t |) a. e. and ¥ be a Morlet wavelet
such that z¢p € L* and [ z¢dz =0. Then:

* if f is differentiable at some point z, then for alla >0 and b€ R
1< F | ap SIS Valot | b0 8(a+ | =20 |) with 8(z) >0 as - 0;

~ ** conversely, if |< f | ¢ap >|< Valaw(a)+ | b—zo | w(] b— 20 [)) With w a
continuous non-decreasing non-negative function on [0,+00) such that fol w(t)%—t < 400,
if moreover f is C¢ and | z |*+¢ ¢ € L for some € > O then f is differentiable at zo.

Remark. - The extra requirement f € C¢ cannot be dropped in the converse part of
theorem 3, as shown by a counter-example by Y. Meyer given in [JAM].

Proof. i) * Since ¢ € L' and ¢ is a Morlet wavelet, we have [ ¢ dz = 0. Thus

< f oy >= [ ((2) = f(z0))¥anpds

and

<T1%0p><C [{lo=b [+ [b=20 [} [ Yop(e) | dn

=c{llz|* ¢ [l a***+ [ ¥ |1 vVa|b—z0 [*}.
** Since f is bounded (f € C¢ C L°°) and | z |* ¢ € L, we may apply the infra-red
cut-off lemma (lemma 2) to get that if k is a C* compactly supported Morlet wavelet such
that the (h, ;) family is a dual frame for (,,) and if f = fol fj:: < f|%ap > hapidd

then f — f € C*. So we have only to prove | flzo) — flzo +v) IS C |y |* . Moreover f is
bounded (since f € C¢ and f — f € C*) and we may therefore assume | y |< 1.
We have : ’

| F(z0) ~ F(zo +9) I< /01 /—‘:" |< £ | %ap >|| ha,p(z0) — ha,p(z0 + ) | %db
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and we have already seen that :

1 +oo 1/2 da
[ [ a1 hasloo) = haplao +9) | b < C Ly
0 J—oo

'~ We know that

|< £ | ap >|< Ca®*? 4 Cinf | '/2*, 0"/ ”’—f" ‘1 :
1+ log oz

We fix M such that Supp h C [~M, M] ; we have :

| f(zo) = flzo +9) I<

= b g |2 .
Clyl*® +C‘/ / inf | a1/2%¢ /2 b s(z0+9) | Lab.
lv | 0 J|b—z0|>100Ma ( 1+ log™ | hap(z0 +9) | —

In the integi'al, we have | hop(zo+ y) [# 0 only if | b— 2o — y [< Ma, so that

39_ < 101

16—20| 155 <lyl< == |b—=o|

and

lf(zo)-f(a:o+y) !Sc‘yla+0L1mf (ae,_;i_w__) gﬁ<cl'y|a.‘

1+log+}—:7f a =

Thus, we have shbwn
| f(zo) = flmo+ ) ISCly |-

ii) * ¢ If f is differentiable at zo, we have
F(z) = f(z0) + f'(z0)(z — o) + €(z)(z — 7o)
where ¢ is bounded on R and tends to O as z tends to zo. Therefore :
< 1 on >= [ o)z = molbapl@)dz = Va [ elb+ ev)(ay +b—za)plo)dy

and we get :

I< f 1 ap >l <l €l \/E(G/H . |y |l () | dy+ | b—=o | ‘M> . lt/)(y)dy)
vz 27z

+vala ||z fls + [ b—=zo || ¥ [l1) sup | €(t) |
|t~zo|<V/a+|b—zo]

< a'?o(a+ | b~ o0 |).
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** We may again replace f by f= fol j:: < | thep > ha,b—g—%db where h is a

smooth compactly supported Morlet wavelet such that the (hgy ) family is a dual frame-
for (¢a,5) : since f € L™ and | z |'*€ ¢ € L', the infra-red cut-off lemma tells us that

f — f is C'*¢, hence differentiable at any point. Moreover f € L® and we have only to

~

estimate the behaviour of f(zo) — f(zo + y) for small y.
First, we notice that ‘

' 1 ptoo d da
A= ]0 / < T > lban)(eo) b

which is a natural candidate for 35‘; f (zo), is well-defined, the integral being absolutely
convergent : if h has its support contained in [—M,M], the integration domain can be
restricted to | b — zo |< Ma, so that

< f | $ap >|< CaFw((M +1)a)

and
1 p4oo o M+1 o
L[t 1> b)) | G W [ wl@ T

a
This proof gives us that

o
d

/ | / < | bap > hap—gdb

0 J|b—2z0|<100Ma a

is differentiable (everywhere) with derivative

1 N da
/ < f i ¢a,b > (h )a’b—"é‘db.
0 J|b—zo|<L100Ma a

Now if | b—zo |> 100Ma, hqp(zo) = O while ko 5 (Zo+Yy) # O implies that | zo+y—b |< Ma
so that s | 2o — b |<| v |[< 121 | 2o — b | . We obtain

1
d
I/ 1< £ 1 e >l hap(oo+3) | S
0 J|b~20|>100Ma a

<c [ nffat |y iz v D}y

<Cly|lw(2]|y]) (1+log+

G
lylw(2ly])
It is straightforward that liron+ w(y) = lin% w(q)log*‘—ql# = 0 ; we just have to show that
N —
q,l_i_fgﬂ w(fy)log‘*'% = 0 : this is obvious since jw(y)logl < f’;ﬁ w(t)é — 0as y — O+

Theorem 3 is now entirely proved. m
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EXAMPLE (Lacunary Fourier series). - Let f = Z::_g gxcos(ngz+ k) be a function such
that ) | gk |< +o0 and Z&xl > r > 1. Then f has the same regularity at every point :

* if f is C*® at one point zg for some a € (0,1) (i.e. sup L) =f(zo)| o +o0) then f

ly—=zof®
y#zo
is C° globally (i.e. sup Llrl—,ﬂlf W=t ¢ o) ;
( sty )i

* if f is differentiable at one point zo then gx = o( ) and if | gx |< w(nk)
where w is decreasmg, non-negative and satisfies the Dini condition fo ) 2 < 400, then
f is differentiable everywhere.

Proof. Choose a wavelet w € S{IR) such that w is even and Supp® C [~r,~1}U[1,7] and
define @ = Hw. We then have :

oo
< flwap >= \/EZ grwlang)cos(pk + nkb)
k=0

o0
< f|@ap >= \/&_Z grw(ang)sin(pg + nib).
k=0

. In these sums, at most one term is non-zero : if kg is such that 1 < ang, < r then

< f | wap >= vVagr,w(ank, )cos(pr, + nk,bd)
and |
< [ | @ap >= Vagr,w(ank,)sin(pr, + ng,b)
(while < f | wq,p >=< f | @a,p >=0 in the case where there is no such ko) ; thus
< Flwap > + 1< f | @ap > = a | gr, [*] w(ank,) |7
doesn’t depend on b and the regularity will be the same at all points.
Now we choose 8 € [1,r] such that w(f) # 0. For k € N, we fix a; = ,—%:. If fisC* at

[+ 3
some point zo, we find | gx |< Hcgj l;%l , 50 that (nfgg) € £ ; this in turn implies for
every a and b, |< f | wap >|< Cal/?*2 and f is C* at every point.
Similarly, if f is differentiable at some point zo, we have |< f | wg,z, >|= o(e) and

< f | @,z >|= o(a) so that ¢x = o( ) The converse part is given by point ii) ** of
theorem 3 (since that if gx = o ( ) thengr €Cl). =

In particular, we see that the Zygmund class C! is very different from the class of
the Lipschitz functions : the function ) 5" Jesin 2’°x belongs to C! and is differentiable
nowhere (while a Lipschitz function is differentiable almost everywhere)_
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Chapter 2

DISCRETE WAVELET TRANSFORMS

In this chapter, we will see the various ways of defining a discrete wavelet transform.
From a functional point of view, it means to turn a continuous representation (by mean
of a function of two continuous parameters) into a discrete one (as a series, or a two-
parameters sequence). This is easily handled by sampling the Morlet wavelet coeflicients
on a hyperbolic grid, such a grid being suited to non over-redundant representations of
functions by mean of affine wavelets --—'gb ("’“‘b) The discretization of the Morlet wavelet
representation leads to numerical wavelet processing, but introduces as a new difficulty

the proeminent part played by the dual frame (which is no more arbitrary, as it was in the
integral transform).

1. Sampling theorems for the Morlet wavelet representation.

In order to turn his wavelet representation into a numerically efficient algorithm, J.
Morlet proposed to approximate this representation by sampling the wavelet coefficients
‘on a “regular hyperbolic” grid, i.e. by keeping the wavelet coefficients < f | ¢, > for
(a,b) = (aZ*,nal*bo), where m and n are integers and the numbers ap > 1 and bo > 0
are fixed. Morlet’s idea was that if the grid was fine enough (ao close enough to 1 and
bo to 0) then the family (Y(m,;n) = Yar ,namb, )meZ,nez Would be a frame in L?(R) for
the counting measure on Z X 7ZZ. This idea was proved to be good in a very illuminating
paper by I. Daubechies [DAU2| under some slight restrictions on . Such restrictions are
unavoidable because not every Morlet wavelet can be sampled into a discrete frame :

THEOREM 1 (Regular sampling theorem). - Let ¢ be a (non identically zero) real-valued
square integrable function. For fixed ap > 1 and by > 0, we note

P(m,n) = &g ™2 (ag™z — nbo) (m € &, n € Z).
Then :

i) if the (Y(m,n)) family is a frame in L*(R) for the counting measure on 72, i.e. if for
two positive constants A and B we have

(1) forall f € L*(R), Al fI3< D, D I< fldmm >IP< B F13

meZ ncZ

then we must have almost everywhere on IR :

(2) A<~ Z | 9(eg) P< B

mem

219



in particular, ¢ is a Morlet wavelet :

. +oo
3 | / u¢(s)xzf§<+o¢;

ii) if for some € > 0, ¢ satisfies | z |/2*¢ ¢y € L? and | ¢ | $(¢) € L? and if [ pdz =0
(so that ¢ is a Morlet wavelet) then 1 satisfies

(4) ess.inf. Z | $(a2¢) |*> 0 and ess.sup. Z | P(a€) }2< +o0

mcZ meZ

for any ao close enough to 1 [i.e. there exists a{y) > 1 such that (4) is satisfied for any
ao € (1, a(v))] ; moreover for any ag such that v satisfies (4) a sufficient condition for the
family (Y(m,n)) mez, nez associated to ap and to some positive bg to be a frame is that by
is close enough to 0 (i.e. bo € (0,8(ao,%)) for some positive B(ao,1) depending on ao and
9).

Part i) of theorem 1 was proved by C. K. Chui and X. Shi [CHS]. Part ii) was proved
by I Daubechies under different hypotheses on 1 [roughly speaking, 1,2» was required to be
continuous, to be 0(] £ |€) for some € > 0 in the neighborhood of 0 and to be 0(] £ |~17¢)
in the neighborhood of infinity]. We choose a different requirement on 1 not only for the
sake of originality, but mainly for three reasons. The first one is that we shall deal in the
following chapters with wavelets which don’t satisfy Daubechies’ requirement while they
satisfy ours (for instance, the celebrated Haar basis). The second one is that the main
tool in our proof will be a theorem (the “vaguelettes lemma”) which is of constant use
in wavelet-related operator theory. The third one is that this proof works as well for an
irregular sampling as for a regular one :

THEOREM 2 (Irregular sampling theorem). - Let 1 be a Morlet wavelet such that for
some € > 0, | z |[Y/2+€ 4 € L? (so that [ ¢ dz =0) and | £ | ¢ € L2. Let (aq,ba)aca be 2
countable family of points in (0,+00) x R and let ¥, », = az/ 29 (”—"91)

Qa

i) A necessary condition for (1a, b, )aca to be a frame in L?(IR) for the counting measure
on A is that there exist numbers A > 1, 8 > 0 and N € IN* such that

(5) Va>0, VbeR, ISCard{aeA/%aSaaS/\a and {b-ba{§8a}§N

(where Card E is the cardinal of the set E).

ii) Conversely, a sufficient condition for (Y4, b, )aca to be a frame is that the family
(@ayba)aca satisfies (5) for some N € IN* and some X close enough to 1 and some 0 close
enough to O [i.e. there exist Ag > 1 and 6y > O such that (4, b, )aca is a frame whenever
it satisfies (5) for some N € IN*, some A € (1, Ao) and some 8 € (0,65)].
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This sampling theorem shows that Morlet’s choice of a regular hyperbolic grid to
discretize his wavelet representation is somehow optimal. Irregular sampling has been
recently discussed by several authors, see e.g. K. H. Grochenig [GROE2], as a robustness
criterion for the regular sampling which thus is proved to be poorly affected by a small
perturbation of the sampling points.

Theorem 2 shows also that the information conveyed by < f | 44,5 > can be viewed
as an average information about f on [b— a8, b+ af] and about f on [-—%, ~f5] U [;\3;, %] ,
as we pointed it in the preceding chapter : in order to have a frame, we need a complete
but not.over-redundant information, and this is the meaning of condition (5).

We postpone the proof of theorems 1 and 2 to sections III and IV and devote section
II to the “vaguelettes lemma”.
2. The vaguelettes lemma and related results for the H,  spaces.

The vaguelettes lemma is an almost orthonormality criterion for functions generated
through dilations and translations :

THEOREM 3 (The vaguelettes lemma). Let € and € be positive real numbers such that
€> % Let (f(;,x))jezm,kcz be a bounded family in H, o+ :

(6.1) sup sup ([I| 2 | fig ll2 + Il €1 iy llz) < +oo
JEZL keZ , -

such that

(6.2) forall j € 7ZL and all k € 7L, / f(j,k)d:z: = 0.

Let A be a positive real number greater than 1 (A > 1). Then the family (z/)(j,k)) defined
by o

(6.3) Yax) = A f(j0) (4 — k)

is an almost orthogonal family in L*(IR). More precisely, there exists a constant C(A, ¢, €')
such that for all sequences (A; k) € £2(Z*) and all such families (Y(;,x)) :

1/2

©4) 1223 Xiwbiim 1< C(A4ee) | 331 I | supsup || S llm
; k k

e,ef
J
Remark. - The vaguelettes lemma has been introduced for the analysis of singular

integral operators (see e. g. Yves Meyer [MEY3]) with slightly stronger requirements on
the f(;,x) : they were required to satisfy for some positive ¢ and ¢f :

sup {H (1 |z ) fiim) lloo + sup | f6,0) (%) = fi5,0 (¥) l} i

ER z,¥,T#Y I rT—y lez‘
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(and of course [ f(;x)dz = 0). Such functions f(; k) satisfy (6.1) for any € € (%, é— + éo)

1+2¢9
and € € (0, 2+2¢0€o .,

Proof. The proof is very simple. We will first check the one-scale almost orthonormality

(and need for that only the space localization sup | (1+ | z )6 f 8 l2< +oo with e > 1).
3k
We will thereafter address the almost orthogonality between scales with a very simple tool:

integration by parts (and need for “differentiation” the regularity requirement

sup ||| € 1€ f(j,) ll2< +o0
1.k

and for “integration” the vanishing mean condition f f,pdz = 0).

LEMMA 1. - For any € > 7 there is a positive constant C (¢) such that for every (Ae)kez €
£ and every sequence (fk) in L? ((1+ | = |)*¢dz)

(7) I > Aefulz — k) ”L’(dz)< Cle) D 1 Ae? sup I+ T2 e 2 -

keZ keZ

This is obvious

/ 1> Mefa(z—K) P dz

keZ

<[ S 1w o= kD] fele ) P Z(qu g

keZ kEZ
< 7z oo MPENA+ Tz DS ]2, =
<N Grrasps e 2 I PIGT 12D

LEMMA 2. - For all positive € and ¢, and for all a € (0,€¢'), the fractional derivation
operator D= (defined by Dof(¢) =| 3 |°‘ F(&)) is bounded from He oo to L*((1+ | = [)2"d:1:)
ifn<i +aa.ndn <(1-3%)e Fe>1anda< m, we thus may choose ) > 1

Let o be a smooth function on R such that o(z) > 0 for all z and o(z) =| z | for

|z |> 1. If f € He,er, we know that 7 belongs to the Sobolev space H¢ and that | ¢ | f
belongs to L2 = H 0. ; hence we may use complex interpolation between H¢ and H° to get
that 0% f belongs to H(1 )€ if a € (0,€'). But we have Def = J—L o%f and it is easy to

see that ;,J—&l;;; is a multiplier for H” if and only if |7 |< 1 + .

LEMMA 3. - Let ¢ be a positive number such that € > 1. Let a € (0,1) be such that

« < e. Then the fractional integration operator I® (defined by I°f(¢) =| ¢ |=* f(£)) is
bounded from Lz((1+ |z |)*dz)n{f € L'/ [ fdz =0} to L((1+ | = [)”’d:c) whenever
n < min(e — o, 3 — a).
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In particular, if a < € — %, one may choose n > -;-

In order to show that | £ |~ f (¢) belongs to H", we have no problem for ¢ far away
from 0, since far from {0} | ¢ |~ is a smooth multiplier with bounded derivatives. We thus
fix a smooth function ¢ € C°(R) such that p(¢) =1if | £ |< 1 and p(§) =0for | £ |>2
and we will show that | £ |7% ¢ f belongs to H". Let’s call ~ the inverse Fourier transform
of | £ |~ ¢, so that the problem is now to show that f x v belongs to L?((1+ | z |)*"dz).

It is easy to check that :

(8.1) |v(=) [ C(1+ |z )M

(8.2)

£ y@)| < clut | = )2

Moreover, since [ f dz = 0, we may write

1410 = [ 16)((z - 9) ~ 2(@))a,

and hence
| v* f(z) |< C (In(z) + I2(2) + Is(=))
where :

n@=[ 10 G

I+ | )7

- W
I(z) = '/ISII>J%1 | f(v) | A+ [z )=

1
8= [ 0 G

Now, it is easy to check that :

[ 11:6@) P @+ 12 e

o atle)™  yP
S R I o ey = e L

and that the last integral converges if and only if a + 17 < % and a+n<¢;
[ 1@ P @+ 12 )

e (+ = )*" 1
<N 1=0S 1 [ [ ey e
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and the last integral converges if and only if @ + 1 < € ; finally, we have for any § > 0,

BE =)< [ 20O | ey e

dy ;

f6>a (14 |z|) e ecLlandifn+6<e¢ (1+|z|)"H0feLisothatifa+n <e
we have I3(z)(1+ |z |)7 € L?. =

Proof of the vaguelettes lemma.
We may now end up the proof of theorem 3. We define

Fi= ) Aixfin(z—k)

keZ
and

Gj =Y Aisbx) = AT Fj(Az).
k€Z
We choose a positive a such that I* and D* are bounded from H. «N{f € L'/  fdz =0}

to L2((1+ | z |)?7dz) for some n > 1 (as we may do by lemmas 2 and 3). Now, we have
the following invariance properties for I* and D% :

I{f(z—k)}={I*f}z—k) , D*{f(z—k)}={D*f}(=z—k),
I*{f(Az)} = A7*{I*f}(4=z) , D*{f(Az)} = A*{D"f}(Az).

Hence, we have :

1/2
| DG |la= A% || D°Fj ||2< C A% (Z | Ajk 12> (by lemma 1)
k

1/2
| 1°G; lly= A% || I°F o< C 4 (Z | Xk l’)
k

and therefore, for y > £ :

1/2 1/2
|< Gj | Ge >|=|< I*G; | DGy >|< C A4 (Z | Ak P) ~ (E | Aex }2)
k k

and this last estimate gives us :

ZZAJ»k¢(J:k) I3 “ZZ<G3 | Ge >

J

1/2 N 1/2
< ()X:z:fr‘"‘”"'Zt (Z | Ask Iz) (Z | Ae,k iz)
. P
C’(1+2 )ZZM:,klz
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We thus have shown the almost orthonormality of the family (¢(;x)). m

Remark. - In case of ¥ 5y = AI/%p( ATz — k), the vaguelettes lemma can be greatly
simplified :

PROPOSITION 1. - For the family (A47/2(A%z — k));ez ez (Where ¥ € L? and A > 1
are fixed) to be almost orthonormal in L?(IR), it is enough to have for some positive « :

(9.1) ess. sup. z | € + 2k |2%| (€ + 2kn) |2< +00
kEZ
(9:2) ess.sup. | & || $(€) |< +oo.

Proof. This is based on the following remark : for any f € LZ(IR), the following assertions
are equivalent :

(10.1) The family (f(z — k))kez is almost orthonormal in L#(RR) ;
(10.2) the function ) . | F(&€+ 2km) |? is essentially bounded.
Now (9.1) and (9.2) ensure us that the families (D*(z — k))rez and (I*¢(z — k))kez
are almost orthonormal, and the proof of the proposition is similar to the end of the proof
of the vaguelettes lemma. =

Of course, if ¢ belongs to He (with € > 1/2 and € > 0) and satisfies [ ¢ dz = 0, it
satisfies (9.1) and (9.2) for some positive ¢, as we have seen it in lemmas 1 to 3.

3. Proof of the regular sampling theorem.
We now prove theorem 1. We begin with the necessary condition. We suppose that
(Smm) = 35 ™ (a5 ™5 — nbo)) mez nez

is a frame :

(11) VFeL*R), A|FIE< D] Y 1< fl¥mm >*<B| FI

mEZ nEZ

and we want to prove

(12) A<



This will be easily done due to the following lemma :

LEMMA 4. - We note fy(z) = f(z — y). If (¥(m,n)) is @ frame then for all f € L2(R) we
have :

(13)
TEEEMT/ S 5 1< fy | $immy > dy———-/ 17O Y 1 dere) 2 de.

mGZ ncZ meEZ
Proof. The family of operators (Lr)r>0 defined by

1/2
Lz(f {2T/ Z Z|<fy|¢(mn)>| dy}

mEZ nEZ

is clearly an equicontinuous family of sublinear operators from L?(R) to R™ (since Lz(f)
< VB f ||2). Therefore, it is enough to prove (13) for a dense subset of L*(R)..

We define Qun(f) 25 Qum(f) = X nez |< f | ¥(m,n) >[* - Then we have :

1 271/ boag’ —iy(£+2 . 2nm
Qm(fy) = 27bo / Zf(f+2n7r ) VeI ¢( of'l“_)
neZ
and we get, by Fubini’s theorem :
baa™ X+2r/boag’
=t | )y
1 21r1/boa{," “ m 2n7r
=2,r,,/ S | (e 2nmp) [ 9la e + 50 I e
0 ncZ
+oo ,
v MGG OIS

We have thus proved a one-scale version of equality (13) :

1 [t . .
Jim 2 anar= g [ 17 Pl P ae

Now, Fatou’s lemma gives us :

1' +o0 A
b | F(¢) I2§I¢(a3‘£) 2 d¢

— 00

<lm mf—/ ZQm(fy)dy <BJ|f “2

T—+oo 2 T
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and we get therefore :

S 1 9(aTe) P<boB ae.

m

We will now prove (13) for f such that f is C*°, f has compact support and 0 & supp f .
In that case, we have :

m(fy) <
2x 1/boad .
57%35 |f(5+2n7r )1221@(54-21171'——-»-—)”‘1’( an+gﬁ7£)]2d5

neZ

1 2 e 2| Sla™e) 12 d
< gy | 2 1€ amm o) Pl [ 0(6) P05 0) 1 a6

where ¢ is a C® function with compact support such that 0 &€ Suppyp and ¢ = 1 on
Supp f. Thus we have :

+o0 R
@n(fy) S Co1+a7) [ 1210 P I ae

where the constant Cy doesn’t depend on m (but depends on f). But we have :

S [ 1o Pl P 0+ o)

00 . +o0 R
= [ T1eor T dEra Pae+ [ 15O P T 100 P de.

The last two integrals are convergent since we already know that Y | ¥(al*¢) |2 is
bounded and since the boundedness of Y, | $(af*€) |? is obvious. Thus, we may apply
Lebesgue’s dominated convergence theorem to conclude that (13) is satisfied for any f such
that f is a C*° compactly supported function with 0 & Supp f , hence for all f € L2.

The necessary part of theorem 1 has thus been proved. For the sufficient part, we may
just notice that, if | z |1/ 2te ) is square-integrable, the Sobolev injection theorem tells us
that ¢ is C* (we will suppose € € (0,1)) ; since $(0) = 0 (f % dz = 0), ¢ is O(] f |¢) near 0.
We know also (lemma 2 in section II) that for some positive o and 7, | £ |* ¥ belongs to
the Sobolev space H/2+7 hence % is 0(] ¢ |~*) in the neighborhood of infinity. Thus, for
any a > 1, Yomez | P(a™ E) |2 converges uniformly on every compact of IR\{0}. Moreover
4 is not identically 0 and therefore v has no zero on some interval [Ao, By (0 < Ao < Bo)
(and on [~Bo, —Ao] as well by Hermitian symmetry) ; hence ), . | 1,1)( m£) |2 doesn’t

vanish on R for any a € (1, %) . Therefore, ¢ satisfies (4) for small enough ao.

227



Now we fix ap such that (4) is satisfied. We will write ;bl(’fn’n) for Yam nboap ; the
problem is to show that we control Y . ez |< f | d)(m n) >|? for small enough bo.

LEMMA 5. - For any € > 1/2, ¢ > 0, ap > 1, there exists a constant Co such that for
every ¥ € H, o such that f tdz =0 and every f € L? we have :

(14.1) Voo € (0,1), Y D I< f|%apboar >I°< f"

meZ ncZ

(14.2) Jim, > Y o < f | Yap mboag 1= /ZGE"‘ 1< f | Yap,p >|* db.

mEZ neZ
Proof. We first suppose by € [1/2,1). Then we may write
Yam nboar 35 Yo nboalr = Qg ) (bo (ag™E — n)) . The vaguelettes lemma (theorem 3)
gives us :
Yo > 1< F 1 Yagmboay > CULS BN (bo2) I,
mEL ncZ
and (12.1) is proved for by € [1/2,1).
Now if by € ["N'I-T-T, ﬁv] we may write by = —gr, so that :

ZZ|<f|¢ao,nboa"‘>l ZZ|<f|¢a"‘n—ka"‘ l .

meZ ncZ meEZ ncZ
If0<r <2V, we write PYir, N = Y(z — rgbﬁr) ; then

D D 1< apaamary ag > S C U 12N 0wy N,

meZ n€Z
<Coll FIENY I, .,

and thus :
> Y U< f  thap mboap > Co2N || £ 1R ¥ |F, .,

meZ ncZ
and (14.1) is proved.
Because of (14.1), it is enough to prove (14.2) for a dense subset of L?*(R). We use the

same proof as for lemma 4 and thus we suppose f C®*, compactly supported and O ¢ Supp f
Then :

2mbo E |< f I "/’a{,",nboa"," >|2

ncZ

< > 1 g+ 2mmo

ncZ

400 .
ig*) [*lloo /_oo | (€) 1*| ¥(agé) |* d¢
+o0 )
sca+ap) [ lwle) Pliare I de
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where C doesn’t depend neither on m nor on by € (0,1) (and where 0 ¢ Suppy and
of = f ) By dominated convergence, we get :

Jim D D 1< F | Gapnsoap >Fbo= D (bnmoz bo |< f | Yap mboar >12).
o= neZ

mEZ ncZ meZ

But

E 27bo ‘< f } 1/}03‘,360413‘ >12

nEZ

2n1r

1 .

as soon as Supp f C [—-w—%ﬁa,xﬁ?} . Now, (14.2) is proved since

[ 170 71950 1 de =2ma5™ [ 1< 1 | baps > db. w

We may now easily end the proof of theorem 1. If ¥ € H. ¢ (€ > 1/2,€’ > 0) is such

that [ ¢ dz = 0 and if a0 is such that for some positive A, B we have (everywhere outside
from {0})

ALY D) P<B
mcZ
then we have :

ANTIBS [ X 6™ 1< T 1Yapa > b < B T 13

meZ

and we have just to check at which rate the left-hand side of (14.2) goes to the right-hand
side as bg goes to 0. For

lS(bg,f)—S(éz—o-,f) !

where

‘ 1/2
S(bO’f) = { Z Z bO ‘< f { wag‘,nboa{{‘ >}2} ’

meZ ncZ
it is a direct consequence of Minkowski’s inequality to state that :

1/2
‘ S(bo, f) - S( af) '._ { Z Z bo i< f ' ‘/’ao mboalt = lbao J(n+1/2)boal >‘ } .

meZ nEZ
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By lemma 5, we have, since

—-m -m b
Yo mboag = Yo (n+1/2b0sy =05 {¢([ao z — nbo]) — ¥([ag ™z — nbo] — = } ,

the following estimate :

| 5(b0,1) = 2, 1) I< Coln, ') | $(2) — $(z = -2) lar, 1 1 I

where 1 € (1/2,€) and 5’ € (0, ¢'). Now, it is easy to check that, if by € (0,1), there exists
v > 0 (which doesn’t depend on bo) such that
| ¥(z) — ¥(z— %) lln, < CB |l ¥ llu, ., : it is enough to see that

| %(=) - (-"6——) le<Clll €19 ¥llzb5 if € €(0,1)

while ;
I (1+ [ = ) (%(e) —¥(z - -50')) lesCl (1+ ]z )% |2
and
I (1+ ] €D P — e ™) o< 2 || (14| END 2,
and then to interpolate.
Now, if we define So(f) as (f ez 0™ < f | Yap,p >I? db)l/2 , we obtain :

560, ) = S0l 1€ O = (7557 1 ¥ ol F I

and thus if by is small enough the family (Yam nboam) is a frame.

4. Proof of the irregular sampling theorem.

We begin the proof of theorem 2 with the following sparsity lemma :

LEMMA 6. - Let ¢ € L*(R) (¢ # 0) and let (aa,ba)aca be such that the family

Vaabe = =az'?y (z—;f“) is almost orthonormal :
€A aCA

then there exists Ng such that :
(16) Va >0, VbeR, Card {a € A/-;-a <ag<2a and |[b—by < a} < Np.
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a
Hence if a is close enough to 1 (| a — 1 |< €o) and b close enough to 0 (| b|< €o), we have

| ¥~ %ap ll2< 3 | ¥ |2 and Re < 4,00 >> 1 || ¥ ||3 . Now fix a and b in R and call
Kop = {(aa, )/(1 —€)a<ay < (1+¢€)a and | bo — b [< ao} ; for (an,ba) € K5, we
have

Proof. The map (a,d) — e, = \}_1,[)(’——1’) is a continuous one from (0,+oc0) x IR to L2.

1
Re <tajp | Yaupe >= Re <Y | ag sa=e >2 5 [ 913,
hence

. |
7 192 Card Koy < D 1< ¥ap | $aup. >1P<Co|l 6 113

and we see that

Card Ky < .
AT

Thus we get (16). m

LEMMA 7. - Let ¥ € He o (€ > ,‘1, ¢ > 0) be such that [ dz = 0. Let ypppn =

sup |< ¥ | o >| (myn € Z). Then Zmez Enez qm o < Foo.
2m<LaL2mtl 2mn<h<L2™m (n+1)

Proof. Let {@m,n,bm,n) be a point in [2™,2™+1] x [2™n, 2™ (n + 1)] such that

'Ym,n ='< ¢ l ¢am,nrbm,n >| *

1 [om (2™ g 2"n ~b
z)[)am,n,bm.n - 2m/2 am’n“/) (am,n (575 - n) + am,n ) ’

Now (\/51&(0:5—{— A))1/2<6<1,0<2<1 is @ bounded set in H, o and we may apply the vaguelet-
tes lemma (theorem 3) to conclude :

We have :

Vi€L® Y 1< f | Yammbnn > CNF 3.

m,n

Let f =1 to conclude. m

End of necessary part of theorem 2:

Let ¥ € He,er, (€ > 1/2, ¢ > 0) with [ ¢dz = 0 and let (1/1%,1, ) be a frame. We call
No the number in inequality (16) and T the number ) 3~ ~Z | in lemma 7 ; and we call
Ao a positive number such that for all f € L2, Ao || F 13< Y, I< f | Yau . >|2

Fora>0 bEIRandNEIN wecal]KabN—{( ,B) € (0,+00) x R/27N < % <
2N+1 and | 2=ba |< (N + 1)2¥+1}. Then we have :

D) Ao | % 13< D 1< Yayb | Yau b >
(04
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Yo |<tap|Yaap > = > <%, bag sazs >|°

") (an,ba)exc.b.b] (-‘-‘-3,&'-9;:—6)951{1‘0'”
1

<No > D A

Im|2N [n|2N
This last estimate doesn’t depend on a or b and goes to 0 as N goes to +o00. Thus if N

is big enough, we obtain } . . = |< ¥ | Ya, b >|2> 0 and Card K, 3 v > 1. Thus we
have proved inequality (5). m

Proof of the sufficient part :

We fix ao > 1 and bo > O such that the family (Yam nboam) (m € Z, n € Z) is a
frame. Now, if foreacha >0 and b€ R, Ca.rd{a/%a <aq <Aaand | b—by [<fa} >1,
we may pick am,n such that :l\-ag" < @q,., < AaF and | bonaf* — ba,, . |< alt0. If A% < ag
and 8 < %, the map (m,n) — @m, n is one-to-one and thus we have :

SN U< Fl Ganppbamn PP YU | 00 >2 .

m

But we have :
S ST 1< £ | Yapmboap > Ao | £ 13 with Ao >0
m n

while :

. 1/2 1/2
(ZZ < £ | $ag mboap >P) - (ZZ 1< | Yoam n bamm >22>

m m

1/2
"<— {ZZ '< f I "/)ag‘,nboag‘ - ¢aam,n’bﬂm,n >|2}
m n

) 1
<C | £ |12 sup {n 80 =20 E =0l r e <A b1 Ae}
by the vaguelettes lemma. This last estimate goes to 0 as A — 1 and § — 0 and theorem
2 is proved. m
5. Some remarks on dual frames.
We have seen that sampling the Morlet wavelet representation on a fine enough hy-
perbolic grid gives a discrete frame : we have turned a functional representation (as a

function in L? (22db)) into a sequential representation (as a sequence in £(Z x Z)). Such
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a discrete representation is better suited to computing than the former continuous one.
However, we have lost a very convenient tool of the continuous wavelet transform, namely
the possibility of choosing a nice dual wavelet (such as a smooth compactly supported one):
if our new discrete frame has no redundancy but is a Riesz basis of L?(IR), the dual frame
is then unique and there is no reason that this dual frame should well behave, whatever
the behaviour of our wavelet v is. The problem of the dual frame is then two-fold :

o while the frame (Yom nboar)mez,nez is easily described by a finite set of data (the
function 1, the scale mesh ag and the position mesh bg), the dual frame (h,,n) might

be of a more complex structure : one sees easily that hpy n(z) = ————,——ho n ( ) but the

functions ho,n, n € 7, are not in general generated from hoo by shxfts By instance, let
(%;,k)jcz, kcz be an orthonormal wavelet basis of L*(IR) (¢ x = 21129(27z k), j € &,
k € 7Z) with a smooth rapidly decaying wavelet ¢ (1 belongs to the Schwartz class S (R) ;
we will see in chapter 4 that such wavelet bases exist) and define ¥ = (z) — r¢(2z) where
| 7 |< v/2 ; then the ¢, x = 27/2¢)(27z — k) are still a Riesz basis of L2(IR) and for such a
basis the dual basis (hjx = 27/2h(27z)) is easily computed

hi = Z ({‘2") ?/)j,za'k-

7<0, 20kE€Z
We thus see that
th (2ko+1) & th (x - 2N2k0),

but that the functions ho and hyn (z+2%) are all different. Moreover, kg is badly behaved:
if | r |> 1, it isn’t integrable on R.

e the second point is the following one : even if the dual frame (hy,») is a wavelet frame
R = ag™h(ag™z — nbp), there is no reason for h to have good decay at infinity or to
have good regularity properties. So we cannot hope to characterize functional spaces or
regular points (as in the preceding chapter) without knowing the behaviour of k. That
means that, in order to have a characterization of functional spaces in terms of sequences

of wavelet coefficients, one needs to deal not only with the analyzing wavelet ¢ but w1th
the reconstruction wavelet h as well.

By instance, let us describe the characterization of Sobolev spaces by mean of an
oscillating analyzing wavelet ¥ and a regular reconstruction wavelet & :

PROPOSITION 2. - Let ag be greater than 1 and bo be a positive real number. Let
and h generate dual frames in L2(R), ($m,n = ag zl)(ao z —nbo))mez nez and (b, pn =

m/ 2h(a0 z — nbo))mez,necz. Let s be a pos1t1ve real number and D?® be the fractional
derzvat:ve operator defined by D*f(¢) =| ¢ |* f(¢).

i) In order to get that for some constant C

(17.1) VieH, ) Y ai™I|<f|¥ma>P<C|DF I

meZ ncZ
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a necessary condition is
(17.2) |¢|"*$eL™®
and a sufficient condition is

(17.3) for some positive 6,
| €728 e L.

ii) In order to get that for some constant C
(18.1) for all finite sequence (Am,n),

|D8(Z kan >”2<CZZ"'gm8|>‘mnl2

meZ ncZ

a necessary condition is
- 2k7r 2kn
(18.2) E AE+5-) "l e+ —— |2“’EL°°
cZ

and a sufficient condition is

(18.3) for some positive 6,

2km 2km 19, oo
Z|h5+—)|15 |2e+26¢ Lo,
kEZ bo

Remark, - Condition (17.3) is satisfied as soon as we have for some 0 > s, |z |7 ¢ €
L' and [ zP¢dz =0 for 0 < p < [s]. Condition (18.3) sounds classical (for wavelet bases,
it can be found in [GRI1]) ; it is satisfied as soon as we have for some 0 > s, h € H” and
h has enough decay at infinity in order to ensure D*h € L?*(| = |'*7 dz) for some positive
n, i.e. as soon as h € H? andl:z:l‘hEL2 for some o > s and some € > 3 .=

Proof. (17.1) is equivalent to the statement that the family.

((I" YIm n—ag'/z(I"t/))(a, :z:—nbo))

mez neZ

(with I/s?b =|&|™° 1/3) is almost orthonormal in L2, while (18.1) is equivalent to the almost
orthonormality of the family

D*h) mn = a™2(D°h) (aT*z — nbo) ) -
) 0 J
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The necessary parts are then straightforward by looking just at the scale ¢ = 1 : for
f € L? the almost orthonormality of (f(z — kbo))kez is equivalent to the boundedness of
Yokez | f (€ + 2’”‘) |2 . The sufficient parts are corollaries of proposition 1. m

6. Wavelet theory and modern Littlewood-Paley theory.

The Morlet wavelet theory has many common points with the modern Littlewood-
Paley theory, as developped in the years 60’s and 70’s. A. P. Calderén introduced in the
60’s a resolution of identity, for the purpose of interpolating Banach spaces [CAL}, which
is similar to the integral wavelet transform. Let ¢ € L%(IR) be such that :

i) 4 is real-valued ;
ii) + is C*°, has compact support and 0 & Supp® ;

and let ¥; be the convolution operator ¥:f = f % %1/)(3;'-) We write ¥} for the adjoint
operator of ¥; ; then :

(19) W, 0 Wyt = Cyldye (Calderén formula).

The constant Cy is the Morlet constant :

(20 o= [T 1901 %

the connexion between Calderén formula and the Morlet wavelet transform being given by
T < | Pap > Papdb = a¥q 0 W(f).

The Calderén formula provides a Parseval equality

+o0
1) 1= [ 1w

but the point is that is also suited to many other spaces, as by instance Lebesgue spaces
L? (1 < p < +o0), Hardy spaces H? (0 < p < +400), Sobolev spaces H®, Besov spaces
Bg?, and so on. We have seen in the preceding chapter the case of the Sobolev spaces H?®,
the Holder spaces C? or the Zygmund spaces C{ :

+oo dt
efors>0and feL? feH* & / “‘I’tf”2i1+2s<+°°

o for s >0 (s¢N) and f € L, fEC"’@supt | Oif |loo< +o0
e forse IN* and f € L, fECf@supt_" N\Iftfuoo<+oo
>0

Thus, the Calderén formula provides a representation of functions as a continuous super-
position of functions which are frequentially well localized.
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The Littlewood-Paley decomposition provides a similar decomposition, but the con-
tinuous parameter ¢ is replaced by a discrete one and the integral by a series. Let ¢ be
such that :

(i) 9 is real valued
(if) ¢ is C*°, has compact support and O € Supp ¢
i) Y 19 P=1.

JEZ

Then if we define A; = ¥y/5; 0 ¥]y;, the Calderén formula (19) can be turned into the
Littlewood-Paley decomposition :

(22) VieL?, f=) Ajf
J€Z
where the series converges in the L? sense. We then have
0= 30 N sl 1 D 1 457 13
JEZ JEXL
(where =~ stands for equivalence). This decomposition allows the same characterizations

of Banach spaces as the Calderén formula ; we have for instance :

efors>0and f€L? fcH* & Z‘ija | A f l3< +o0
JEZ
efors>0(s¢N)and f€L®, feC® & sup2’® || Ajf [leo< +00
JEZ

eforseIN*and f€ L®, f € C° & sup 2'® || Ajf [loo< +o0.
JEZ

Such characterizations have proved to be very useful for the analysis of non-linear partial
differential equations (as for instance in the para-differential calculus of J. M. Bony [BON]).

‘A further discretization of the Calderén formula has been introduced in the mid 80’s
by Frazier, Jawerth and Weiss under the name of the p-transform [FRJ|. They consider a
function v such that :

(i) ¢ is real-valued
(ii) ¢ is C*°, has compact support and 0 ¢ Supp 9

(iii) for f € L2, || F1I3= Y. D I< f 1k >|* (with ¢ = 27/29(27z — k).

JEXL kEZ

Such functions are easily constructed, as shown in the “painless non-orthogonal wavelet
expansions” paper by Daubechies, Grossmann and Meyer [DAUG|. Now formulas (19)
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and (22) become

(23) VieLr, f=) Y <fltix> bk

JEL KEX

and the characterization of H® and C? are turned into :

efors>0and fEL%, fEH & Y > 4°|<f|thjx >|*< +o0
JEZ kX

efors>0(s¢gN)and feL®, f€C® & sup sup 27CFY2) |< f|oh;p >|< +o0
I€Z ke 71

o for se IN* and f € L®, f € C2 <> sup sup 2/(+1/2) < fl%5,e >|< +oo.
I€Z ke 7

With the p-transform, we thus are dealing only with numerical sequences, and not with
functions any more.

In 1985, Y. Meyer constructed a function ¢ satisfying the conditions i) to iii) required
for the p-transform and an extra condition : the family (¥ x)jez kez Wwas an Hilbertian
basis of L?(IR) [LEME]. In the following chapters, we will study and construct the wavelet
bases. The main difference with the p-transform is that we shall deal mainly with com-
pactly supported wavelets (and show why they are well-suited to numerical computations).



Chapter 3

THE STRUCTURE OF A WAVELET BASIS

In this chapter, we will study the (bi-orthogonal) wavelet bases of L%(IR), i.e. Riesz
bases (1;,x);cz, kez of the type :

(1) ¥5k(2) = af/ *9(adz — kbo)
such that their dual basis (zzj,k) jez kez, defined by :

(2) ¢~j,k € L? and < 1/31‘,;: | Yo,p >= 6j,06x,p for all £,p € ZL

is of the same nature

(3) $1,(2) = aff *(abz — kbo)

(with the same parameters ag and bp). We may always suppose by = 1, since the isometry
U : f— v/bof(boz) transforms the basis (;x) into (U(z/)j,k) = a%/z(Ut/J) (a)z — k)) and
the dual basis (1;5]',1;) into (U (@Zj, )= aé/ 2(Uv,l’;) (a{;:z: - k)) . Whereas the parameter by is

thus arbitrary, ao cannot be chosen arbitrarily. If we want 1 and z,Z to be localized (i.e. if
we require ¥ and % to be in Hy /24 for some positive €) then, if moreover we ask ao to be
integer, then necessarily ap = 2 ; as we will see, this is deeply connected to the fact that, for

integer ao, the spaces Vo = Span {,x/£ <0, k € ZZ} and Vo = Span {zze,k/l <0,ke Z}
(where Span stands for “closed linear span in L?”) are invariant under a translation by
bo .

(4) FEVL® f(z—bo) €EVp and f e Vo e f(z—bo) € Vo.

If ap is no more an integer, Vj and Vo need not be invariant under the translation by by ;
however, if we require 1 and ¢ to be localized and V; and Vo to be invariant, ag has to
belong to {1+ L/m e IN*}.

As we will see, the space Vy has a very specific structure and the description of its
structure will help us in the following chapters to construct many wavelet bases.

1. General properties of shift-invariant spaces.
The main result of this section is the following one :
THEOREM 1 (The invariant projection theorem) - Let Py a bounded projection operator
on L(R), V = Ran P, and V = Ker Pg- and let ¢ be some positive real number. Then

the following assertions are equivalent (we assume Py # 0) :
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(i) P, satisfies the three following properties :
¢ Py is invariant under integer shifts :

(5.1) Vk € Z, ¥f € I*, Po(f(z—k)) = (Pof)(z — k)

e Py is an integral operator

(52)  Ip(z,y) € LL (R x R), Vf € C°, Pof(x) = / p(2,8)f (4)dy a.e.

e p(z,y) has enough decay off the diagonal to ensure :
63 [ [ @ la—y ) Ua(e0) P+ 1 p(5:2) P)dady < too.
z€[0,1] JyeR

(ii) V' has a Riesz basis (vsx)1<s<D,kcz and V has a Riesz basis (Bs,k)1<5<D ke
such that :

(6.1) vé e {1,--- ,D}, Vk e ZZ, <p5,k(x) = ps(z — k) and gag,k(x) = §55(2 —k)
(6.2) /(H— |z )} | ps(z) |* dz < +00 and f(l—i— [z )1+ | Bs(z) |? dz < +o0

(6.3) < Qs | Pn,e >= 05,90k,e.

Moreover, the number D doesn’t depend on the choice of the Riesz basis (ps,x) and will
be called the multiplicity of V.

Proof. We begin by the easy part ii) = i) : (6.3) means that (vs,x) and (Ps,x) are dual
Riesz bases, and therefore :

D
(7) VfeL? Pof=)_ Y <f|®sk> 05k

§=1kcZ

Now, (5.1) is obvious, while (5.2) and (5.3) are direct consequences of the following in-
equalities for ¢, % € L2((1+ | z |)}*¢dz) :

Le{o,lj fyem(“‘ |z =y ) (Z | o(z k) || &y — k) |) dz dy

kEeZ
< 5= lple = k) [ (14 | 2= k)7 By = k) P (1 |y =k )
z€[0,1] VyER rcy
' (14 |z—y )i+
2, T o= EDeus [y e
<O f ] T e k) P ek ) By =) 1 (1 = k) ey
z€|0,1 kEZ

= [ o) [ (1 |2 )dz [ 166) 12 0+ 1y D ay.
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We thus have proved ii) = i).

We now turn to the direct sense : i) = ii). We first characterize shift-invariant Riesz
bases.

DEFINITION 1. - For f,g € L?, the correlation function C(f,g) is defined by :

(8) C(f,0)(€) = Y _ f(&+2km)§(€ + 2kn).

keZ

The series (8) converges almost everywhere and defines a 27-periodic function which
belongs to L(0,27).

DEFINITION 2. - For (fs)1<6<D, (9¢)1<e<e two finite families of functions in L2, the
correlation matrix M ((fs),(ge)) is defined as the D x E matrix (C(fs,8¢))1<6<D,1<e<E-
Similarly, the auto-correlation matrix M[(fs)] is defined as M{(fs)] = M((fs), (f5)).

LEMMA 1. - Let V be a shift-invariant closed linear subspace of L%(RR) (i.e. Vf €V,

Vk € Z, f(z — k) € V). Let f1,--+,fp belong to V. Then the following assertions are
equivalent :

(i) the family (fs(z — k))1<s<D,kez is a Riesz basis of V ;

(i) the functions (fs)1<s<p satisfy the following three requirements :
o M{[(fs)] belongs to Mp(L®(0,2))
e M((fs)] is invertible in Mp(L®°(0,2r))
eVfeV, dEt(M[(fa)lsgsp U (f)}) = 0 a.e.

(j) = (jj) is almost obvious. For f € LZ, the almost orthonormality of the family
(f(z — k))kezm is equivalent to the essential boundedness of C(f,f). Since C(f,g) <
VC(f, F)\/Clg,9), we see that if the family (fs(z—k)) is a Riesz basis of V, then the coef-
ficients of M|(fs)] are essentially bounded. Moreover the dual basis (f5 ;) of (fs(z—k)) in
V is easily seen to be shift-invariant : f3, = f5(z—k), and we have M[(fs IM[(fs)] = dp,
so that M|(fs)] is invertible in M D(L°°(0 27)). Finally, if f belongs to V, then we have
f =Y 5.,C(f,£3)fs and thus for any g € L%, C(f,9) = L5, C(f,£3)C(fs,9) ; this
implies det(M[(fg) u(f)]) =0.

(ij) = (j) is easy as well. If MJ[(fs)] has bounded coefficients, the family (fs(x — k))
is almost orthonormal. If moreover M|(fs)] is invertlble, we may define a dual system
by M[(fs)]"! = ()\5,5(5))155_<_D’1£€$D and f} = Ee,_l s e(&)f€ ; we then have that the
family (fj(z — k)) is almost orthonormal and in duality with (fs(z — k)) ; thus we may
conclude that the family (fs(z — k)) is a Riesz basis for a closed subspace of V. This

subspace is the whole space V' : for f € V define f© € V by fo Za > LC(F, f2) F5 ; then
C(f, fs) = C(f° fs), hence :

0 = det M[(fs) U (f — f°)] = (det M[fs)C(f — 1%, f - £°)
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hence

C(f-——fo,f——fo):Oa,.e.;

1 2r
17-1 W= [ Ol =1%7 = P)ie =0
and f = f°. The family (fs(z — k)) spans V. m

COROLLARY. - If V admits finitely generated shift-invariant Riesz bases, the number of
generators doesn’t depend on the choice of the Riesz basis.

Indeed, if (fs(z — k))1<s<p,kez is a Riesz basis for V (with dual basis (f;(z — k))
and if (ge)1<e<p is a family of functions in V, then §e = Z?xl Clge, f5) fs so that :

(9) M{(ge)] = M((gc), (f$))MI(£5)1M((£5) (9¢))

and
rank M[(g.)] < rank M[(f5)] =D a.e. m

LEMMA 2. - Let € be positive and f1,---, fp belong to L2((1+ | z |)'*¢dz).
(i) The series (8) defining C(fs, f&r) converges uniformly on [0,27) and C(fs, fs') belongs
to H'3* (IR/27ZL).
(ij) For all ¢ € [0,2nx], the function f§ =3 ez e=%(==F) fs(z — k) belongs to L*(0,1).

(ii3) For all ¢ € [0, 27, the matrix M[(fs)](&) is the Gram matrix of the functions (f,f) 1<6<D
in L?(0,1).

This lemma is easy. If f belongs to L2((1+ | z |)*¢dz), f belongs to H'/2+¢/2(R) ;
if w e CZ(IR) is such that ), » w(z — 2kx) = 1, the norms

1/2
| # lzsszsern  and (Z | w(z - 2km) f nﬁ,zm)

k€%

are equivalent, and thus we may conclude from the Sobolev injection H/2+¢/2 ¢ [ .

(10) Z sup | I f(&) ‘25 c ” f H%Il/2+e/2 .

ke ¢e2kn 242k

We have proved the uniform convergence of C(fs, fs) on [0, 27]. Moreover, by the Poisson
summation formula

(11) c(f&; fG’) = z < fs(z) l fSI(m - k) > e~ tkE

keZ

and we have :
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Y I< fo() | for(z — k) S|P (14 | k)1

keZz

1 l+e¢
<2 2 d ' 1 012 (14 | & N1+
il kzez/wmlz.”s‘x” T | e @0+ 2 )5 3 (1 ] k)

1
+2) || f5(z) 1+ | = )5 |2 /k|<&lz—k| | for(z — k) |2 mdz(l+ | k|1

keZz

<4140 10] 2 ) ] fo@) 110125 181 Y s Ty e

so that C(fs, fsr) € H'%* “(R/27Z). Point (j) is proved.

Point (jj) is obvious :

[ (Z Ifs(x—k)>

kEZ
/kezzlfgx_ |2(1+|x—k|1+edz|[21+'x k|1+€”oo
=|| fs(z)(1+ |z )*F*

” ”Z 1_*_]3: k|)1+€”°0'

And point (jjj) is easily proved :
1 _ 400 . _
| @@= [ e @ g e
+m . —
- / 15(2) 3 e F (2 — K)dz

keZ

=3 < s | fo(z— k) > e = C(fs, fo)(€). m

keZ

LEMMA 3. - If P, satisfies (5.1) to (5.3), then for all ¢ € [0,2n] the space V& = {f¢/f
V O L?((1+ | z [)**<dz)} is finite dimensional. Moreover dim V¢ doesn’t depend on €.

In order to prove lemma 3, let us define P¢ by

(12.1) Vi € I%(0,1), PSS = / Pt (2,9) £ (v)dy

(12.2) _ pf (:l:, y) — Z p(x, y— k)e—iﬁ(z—y-i-k).
keZ '
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We first notice that (5.3) ensures that p®(z,y) € L?([0,1] x [0,1]) :

/f | 9 (z,9) |? dzdy <
[0,1]2

DY ey e [ [ 2 PR (o L myk ) < oo

keZ keZ

Thus P¢ is a bounded operator on L2 (0,1) ; since it has a square-integrable kernel, it is a
Hilbert-Schmidt operator, hence a compact operator.

Now, for f € L?(0,1) (extended by 0 outside from [0, 1]), we have

Pof € L*((1+ | z ) **dz) :

[1Ror@ F ar g sis [ [ 1pn) 0|2 Didedy < 4o

and '
{Po(e¥*2)}¢ = P¢S.
Thus, Ran P¢ ¢ V&, If g€ € V¢, we have

Iosll k r
= [ Z e R p(z 4+ k,y) Z et#Pg(y — p)dy

(0,1} "% P
= }: ] Z e @R P p(z + k+ p,y — p)g(y — p)dy
= Z / Z e ¢ R p(z + k,y — p)g(y — p)dy

[0,1]

— Ze“‘s(”k)(f’og)(x + k)= gc.
k

Hence P¢ is a projection operator onto V¢. Since it is compact, V¢ is ﬁmte dimensional.
Moreover, we have :

(13) dimve = | /{ P ()i dy
0,1]2

since p*(z,y) may be rewritten as

dim V¢

pi(z,y) = Z e;(z)e; (y) a. e.

=1
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where (e;) is a basis of V¢ and (e}) the dual basis of (e;) in (Ker P&)L. Formula (13) proves
that dim V¢ is a continuous integer-valued function of £, hence is constant. =

LEMMA 4. - Let V be a shift-invariant closed linear subspace of L?(R) such that V N
L2((1+ | z |)'*¢dz) is dense in V, and let V¢ be defined as in lemma 3. Then the following
assertions are equivalent :

() V has an Hilbertian basis of the type (fs(z — k))1<s<p,kez With f5 € LA((1+
|z [)+edz)
(i) V€ € [0,27], dimV ¢ = D.

We already know (j) = (jj) by lemmas 1 and 2. The implication (jj) = (j) is proved
by reccurence on D. We will show that we may find a function g € L*((1+ | = [)!T¢dz)nV
such that the family (¢(z — k))xez is orthonormal. Then we call W the space spanned by
theg(z—k),k € Z,and V = VNW=. Now V is still shift-invariant (because both V and W
are invariant), VNL2((1+ | z |)1*dz) is dense in V' (because if f € L*((1+ | z |)1*¢dz)nV,
it is easy to see that

S < flg(z— k) > gl — k) € L((1+ | = ) *¥¢dz) 0 V)
k

and V¢ = V¢ @ Cgé, hence dimV ¢ =D —1,

Hence, we just have to show the existence of g. Since dimV¢ = D, we may find for
all ¢ a function g¢ € L2((1+ | z [)1Tedz) NV such that C(g¢, g¢)(£) # 0, and we have also
C(ge,9¢)(n) # O for 1 in a neighborhood of ¢. By compacity of [0, 27], we may find a finite
family of functions g;,---,gn and a subdivision t; = 0 < iz < --- < iy < in41 =27
of [0,27] such that : V¢ € [t;,ti41], Cl94,9:)(§) > O (t =1,--+,N). We will search for a
function g of the type § = Ef\;l X:(€)§:(€) (with ); a trigonometric polynomial) such that
V¢, C(g,9)(€) #O.

We have :

A1
C(gsg) = ()‘13°"3AN)M[(9£)} : ) .
AN ~
Since the matrix M[(g;)] is hermitian and non-negative (as a Gram matrix), we have
A

C(g,9)(¢) # 0 if and only if M[(g:)) ( : ) # 0, or equivalently Y ., Ai(&)u:(é) # 0

AN
C(g 1y gi)
with @; = | : . In order to prove the existence of such A;’s, it is enough to look
Clgn,9i)

for continuous functions p; such that : V€, 3 pi(€)@:(£) # 0 ; then we will conclude by
the Stone-Weierstrass theorem. Let then ¢y, 1 < ¢ < N, be 2n-periodical C*° functions

such that : ¢; = 1 on [t;,tiy1], 0 < i < 1 outside from Ukezlts + 2km,tip1 + 2kn],
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C(gi, 9:) doesn’t vanish on Supp p; and the support of p; is contained in [t;_12+t; , ikl ';'t"“ ]
modulo 27 (with. to = ty — 27 and ty42 = t2 + 27). Then we will choose p, to be
o (€) = ewa(d) 213y for some 2m-periodical C*° real-valued function we. On Jto, tatiatt]
we have :

-t -
g — ua iwa ua_l iwa—l
2 mele = e+ Cami g e

and, since | Yo-1 |< 1, 3 ik # 0. Similarly, 3 px@te # 0 on [h-*%ﬂiL,taH[. 3 ukik
can vanish_onlyf on the points £ = i, ; if we fix wa(ta) = 0, we thus have to avoid
"%r:ﬂ-“ + ﬂ%:-ne“"a (ta+1) = (§ and this can be easily done. m

We thus have a function ¢ € V N L*((1+ | = |)**°dz) such that C(g,g) doesn’t

. Y 2 1+e .
vanish. If we define v as 4 WCIk then v € L*((1+ | z |)1*¢dz) NV (since C(g,9) €

HY/2+€/2(IR /27 7L), and C(g,g)(€) # O for all £, we have C(g,g)~Y/? € HY/2+</*(R [2n1L)
since we may use symbolic calculus on the algebra H'/2+¢/2(R/277Z)). Moreover

S 1A+ 2kn) 2= 1,

keZ
and this implies the orthonormality of (y(z — k))kez. Lemma 4 is proved. =
We may now prove (i) = (ii) in theorem 1. By lemmas 3 and 4, we know that V has

an orthonormal basis (ps(z— k))155§ pkez With o5 € L2((1+ | z |)1+¢dz). Then the dual
basis ($s(z — k)) of (ps(z — k)) in V is easily computed as

b5 = Pyes = [ plualelo)dy
so that (5.3) and ps € LE((1+ | z [)**¢dz) imply &5 € L*((1+ | = |)***dz). Theorem 1 is
proved. m
We may give more results on the decay of the functions s and ¢} in terms of the
decay of p(z,y) :
PROPOSITION 1. - Let P, satisfy the hypotheses and conclusions of theorem 1. Then :

(i) one may choose ps and @5 with rapid decay (i.e. Vk € N, z*p; € L? and z¢@s € L?)
if and only if :

Vk €N, / / lz—y ¥ (| o) 2 + | p(ys2) [2)dzdy < +oo.
z€l0,1] JyeR

(ii) one may choose s and @5 with exponential decay (i.e. Je > 0, el%lps(z) € L* and
e®lGs(z) € L?) if and only if :

Jda > 0, / ’ / el2=¥l(| p(z,y) |? + | p(y, ) |?)dz dy < +co.
z€fo,1] JyeR |
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(iii) one may choose s and P with compact support if and only if p(z,y) is properly
supported, i.e.
M, |z—y|>M = p(z,y) =0.

(iv) If Py is an orthogonal projection operator (V = V*) then conclusions i), ii), and iii)
are valid for orthonormal bases (ps = $}).

Proof. Except for the case of compactly supported functions, proposition 1 can be proved
in exactly the same way as theorem 1 (because the integrability conditions are stable for the
orthonormalization tool used in lemma 4 : § = ——L—). The case of compactly supported

v C(g,9

functions is handled with the following lemma :

LEMMA 5. - Let V be a shift-invariant closed subspace of L*(IR) such that V contains
non-trivial compactly supported functions. Then there exists two compactly supported
functions g and h such that :

egcVandhelL?;

o <g{z—k) | h(z) >= bk for all k € ZZ.

For v € V with compact support and € L? with compact support,

C(y,v) = E <v(z) | n{z — k) > e ¢
keZ

is a trigonometric polynomial. We choose g € V with compact support such that :
degree C(g,g) = min{degree C(v,7)/v € V, v # 0, ~y has compact support}
and define I as I = {C'(h,g) | h € C2°}. I is an ideal of the ring of trigonometric polynomial:
C(h1,9) + C(h2,9) = C(h1 + ha, g)
and

(D are™*4)C(h,9) = C(Y_ axh(z — k), 9).

This ring is principal, hence I has a generator Qo. We say that Qo = 1. Indeed, let
Qo = R(e™*¢) with R(z) € C[X], R(0) # 0, and suppose that R(zo) = 0 for some 2z, € C*.
We then have }°, . 2kg(z + k) = 0 in D’ ; we define 6 as

0=Zz§g(z+k)=—zz§g($+k);

k>0 k<0

we have that 6 has a compact support and therefore belongs to L? (as a locally finite sum
of square-integrable functions) ; moreover g(z) = 6(z) — z08(z + 1), hence

Clg,9) =|1- zoe'é |2 Cc(9,6) ;
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we will have a contradiction if we prove § € V. If | zo |< 1, the series Y ;50 259(z + k)
converges strongly in V ; if | zo |> 1, the series —3; o zkg(z + k) converges strongly in

V ;if | 20 |= 1, the series 3,5, 28g(z + k) has its partial sums SN 2kg(z + k) bounded
in L2 B

N
1 i -~
(n > hale+K) o= = || (5N - 1)d a2 0 llz)
0

and converges to 0 in D', hence weakly in L?, but V as every closed subspace is weakly
closed and # € V. Thus Qo = 1 and lemma 5 is proved.

Point iii) of proposition 1 is now easily proved by recurrence on the multiplicity D of
V. Just pick a g and a h as given by lemma 5 ; then the operator

Qf =) <f|Poh(z—k)>g(z—k)

ke

is a projection operator such that Py — Q is a projection operator ; both @ and Po — @

have properly supported kernels, the multiplicity of Ran @ is 1 and the multiplicity of
RanPy—Q is D — 1.

Point iv) is then easily proved : it is enough to show that there exists y € V such
that ~ is compactly supported and the family (v(z — k))kez is orthonormal. Let w € V
be a non-trivial compactly supported function and « = Inf Suppw. We want to construct
a function «o defined by :

a+1

|l Yo ll2= min{|| ¢ ||2 /¢ €V, Suppg C [, +o0], | g(z) |? dz = 1}.
We define
a+1
K ={ge€V/Suppg C [a, + 2M +1], | g(z) P dz =1,
x
a+1 —1/2
lolas ([ 1w Pds) o)
[+3

We claim that K is a compact set : indeed, by point iii), we know that
U={g€V/Suppg C [a,a+2M + 1]}

is a finite-dimensional space, and K is a bounded and closed set in U. Moreover, if g € V,
Supp ¢ C [e, +oo[ and f:“ | g(z) |2 dz = 1, we define § as

§ = g — Po(X{at+M+1,+00]9) = Po(X[a,a+M+1]9) ;

247



it is easy to check that

Suppg C [e,a+2M + 1}, §€V, §=gon [a,a+ 1]

and
Il d N2<ll X[o,at+pr+119 2ZI g M2

since K is compact, this proves the existence of vo (with support in [, @+ 2M + 1]). Now
if k > 1 we have

Supp Yo + Avo(z — k) C [er, +o0]

and
Yo+ Mo(z—k) =7 on [o,a+1];
we obtain
Il Yo l2<|| 7o + Av{z — k) || for all A € C,
hence

<7 | '70(:c--k) >= 0.

The required function 4 may then be defined as

Yo

Tl "

2. The structure of a wavelet basis.
We will study in this section the structure of bi-orthogonal Riesz bases of LZ(IR)
(@ *¢a(0’ 2 — k) 1<aca ke jcz, (6 *Pa(0’ T — k) 1<aca kem jem-
THEOREM 2. - Let a > 1.
(i) Let (Yo)1<a<a and (Po)1<aga satisfy :
(14.1) (¢’/*po (o = — k)) and (a?/*¢o(a’z — k)) are bi-orthogonal Riesz bases of L*(RR) ;
. (14.2) ¥ and JQ belong to Hyja+¢,er for some positive €, € ;
(14.3) the spaces
Vo = Span{a’/?*p,(a’z — k)/5 <0, 1< a < A, k € 7Z)

and
Vo = Span(a’/?Po(a’z — k) /5 <0, 1< a < A, k€ )

are invariant under integer translations,
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then the space Vo has a Riesz basis (ps(z — k))1<k<p with dual basis (¢s(z — k))1<k<D
in Vo such that ps, s € L?((1+ | z |)}T4dz).
Moreover, we must have :

ea= ‘3 for two integers p > q> 1 withpAg=1;

* (p—q)D = qA. )

When a is integer (¢ = 1), Vo and Vp are always invariant and condition (14.3) is therefore
always fulfilled.

(ii) Conversely, if Vo and Vo are closed linear subspaces of L?(IR) such that :

(15.1) Vo and Vo have dual Riesz bases (ps(z—k))1<s<p,kcz, ($s(z—k))1<s<D kcz With
vs and Os in Hyja4¢e for some positive € and € ;

(15.2) Vo C V1 = {f(az)/f € Vo} and Vo C Vi = {f(az)/f € Vo} ;
(15.3) Vy and V, are shift-invariant : f €Vy & f(z—k)€Vy, f € V& flz—k)e V1.

(15.4) The spaces V; = {f(a’z)/f € Vo} and V; = {f(a’z)/f € Vo} satisfy : Njez Vi =
anZ VJ = {O}a Ujez VJ and UjGZ V; are dense in L?

thena € Q,a = 5— with p A ¢ = 1, q divides D and there exist A = (p — q)—?— functions v,
and A functions 1Zo, such that :

(16.1) o and 1/30, belong to Hy/z+4e,e

(Yo (z — k))kez 15 a Riesz basis for Vi N Vg and

(16.2) - S
(Yal(z — k))kez s a Riesz basts for ViNVy

(16.3) the families (a,j/z'(ﬁa (afz—~ k))jez kez,1<a<a and (aj/zt/;a(ajz —k))jem keZ,1<a<A
are dual Riesz bases of L?(IR).

This theorem has been proved in 1991-92 by P.-G. Lemarié-Rieusset [LEM6], [LEMY]
and P. Auscher [AUS2]. The case of wavelet bases with non integer dilation parameter a
has been studied in Auscher’s thesis [AUS1].

Proof. We first explain why a has to be rational.

LEMMA 6. - Let V be a closed linear subspace of L?>(IR) such that :

(i) V has a Riesz basis (fs(z — k))1<s<p,kez with fs € L*((1+ | z |)1*<dz) for some
positive €

(ii) V is invariant under a shift by a factora>1 : f€EV & f(z—a) €V

249



thena € Q, a = g— with p A ¢ =1, and D is a multiple of q.

The lemma 6 is easy. If V satisfies i) and ii), it is invariant for any translation
f— fx—h)wherehe Z+aZ ;if a ¢ Q, ZZ + aZ is dense in IR ; since h — f(z — h)
is continuous from R into L%(R), V is invariant under any translation. The orthogonal
projection P of L? onto V commutes with translation, hence is a convolution with a
distribution p : Pf = p * f, where p is bounded (since P is bounded on L?) and satisfies
P2 = p a.e. (Asince PoP = P) :we thus get p = xg for a measurable set £ and
V = {f € L*/f = 0 a.e. outside from E}. Now, V is supposed to have a basis (fs(z ~ k)),
which we may assume to be orthonormal as we saw in the preceding section. We thus
have:

A D 27“ A -
vrert [170Pxs@de=3 [ 15 fe+2enfa(e+2hm) ? ag
=1

which gives, by considering fsupported in [éo — 7, & + 7] and letting & run through R :
D
=Y 1 /58
6=1

which is absurd, since fg is continuous. Thus a cannot be irrational. Now if a = 2 the

space W = {f(pz)/f € V} and Z = {f(2z)/f € V} are shift-invariant ; moreover the
orthogonal projectors on W and Z have kemels which satisfy the hypotheses (5.1) to (5.3)
of theorem 1 (just use the basis of V to compute the kernels). Thus, W and Z have shift-
invariant Riesz bases. If E is the multiplicity of W and F the multiplicity of Z, we have
E = pD = gF, hence ¢ divides D since pAg=1. =

The proof of theorem 2 is a direct consequence of theorem 1. Let’s suppose that 1, and
Yo satisfy (14. 1) to (14.3). If Q; is the projection operator from L? onto Span(¢; k,e/1 <
a < A,k € ZZ) in the direction of (Span(jk,e/1 < a < A,k € 7))L (where 9 50 =
a?/?4po (0’ z ~ k) and 1,[11 ke = &'/ 2o (a7 — k)), and if Py is the projection operator on V
in the direction of Vg, then :

(17) Po=) Qj=Tldg— Y Q.

<0 20

{This proves that V, and f’o are invariant if ¢« € IN* since for 7 > 0,

Qe+ =) = @)=+ 25,

hence

Qi (f(z+1)) = (Q; /)= +1)).
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If we look at the distribution kernels of Py : p(z,y) and of Q; : g;(z,y), we have :

(18) (z,y) = Zq_, z,y)=6(z—y —Zq,-(z:,y) in D'/(R x R).

i<o0 >0

Now, since ¥, and ¥ belong to L2((1+ | z |)!*¢dz), we know that go(z,y) is locally
square-integrable and that

w9 [ [ Je=y T (o) P+ | olns) ) dedy < oo
z€[0,1] JyeR

and for 7 >0

/ / |z -y ' (| gi(z,v) I* + | g5 (v,2) |?) dzdy
z€[0,1] JyeR

. ' .
=/ / o304 |z —y [ (0¥ | go(2,9) ] 40 (v, %) |7) 55 dzdy
z€[0,a7] JyER =

= a—j(1+‘)/ ,/ |z =y I'* (| 20(z,9) |* + | 20(v,2) |?) dz dy.
z€[0,a7] J yER

Now, the function

s [ Ns=y ¥ (@) [+ | 2o(s2) P)dy
veR

is 1-periodical, hence :

/ / lz—y | (| (=, 9) | + | ¢i (v, 2) |*)dz dy
36[0,1] yeR

<o (@l +1) [ [ ey P (@) P+ o) ) dy
z€[0,1] JyeR
<C a7,

Thus we obtain that outside the diagonal z = y, p(z,y) is a locally square-integrable
function such that :

e [ |23 P ([ (@) P +] plo,2) )z dy < +oo.
z€[0,1],yER

Now, we prove that ¢¢ is locally in L™ (R x R) for some ro > 2 : we know that ¢, €
L3((1+ | z |)**<dz) and 9 € H¢, hence o € L7 (dz) for L =1—¢ (we suppose € <3
we obtain by interpolation 9, € L"((1+ | z |)9(1+€)dz) for 0 <f<land l=1°+ g

|...
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We fix 0 so that 8(1 +¢) > 1 and fix ro such that 2 < ro < o and 24(1+¢) > 1. For a
fixed compact set K, we get :

/,[ | Yalz — k) |7 "/’a(y—k) | dz dy
KxK

1 i 3
< Cxrrrpase 1 ¥e e apoaraunll $o I (@iapecro s

hence :

1
D %0(1-{»6)

Z ” ¢a x - )"/’a(y k) “L'O(KXK)< CZ (1+ < ++00.

We have that Uj <0 JK =K is bounded, hence compact, so that for 7 <0 :

//KXK | ¢i(z,y) | dxdy.://ajxxajx kl woley) [? dody
: (/ /I?xk | go(z,y) | dzdy)zm JO) | Kx K%

//KxK | p(z,y) | dzdy < +oo.

We may apply theorem 1 to Py and thus prove the existence of shift-invariant dual Riesz
bases for Vo and Vp with basic functions in L2((1+ | z |)1+<dz).

The converse implication (15) => (16) is easy. Let P; be the projection operator onto
V1 in direction of V'L and P, the projection operator onto Vj, in direction of Vo Then
Py — Py = Qo is 1tse1f a projection operator (we have Py o Py = Py since Vo C V; and
Pyo P1 Py since Vo C V;) and we may apply (due to (15.1)) theorem 1 to Qo. Hence
Vin Vs~ = RanQo and Vi N V4 = (Ker Qo) have dual Riesz bases (¥a(z — k)) and
(Yalz — k) With o, P in L2((1+ | z |+ dz). In particular, we have

hence

D
Z Z !< 1/)0: ! (ﬁa(ax—— k) >l< +00,

5=1keZ

hence

D
| Yo llge< DD al< o | Bslaz — k) >||| ps(az — k) |

=1 k

Hc' < +00

and %, belongs to Hy/zqce (and zz'a as well). By construction, we have

< ¢C¥,j,k ' ¢~ﬁ;£m >= 6a,ﬁ6j,£5k,p
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(where Yo jk = @/ *Po(a’z — k) and Pp,ep = a¥*Yp(alz — p))
and (due to (15.4))

A
im [ f= Y D> <flPask> ok lz=0forall fe L.

N—
oo /I<N o=1kez

In order to prove that (¥ k) and (e ; k) are dual Riesz bases of L?(IR), we just have to
prove that they are almost orthonormal families. It is enough to show that f gbada: =0

and [ ¢ad:z: = 0, and then to apply the vaguelettes lemma.

LEMMA 7. - Let 9 belong to Hy/2+¢,e for some positive € and €'. Then for all f € L2,
jJim > df < f e’z —k) > xp,(d’z — k) = ( / Pdz)f in L.
kez
We just have to notice that the family (y(z — k)) is almost orthonormal, as well as
(X{0,1(z — k)). The family of operators (R;);cz, defined by
R;f = Z o < flY(ddz—k)> X[o,1](aj-'c — k)
kEZ

is then equicontinuous on L?(R). Thus, it is enough to prove the convergence only for a
dense subset of L2. We have seen that there exist 0 >2 and 1 > 0 such that ¢ belongs to
Le((1+ | z |**" dz) ; thus we may write :

| Bj f(z) |<

- . 1-1 .
Zkez ” P ”Lo((1+|z|1+n)dz) (f ] f ]'&‘—_1 (1+ I dz—k I) oy (1+n)a,.7d:z:) X{O,l](anC -
k);

if we choose o close enough to 2 to ensure 0—11—(1 +n) > 1, we obtain easily :
| R;f(2) |< CM(| £ |757) "%,

where M is the Hardy-Littlewood maximal function ; but we have :

I 3 (1 £ 1757) 7 Jlo=ll M (1 £ 1757) ”2(0-—1) (with

?—(00;1) > 1, hence :)

< Co lll £ 177115z =Co |l f ll2s

hence we may apply dominated convergence to conclude that when f € C$° the pointwise
convergence of R; f to ([ ¢ dz)f (which is obvious since | z |* ¢ € L! for some positive a)
implies the L? convergence of R, f to ([ ¢ dz)f. m
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To end the proof of theorem 2, we just apply lemma 7 to f = wa and ¢ = 9, to
conclude, since < gba,gba,j,k >= 0 for any 3 > 0 and k € Z, that ([ qdz) zﬁa = 0, hence

f $adz = 0. By the same way, we have J z/)ad:c = 0 and theorem 2 is proved. =

Of course, we may have a more precise description of the shift-invariant Riesz bases
by mean of proposition 1 :

PROPOSITION 2. - In theorem 1, we may choose the ps and $s of the same decay as
the 1, and z/)a, and conversely v, and 1/)a of the same decay as Qs and Ps, i.e. with
rapid decay, exponential decay or compact support as described in Proposition 1. In case

of orthonormal bases (1, = zﬁa or ps = Pg), we may choose an associated orthonormal
basis with the same decay properties.

3. Definition and examples of multi-resolution analysis.

The notion of multi-resolution analysis has been introduced by S. Mallat in 1986
[MALL1] and plays a key part in the construction of wavelet bases.

DEFINITION 8. - (i) A multi-resolution analysis of L*(RR) is a sequence (V) ez of closed
subspaces of L? such that :

(21.1)  V; C V41, ez Vi = {0}, Ujez Vs is dense in L*(R)
(22.2) feV;e f(27) € V.7+1
(22.3) Vo has a Riesz basis (p(z — k))kez-

(ii) Two bmu}ti-resofut}'on analyses of L*(R) (V;), {V;) are said to be bi-orthogonal if we

have L2(IR) Vo @ ¥}OJ-, thus if there is a bounded projector on L? such that V = ran P,
and Vgt = Ker Py.

(iii) A generalized multi-resolution of L*(IR) associated to a dilation factor a = E(png=1)
and of multiplicity D is a sequence (V;)jez of closed subspaces of L? such that :

122)  fevy e ey Hren Vs e dense n B
. ar i1

(22.3) Vo has a shift-invariant Riesz basis (ps(z — k))1<s<D ke
(22.4) Vi is shift-invariant : f € Vy & f(z—k) € V.

(Condition (22.4) is always satisfied if a € IN*).

We have seen that the bi-orthogonal wavelet bases whose wavelets have enough decay

and regularity (t/)a,zlja € Hj/24¢e) can be derived from multi-resolution analyses. Now
let us see some easy examples or counter-examples.
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a) the Journé counter-example :
Let E = [-8F,-4] U [, F] L[5, 5] and ¥ = xg. We check easily that
Yokez V(E+2kn) =1a. e. and 30,5 ¥(27€) = 1 a. e. ;50 we get that (¢;,x = 27/24)(2 2~
k))jez kez is an orthonormal basis of L?. Let Vo = Span(t,x/¢ < 0,k € Z). If f belongs
to Vo, Supp f is contained in the closure of |J, <o Supp 1/)(—5[ hence in F = [ 4.}’ R 47” ]
U8, 8 ]u &1?;’, 187] , Now, if Supp f C F, the function C(f,f) = Y sez | F (& + 2kn) |2

vanishes on [8F,197] and V, cannot have a shift-invariant Riesz basis (though Vo is

shift-invariant).

b) the “Littlewood-Paley” Meyer wavelet [LEME] :
Let ¢ be a non-negative even C° function such that Ekez &(€ + 2km)2 = 1 and

Supp® C [—%’3, 53—3’—] We claim that the family (o(z — k))kez is an orthonormal basis

for a space Vp which generates by dyadic dilations a multi-resolution analysis (V;) (with
Vi = {f(27z)/f € Vo}) : the orthonormality of the family (p(z — k)) is equivalent to
Ekez | &(€+ 2k1r) |?=1a. e. ; now (21.2) and (21.3) are obvious for (V;) ; since f € V;
implies Supp f c {¢/ | ¢ |< 4r27}, Njez Vi = {0} ; moreover if Suppf ¢ {¢/ | ¢ I< 2 },
we have f = C(f,9)®, hence f e Vo :thus p(%) € Vo (which implies V; C Vj41) and
Ujez V5 is dense in L2, (V;) is thus a multi—resolution analysis.

We may easily compute a wavelet basis associated to (V;) by the following obvious
lemma :

LEMMA 8. - If V is a shift-invariant space with an Hilbertian basis (ps(z—k))1<s<D,kcz
and if (¥5)1<s<p are functions in V, then (Ys(z — k))1<s<D,kez is an Hilbertian basis of
V if and only if the correlation matrix M((vs), (©s))(€) is unitary a. e. in &.

We thus have to compute a function ¥ with ¢ = 9—(\/%16%1 + E\(/Qe“‘ﬁ (%) (a,b 27-

. s Clp, V2p(27)) a(f)) e
eriodical) such that ? is unitary. We thus get a very eas
periodical (G Vante s 46 v

solution with

a(¢) = —C(p,V2p(2z — 1)) and b(€) = C(p,V2p(22)),
which gives :

(26) = —}Ea(ze)aa(s) + %b(ze>¢(s)e-*f

=" (26 + 2km)p (€ + kr)e T EHRT £y 7 e~ B(2€ + 2km)B (€ + kvr)} &(&)
k k

/-\

1
2

- { > €+ 2km + w)é(zé + dkT + Zvr)} e~*3(¢)
1,
~2

Clesels Z))(e+ ﬂ)e"‘%(ﬁ)
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This wavelet 9 is smooth with 11) C* and Suppt,b C [——é’i —2—3’5] U [%’-’-, 8?”] and generates
a Hilbertian basis of L2(R) (27/24(27z — k))jez kcz-

¢) The “Littlewood-Paley” David wavelet [MEY1] :
G. David slightly modified Meyer’s construction to provide a Hilbertian basis

(@’ *¢(a’z — k) jez kez

fora=1+ ;1‘— with ¥ €* and compactly supported. Let ¢ be a non-negative C™ even

function such that Y. | $(¢ + 2kx) |>= 1 and Suppyp C [- gﬁw,gﬁ;w] Then the

family (p(x k))xez is orthonormal and any f € L? such that Supp fc [2m T ’é}%z%ﬂ
satisfies f = C(f,p)d.

We now define a multi-resolution analysis (V;} by : a Hilbertian basis of V; is given
by (a?/2\/mp(a?mz — k))rez ; in particular a basis of V, is given by (\/_go(m:z: k) kez
(and the multiplicity of V; is therefore m) and a basis of V is given by (v/m + 1p{(m +
1)z — k))kez (and the multiplicity of V; is m 4 1). We may easily compute a wavelet basis
associated to (V;) : the wavelet ¢ is given by

6 )e—tk—-ﬁ-—

\/ (m—{—l e

b= ZC(d),\/ lp((m+ 1)z — k)

where the vector

{cW, vmTTp((m+ 1)z - K)()}

0<k<m

is the unique vector that completes the matrix

(C(vVmp(mz ~r),Vm + 1p((m + 1)z — k) Jo<r<m—1,0<k<m

in SU(m + 1). Of course the wavelet ¢ is C*, has its support contained in

[ 2(m +1)2 2m } { 2m  2(m+1)? ]

m(2m+1) Tamt1 m+ 1 *m(2m + 1)

and generates a Hilbertian basis (a//2¢(a’z — k)) jez kez of L*(R).

4. Non-existence of regular wavelets for the Hardy space H(2),

The Meyer wavelet may be viewed as a smoothened version of the “Littlewood-Paley-
Shannon” wavelet v defined by :

(23) %Z' = X[-2n,—x] U X[r,2r]
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It is very easy to check that for such a wavelet i, we have

D1 (E+2kn) P= ) 4@ P=1a e

keZ JEZ

and therefore that (2//2¢(2/z — k))jez kez is a Hilbertian basis of L%(IR).
We may define as well a Littlewood-Paley-Shannon wavelet for the space H(?) = {f e
L? [Supy fc [0,+00]} of analytical signals, by defining :

(24) P = X[2r,4n]-

Then the family (27/2¢)(2/z — k)) ez rez is an Hilbertian basis of H(?). A very natural
question is then to ask whether there is a smoothened version of the wavelet 1. The answer
was proved to be negative by P. Auscher in 1992 [AUS2|. The proof follows another proof
by P. G. Lemarié-Rieusset [LEMS5] of the existence of multi-resolution analyses associated
to regular wavelets.

THEOREM 3 (Auscher s theorem). - There is no wavelet ¢ € H ) n H, o (for some
¢ > 1/2 and some € > 0) so that (27/24(27z — k)) is an Hilbertian basis of H(z)

Proof. The proof begins by a discrete version of the result of C. K. Chui and X. Shi quoted
in theorem 1 of the preceding chapter.

LEMMA 9. - Let ¢ € L?(IR) be such that :

(i) the family (¢ = 2//%¢(2/z — k)) is orthonormal ;
(ii) the closed linear span Vo of the gk, £ < 0, k € Z is shift-invariant : f € V5 &
f(.’l: - 1) € Vo.

Then we have :
(25) VieVo, IFI3=)_2¢)" I<f|2*p(24z— k) >|*.
<0 kEZ

The meaning of formula (25) is the following one : the orthogonal projection operator
P, from L2 onto Vj is shift-invariant. It can be written as

Pof =) > < flthik> ik
i<O0keZ
but the shift-invariance is hidden in this formula ; formula (25) gives
Pof =) 28 < 22924z — k) > 2¢/%(2%(z — k),
<0  kE€Z
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so that the shift-invariance is clearly expressed. The proof of lemma 9 is analog to the
proof of the Chui-Shi result. We see easily that for any f € L? we have :

D28 < f1 224z - k) >PP< Pof |}

£<0  keZ
if
Qe= Y < f|tek> bk
kEZ
and
f(z) = Tnf(z — k),
then :
-1 21 -1
S Y < F12%@a - k) SP=on 3 3 I7Qur—ef I3<] Pof I3
-N  kez r=0 £=—N
(since 30 l| wQem f 3= Xpco || Qeref 13=Il Poref liz—H - Pof |3=I| Pof ||3) ; thus
lemma. 9 is proved if we prove that for a dense subset of L? we have
-1 2N
Wi, 22 2 Qe T 3=l Pof I

This is easily done for f such that Supp f is compact and 0 € Supp f : we saw that if
$=1on Supp f and 0 & Supp B, then, for £ <0 :

I @er—rf < C 27t [ | 0(e) [ d(2%) I de,

hence :

N1

| Pof 113 — ZZ‘ Z | % Qer—.f |3< C Z 2~ f | 5(8) 1] $(27%€) | de¢

r==0

and this majoration goes to 0 as N goes to +oco. m

LEMMA 10. - Under the hypotheses of lemma 9, we have :

(26) For almost all &, E Z | 1,5(28(5 +2km) =0 oris >1.
>1keZ

Lemma 10 is an easy consequence of lemma 9. We write, due to formula (25) and the
Poisson summation formula :

VieVo, f(&)=) (Z F(€ + 2km)p(24(€ + 2kvr))) $(2%€) a.e

£>1 \keZ
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hence :
2

S 1fE+2kn) P=3

3 (€ +2km)(24(€ + 2kn)

kEZ 1 lkez
< LFE+2km) 20D | h(24E + 2km) P
keZZ 21 kEZ

by the Cauchy-Schwarz inequality. Letting f = &(2‘5) and summing on £ gives

1/2
DO 194+ 2km) IP< (Z > 128 + 2kn) |2)

£>1kEZ 1keZ

and proves lemma 10. m

LEMMA 11. - Let ¢ belong to H ¢ for some € > 1/2 and ¢’ > 0. Then

>N 1 b2k + 2km) |2

£>1kez

defines a continuous function outside from 2w ZL.

As a matter of fact, we know (by the proof of the vaguelettes lemma) that for some
positive o and some 7 > 1/2 we have | £ |*/2 ¢ € H". Hence we obtain

> | &+ 2km |*| (& + 2kw) [*€ H" ;

keZ

now if

A = U (e + 2km, 2w — € + 2k7],
keZ

we have for £>1and £ ¢ A, :

> 1 P28(E +2km) |2 < (2%) 7> ) | 28(¢ + 2kw) |*] H(24(¢ + 2km) |

keZ keZ

< (2% || D | n+ 2kx |*] (0 + 2k7) *]loo
keZ

and lemma 11 is obvious. m

Thus if ¢ satisfies the hypotheses of lemma 9 and if moreover o € He o (¢ > 1/2, € >
0), we must have

Z Z ' 1,2(28(54- 2k~) [22 1 for ¢ & 2n7Z

£>1keZ
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but

[T 1determn pae=(Tey [ 1H@ I=2n

£2>1k€eZ &1

hence we get :

Z Z | 1:Z(zg(f + 2k7) |2=1 for ¢ & 27 ZZ.

1 keZ

Therefore, the Cauchy-Schwarz inequalities used for f= 33(256) on the proof of lemma 10
were equalities, which means that for almost all £ the vectors

ee(€) = ($(24(¢ + 2km)))kez

are proportional one to each other when £ runs through IN* ; thus the function

_ | $(2%¢) |
U = = B+ 2km) P

(where £ depends on ¢ and is chosen such that ) ;. | H(24(¢ + 2k7) |*> 0) doesn’t
depend on the choice of £. Moreover we have for all £ > 1,

| B(2%¢) P=U(€) Y | $(2%(¢ + 2kn) %,

keZ

hence formula (26) gives

Ug) = | $(2%) |* for £ & 2n 2.

21

Now, we have A
U(¢) =| $(2€) |* +U(2¢),

hence

U(2¢) = ( E Y(2€ + 4k) | ) = U(¢&) Z | $(2¢ + 27 + 4km) |2 .

ez kEZ
Let
= Z | D(2€ + 2m + 4kn) |2 ;

keZ

we have the following properties for 8 :
(27.1) fcH® (e>1/2) and 0L6<L1
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(27.2) 6(€) +6(é+7)=1 and @ is 2r—periodical.
(273) U(26) = 6(6)U(€) and U(e) =) [$(2%) I*-
1

We may define V (£) = [15° 6(%).  (0) < 1, V(£) = 0 and if 6(0) = 1, V(£) is continuous
and V(0) = 1. Moreover we have :

2¥g N 5
[ L0 (5) de=2r

this is done by recurrence on N since that for any 2V r-periodical function f we have:

28 5 E oN+1, E 3
[ ne (ZN) ae= [ 1 (2N) at =
/ i £(8) (e(i) o5 + 7:)) dt = / ¥ F(e)de
0 2N 2N —2N-1g
Since .
X[—2" x,27 x) (€ H (-—) — V(&) for all £ as N — +o0,
we have too
V(é)d¢ <2m
and then +oo
/ V(£)de < 2
0

(since V =0 or V(0) = 1 and hence f V(£)d¢ > 0). But this is absurd since 0 < U(¢€) <

V(£) and
/+°° U(¢)de = Z/ | 9(2%¢) P de¢ =27. m
0 1 Jo '
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Chapter 4

THE THEORY OF SCALING FILTERS

We have seen in the preceding chapter that bi-orthogonal wavelet bases (¥;x =
29/2(2'z — k))jem kem and (¥r = 29/24*(27z — k))jezm kem With regular and local-
ized wavelets 1,1* are always provided by multi-resolution analyses. Therefore, before
the construction of the wavelet bases which are now commonly used in wavelet theory
(we will do this construction in the next chapter), we will describe some properties of
multi-resolution analyses, and especially the properties of the so-called scaling functions
and scaling filters. We will pay a particular interest to the compactly supported scaling
functions, because such functions provide compactly supported wavelet bases (as we will
see in the next chapter) and fast numerical algorithms (as we will see in chapter 8).

1. Multiresolution analysis, scaling functions and scaling filters.
We first recall the definition of a multi-resolution analysis :

DEFINITION 1. - A multi-resolution analysis of L*(IR) is a sequence of closed linear
subspaces (V;);ez of L?(R) such that :

(1.1)  V; € Vis1, Njer Vi = {0}, Ujez Vs is dense in L*(IR)
(1.2) fe€V;<e f(2z) € V41 (dilation invariance)
(1.3) Vo has a shift-invariant Riesz basis (p(z — k))xez (shift-invariance).

The function ¢ in (1.3) is called a scaling function for (V;). A multi-resolution analysis is
called e-localized if one may choose its scaling function in L%(| z |?¢ dz) (where ¢ > 1) ; it

is called regular if one may choose its scaling function with rapid decay (p € L?(| z |* dz)
for all k € IN).

We will say that a function ¢ in L?(IR) is an e-localized scaling function (or a regular
scaling function) if there exists a multi-resolution analysis (V;) such that ¢ is a scaling
function for (V;) and if moreover ¢ belongs to L%(| z |2¢ dz) (or has rapid decay). This
multi-resolution analysis is then uniquely defined by V, = Span(p{z — k), k € Z) and
V; = {f(292)/] € Vo}.

LEMMA 1. - Let ¢ € L*(R) and € > %. Then p is an e-localized scaling function if and
only if @ satisfies the following three requirements :

() o€ L*(| = > dz) ;
(ii) The family (p(z — k))kez is a Riesz basis for Span(p(z — k), k € Z) ;
(iii) There exists a sequence (ak)kez € £2(Z) such that :
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(2) o(%)= >kez ake(x — k) (two-scale difference equation).

Moreover, these three requirements are satisfied if and only if :

) @er-

(ij) 728 f 3 ez | B(€+2kn) [*>0;

(i)  There exists a 2mw-periodical function mo(€) € H(R/2nZL) such that :
(3) B(2€) = mo(€)p(§)-

Proof. The equivalence between (i), (ii), (iii) and (j), (ij), (iij) is obvious : we have proved
in the preceding chapter (lemma 2) that for f and g in L?((1+ | z |)?¢dz) the series

C(f,9) = Y, f(&+2km)§(¢ + 2km)

keZ

converges uniformly on {0, 27] on a function belonging to H*(R/27Z) (if ¢ > ) ; since

mo(€) = C(1/20(3),2)/Cle, ),

the equivalence is obvious.
If  is an e-localized scaling function, it satisfies (i), (ii), by definition and (iii) because
of the inclusion V_; C V,. Conversely, if ¢ satisfies (i), (ii) and (iii), we have to prove that

(V; = Span(ga(2ja: —k)/ k€ 7L))jex

is a multi-resolution analysis. The dilation or shift invariance properties for (V;) are
obvious by definition of the V; ; the inclusion V; C V;4, follows from ¢ ( ) € Vo. Thus we
just have to prove that NV; = {0} and UV; is dense

By (ii), we know that there exists two positive constants A, B such that :

eforall feL?andall NeZ : Y |< f |2 2p(2Vz— k) >P< A £ 113
keZ

oforall f€NjepViandallN€Z : Y |< f|2¥2p(2¥z—k) >*> B f 3.
keZ

Now if there were some f € ﬂjezV such that f # 0, we could approximate f by a
function w € CZ° such that
N/2, (oN 2
Nezke%k“”z o@Nz—k) >*>0.
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But

Yo l<w|2¥ 2Nz —k) >12 =) [< 27V w(@ N (z + k) | p(z) >

keZ k€Z
+oo z+k
< z) |? w dz || w1
[ 1e@F X oG el

and this last term goes to 0 as N goes to —oo. Thus NV; = {0}.
The density of UV} is almost obvious. We begin by proving that Jodz #0 : the
function my satisfies | mo(0) |< 1 since

2_ Zk z | P(4km) & .
o = 5 en To R

since mo € H¢(IR/27nZZ) with ¢ > 1/2 and is therefore Holderian, the infinite product
52, 1 mo(2,) | converges to a finite limit for all £ ; now we have

oo

srey e TT Lo (60 1 1o 5 (=
1 6(8) =TT I mo(g5) 1185 =1 8(0 H )5

thus ¢(0) # 0. But V = UJGZ V; is a closed subspace of L? which is invariant under
any translation £ w ke, je ZZ), hence under any real translation ; hence V = {f €
L?[Supp f C E} for some measurable set E. This set E is invariant under dyadic dilations

and contains a neighborhood of 0 (since $(0) # 0), hence £ = IR and L_)V, =L m
DEFINITION 2. - A 2n-periodical function mo € H¢(R/2nZL) (where € > %) is called an
(e-localized) scaling filter if there is an e-localized scaling function ¢ such that $(2¢) =
mo(£)$(£).

LEMMA 2. - Let ¢ be an e-localized scaling function and mq its scaling filter. Then
#(0) # 0, mg(0) =1 and

(4) 2(8) = 6(0) [ mo (-f,—) .

This lemma is obvious since we know already that ¢(0) #0. =

Remark. - If §(¢) is a measurable function such that Suppd C [-2,—-1] U [1,2]
and such that & < 6 < C on [-2,-1] U [1,2] for a positive constant C and if u(¢) =
3 ez 0(27 ¢), and if @ is an e-localized scaling function, we define w by & = p(£) ; then
w is a scaling function for some multi-resolution analysis of L?(IR) and w has the same
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scaling filter as ¢ ; but formula (4) can be applied only to ©. The knowledge of the scaling
filter gives the knowledge of the scaling function only if the scaling function is e-localized. m

2. Properties of the scaling filters.

In 1990, A. Cohen [COH] has given an useful criterion to characterize the scaling
filters among the functions in H¢(IR/27Z) (¢ > ).

THEOREM 1. - Let € > 1 and mo € H¢(IR/2nZZ) such that mo(0) = 1. Define the
function ¢ and the operator T by :

(5.1) 5(6) = fjm (%)

62) Vi eCOR/2m) TF() = mo(S) [2 F()+ | moS +m) 2 15 +)

(where CO(IR/2n7Z) is the Banach space of 2w-periodical continuous functions, equipped
with the norm || - ||0). Then @ is the Fourier transform of an e-localized scaling function
p if and only if mq satisfies the following requirements :

(1) sup | T%(1) lloo< +o0 5

(i) (A Cohen’s criterion) : there exists a compact set K which is a finite union of closed
intervals and such that :

(5.1) Z xr(é+2knr)=1a.e.
k€%
(5.2) V€ € K, V5 € N, mo(‘t);éo

Proof. If ¢ is an e-localized scaling function, we call v the auto-correlation function

(&) = Clo, ) (&) = D | @(&+2kn) |5

ke

we know that the series converges uniformly on any compact set of IR (since ¢ €
L?(] z |*¢ dz)) and that v is bounded by below (vy(§) > Co for a positive constant Co)

since (¢{z — k))xez is a Riesz basis. Because of the relationship $(2¢) = mo(€)@(£), we
have

7€) = Zlmo( +k7r)lls0( + k) |?

keZ

= mo() P S+ [ oS +7) (S +),
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hence T(y) = v ; T is a positive operator (f < g = Tf < Tg), and we may conclude from
T(y) =vand 1< —ia.l—%-;’-)-q(ﬁ) that

neER

1
0 < T(1)(¢) £ ——=(8),
5w

hence

I oo
I T™(1) oS 7~
n‘é‘fn v(n)

(i) is thus proved. Moreover for all ¢ € [0,27], 4(§) > 0, hence we may find a number
k(&) € ZL such that (€ + 2k(€)7) # 0 ; since @ is continuous, we may also find a positive
number a(¢) such that for all n € (£+2k(&)r—a(£), §+2k(€)m+a(£)), B(n) # 0 (and hence
for all j € IN*, mo(35) # 0). We have obtained an open covering (£ —a(§), £+ @(£)) ¢c(o,2x]
of the compact set [0,27] and we may easily construct K with help of a finite subcovering.
Thus, point (ii} is proved.

Conversely, let’s assume that (i) and (ii) are satisfied. We choose a compact set K
satisfying (5.1) and (5.2). The infinite product []5° mo(5) converges uniformly on any
compact set of R and thus ¢ is a continuous function ; moreover, since ¢ doesn’t vanish
on K, ggﬁ{ | ©(¢) |> 0, and therefore

5(€ + 2km) 2> inf | &(n) |*> 0.
é;ho(ﬁ )72 jof | B(n) |

We want to prove that ess. sup Y op | (€ + 2k7) |2 is finite. Let’s define H as the space
éER

H={feL? Y | f(&+2kn) |’ L>}

keZ

equipped with the norm

£ =l (D | £(€+2kn) )2 oo

keZ

and define on H the operator S by

S7(8) = mo($)1(5)

(which is bounded from H to H) and V by

V&) = (D | F(&+2km) P/

keZ
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(a bounded sublinear operator from H to L°(R/27Z)). Then we have the inequality :
(6) Vo €N, VS"f(€) S| VS o (T(1)(€))'/* a. e.

which is easily proved by induction on n : just check that if f € H and g € C°(R/27Z)
satisfy V f(£)? < g(£) a. e. then VSf(£)? < Tg(€) a. e. Now we choose w € CZ(IR) with
w(0) = 1, then S™w = []7_; mo( %)w(fg) converges to ¢ pointwise and in the distribution
sense. We have

Y| Smw(€+ 2km) P<|w |5 T*(1)(8) 5

=

by Fatou’s lemma we get
Y 1 e(g+2kn) P<]w i sup 1 7%(2) floo -
keZ

Now, let’s suppose that mo € H¢(IR/27xZZ), € > 1/2 : we want to show that ¢ €
H¢(IR). We first notice that :

@) I mo(&

) omo() ool T(1) 242

Now we will deal with the cases: 1/2<e<1l,ee N*, e=k+a(k>1,0<a<1) :

e for 1/2 < € < 1, we want to show that [ [ | $(¢&) —o(€ +1) |2 m%—;g? is finite ; by
Fatou’s lemma, it is enough to show that sup [ [ | S"w(¢) — S™w(& +17) | ,‘: 41 < 400
n .

but

{/f | 87w (&) = S™w(€ +n) |* | delffze}llz

Sg{//ﬂmo(“” | mo(5) — mo(S 5T 2

=1

Wi

n

T 1mo(d) Plot) 1 ,"‘ﬁfﬂ’_’%}

fe=g4-1

+{f/f:[1m ¢+

52050 [ [ [ Imofe) = mol +0) Pl 57y P 2o

=1

P

o) —uEE l,ﬁfﬁe}

< sup || T%(1) ||34? {
pEN :
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202 [ [ fu(g) - (e +n) idsiﬂ‘r}

< sup [| 7°(1) 134 {if (=29 ) 85~ ||n

i=1

B , dedn 12
Uoseszw /nemlmo(f) mo(&+n) | | n [1H2e ]

+2nu ~2¢) U[I“’f) w(€+n) s 1“‘2‘-1/2}

= 2C
<C 2:2'7(1 —2¢) + gn(1-2¢) < =T < +o00.
J=1

o for e = k, k € N*, we define m, as (d £Y4mo and Sp as Spf = m;_(i)f(ﬁ) ifor <k, S,
is bounded from H to H and from L? to L?, for £ = k, Si is bounded from H to L?. We
write moreover for £ € IN* and n € NN, Op g = E:;l n,¢; ; then we have

d k 1 n . . d
(R“g> St = Z (.é)Zj:x 30‘3»"{'"“0,93‘”“ ven San‘t ( d_f_)an,tw)

£e{0,1,--,n}*

n 1 d
— Z Z (_2_)23__1305, JHnrag, tS "Sozz, ng-L (( )ao gw) :

d
L=0geNk sup &;=L {

for j < L, ;65,8 < k, hence || S 60, loo< C || mo || g+ ; using this estimate, inequality
(7) and [| my~y, |22 (m/20m) S| M0 e, We get :

I Saveve Sar, 8575 ((F)°0ew) o< €242 || mo [ sup || 72(1) [l swp |

0Lp<k
(2)Pw (=
and
o > 1)’
| ()8 < C (G) e B IR 2y ot 50( ) :
< E—%eenkgae—x 1“%

Now (-&%)ksnw — (-d%) @ in D', thus (a%)kga is square-integrable and % € H*. We obtain
moreover :

. L -
®) Lre=y ¥ BT s s PG

L=1¢c(N*)* sup &=L
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efore=k+a,k>1,0< a<1, we have to show that

[ [ | &ree - Goree | i

is finite. This is done in the very same way as for the case —% < € < 1, using the fact that
for 5 < L we have ¢; = 3% 6,4, <k, hence

d
/'mca(za) (£+’7)| |77l1n+2a50”m0”H 272,

and that if e = Y 61, ¢, < k then m,, is bounded ; the only term to discuss is then :

L-1
[ G I imat 55 Pm S50 Plot e - o2 P de i
<75 oo ()220 [ [ el 4 n) [ ole+m) = 200 I e i

<HIT*' ) oo (5 ZyL(ektza=1) | Hm(m/zm)/l!V(&o( +n) —6() 1 1—5—%—2;;

but for 0 < § and a < 4 < 1 we have

“ V(‘ﬁ( + 77) - ‘ﬁ()) “oo < 00 “ @( + ’7) - Sa() ”Ha+1/z
< Copqy | 6() lgetv+rsa inf(1,] 7 |7) 5

if ax < %, we may choose 8 and ~ such that 6 + v+ 1/2 = 1 and we already know that
@ € HY, thus we have ¢ € HFte ; if 1 < a < 1, we may choose # and < such that
6+~ + 3 < £ and we have just proved that peEH O-+7-+1/2 ,50 P € Hk+o,

We thus have proved that ¢ € H€, gggzkez | so(f + 2kr) |2> 0 and $(2¢) =

mo(€)$(€). By lemma 1, ¢ is an e-localized scaling function and theorem 1 is proved. =

Theorem 1 shows that for mo € H(R/27ZZ) (¢ > 1/2) to be a scaling filter, a
necessary and sufficient condition is that mg(0) = 1, mg satisfies the Cohen criterion and
the operator 7' satisfies sup || 7"(1) ||o< +00. But we can describe more properties on

neN

T and hence on ¢. The following theorem is a simplified version of the analysis of the
operator T by L. Hervé [HER].

THEOREM 2 (The first regularity theorem). - Let € > 1 and mo € H¢(R/2nZ) be a
scaling filter. Let © be the scaling function (defined by (5.1)) and T' the transition operator
(defined by (5.2)) associated to mq. Let o € (0,inf(e — 1/2,1)) and C*(IR/27ZL) be the
space of 2m-periodical continuous functions which are Hélderian of exponant o (with norm

N fllee=]l f lloo +sup AL W), Then :
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(i) mo(n) =0 and T leaves invariant the space Eo = {f € C*/f(0) = 0}.
(iiy  The spectral radius po of T on E, is less than 1.

tnl
(iii) ¢ belongs to the Sobolev space HY for all o < %ﬁg—.

(iv)  (The convergence lemma) : Let 0, be defined by 6,(¢) = II=: mo(2) x{_,,,,ri(é,;).

23

n-L.
Thenﬁn—-+<pinH"asn——>+ooforaIIa<%‘;—.

Proof. We first prove that for g € C°(IR/27ZZ) the functions

T = g(;;;) II mo(f;)X[_n,ﬂ(;,;)

j=1

converge to g(0)p in L? as n — +oo. We choose a compact set K satisfying Cohen’s
criterion (5.1) and (5.2) and such that 0 belongs to the interior set of K (which can always
be done since mo(0) = 1). Then

3a(8) = o) T mol5)xxe ()
j=1

converges pointwise to g(0)¢ as n — +4oo and is dominated by || ¢ ||oo E‘?&;ﬂ 3
neEK
thus 4, — ¢(0)p in L? as n — +oo. Now fix 5 such that [-n,7] € K, w € C&®
with suppw C [~7,7] and w(0) = 1 and define N as Q(&) = >,y w(€ + 2kx). Then
1 = g(5%) 1=, mo(%)w(—z%) — g(0)¢ in L? as n — +oo (by dominated convergence
again), while
3 3 .
710 = n 2=l (Q(55) = Dwn ll2=] (2(57) ~ 1)Fn [l2

272-
(by (5.1)) and thus
lim_ [ 7 = . =]} ((0) — 1)@ [l2=0.

n~—+-400

The equality mo(r) = 0 is obvious : we know that >, | (7 + 2k7) |2> 0, hence
G(7 + 2kom) # for some ko € Z, and

N-1
95(2N(7I' +2k’o’ﬂ')) = H m0(25(1r + 2]5071‘))95(71’-}“ 21{2071’)) = mo(ﬂ')ga(ﬂ' -+ 2ko7f')
j=0
(since mo(0) = 1). Now, © € L?, hence $(£) — 0 as ¢ — +oo and we get mo(n) = 0.

Since @ < € — 1, we know that mo € C*(IR/2xZZ), hence T is a bounded operator on
C*(R/2nZL). Moreover

Tf(0) =} mo(0) |* £(0)+ | mo() |* f(=) = £(0),
hence T keeps E, invariant.
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We will now prove that the operators T", n € N, are equicontinuous on C*(R/27Z).
We already know that || T" f [leo<|| T7(1) |loo]| f llco - Moreover if Apf = f(€+h)— f(€),

Swf =m(E)1(€) +m(E +mE) and mf = 1(¢ +h),
we have the identity :
ApT f=TApjaf + Sanjaimo|2Thy2f,
hence "
ART™f = T™Anjanf + Y TI7'SA, mol2Thy2s f
J=1

and, writing ||| f |||« for sup L2=fWI
z#Y

z—y[=

T sl 770 o LM 57 it o 2L Py
and thus, for a constant Cp,
) 17 lax Cold e 4 o0 7 oo

21’).(!

Now let w, be a non-negative function in C*(IR/27Z) such that w, vanishes only at
0(mod 27) and such that w(&) ~| € |* in the neighborhood of 0. Then for any f € E,, we
have (for some constant C, which doesn’t depend on f) :

(10) | F(€) 1€ Co(lll f llle + 11 £ loo)wa(£)-

Moreover, the set (T"wq)nen is bounded in C*(IR/277Z), hence is relatively compact in
C°(R/277Z) by the Ascoli theorem. Thus we may find a subsequence (T"™*w,) converging
in C°(IR/27Z) to a non-negative function w. But we have

27 2"k Nk
[, wterte= g [ TLmo) P untiriie = wn@) 12 13=0

ng —+00

hence w = 0. Hence for all positive n, we may find an integer ng such that || T™ w4 [|eo< 7.
Then we obtain

| T™*Pwy loo< 7 sup | T9(1) Jloo
gEN

while

1T+ [fla Coeg Il T0wa [l +Con,

2pr
so that if pg is big enough we have :

Tro+Poy, (¢) < Co (200 + sup || T9(1) Hoo) nwa(€).
gEN
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We choose 1 such that

Ca(2Co + sup || T(1) floo)n < 1/2;
gEN
we then have proved that we may find an integer N such that

1
TNua(€) < Swal8).

But then we obtain (since by (9) ||| T"f [|la< Co(|ll f ll« + || f lloo)) :

| T 7€) 1< Callll £ lle + 11 7 oo) gyal®),

| 7297 f oo Callll £ llla + 1| £ lloo) Il e lloo 555
while
7260 (o < oIl gy omv
<Gl £ e+ 17 ) (0 + G 1 e )
hence

1 1
Pa < sUp (m, m) <1

. en -t
It is then easy to show that ¢ belongs to H° for 0 < o < 2—’2;’;‘;— :

Lol = [+l €17 o6 2 ae

S i ~521+€2a‘d6+°°220'4a‘N A€2d€;
[ 1sterarien St [ 18]
but
M ¢
| 6(€) |2SCH|mo(§;) |? for all N,
j=1
where

g
C =sup || [[mo(27¢) |I%,
€N j=0
(which, we know, is finite) while for 2V 17 <| ¢ |< 277,

< _vale/2)

» 3
5 il waln)
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hence -
e lf-<C'+ ) 47 || TV (wo) llor (m/2nz)) 3
N=1

now for any p € (po,1) we have
| TV (wa) Nzt (m/2rz) < 27 || TV (wa) [loo< 27C 0N

and the series 3°3_; 4°Vp" is finite if and only if 47 < 7. Thus p € H? if 47 < L, or
fn-L

o< 2';n2'
The convergence of 8, to ¢ in H? is then obvious. We fix again > 0 such

that ¢ doesn’t vanish on [—7,5]. Then | 8,(¢) |< _iﬁl'fé%)(l;ﬂ on [—2"n,2"n], and thus

| 1€

X[—n,n](fiﬁ: — @ in L2((1+ | £ |?)?d¢€) as n — +00. Moreover

(1€ )7 (&) < (@rtyrane —YalsE)
[=m—n]Vln,rl{gn/ = inf  wu(r)’
' n<|r|<nr

hence ¢
I (1—x(- nml(zn)) n L2 (a+1e12)rae)< €27 || T (wa) ”L‘(IR/M)

i i
and this last estimate goes to 0 as n — +00 whenever o < %5“5. Theorem 2 is proved. m

COROLLARY 1. - Let mo € H¢(R/27ZL) (e > }) satisfy mo(0) = 1 and Cohen’s criterion
(5.1) and (5.2) and let o € (0,min(e — 1/2,1)). Then my is a scaling filter if and only if
mo(7) = 0 and the spectral radius p, of the transition operator T on E, is less than 1.

Proof. Just write T'(1) = 1 + w, where w(0) = 0. Hence

n—1 n—1

Tr(1) =1+ Y T/(w) and [[T™(1) lo< 1+ D | T9(w) [loo -

=0 =0
But if po < 1 and p € (pa,1), we have

n+1

E 1776 o< &, ) < 72

and thus
sup || T7(1) floo
nclN

if finite. m
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3. Derivatives and primitives of a regular scaling function.

By definition, a regular scaling function is a scaling function with rapid decay (Vk € IN,
zkp € L?). A necessary and sufficient condition for a scaling function ¢ to be regular is
then to have some decay (p € L%(| z |?>¢ dz) for some € > 1/2) and to have a smooth
associated scaling filter (mg € C®(IR/27Z)). The class of regular scaling functions is
stable under integration or derivation, as shown by the following theorem :

THEOREM 3. - Let ¢ be a regular scaling function (with $(0) = 1) and mo its scaling
filter. Then :

(i) the function I defined by :

oy oy

+i¢

is a regular scaling function, with scaling filter I, (&) = (%) mo(€).

(ii) Conversely, if for some € > 0, ¢ belongs to HY*¢ or if ¢ belongs to H* and ©' belongs
to L%(] z |>*¢ dz), then ¢’ can be written as :

(12) ¢'(z) = Do(z) - Dp(z — 1)
where Dy is a regular scaling function associated to the filter

2
Dmo = i’re‘:gmo(e).

Remark. - We don’t have DIy = ¢ but = p(z+1) ; this choice for the definition of D

and I is to ensure < @1 | w2 >=< Ip; | D2 > which we will use as an integration-by-part
formula. =

Proof. Formulas (11) and (12) were given by G. Malgouyres in 1990 and are related to the
well-known infinite product :

2 (14t 1—e#
(o)
J=1
The proof of (i) is straightforward. Iy has rapid decay since
[ 121100 P do< [ 12 )% | ola) P do

Moreover, (Ip)' = o(z + 1) — p(z), hence T = 5-.%“—195, and thus

ei€+1

Bp(e8) = (52 ) mo()T3(e).
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Finally, (Ip(z—k))rez is 2 Riesz basis for Span(Ip(z—k)), since if we choose K a compact
set satisfying Cohen’s criterion for ¢ (and such that 0 € Int K) then T doesn’t vanish on
K,hence } ;|1 To(é + 2kn) |? never vanishes. Thus (i) is proved.

Conversely let’s assume that ¢ € H? and that ' has enough decay (z3/2*¢p’ € L2

for some positive €). [If ¢ belongs to H1*¢, then by interpolation ¢’ has rapid decay.] We
know that mo(7) = 0, hence that

&(2V (2ko + 1)27) = mo(m)B((2ko + 1)7) = 0,

so that :

(14) Y oz - k) =¢(0),

kecZ
hence Y ,cn ©'(z — k) = 0. We define D(p as Dp(z) = 3522 ¢'(z — k) ; then Dy has
enough decay : let p€ (3,1 +¢) and g =1 +¢, then

o]
[ 1z Dola) s

-0

f |- lzpchp(:v-£)|2dx<§:£2p/0 | Doz — £) 2 de

1 +oo

<Z£2P/O Z!@(z—k Z)I2(1+lx—k—e[)2q+2dz’§m

£=1

C
<3O 27 1f gy <O 2|
£=1

we control [V | z [??| Dp(z) | dz in the same way since Dp(z) = — Y ji_ ., ©'(z — k).
Now, ¢’ = Dp(z) — Dp(z — 1), hence

2 —
mmo(f)D‘P(5)°

e — ‘),.E " —

Dp(§) = 7= #(£) and Dp(2¢) =
Moreover, (Dp(z — k))kez is a Riesz basis of Span(Dy(z — k)), since D doesn’t vanish
on any compact set K satisfying Cohen’s criterion for mg. Thus Dy is a p-localized scaling
function ; since its scaling filter belongs to C*, Dy has rapid decay. Theorem 3 is proved.

COROLLARY 2 (The second regularity theorem). - Let ¢ be a regular scaling function

and mg its scaling filter and let N € IN. Then the following four assertions are equivalent :
(i) For some positive €, p € HN*¢ ;

(ii) » € HY and ") has rapid decay ;

(iii) There exists a regular scaling function ¢ such that ¢ = IN3 ;

275



(iv) mo has a zero of order N + 1 at n(mo(n) =--- = m0 )(7r) = 0) and

N
lim sup || T? <(sin§)2N+2) |FARS <1> .

g—-+oo

This theorem has been proved by many authors ([HER], [VIM1], [COD1], [EIR]) in
1991-92.

Proof. (i)=-(ii) by interpolation, (ii)=>(iii) by theorem 3 and (iii)=>(i) by the first regularity
theorem (theorem 2). (iii)=>(iv) is obvious : let T be the transition operator associated to

i N .
¢ and g its scaling filter ; mo(£) (li,f——t—) = mo(€) and since fo(7) = 0 and 1+¢'" =0,
mgo has a zero of orderN+1 at « ; moreover
. 2N § L — Evan o €y 2 2N
T(sin™" 2 - f) = (cos2)*" | fo(5) * (sing ) (5 )

3

+ (cos(7 + ))2N|"o( +) |* (Sm( ))“’f( + )

= 3V ($)F()
hence

g 2N+2 € _ (LiNg o g 28
| T9(sin®"+ 2) lleo= (P77 || sin*¥ (2 )T (sin”2) Jleo

and we already know that

lim sup || 79(sin? —) 1MY9< 1
g—+oo

(by theorem 2). Conversely, let p € IN* and

p =lim sup || T? ((sm )? ) |39 ;

g—+oo

1
then o € H? for all 0 < ;—ng (we just have to notice that

/ |2(6) ¢ < Gy 7 ((sin)) o
2-ing|g<20n 2

as in the proof of theorem 2). m

The end of this proof can be stated in a more precise way :

PROPOSITION 1. - Let ¢ be a regular scaling function, mg its scaling filter and T its

transition operator. For p € N, define p, as p, = lim sup || T ((sin—g)zi’) H},/lq(m J2n ) -
qg—-+-o00 .

Then p, is non-decreasing (pp+1 < pp) and we have :
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) po=1landp, <1lforp>1;
) (3)P <pp forallp;

(iii) if for some pg, pp, > ( )Po then Pp = Pp, for all p > po ;
)
)

—

et p= hI—E pz‘,a.ndcf—2£ 3 thensoEH"fors<aand<,o¢H"fors>o
_ptoo

mo(§) = <1 * e—tf) (Z ake ’kg)

k=0

with ag # 0 and aps # 0, where mg(€) = 22{__0 are '*¢ satisfies mo(m) # 0, and if we
note T the transition operator

£1(8) =l mo($) 12 1)+ [ o(S + ) P 7 +),

then T keeps invariant the space E)s of trigonometric polynomials of degree < M
(f €EEpq & f= EQ’I:_M fke—"kf) the spectra] radius pof T on Ea is no less than
1(p > 1) and we have : p=—§r and o = N — & 2en2

Proof. We already know that p, < 1 for p > 1 by theorem 2. Moreover,
. q — A 2
im | 79(1) o=l & 1,
hence po = 1. T is a non-negative operator (f < g = T'f < Tg) and, since

2P+2§- < sinzpé
5 =

sin 5

we have
T? (sin2p+2§) < Tq(sinz”—g),

hence pp41 < pp. Moreover

N
| T9(sin? $) |}y = /m( Hl | mo(_2§f) 2 sin - | ae
=

o [ 160 Plein s | ae

where K is a compact set satisfying Cohen’s criterion (5.1), (5.2) and 0 € Int K. But we
have, for0 < s <p :

(15.1) Y esin b < Ok | € )
keN
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(just write 4™ 2sin®® oty < 472 if € > 2V +1 and < 4N (£)% if ¢ < 2V +1) while

(15.2) > 4Nesin 2P2§+1XK( £)> 12,1 € 7°)

kEN 2"

let € € (0,%) be such that {—e¢,¢) C K ;if | £ |> €, choose Ny such that
2
2No€ Sl E !< 2N0+1€

and write

3

N,
47 9Ng+1 XK(2N0

sin??

> Nosg;2p( € > _f_s--2p£ .
) — 4 sin (2) — (25) s1in (2) )

if | £ [< € then sinzp(ﬁ)xx(é) > (2£)%r). (15.1) and (15.2) give then that for s € (0,p),
@ € H® if and only if ZkeN 4% || T"(sm2’°§) lz: < 4o00. In particular if 4° < 1 then
¢ € H® and if 4° > -, ¢ ¢ H*®. Points (iii) and (iv) are then straxghtforwa.rd if

1

n
Ppe > 3,1,—0 then ¢ & H® for s € (2—[;92—,1)0) thus we must have p, > p,, for p > po and
thus pp = pp,.

—ie\N
Now, let’s suppose that mg is a trigonometric polynomial, mo = (H’; E) mo(§)

with fgo(7) # 0 and e(€) = Z%—o are™**¢ with ag # 0, apsr # 0. (We may always
assume that mo has no positive frequencies and that ag # 0, because replacing mqo(¢)
by ¥ ¢mo(€) is equivalent to shifting ¢(z) into o(z + N)). The invariance of Eps under
T is obvious. Moreover T is a non-negative operator on Ejps, and we have therefore
I TN(f) leoZll F looll TN(I) lloo, so that the operator norm of TN on (Eapsll - lloo) s
exactly || TV (1) ||, and = NEI-I;-Ioo | TN (1) |4~ . We want now to compute

px = lim sup || T9(sin®¥ &) [|1/9.
g—+-+00 2

But we have for f € Epy,
. oN € o _ (Lyv an €z
T (sin 2f)—(4) sin ZT(f),

hence ‘ .
T9(sin*N é) = (-)N‘?sinzN—E—fq(l) ;

on Ej all the norms are equivalent (E)y if finite dimensional), so that the norms
| sin®¥ &5 ||1 and || f ||eo are equivalent, and thus

| T9(sin® £ flz (G 1| 29(1) [l
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and therefore py = ‘—37'. If 5 = 1, we know that ¢ ¢ H¥ (if p belongs to HY, then o)
has compact support so by corollary 2, m(N) (7) =0 ; but m(N) (r) = N LN mo(ﬂ') # 0) so

o= N, ¢¢H”andp~—w —§r Ifop>1, thenpN> —yhencep—-pN-—é’v moreover,
to prove that ¢ & H?, we just have to prove the dxvergence of

45 | T ) [ 3 40N | (1) o,

keN kEN

but || T*(1) ﬂoo is the operator norm of 7% and j is the greatest eigenvalue of T, so
|| 7%(1) ]loo=> #* and we obtain as a minorant the series

5 () -

keEN

4. Compactly supported scaling functions.

We now describe the scaling functions which are compactly supported. Let (V;);cz be
a multi-resolution analysis such that V; contains non-trivial compactly supported functions
(i.e. functions which are of compact support but don’t vanish identically). Then we know
(by lemma 5-of the preceding chapter) that we may find compactly supported functions ¢
and w such that p € Vo, w € L? and

< p{z—k) | w(z) >= b, forall k€ Z.

It follows readily that the family (¢(z — k))kez is a Riesz family, hence a Riesz basis of
Vo and therefore ¢ is a scaling function for (V;). If h is any compactly supported function
in Vp, we have

h= Z <h|w(z—-k)>p(z—k)
kEZ _
and all but a finite number of the coefficients < h | w(z — k) > are 0 ; if

ko =inf{k/ < h|w(zx — k) >#0} and k; =sup{k/ <h|<w(z—k)># 0}

then
Inf Supp h = ko + Inf Supp ¢ and Sup Supp h = k; + Sup Supp ¢,

hence the diameter of tlie support of k is greater than the diameter of the support of p,
unless h = Ap(z — k) for some A € C and k € Z.

DEFINITION 3. - A local multi-resolution analysis is a multi-resolution analysis (V;)
such that Vy contains non-trivial compactly supported functions. A fundamental scaling
function is a compactly supported function ¢ which belongs to the space V; of a (local)
multi-resolution analysis (V;) and which has a support of minimal diameter among the
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non-trivial compactly supported functions of Vo. A fundamental scaling filter is a scaling
filter associated to a fundamental scaling function.

If ¢ is a fundamental scaling function for (V;), then any compactly supported function
h in V, can be written as a finite linear combination of the p(z—k), k € Z ; equivalently h
can be written as the product of ¢ by a trigonometric polynomial. If we take h = ©(%), we
see that the fundamental scaling filter mo associated to ¢ is a trigonometric polynomial.

Now, if § is another compactly supported scaling function for (V;) and po its scaling filter,
we must have

Be) = M(&)d(¢)

for a trigonometric polynomial which doesn’t vanish on [0, 2], and thus

M(2¢)mo(£)
M(¢)

the scaling filter u(¢) = &ﬁ){%‘%ﬂ can be a trigonometric polynomial (if M (&) divides
M(2€)mo(€)) or not. Conversely if M and mg are two trigonometric polynomials such that
M(0) = mo(0) = 1 and M doesn’t vanish on [0, 27], then the infinite product ]2, p (5‘5;)

where p(€) = ﬂw is the Fourier transform of a compactly supported distribution:
we have : - -
£\ _ ¢
H”(é’f = M(¢) [ mo 57 )

so we have only to prove it for H;?_:l mo (%) ; writing mo(§) = e—iNE p(e—if) for some
N € 7ZZ and P € C[X], P(0) # 0, we may define the function

F(z) = ﬁ P (e“*‘z—'f)

j=1

b(2¢) = 8(e) 5

(so that mo (&) = e *NEF(€)) ; the infinite product converges uniformly on the compacts
of C, so that F is holomorphic ; moreover

| P(e™%) |< Coelm =13 4°P,

hence we have for 2% <| z |< 2701 (55 > 0)

| PE) | < o) | ] 1P )

=1

< CgoedoPlImzl sup IF(’?) l
Inl<1

<[z | L PIme gup | F(n) |
ni<1
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and the theorem of Paley-Wiener-Schwartz ensures us that the inverse Fourier transform

oo —it
of [[;2, P(e""27) has a compact support.

We begin by describing the trigonometric polynomials which are scaling filters ; then
we will characterize among them the fundamental scaling ﬁlters'. We may always assume
that the polynomials we deal with are of the type mo(£) = P(e™*%) with P(0) # 0, P(1) =
1, P € C[X] ; if k is the lowest index such that ax # 0 (where mo(£) = Yoy are™*¢),

we multiply mo(€) by e*¥¢ . it doesn’t change the multi-resolution analysis and shifts the
scaling function p(z) into p(z + k).

PROPOSITION 2. - Let mo(€) = P(e™*¢) (P € C[X], P(0) # 0, P(1) = 1) be a
trigonometric polynomial, T its transition operator (defined by

71 = mo($) I 1)+ | mo(s +7) P £(5 +)

and p the compactly-supported distribution defined by
- £
8(6) = T] mol)-
j=1

Then mg is a scaling filter if and only if the three following assertions are satisfied :

(i) the characteristic polynomial of the operator T operating on the space Ep of trigono-
O .
metric polynomials of degree no greater than d°P (f €EE, & f= Z:z:}ido P fke"kf)
has 1 as a root of multiplicity 1 and all its other roots are of modulus less than 1 ;

(ii) if P(20) =0 and | zp |= 1, then P(—zo) # 0 (P(z) and P(—2z) have no common root
on the unit circle) ;

(ili) there is no 2o € C such that |z |= 1, 20 # 1, and VN € N, P(—z2N) = 0.

Proof. We will show that (ii) and (iii) are equivalent to Cohen’s criterion (5.1), (5.2).
Then (i) will be equivalent to sup | T9(1) |loo< +o0 :if (i) is satisfied, then Ep can be

decomposed into Ep = A® B where dim A =1, T |4= Id and where T(B) C B and the
spectral radius p(T |g) islessthan 1 ;if 1=a+b, a € A, b € B, then T(1) = a + T9(b),
and T9(b) — O for any norm on Ep ; conversely if mo satisfies Cohen’s criterion and

sup || T9(1) ||loo< +o00, then we know that mg is a scaling filter and we may decompose
gEN
E, as

B, = CClp,0) ® {f € B,/ f(0) =0}

and we know that T'(C(p, ¢)) = C(p, ) while the spectral radius of T on {f € E,/f(0) =
0} is less than 1 (see theorem 2) ; we may notice that

d&p
= Z ak‘P(z - k)s
k=0
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which implies ‘
2Inf Supp v = Inf Supp @

and
2Sup Supp ¢ = d°P + Sup Supp o,
hence v
Inf Supp p =0 and Sup Supp p = d°P,
hence

Clp,p) = Z <p(z) | plz—k) > e * € Ep.
kEZ
We now prove the equivalence between Cohen’s criterion and (ii)-(iii). If for some &
we had mo(&o) = mo(&o + 7) = 0 (i.e. if (ii) was false) then we would have

&(2&p + 2kx) = @(€o + kmr)mo(&o + k) = 0 for all k,

and thus Cohen’s criterion would be false. Similarly, if (iii) was false, we could find
¢o & 2n 7L such that for all N € Z, mo (2N €o+7) = 0; but P can only have a finite number
of roots and we must have 2V¢ ¢ = 2Mo¢ mod(2x) for at least two numbers N, Mp € IN
with Ng > My ; we then write 20 = 2PogMo and gMo g, = 2Nog, + 2ko7r notice that we

cannot have %—2{—01- € Z since & = 2T x5 gy = -2—1%52;’3;‘;2“’ if 25k = 240(2B, + 1)
then we would have & € 2nZZ if Ap > Nj or mg(2No—40—1¢, + 7)) = 1 # 0 if Ao < No,
which contradicts the choice of £y ; we now prove that $(2No ¢y + 2kn) =0 forall k € Z

(so that Cohen’s criterion is not satisfied) : just write

Py

_ N
p(2Nogo + 2km) = ¢ (2N050+2W(_2%+k0 ) Hmo (2 Eo+2k7r) ;

if k is not a multiple of 279, one term my 270 go 42k 1<7<P)is0;ifkisa
23

multiple of 270, we change it into 5E; + ko because ¢ (270 £ + 2kw) vanishes as soon as
B(2No Eo+27r(§§6-+k0)) does ; now the sequence (a;) defined by ap = kand a; 41 = 3% +ko
converges to —;";g—f% which is not an integer, and thus we may conclude that (a;) is not
integer-valued and @(2No ¢ + 2kn) = 0.

Conversely, let’s assume that Cohen’s criterion is not satisfied by mo and that (ii)
is satisfied. We then have to prove that (iii) is false, i.e. to exhibit & & 27ZZ such that

mo(2V & + 7) is O for all N € IN. We may assume that ¢ is square-integrable : we have
seen that for some M € 7ZZ we have

le(e) e+ g™
if M <—2,p0€L?;if M>~1, then

1 — et M’-I—ﬁA
() ser
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e 1—e—it \ M2 . s e\ MF2
but multiplying ¢ by ( — ) is equivalent to multiplying mo by ( % ) and

this doesn’t change neither Cohen’s criterion (5.1), (5.2) nor the properties (ii) and (iii).
Now, write Q(¢&) for

Cp,0)(¢ Z |66 +2km) P= Y < p(2) | p(z— k) > ¢

kEZ keZ

if Cohen’s criterion is not satisfied, then Q(&p) = O for at least one §, € R ; moreover if
Q(&) = 0, then write

Qo) = Q(2) | mo($2) P +@(2 +7) | mo(2 +7) I

to conclude (since (ii) is satisfied) that Q(%2) or Q(52 +) vanishesr;' we may change & into
€0+ 27 and assume that Q(£2) = 0 ; then (changing & into €+ 47 if necessary) we obtain

(-{-) = 0, and so on. Since ¢ is compactly supported, Q is a trigonometric polynomial
and has only a finite number of roots, which mean that we have for some N € IN*,

Q(&) = ( )- —Q( %) =0
and
-26—:, - &o € 27 ZL.
Moreover all the numbers Q(i— +7),- (ﬁy + m) are non-zero : we have seen that if
Q(n) = 0 for some M > 1, 2 "117 € 27rZ we would then have, if Q( +7r) = 0, for some
M;, -2-—5;?7"—1 (i + 7r) € 277 ; define Z = e'(”z'?""") ; then writing 3 5—‘-1 + 7= 3—;;,—mod(27r)
gives 227 = Z and Wntmg = 2N—7 fg = 2N =7 89 mod(2F) gives Al - -7,

and thus —Z = 22" = ZzN+M’ = (—Z)?" = Z which is absurd. But we have Q (2,_ ) =
0 for 1 € 7 < N, while

Q522 = Q) | mo(2) 2+ +7) | mo( 2 +7) 12

since Q( + 7) # 0, weha.vemo(iv+7r)-0for1gjgN;since &0—5;;6%6%
we obtain mo(2¥£o + 7) = 0 for all k > 0, while & & 277 : Q(0) >| $(0) |*= 1 and thus
@(0) # 0. Thus, proposition 2 is proved. =

We may now easily characterize the fundamental scaling filters :
PROPOSITION 3. - Let mp(€) = P(e~%) (P € C[X], P(0) # 0, P(1) = 1) be a
trigonometric polynomial. Then mg is a fundamental scaling filter if and only if it is a

scaling filter and the polynomials P(z) and P(—z) have no common root in C.
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Proof. Let’s suppose that P(z) A P(—z) = R(2?) and define h by h = ey 3 R have no
root on the unit circle so that h is well-defined ; moreover

h(2¢) = R(e _‘f)R = - h(€) = my(€)h(£) where m; is a trigonometric polynomial of
degree less than the degree of P (unless R = 1 and h = ) ; then the support of k has
a smaller diameter than the support of ¢ and mg cannot be a fundamental scaling filter.
Thus if mg is fundamental, then P(z) and P(—z) are prime together.

Conversely, let’s assume that P(2) and P(—z) are prime together. Let m; = P;{e~%¢)
be the fundamental scaling filter associated to the multi-resolution analysis generated by
my, and 1 be its scaling function. Then ¢(z) is a finite linear combination of the p,(z—k),
and $(€) = Q(e¢)p1(¢) for a polynomial @ € C[X]. Then we obtain Q(22)P;(2) =
Q(2)P(z2). Since P(z) A P(—2) = 1, we must have that Q(z2) divides Q(z%) : Q(z%) =
A(2)Q(z) for some A € C[X]. But now if Q(2o) = 0, then Q(22) = 0 and 20,22, + -, 22 ,--
are roots of Q. But Q(0) # 0, and Q has only a finite number of roots ; thus | 2o |= 1 ; but
this cannot be since if ¢ is a scaling function C(p,p) = Q(e™*¢)C(p1, 1) doesn’t vanish.
= .

DEFINITION 4. - Let P € C[X] P(0 ) # 0, P(1) = 1 be such that P(2)AP(—z) = 1. Then
the dual polynomial P* of P is the unique polynomial P* € C|X] such that : d°P* < dOP
and P(z)P*(z) + P(—z)P*(-z) = 1.

We may now prove some prooperties of the fundamental scaling functions :

THEOREM 4. - Let mg = P(e~*) (P € C[X], P(0) # 0, P(1) = 1) be a fundamental
scaling filter, and ¢ (defined by $(€) = [1;2, mO("ng")) its scaling function. Then :

i) there exists a compactly supportéd function h € L? such that :
(16.1) VkeZ, <h(z—k)|p>=6bko.

If (V;) is the multiresolution analysis generated by mg, we thus have :

(16.2) VifeVo, f=)Y <flhlz—k) >p(z—k).
k€Z

ii) Let f € Vo, f(£) = F(£)¢(¢) with F € L2*(IR/2nZZ). Then,

P(e™¢)
o revae |y plh)-
ili) (Malgouyres’ separation lemma). If f € Vo vanishes identically on an interval (o, )
then X[—co,a]f € Vo and X(g,+oc0]f € Vo.
iv) The support of p is the full interval [0,d°P].
v) The restrictions (p(z — k) |{0,1])1—a° P<k<o are linearly independent in L*([0, 1]).
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Remarks.

j) The existence of a compactly supported dual function k (satisfying (16.1)) or the
linear independence of the restrictions (¢(z—k) |[0,1)) (1—Sup Supp ¢ < k < —Inf Supp )
characterize the fundamental scaling functions among the compactly supported functions
in Vo.

jj) Points iii) and iv) were proved in 1991 by G. Malgouyres [MAG], [LEMA2] and
point v) by Y. Meyer [MEY5)]. =

Proof. Point i) has already been discussed in the beginning of this section. Point ii) is
almost obvious : if f € V_, then F(¢) = G(2¢)P(e~*¢) for some G € L?(R/27Z) and

F(£+7) = G(26)P(-e™),
hence
F(€)P(—e%€) — F(¢+m)P(e¢) =0 ;

conversely, let P* be the dual polynomial of P ; then we have
F(&) = (F(&)P*(e7*) + F(¢ + m)P* (—e™*¢)) P(e7*¢)

+(F(E)P(—e™*) = F(£ + m)P(e™*)) P* (- ™)
which proves that if ) )
F(&)P(—e*) —F(¢+m)P(e”*) =0
then _
F(¢) = G(26)P(e™*%)
for some G € L?(IR/27Z), hence f € V_;.

We now prove Malgouyres’ separation lemma.

We know that Inf Supp ¢ = 0 and Sup Supp ¢ = d°P. Let A Inf Supph and B =
Sup Supph ; B > 0and A < d°P. We choose now j > 0 such that : 2/ (f—a) > B—-A+d°P.

Then it is easy to see that fx(—co,a] and fX[g,+00) belong to V;. Indeed, we know that f
belongs to Vo, hence to V; (since Vo C V; for j > 0) and therefore we may write

f= 225 < f|h(2z~k)> o2z k).
k€7

But, since f = 0 on [e, 8], )
<flh(Zz—-k)>=0

for i )
a—A<k<L2p-B.

Define now f; and f_ as

fr= D>, 2 <f|h2z-k)>p(@z—k)
k>27a—A
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and

f-= Z 2 < f|h(2z—k)> o2z —k);
k<2i8-B
the sum for f4 runs only on k > 278 — B, hence f; =0 on (—o0,8 — g-), and similarly
- =0on (a— % + 1;—35,—{-00) ; moreover f = f, + f_, and we obtain, since § — 2% >
o - f‘; + —‘%E, that fy is 0 on (—o0,8 — %) and is equal to f on (8 — %,-i—oo), hence that
f+ = fX[g,4+00) and similarly f_ = fX(—co0,q-

The second step in the proof of the separation lemma is to show that if a < 8, if
f- = fX(~00,a) and fi = fX[p,+c0) belong to V; and f belongs to V;_; and vanishes on
(,8) then f_ and fy belong to V;_;. We may replace f by f (277z) and « and B by 27«

and 27 and thus assume f_, f; in Vp and f in V_;. We then write

fo=) f—welz~k) , F-(6) = F_()8(¢)
k€Z
with
F_(&) =) f-pe ™,
keZ
and similarly A
F+(8) = F4(€)o(8)
with
Fi(€) =) fee ¢
kEZ
Since
Supp f— C (—oo0,¢] and f_x =< f-|h(z—-k) >,

we have f_ r =0 for k > o — A ; but if ko is the greatest index k such that f_ x # 0, we
have

Sup Supp f-. = Sup Supp p(z — ko) = d°P + ko,
hence
ko < a—d°P
similarly if k; is the lowest index k such that fij # 0, we have k; > B, and thus

ko +d°P < ky. Now, if P(z) = ZZ(_)__I; Pi.z*, we have to prove, in order to prove f_ € V_y,
that

F_(§)P(~e7*) — F_(¢ +m)P(e7*¢) =0,

or equivalently that :

ap
(18.1) VEEZ, Y f-gk-1-q(~1)""'pg=0

g=0
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but, since f € V_;, we already know that :

d°P

(18.2) Vk € 7Z, Z(f+,2k—1—q + f—,2k—1—q)(_1)q+lpq =0;
g=0

if 2k—1 < k1, f+,2k—1—¢ is always O and (18.2) gives (18.1) ; if 2k —1 > k; then 2k—1—¢
is always > k; —d°P > ko and f— 2k—~1—¢ is always 0, hence (18.1) is obviously true. Thus
f- and f, belong to V_;. The separation lemma is then proved.

Point iv) is then straightforward. If ¢ vanishes on (e, 8) C [0,d°P], with a < 8 then
X(—o0,a]® belongs to Vo ; but the diameter of the support of X (—oo,a)® Would be at most «
(since ¢ vanishes on (—o0,0]) and thus ¢ wouldn’t have a support with minimal diameter
; thus ¢ cannot vanish identically on a subinterval of [0,d°P].

Point v) is easy as well. Assume that Z?ml_ 20 p Akp{z — k) vanishes identically on

[0,1]. Then x(_oo,oa Zg=1_ 20 p Me@(z — k) would belong to V5 and its support would be
contained in [1 — d°P, 0}, hence would have a diameter less than the diameter of Supp ¢ ;
thus

0
X(—o00] D Mep(z—k)
k=1—-doP

has to be identically 0, and similarly

0
- X[1,400) Z Ak (z — k)
k=1-do°P

is identically 0. We thus obtain

> Mplz—k)=0

k=1-d°P

on all R, and thus Ax = 0 for k =1 — d°P,.--,0. Theorem 4 is proved. m
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Chapter 5

DAUBECHIES’ FUNCTIONS AND OTHER EXAMPLES
OF SCALING FUNCTIONS

In this chapter, we proceed to the construction of the “classical” scaling functions,
which are by now widely used in scientific applications, including the celebrated compactly
supported orthonormal scaling functions of I. Daubechies.

As we shall see, the classical scaling functions are deeply related to interpolating
functions, i.e. to functions ® such that ®(0) = 1 and ®(k) = 0 for k € ZZ*. By instance,
saying that (¢ (z—k))xez is orthonormal is equivalent to say that p%@(—z) is interpolating.

We thus begin with interpolating scaling functions (including the iterative dyadic
interpolation scheme of Deslauriers and Dubuc), then describe orthonormal scaling func-
tions. In a third section, we describe orthogonal spline multi-resolution analyses (including
Battle-Lemarié’s or Stromberg’s orthonormal wavelets, Battle’s pre-wavelets, Chui-Wang’s
pre-wavelets, Schoenberg’s interpolating functions and so on) and lastly we end with bi-
orthogonal multi-resolution analyses and dual compactly supported scaling functions as-
sociated to the B-spline functions.

This chapter is thus mainly a list of examples (which includes all classical scaling
functions), together with a list of some easy results on interpolating or orthonormal scaling
functions which justify the constructions.

1. Interpolating scaling functions. -
We begin with the construction of scaling functions ¢ which are interpolating :
(1) e(0) =1, @{k)=0 for ke ZZ".

Of course, ¢ has to be continuous if we want (1) to be meaningful. With help of the
Poisson formula, (1) can be written as

(2) Z S(€+ 2kr) =1 ace.

keZ

provided that ¢ € L. We therefore introduce the Banach space E° = {p € C°(R)/@ is

continuous and .o | B(€ + 2k7) | converges uniformly on |-, 7]} equipped with the
norm

e lzo=ll D | &(&+2kn) ||loo -

keZ

It is very easy to check that E° is complete, as well as the space E* defined by
EF = {peCc’/vpe{0,1,---,k} zPp € E°}
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with norm || ¢ ||gr= EI;:o Il P ||ge . Then theorems 1 and 2 of the preceding chapter
can easily be adapted to establish the following result :

PROPOSITION 1. - Let mg € C¢(IR/2%ZL) for some € > 0 be such that mo(0) = 1. Define
p and T by :

3 &8 =2, mo(5)

W) VieCOR/nm), TH(E) =| mo(§) | 7§+ mo§ +7) | £(5 +7)

Moreover let’s assume that mg satisfies Cohen’s criterion :

() there exists a compact set K which is a finite union of closed intervals such that :
(1) Yrezxx(é+2kr)=1a.e.

() VECK, B(¢)#0.

Then ¢ € E° if and only if sup || T™(1) ||oo< +00. Moreover in that case there exists a

neN

positive a such that | ¢ |* ¢ € L. If p € E°, then ¢ € E* if and only if mo is C¥.

Proof. If o € E°, deﬁne Nasy= Ekez | (€ + 2km) | ; then v € CO(]R/ZWZ) T(y) =

and H oo < m < +o0 ; since T is a positive operator and 1 < 4 H || oo, we obtaln
| T(1) ”oo<n ~ Hooﬂ lloo . Conversely, let’s assume that sup || T"(1) || is finite.
neEN

Define an operator S on E° by Sw= mo(g)w(g). We will approximate ¢ by S"w where

@ € C2° satisfies &(0) = 1. We easily check that || S™w || ge <|| T"(1) ||oo|| w || &0, and thus

by Fatou’s lemma we get that sup >,y | #(€ + 2k7) |< +oo (we take the supremum
¢ER

instead of the essential supremum because D, | S(£ + 2k7) | is semi-continuous). To
prove the uniform convergence of Y ;. | ¥(€ + 2k7) | on [—7, 7] is much more difficult.
This will be done by mimicking the proof of the first regularity theorem (theorem 2 of the
preceding chapter) :

e for g € C°(R/27ZL), the functions v, = g( )H 1 mo(sy )x{_..,r,,r](ig,;) converge to
g(0)¢ in L* ;

e mo(r) =0 (since ) ycq | §(2k7) |< +co and (2" (7 + 2kow)) = (7 + 2kom)mo (7))

e choosing € € (0,1) with mo € C¢(IR/27ZL), we see that T keeps invariant the space
F¢ = {f € C¢(R/27ZL)/ f(0) = O} and that its spectral radius pe on F* is less than 1.

o Now, we choose (1, € Ejy such that {1, is non-negative, (1. € C¢, Supp {2 C [-3£,22],

22
0<ﬂ€(£)for0<|£|$7rand%1£:6—ré§l—-l.

We remark that Co = sup || [I}-, mo (27 €) ||eo is bounded by sup || T"(1) ||oo, and that
neEN nEN
| 6(€) |< Co H?’;l | mo(s) | for all N. Hence we have :
> | 3(¢ + 2k7) |<
2N -1pL|g+2km|{<2N
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Co_ 5 H | mo(EE2ETy | o (£ 2T,

5 e B s o3

<C'|| sV, ||ze -

Now define VasVf =3 ;.| f(£+2k7r) |;wehave VSf < TV f,hence VS"f < T"V f;
but VQ, € F¢ and therefore we get || S¥ Q. ||go< C,p"N for any p € (pe,1), which gives
that ¢ € E° and that | £ |* ¢ € L! for any a such that 2%p. < 1. Moreover, ¢ is a scaling
function : we have ‘
A 2> p ~ 2
;L;lﬂo(f—f-%?rﬂ 2 inof | p(n) [*>0

while

D 1 p(e+2km) P<l @ lloo Y | B+ 2km) IS & |30 5

kEZ kEZ
define then . )

V; = Span(2//2p(2/z — k) [k € 7Z)

and apply the proof of lemma 1 in the preceding chapter to show that L.)—{’; = L? and
NV; = {0}. Finally, the equivalence between ¢ € E* and mo € C¥ is easy : if ¢ € E¥,
@ € Ck and whenever $(&; + 2kom) # O we have mg(¢) = %%%—,::’;’))- in a neighborhood
of £o, thus mgq is C¥. We prove the converse when mo € C! : we have seen that in that

2;;2-:1:[ 0(2, 2"=)21’c H mo(zz)

j=k+1
so that || @' leo< C2 || m} |leo and thus for all N € IN we have :
ol Mo

| &) 1<
S Lmb lloo 2 T ¢
@S 1 T molE) b1 TT 1motE) 1+ 180z T o)
p=1 g=1 Jj=p+1 j=p+1
and thus defining S::::f = m{,(%)f(%)) :
> | &' (¢ + 2p7) |

2N -1 g <Ll|e+2kn{<2¥x

N
<c (Z(%)P | 571 5m, SV PR |30 +(5)" || 57O, nEo)

p=1

<c ( sup, | $9Qe ||zo +(5 )N/2 Il 2 ”E“) :
g>N,
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We may in the same way mimick Proposition 1 of the preceding chapter and obtain :

PROPOSITION 2. - Let mo be an even trigonometric polynomial

N
mo = <——————1+EOSE) P(cos §)

with P(1) =1 and P(—1) # 0 such that :
(i) it satisfies Cohen’s criterion
(i) mo is non-negative : Vz € [-1,1] P(z) > 0
(iii) sup 1 T™(1) ||eo< o0
ne

(where Tf = mo(£)f(§) + mo($ + 7)f(§ + 7)). Define ¢ = I152, mo(2;) and T by
Tf = P(cos$) f($) + P(—cos$)f(% + 7). Then:

(3) T keeps invariant the space EM of even trigonometric polynomials of degree < M =
deg P. _
(i5) the spectral radius 5 of T |, is no less than 1.
(iij) let o = 2N + %ZQ ; then | €|° ¢ € L! for all s € [0,0) and | £ |° ¢ € L' ; moreover
¢ belongs to the Holder space C* for all s € [0,0) and to no C° with s > o.

Proof. Since ¢ is non-negative, we have o € C? (or C?° if so € IN*) if and only if

sup 2%

/ H(€)dé < +o0 ;
kEN 2k r<|g|<2k+1n

this gives (1+ | £ |*)® € L?! for any s < so. Conversely if (1+ | £ |°)® € L! then p € C°.
Moreover, the proof we want to mimick gives us that for s € (0, N) :

[ 160166 [dem Y 2620 | T2 |

keZ

and we know, since || T5(1) ||oo is the operator norm of 7" on (Eaz, || * ||eo), that for some
positives constants C and M we have

1. -~ -
&7 <N TR lleo< CL+ R)MA".

This gives the proposition if 57 > 1, if p = 1, we have to see that E2Ng ¢ L' :if
£2N 5 € L1, then p is C?¥, hence H?Y because p has compact support and then we have
that m(()zN)(ﬂ') = 0 ; but this is not possible since P(—1) # 0 and thus | ¢ |?N ¢ ¢ L!. =

We may now describe the interpolating scaling functions :
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THEOREM 1. - Let mo € C*(R/27Z) with mo(0) = 1, § = [[32, mo(%) and T the
operator defined by Tf =| mo($) | f(§)+ | mo(§ +7) | f(§ + 7). Then :

(A) v € Ep and is interpolating (p(0) = 1, p(k) = O for k € ZZ*) if and only if m,, satisfies
Cohen’s criterion (5), sup || T"(1) |lco<+oco and equality :
neN

(8) mo(€) + mo( +7) = 1.

(B) Let mo be non-negative and satisfy equality (6). Then the following assertions are
equivalent :

(i) ¢ € Eo and is interpolating
(ii) mo satisfies Cohen’s criterion
(iii) @ € Ep and ¢(0) = 1.

Proof. If ¢ € Eq and is interpolating, the Poisson formula gives

> B(&+2km) =1

k€Z

hence ¢ is a scaling function and mg satisfies Cohen’s criterion ; we then obtain sup ||

T"(1) loo< +o0 by Proposition 1 and mo(€) + mo(€ + 7) = 1 as a direct consequ:nce
of 3 (€ + 2kr) = 1 and H(2£) = mo(€)P(€). Conversely, if mg satisfies (5), (6) and
sup || T™(1) [jeo< +o0, we know that ~,, defined by 4, = H;;l mo(zi,)x[_,,,,r](zf;),

converges uniformly to ¢ as n — 400 ; but it is easy to see that 4, (0) =0 and v,(k) =0
if k # 0. (A) is proved.

If my is non-negative and satisfies (6), then T'(1) = 1 and thus sup I T7(1) loo< +o0.

The equivalence between (i) and (ii) is then obvious. We just have to prove (iii)=(i) :
we know that ¢ is non-negative, that ¢ is the pointwise limit of 45, hence by Fatou’s
lemma Y, (€ + 2kn) < 1 ae; if p(0) = 1, then f;f(ﬁd& = 2w, which implies
> kez P(€ +2km) = 1 a.e. and thus p is interpolating. m

Counter-example n° 1 : A very simple counter-example to theorem 1 when Cohen’s cri-
terion is not satisfied is the following one : take mg(¢) = +°2238 Then my is non-
negative and mo(£) + mo(§ + 7) = 1. But ¢ can be explicitly computed : for | z |< 3,
o(z) =3 (1 - lg—i) and ¢ = 0 elsewhere. Thus ©{0) # 1.

Example n° 1 : The dyadic interpolation scheme of Deslauriers and Dubuc [DES].
The problem studied by Deslauriers and Dubuc is the following one : knowing a
sequence (Z,)nen defined on the integers, to describe an interpolation (z4)4cp of the

sequence (z,) into a sequence defined on all dyadic numbers by the following self-similar
process :
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Step 1 : interpolate (z,) to the half-integers by :
(7) Tnt1/2 = Z CkIn—k 3
k€

this is a convolution, which means that the interpolation process has to be linear and
shift-invariant ;we require moreover that the constant sequence 1 is interpolated by 1 :

1“—-"Zak

and that the (o) are rapidly decreasing (so that we may interpolate data with polynomial
growth).

Step 2 : rescale the indexes to apply formula (7) recursively :

8 T = LT n~k
(8) E+ohT > sk
keZ

using the same sequence (ax).

We would like to know whether we may further interpolate (z4)4ep to a continuous
function (z(t))icr with polynomial growth. If it is possible to do such an interpolation,
we must have (writing Riemann sums instead of integrals) that the distributions

Xj=> mxk/z,é(t — k/27)
kEZ

converge to z inS’ ; but

k 1
Xirr = —X * Z TRk R (t T 2:’+1>

keZ
1
= X; * ( 6+ Z: —ak&(t—§;~ 2J.+1)> ,
keZ
hence, writing mo(¢) = 2 + 3 rez & e~ (Zk+1)E g
9) (Z z e-mf) I mo(
ncZ

We have mo € C®(IR/27ZZ), mo(0) = 1 and mo(€) + mo(€ + 7) = 1. Thus, provided
mg is non-negatxve and satisfies Cohen’s criterion, we may conclude from Theorem 1 that
P = H -1 mo( ) is the Fourier transform of a regular interpolating scaling function and
that the mterpola.tmn scheme converges to the function }_ .y Znp(z —n). =
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Example n° 2 : Interpolating scaling functions with minimal support.

THEOREM 2. - Let (En) be the following problem : to construct a scaling function p
such that :

(i) ¢ has compact support and for some positive €, ¢ € C*
(ii) @ is even and real-valued

(iii) ¢ is interpolating : ©(0) =1 and (k) = 0 for k et
(iv)  reconstructs polynomials up to degree 2N + 1

(10) Vp€ Conya1[X], =) p(k)e(z — k).
keZ

Then (Ex) has a unique solution y¢ with support [-2N — 1,2N + 1] and all other
solutions have greater support. Moreover y¢ has the following properties :

. " . cos £\N+1 N4k —cos £\ k

0) w2(€) = TI5Za wmol ) with wmo(e) = (1520)™ 5, (VFF) (i=g20)

(i) n is non-negative
(iij) if an is defined as any = sup{a > 0/np € C*} then

(11) aN~N(2—§-3—;> as N — +oo.

Proof. We first notice that (10) is eqmva.lent to m(k) (0) =0for1 <k <2N+1,

hence (since mo(¢ + 1) = 1 — mo(&)) to m( (m) =0 for 0 <k < 2N +1 (where mg is
the scaling filter associated to ¢ : mo(€) = D ey 2@( )e_‘kf) Thus we may write mg
as mo(§) = (1—‘*2%’—$—{)N+1 P(cos €), where P must satisfy :

(12) (i“éﬁ)NH P(X) + (1 = )N+1 P(-X) =1.

Let Ay and By € Cn[N] be the unique solutions of the Bezout identity

(1_%5) " A0+ (t"{{)NH Br(X)=1;

by uniqueness of the solution, we have By(X) = Anx(—X), so that Ay is a solution of
(12), and any other solution P of (12) can be written as P = Ay + X (:‘—‘2"-‘:)1\?_"1 Q(X?)
(with @ € C[X]); thus deg P > N + 2 and Suppp D [-2N — 2,2N + 2], unless P = Ay.
We thus have to show that P = Ax leads to a solution y.

Define ¥ = ; then equation (12) for Ay reads as :
oV — 1 N+1An(2Y — 1)
An(1-2Y) = 1= Y)N+1 +Y (I—Y)N+1
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and thus Ax{1 — 2Y) is the Taylor development of 6-317157;;—; at 0 up to order N, hence
An(X) = zk =0 (N+ k) (l‘—%}'{‘)k . Thus deg Ay = N and Suppyp = [-2N —1,2N +1].

We see that Ax(X) is non-negative on {—1,1], hence ymo(£) is non-negative ; moreover
AN never vanishes on [—1,1], hence ymy satisfies Cohen’s criterion ; Theorem 1 states
then that y¢ is 2 solution of (Ex). Now, to estimate ay, we will estimate Sy = sup{S/
|€1P» @€ L®} :wehave By —1 < ay < B (since | £ [P p € L>® =| £ |* @ € L for
a<B—1=¢p € C*for a< f—1, while p € C* and Supp ¢ is compact implies that
| € |* ¢ € L*°). We will show that :

2N 2N
enfo | ) (3N £n] (HM
(13) N +2— (N) <Bny <2N+2-— (N)

n2 - - n2

which gives (11) by Stirling’s formula : (2]]\;; ) = ?ﬁj ~ \;——;—N.. To prove (13), let’s

observe that for £ € IN, cos(2¢3F) = —1/2, so that

27 1 1 N 2R
w220 = (G an (- D) ne ()
and thus oN
| tn| (Y
nAn(—1/2) (N) 4
< AN ¢ - .
By <2N +2 i3 <2N +2 | ing
Conversely let gy = max(An(—1/2); sup \/AN(x)AN(2z2 —1)); then we have
1< <—1/
gy < An(-1) and HJ-1 AN(cos ) < ¢% 1AN( 1) (by induction on £, since we have
AN(cos—fz < gn if cos—fz > -——-—, whereas AN(cos—;.—l— AN(cosﬁt) < g% if cos(—iz ;

1 -f.-
moreover H, =1 —t—cil- = 53‘—’;—2- hence we obtain for 2¢r <| ¢ |< 2%2m,

v 6(8) I< (52)N+1 Ilv 1AN ‘:‘ILI;#I:[IAN(COS——)

which gives Sy > 2N + 2 — %. Thus it is enough to prove that ¢ <9 (2]]:) (%)N.

This is easy to do : for —1 < z < —%, we have

we =3 (") (7)< 2o (W) (57)
(V) () =
<(¥) (%)
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e il:?il) <o (2JJVV> ,An(-3) <9 (2_,{,\]) (3)¥ and An(~}) <9 (i{f) (36)";

sfor -1<z< —>§ we have 2z2 — 1 > —1 and thus
1 2N 3
An(An(es® ~1) < an(-0an(-3) < s1(( % )Py

Ofor—lggzg— wehave2x2—1§——é~andthus:

An(z)An(222 -1) < 81((215))2 (1 ; $>N 1-zH)¥ < 81((2£’))2(§

2O [t

since (1 — z)(1 — z?) increases on [—1,—31]. Thus (13) is proved. m

REMARK. - The polynomial A 5 has been introduced by 1. Daubechies for her construction
of compactly supported orthonormal wavelets (see below). Estimate (11) has been given
independently by Volkner [VOL] and by A. Cohen and J. P. Conze [COHC]. Cohen

and Conze proved more precisely that gy = AN (——-,1;) and hence that By = 2N + 2 —

InA,(—1/2)
n2 - m

Of course, estimate (11) is an asymptotic one, and for the small values of N one uses
the spectral analysis of the transition operator T to get the regularity exponent of yip (see
Proposition 2).

NIN=1|N=2{N=3/N=4|N=5|N=6{N=1T N — 4o

ap 1 2 2.83 | 3.55 | 4.19 | 477 | 531 jan~N(2— fn3

in2

Table n°® 1 : Value of a, =sup{a/np € C*}

Example n° 3 : Littlewood-Paley multi-resolution analysis and interpolation.

Following Y. Meyer [MEY2], we will call a multi-resolution analysis a Littlewood-
Paley multi-resolution analysis if it is generated from a scaling function ¢ such that ¢ is
C*, ¢ has compact support, Supp @ C [—2F, 2%] and ¢ doesn’t vanish on [—,x]. This is
equivalent to require that the associated scaling filter mq € C*®°(IR/27Z) doesn’t vanish
on [—%,%] and vanishes identically on 2r, 4Z). Such a filter always provides a scaling
function (provided mo(0) = 1 of course). If we require moreover mg to satisfy mo(¢) +
mo(¢€ + m) = 1 identically, then we obtain an interpolating scaling function satisfying

P(z) = 3 ycz P(k)p(z — k) for all polynomial P € C[X].

REMARK. - Existence of interpolating functions in a multi-resolution analysis..
If (V;) is a multi-resolution analysis with a scaling function ¢ € E 1. then Vo contains
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an interpolating function u (with x(0) = 1, u(k) = Ofor k € ZZ”) if and only if } ;o P(€+

2kn) doesn’t vanish on [—m, 7] ; p is then given by 4(¢) = T ‘Pf(fg+2k") This condition
kez

is fulfilled whenever ¢ is non-negative, since then

> o€+ 2km) > 31 e(e+2km) |2

keZ (K2 I kez

2. Orthogonal multi-resolution analyses.

The first wavelet bases which were constructed in the years 85-87 were orthonormal
bases [LEME], [BAT1], [LEM1], [DAU1]. Any multi-resolution analysis is related to an
orthonormal wavelet basis through the following scheme :

¢ choose a scaling function  in Vg
e orthonormalize the basis (p(z — k)) into an orthonormal basis (p ) (z — k)) of Vo by
the formula

#(€)
\/Zkez | (€ + 2kmr) |2

e define Wy as the orthogonal complement of Vj in V3
e obtain an orthonormal basis (¢(z — k))kez of Wo by choosing ¢ as :

(14) b1

-~ — .£ _ f ~
B(E) = e Emo, i (5 +mou(S)
where mg i is the scaling filter associated to ¢, .

e obtain ﬁnally an orthonormal basis of L*(IR) as (¢;,x = 2//2¢(2/z — k)jcz ez (or

(or(z — K))kezm U (¥5,k)j>0,kez)-
We have then got an orthogonal multi-resolution analysis of L%(IR) ; every function
f of L? is approximated by its orthogonal projection P;f on V;, given by :

(15) Pif=)Y 2 <floi(2z—k)>p1(2z-k);
keZZ

the projectors P; commute : Pjo Py = PgO P; = me(J ¢) and the operator Q; = P41 — P;
is the projection operator on W; = V N V,_*_l given by :

(16) Qif =Y <fl¥ix>dix

keZ

REMARKS. - (i) The fact that (¢(z — k))xez is an orthonormal basis of Wy is easy to
check : let U be the operator f € V; — Uf € L%(0,2n) defined by f(&) = Uf(%)(ﬁl(g) ;
then we have || f |l2=|| Uf |l2 V2, and thus

2w
<l |Y(z—k)>= 2/0 mo(€)e*mo (& + m)e?*¢de =0
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(by antisymmetry around =) ; moreover every f € V; can be decomposed as

F= (01 ymo§)+ 01+ mimolf 4 7)) ot

(ii) As we have already seen it in chapter 3, the orthonormalization formula (14) preserves
size properties of ¢ : if ¢ belongs to L%(| z |*€ dz) for some € > 0 so does p 1, and the
same holds for rapid or exponential decay (changing the rate of the decay in the last case,
however). But this formula doesn’t preserve compactness of support, and the construction
of a compactly supported orthonormal scaling function needs a direct approach. m

THEOREM 3. - Let mo € HY/?*¢(R/2nZ) for some positive €, with mo(0) = 1, and
assume that mg satisfies Cohen’s criterion (5). Then mg is a scaling filter associated to
an orthonormal scaling function ¢ (i.e. the scaling function ¢ generates an orthonormal
family (¢(z — k))kez) if and only if :

(17) vée(o,2n], | mo(€) I* + [mo(é+m) P=1.

Proof. If the family (¢(z — k))rez is orthonormal, then 3, | 6(€ + 2kn) =1 a.e,,
this gives (17), since p(¢) = mo(%)(ﬁ(g). Conversely, if (17) is satisfied, then the filter
Mo (€) =| mo(€) |? is C¢, non-negative, satisfies Cohen’s criterion and Mp(€) + Mo(¢ +
7) = 1 ; hence we know by theorem 1 that the associated scaling function F, defined by
®(¢) = ;:8 Mo(é-), is interpolating; we now conclude that (¢(z — k)) is orthonormal
since ®(k) =<p |p(z—k)>. m '

Theorem 3 gives us another approach to construct orthonormal bases : we begin with
an interpolating scaling function @ and try to write it as ®(z) = [ o(y)&(y — z)dy. Of
course, the filter My associated to ® has to be non-negative ; the problem is then to find
mo such that | mo (&) |2= My(¢). If M is an even non-negative trigonometric polynomial,
we would like to choose my polynomial as well ; this can be done, as expressed by the
well-known Riesz theorem (of common use in signal analysis).

PROPOSITION 3 (Riesz theorem). - Let P € R[X] be a polynomial such that P(z) > 0
for all z € [—1,1]. Then there exists Q@ € R[X] such that :

(18) Pcos€) =| Q(e™*) |> forall ¢ €R.
Proof. We will show that if deg P > 0 we may find two polynomials Q,, P, € RR[X] with

P(cos €) =| Q1(e™*¢) |?> Py(cos &) and deg P; < deg P ; iterating the construction, we will
get a solution Q to (18). Let N = deg P and write P(cos ¢) = e!N¢P(e™%¢) ; then
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if 2 € C is a root of P, we have P(2) = 0 as well (since P has real coefficients) and
( ) (—}_—) (smce zo # 0 and zzNP( 1) = ( ))- Moreover, if | zp |= 1, then 2

(and zp) is a zero of P with an even multiplicity, since, writing 2o = e~*¢°, we know that
P(cos &) doesn’t change its sign when ¢ goes through the value &y. Thus, if z0 € R, we

may write P = (z — 20)(z — 20)(1 — 220)(1 — 220 ) R(2) and thus

P(cos £) =| Q(e™*) |2 Py(cos €)

where ) o
Pi(cos ¢) = !N =2E p(e—#¢)

and Q; = (2—z0){2— 20 ) or (1—220)(1—z 20 ) ; if 20 € IR, then we may write sz) =(z—

20)(1 — zz0) R(2) and P(cos &) =| Q1(e™*¢) |* Py(cos £) with Py(cos &) = !(N"1)¢R(e—i€)
and Qi(z) = 2 — 2z or 1 — zzp. Thus Riesz theorem is proved.

REMARK. - The proof shows a way to construct Q : first compute the roots of P and
write P as :

P(2) = Co H(z—z,)(z" z2)(1—-zz)(1-2%) H (z— a;)(1 — z¢5)

7=1
where z; ¢ R and a; € R. Then a solution Q is given by
N, N
Q) =G [[(z—2)(z~ z) [[(z - o).
i=1 J=1

If M; is the number of z; such that | 2; |# 1 and M, the number of ¢ such that o; ¢
{1,—1}, we have 2M:+M: choices for Q (choosing z; or 1 and o; or ?zl,') Thus Q is not
unique. m

Example n° 4 : The Haar basis (1909).

In 1909, A. Haar [HAA] introduced an orthonormal basis for L?(0,1)(es)nen such
that the partial sums 21 < f | en > €, of a continuous function f converge uniformly to
f as N goes to +oo (in opposition to the Fourier system ("%}, ). The basis is simply
described by eo = ©(z) = x|o,1} and for n = 2 +k 7>00< Ic <2, en = Y(2z — k)
where 9(z) = X[0,1 /2} X[1/2,1] ; this basis can be extended obviously to a wavelet basis
(¥,k)jez kez of L*(IR) with orthonormal scaling function ¢ = X[o,1] and orthonormal

wavelet ¥(z) = x (0,4 = X[&,115 the associated scaling filter is then mq(¢) = —i—:—i-f— The
scaling function go is not continuous; its Sobolev regularity exponent oo = sup{s / p € H*}

150’0——’%
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Example n® 5 : Spline bases : Franklin (1927), Strémberg (1981), Battle and Lemarié
(1986).

In spite of its simplicity, the Haar system was not satisfying, since it approximated
continuous functions by discontinuous ones. In order to overpass this difficulty, Faber
[FAB] and Schauder [SCA] proposed to integrate the functions of the Haar system and to
obtain a system (€n)n>-1, With 6_3 = 1, €0 = z and for n = 2 4+k, 7>0,0<k<?2,

€n = A(272— k), where A(z) = (1— | 2z —1 |)*. We then obtain the Schauder basis which
allows one to approximate uniformly on [0,1] a continuous function f by Z _ scf ) en,

where C_1(f) = f(0), Co(f) = f(1)—f(0) and Cy; 1 (f) = F(3)~ 2f(2,) f( 29

In particular, 22 ! Cr(f)en is the function f; which is continuous on [0, 1], hnear on
each interval [ 27 2,11 ] (0 < k < 27) and has the same value as f on each node . This
basis, however, is not fitted to the analysis of discontinuous functions.

In 1927, Franklin [FRA] orthonormalized the Faber-Schauder .asis and got an Hilber-
tian basis of L%([0,1]) composed of continuous functions and such that every continuous
functions was uniformly approximated on [0,1] by its partial sums. But the Gram-Schmidt
orthonormalization destroys the simplicity of the basis (¢,) and the Franklin system cannot
be expressed by simple formulas. The Franklin system (f.),>-1 can be expressed in the
simplest way by : f_; =1, fo = v/3(2z — 1) and f,i 4 is defined (up to a multiplicative
constant Cj x) by the following properties : it is continuous, plece-wme linear (hnear on
each interval [+, Z51] 0 < p < 2k + 1 and each interval [%, L] k+1< ¢ <2/~ 1)
and is orthogonal to each continuous function which is linear on each interval [-2—3&,—,-, %t—ll]

0 < p < 2k—1 and each interval [5“’;, 921;-1] k < ¢ < 29 —1. This property led J. O. Strdmberg
[STR] to define a function ¢ such that it is square-integrable on R with || ¥ ||2= 1, contin-
uous, piece-wise linear (linear on each interval [%, ”—“;1} —o00 < p <1 and on each interval
[g,9+1] 1 € g < +00) and orthogonal to each continuous square-integrable function which
is linear on each interval [% P—"‘—l-] —00 < p < —1 and on each interval [¢,¢+1} 0 < ¢ < +oc0.
Then by definition ¢ is orthogonal to ¥(2/z — k) as soon as j is negative or as soon as
j =0 and k is negative ; thus the system (¢; x = 27/%¢(27z — k)) jez,kcz is orthonormal;
moreover it is complete and we thus have a wavelet basis for L?(IR). The wavelet ¢ has
Sobolev regularity exponent £ and Holder regularity exponent 1, and it has exponential
decay.

Stromberg’s basis was created in the context of functional analysis (the study of
Hardy spaces HP(IR) for p < 1) and was not known in the “wavelet community” until
1988. In 1986, Battle [BAT1] and Lemarié [LEM1] introduced independently another
spline orthonormal wavelet. Spline bases have played a key réle in the development of
wavelet theory and have turned to be a focus of interest for many searchers. We devote
below a special section to spline multi-resolution analyses.

Example n° 6 : Littlewood-Paley analysis and wavelets : the Meyer-Lemarié basis (1985).
The Littlewood-Paley multi-resoluton analysis described in example n° 3 and the

orthonormalization process described on the beginning of this section gives us directly an

orthonormal scaling function ¢ such that ¢ is C*°, compactly supported and takes
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identically the value 1in a neighborhood of 0 ; the associated orthonormal wavelet ¢ is

such that ¢ is C*°, compactly supported and 0 ¢ Suppt/) This analysis has already been
introduced in example b) of chapter 3.

The construction of the first Littlewood-Paley wavelet ¢ by Y. Meyer (and of the
associated scaling function ¢ by P. G. Lemarié) [LEME] was not as simple as it might
seem now : in 1985, the notion of multi-resolution analysis had not yet been introduced
and Meyer had to construct directly the function ¢ (¢ was constructed after ). The
notion of multi-resolution analysis was introduced by S. Mallat and Y. Meyer in november
1986, after the discovery by G. Battle and P. G. Lemarié of the spline orthonormal wavelets
1 and of their associated scaling functions ¢ : the existence of various scaling functions
associated to wavelet bases lead Mallat and Meyer to think of a general functional scheme
in order to describe the fortuitous calculations of Meyer-Lemarié or Battle-Lemarié.

The most attractive feature of the Littlewood-Paley wavelet analysis is the fact that
every tempered distribution can be expressed with help of this basis :

PROPOSITION 4. - Let p,9 € S be such that :

(i) (e(z — k))kez is orthonormal

(i) ©(5) = Tpem < 0(§) | 0ly — k) > oz = k)

) 605) = SISO < plot £+ 1o > ple =
(iv) SuppsOCf ir,

Then (p(z — k))kez Y (23/211)(2-"::: — k) =k )]>0 xez is an Hilbertian basis of L?(IR).
Moreover for every f € § we have
(19)

f=lim Z<f|<p(z—k)><p(z—k)+222’<f|¢(2’:z:— k) > ¢(2'z — k)

=0 k

where the limit (19) is taken in S ; and similarly if f € §' is an arbitrary tempered
distribution, the convergence (19) is true in §'.

Proof. We already know that we have an Hilbertian basis of L2(IR), and that the right-hand
side of equality (19) can be written as well

lim E 2 < flo@z—k) > p(27z—-k),
N—+o00
keZ
which gives the Proof. =
The Littlewood-Paley basis is an unconditional basis for most spaces useful in har-
monic analysis (Besov spaces, Lebesgue or Hardy spaces,...), as we shall see later.
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Example n® 7 : The Daubechies orthonormal wavelets.
In 1987, 1. Daubechies constructed orthonormal scaling functions oy with compact
support (Suppeny = [0,2N — 1]) and arbitrarily great regularity (pn is of class Co¥,

where ay ~ N {1 — ,}%‘g—% ). In order to get Daubechies’ functions, we just have to use
theorem 2 (on interpolating scaling functions) and proposition 3 (Riesz theorem) :

THEOREM 4. - Let Qn € R[X] be such that Qn(0) # 0, Qn(1) = 1 and | Qn(e~%¢) |?=

v (N “; + k) (l—i‘f—s{)k, and definemy € C*°(RR/27Z) by

my(§) = (l—t—;ﬁ>N Qn(e7%).

Then the distribution py defined $n(§) = H;:__l my (-,f;) satisfies :

(i) o~ € L?, (on(z — k))kez is orthonormal
(ii) Suppywn = [0,2N —1]
(ili) ¢n is continuous for N > 2 and if ay = sup{a/pon € C°}, we have ay ~

N(l—-;%g%) as N goes to +oo.

(iv) Every polynomial P € C[X] with deg P < N — 1 satisfles

P=) <Plon(z—k) >pn(z-k).
keEN

Point (iv) says that wn is of approximation order N — 1 : if P; is the orthogonal
projection operator onto Span(2/¢ x(27z — k)), then we have for every ge& HN-1,
| 9 — P;j(g) |la= o(277N~1)). The link between approximation order N — 1 and decom- .
position of polynomials on px(z — k) up to order N — 1 is expressed by the well-known
Strang-Fix condition [FIX]|. We thus are bound with finite orders of approximation when
dealing with compactly supported wavelets : approximation order N — 1 is equivalent to
the vanishing of my and its derivatives (up to order N — 1) at £ = =, and a polynomial
has only finite-order zeros. Example n°® 10 will show a compactly supported basis with
infinite approximation order. ;

Daubechies’s bases are now widely used, because the compactness of the support of
pnallows the use of finite filters in the fast wavelet algorithm (see chapter 8). The most
commonly used @y are 3 (which is C!) and @7 (which is C2) corresponding to the filters
mn(€) = 75 SEN T ape~RE with

N =3
) ap = 0.3326705529500825 a3z = —0.1350110200102546
a; = 0.8068915093110924 a4 = —0.0854412738820267
ay; = 0.4598775021184914 a5 = 0.0352262918857095
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ao
a
asz
as
a4
as
ag =

i

H

(Those values are borrowed from [DAU3], where the reader may find the values of the

0.0778520540850037
0.3965393194818912
0.7291320908461957
0.4697822874051889
0.1439060039285212
0.2240361849938412
0.0713092192668272

coefficients of my for N = 2 to 10).

The choice of the normalization ) ax = V2 corresponds to the numerical filters in
the fast wavelet algorithm : we may write the three following relationships between pn

and pn(3) :

e on(%) = V22X

2N-1

normalization is then ¥ (v/2ax) = 2)

° :lﬁtp (%) = ZgN_l axpn(z — k), a formula which allows the computation of the

2N-1

o &n(2¢) = mn(E)n(E) = :/1—5( 0

calculus of @y =I[52; m ~(3%) (the normalization of the coefficients is then

=)

o axpn(z — k), the two-scale difference equation which corre-
sponds to the calculus of p(z) (see chapter 8) through the cascade algorithm (the

ai2
a3

i

0.0806126091510774
0.0380299369350104
0.0165745416306655
0.0125509985560986
0.0004295779729214
0.0018016407040473
0.0003537137999745

ake“"ke) &~ (€) which corresponds to the

coefficients s;x =< f | 22p N (253: — k) > of a function

in Vy_1 as 5 = Eq @k—248j—1,q; the good normalization is then ) ax = V2.

(The beginners in wavelet theory are often puzzled by the lack of uniformity in the literature
about the normalization of the coefficients ax. The point to be understood is that each
normalization has its own interest which depends strongly on the point of view of the user.
In practice, however, the three points of view are useful and cannot be easily dissociated,

f= Sj—1 kz("‘l)/sz 29l —k
I—1

keZ

as we shall see in chapter 8).
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st Figures 1 Daubechiesfunctions forN= 3 &

a) the scaling function b) the orthonormal wavelet
1’4 .......... T T A T T . Y T - T

{ filter with extremal phase }

{ tilter with extremal phase }
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Of course, the choice of @n in theorem 4 is not unique, since the description of Qx
gives only Qn(1) = 1 and | Qn(e~*¢) |? . We already noticed that these are (exactly)
2[¥/2} choices for Q. The coefficients we gave for ms and my corresponds to choices of
@n with extremal phase [it was the choice of Daubechies [DAU1] in 1987]. Other choices
are discussed in [DAU4] and [RIO] : we may improve the phase of px (going closer
to a linear phase) or its Holder regularity (all the choices of Qn give the same Sobolev
regularity on = sup{s/pn € H*}, so that the Holder regularity ay is fixed up to 1/2 :
ay =sup{a/pn € C*} € [ox —1/2,0n]). Of course, we ought to be able to compute the
Holder regularity of o (we gave exact formulae only for o) : the interested reader will
find such results in the works of Daubechies [DAUL] and Rioul [RIO].

N N=1|N=2{N=3|N=4|N=5(N=6{N=7 N — +o0
oN 0.5 1 {1415 | 1.775 | 2.006 | 2.388 | 2.658 oy ~ N(1 - 232‘32)
n
an 0 |0.5500]1.0878|1.6179 an ~oN
(extremal — phased my)

Table n° 2 : Values of o) and a)p for the first values of N.

Example n°® 8 : The Coiflets.

If ¢ is a compactly-supported orthonormal scaling function (with scaling filter my)
N—1
and if mo has a zero of order N at 7 (mo(n) = diemo(ar) = .= dif'y_—,mo(vr) = 0), then

each polynomial P € Cy—_1[X] of degree < N — 1 can be written as

P(z)=> < Plp(z—k) > p(z—k).
kEZ
R. Coifman asked to I. Daubechies to construct a minimally supported ¢ so that < P |
©(z — k} > was obtained by the sampling P(k) :

P(z) =) _ P(k)p(z — k).

keZ
' —ie\N . . .
We have then mo(§) = e ™ An(e~*¢) where An(e~ %) = K= are~**¢ should
2 k=Ko
satisfy : . .
(1 +;os£> |AN(e‘if) 2 +(1 +;os f) |AN(e“'5) P=1
and X
(d%) An(e™%) |e=o=0 for 0<k<N-—1.

We thus added N — 1 requirements to the previous ones (bading to orthonormality)
Daubechies pointed reasons why a solution mg should exist with length 3N (instead of

2N for the minimally-supported scaling functions of theorem 4) and gave solutions for the
first values of N in [DAU4].
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: = Figure 3r The coiflet with five vanishing moments s s i b il
a) the scaling function b) the orthonormal wavelet
T i T {5 T P B

05F et ......... .............. »-

................................

10 15 0 5 . 10 i5
The support [-6,11] is shifted by 6.

Example n°® 9 : Rational filters.

In 1989, G. Malgouyres [LEMA1] pointed out that the construction of rational or-
thonormal scaling filters mo(€) = g%;:;g‘ was very easy. Indeed, if P,Q € R[X] and

| P(e7*¢) |2= A(cos £) and | Q(e~*¢) |2= B(cos £) with A A B = 1 (which means that we
exclude factors =% (X € C) from mo(£)), | mo(€) |* + | mo(€ + 7) |*= 1 becomes
A(X)B(—X) + B(X)A(—X) = B(X)B(—X) hence A(X) + A(-X) = B(X) : thus, in
order to get my, it suffices to choose P € R[X] such that P(1) =1, P(~1) =0, P(z) and
P(~2) have no common root on the unit circle and P(2) has no factors []n_, (z + 22°)

~ with Pl = 2o and 20 # 1 (Cohen’s criterion); then constructing Q@ € IR[X] such
that | Q(e™%¢) |2=| P(e™*¢) |* + | P(~e*¢) |? gives an orthonormal scaling filter
mo(£) = Gt==a)-

A very interesting example is the Butterworth scaling filter where

1+ e\ N
5 .

P(e“if) = (
Then we have to construct Q such that
N

| @(e) P= :

1+cos§r !lmcosf
_é——— + [OS—
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The polynomial

1+x\¥ /1-x\¥
R = | ——
v =(57) + (55)
has explicit roots, so that @ can be computed exactly. For every N, one good ch01ce for

Q is to select the roots so that Q(z) doesn’t vanish inside the unit disk ; then & (°

holomorphic on $m £ < 0, so that the associated ¢ has its support conta.med mQ[O +oo)
When N is odd, another choice is possible :

—ie\ N i\ N e N
= (5 () s (1)

In that case, myg satisfies moreover mo(€) 4+ mo(€ + 7) = 1, hence we have p(k) = 8o :
this choice of Q leads to an orthonormal and interpolating scaling function !

Rational filters have been also introduced by Evangelista [EVG] and more recently by
Herley and Vetterli [HEL).

Example n® 10 : The basis of Berkolaiko and Novikov.

In 1992, V. Berkolaiko and I. Novikov introduced a basis of compactly supported
“almost” wavelets which were C* and had an infinite approximation order [BER]. This
basis was also introduced by A. Cohen and N. Dyn in 1993 [COHD] as an example of
non-stationary multi-resolution analysis.

If 1 is a compactly supported square-integrable function (4 # 0}, the non-stationary
multi-resolution analysis generated by u is the sequence of spaces (V;(u));>0 defined by:
Vj(r) is the smallest closed sub-space of L? such that p € V;(u) and for any f € V;(u)
and ke, f(z— ) € V;(u). Then, following our results on shlft-mvanant subspaces of
L% in chapter 3, it 1s easy to see that (V;(u)) has the following properties :

() Vi(u) C V,.H( ) and U o Vi(u) is dense in L*(R) ;
ii) For every j > 0, there ex1sts a function N; with compact support such that

(27/ 2Nj (272~ K))kez
is a Riesz basis of Vj.

When N; doesn’t depend on j, the (Vj(1)) are a multi-resolution analysis of LZ(IR)
with scaling function Np. A necessary and sufficient condition to have a multi-resolution
analysis is u($) € Vo(u). ~

We wnte P; for the orthogonal projection operator onto V;(x). Then u will be said
to have approx1ma.t10n order k if for all y € H*(IR) we have || P (y) — y |l2= o(277%).

PROPOSITION 5. - Let (mn)n>1 be Daubechies’ filter (where

14+ e %

my(§) = (”‘—Z*"—)N Qn(e™)
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with Qn € R[X], degQn = N —1, Qn(1) = 1 and | mn (&) * + | mn (€ +7) |*=1).
Define for N > 0, &5 and ¥ by ,

(20) (0 = [ v (%)

L
(21) By (€) = e~ (S + m)naa ()
Then :

(i) ®x and ¥y are compactly-supported C* functions, with Supp ®x C [0,2N + 3] and

Supp ¥n C [-N,N +2].

(ii) The family (2¥/2® 5 (2¥ z — k))xez is an Hilbertian basis for Viy(®o) and the family
(2¥/2¥ ; (2N 2 ~ k)) ke is an Hilbertian basis for Viy41(®0) N Vi (®o)*.

(iii) The family (®o(z — k))kez U (2V/2¥ N (2N z — k)) N>0,kcz is an Hilbertian basis for
L*(R).

(jv) ®o has an infinite approximation order. More precisely, for every s € R and f €
D'(R), f belongs to the Sobolev space H® if and only if N,(f) < +o0, where

o0 1/2
N.(f) = {Z |< f | ®ofz—k) >|* + i Yo 4N i< f |2V Pun(2Nz k) >|2} ,

keZ N=0keZ

and the norms || - ||+ and N,(-) are equivalent.

Proof. The pointwise convergence of the infinite products (20) and (21) is obvious : we have
| mn |lco< 1 and degmpy = 2N — 1, hence by Bernstein’s inequality we get || a—‘%m N lleo<
CN, so that | my;(2y) =1 |[< C(N +J')J§}. Since 37721 (N +7) 3 = N + 2 < +oo, the
products converge. Moreover, each finite product is bounded by 1, hence the products
converge in §’ (by the bounded convergence theorem). Thus @ is an infinite convolution

product of sums of Dirac masses, where the j — th sum has its support contained in
[0, &IX—“’%L?—"-} , so that Supp &5 C [0,2N + 3].
Moreover, since | my(€) | + | my (€ + ) |*>= 1 for all N and ¢, the functions Oy,

defined by
P
&= 1 () T (£)

i=1

generate orthonormal families (0n (2 — k))kez, while ) N,p — & as p — +oo pointwise
(and in §'). The proof of proposition 5 then reduces to the following estimates :

(22) | | bnp(8) |< Cy | £ |28

(23) For ke N, k< N+1, |¥n(€)|<Dx|e*
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where C; and o are positive constants which don’t depend on N nor p, and the Dg’s are
positive constants which don’t depend on N.

22) is obvious for | ¢ |< 2307 : we just write | fn ,(&) |< 1. Now, if | £ |> 2307 we
P

write £ > 30 the integer such that 2%7 <| ¢ |< 2% in. If p < &, BN,,(E) =0;ifp>£+1,
we have

£+1 ¢
| On,p(8) < Hl | mu+5(55) 1= Ane(€)Br,e(8),
j=
where
1)y ik N+j £+1 "
Ane(&) =] — and Bne(§) = [] | Quas(e™5) |.
J=1 i=1

A, is easily estimated (since | singf |> %%% for | ¢ |< 2¢1x) .

+1 LV e | e —i.t
1 + e 2 1 +e 27
Anale) = ] |52 n | Rl
J=1 k=0 |j=k+1

| sin | | singr |
26+1 {sm-é;—z- | 25'*'1“'C | sinsi |

—eNg-de(er1),
-(lsn)anev“N? -

Now, we recall that | Qu(e=%) 2= S r ot (N+k— 1 (1—_—"93-{)k ; Berkolaiko and

k 2
N+,f— 1) < (N:k) hence | Qn(e™*¢) |<| @ny1(e™¥¢) | for

all N and &. Now, we see that '
| @n(e*)Qn (™) <] @n(-1) || Q;v(ﬂ“”"’ 1:

A (X) = Ni:‘ <N+:—1) (l%z)k

k=0

Novikov noticed that

the function

is clearly decreasing on [—1,1] and we always have cos £ > -—% or cos 2§ > —%. Moreover,

if X <0, Nt
1—- X - 1—-X
< 2N —2
=+ () ()
(just write (N +If"1) < 2k-N+1 (zli,v :12) < 22N—22k=N+1) | thus | Qu(-1) |<
aN=1/2 | Qn(e=2/3) |< 3N/2 and for T <| £ |< , | mu(€) |< LREL

v/ 2|cos €]’
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We may estimate By, ¢(£) : we distinguish odd £’s and even £’s : if £ = 2¢' + 1, then

Br,e(8) <| Qn+2(e™5) || @na2le ) |+ | Quaale %) || Qupa | €755F) | -

| Qnt2e42(e” 29%7) || Qnizeqa(e 20+2) |<
2+1 '
< H 2N+2j—1/23’—§-+j
i=1

— 2-1/2(2‘+1) (2\/§)N(ﬁ'+1)+1/2(£"+1)(£'+2)‘
If £ = 2¢'; we write Qn,e(¢) < Qn+1(e"*¢)Br+1,e-1(5), and get
| Br () < 2N+1/22-1/2Z'(2\/§)(N+i)£'+1/2£'(£'+1).
In any case, we’ve got :

| Bne(€) |< (2\/§)N(L’;—3)+-g-(e+1)(z+a),
so that
A ¢By.e < 2~ (24/3)N 52 2-1/28(t41) (2,/3) s (£+1)(&46)
Now, we recall that £ > 30, hence _z_-sz < 1—85-2, and thus :

8715\ 8\ ¢ ’ s\ ¢
AneBne < ((_2_@{__) (2v3)%/® (Q%i/_) (Q—\f_/g%_j_)

We check easﬂy that (2/3)%/1% < 2 and (2+/3)'/® < v/2, thus An,¢Bn,e < Cy*Ne ~af for
some C >0, a >0 and v € (0,1). Since £ < -5~ xong < £+1, (22) is proved.

(23) is easy : for | € |> 1, we just wnte | ¥n(8) | 1;for | € |< 1 we have
$+me[2r,4x], hence | P (&) |<| ma+1(§ + ) |<| sing ]N+1< Kk:l

The proposition is now easily proved. Because of the estimate (22), we may use the

dominated convergence theorem to get that (®n(z — k))kez is an orthonormal family.
Points (ii) and (m) are thus proved.

Point (iv) is proved by the following easy consequences of (22) and (23)

° sup sup Zpez | € + 2pm |¥| ‘lZ’N(f +2p7) ’< +o0

. Ns>up sup > ez | €+ 2pm |=*| dn (£ + 2p7) |2< +o0.

Thus, if A® is the operator A’?}' =| & |° f, we have for every s € R and N > —s,
| A%(@n ) |2~ 2V || @n S ||2, and || f ||+ < C Ns(f). We have

1< A°Quf | A°Quif >|< 2N 2N 2= IN=N'L | o n £ 1ol Qo f 2
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writing
< AQNF|A QN >=<A*TIQNSf | A°TIQN/ f >,

and thus 12

IA* > @uflla<Ca| D 4M QNS I3

N>-s N>-—s

The reverse inequality is obtained by duality.

REMARKS. - (i) The basis of Berkolaiko and Novikov is a generalization of the Rvachev
function up(z), defined by :

up(z) = x * 2x(22) % -+ % 27 x(27z) * - -

L \J
o0 1+4e 27

(where x = x(0,1]) or ©p(€) = [1;2, ( 2

The Rvachev function is a compactly supported C°° function with infinite approxima-
tion order [RVA], [DYN].

(ii) The proof of proposition 5 gives us also the following estimates :

. = 2 2__
Gim 30 [ éx(¢+2km) P=0
|€+2kn|>n

S 8@ =1 i [¢l<n

. a 1
Jim 1En(e) = 25 i [¢l=m

hence Nlirz Yorez <f|On(z—k) > On(z—k) =g with § = x[_,,,.,r]f for any f € L2.
3. Spline functions : the case of orthogonal spline wavelets.

The theory of spline functions has been thoroughly developped in the last fifty years
as a key tool in approximation theory or in computer-aided design. A small part of this
theory, namely the theory of cardinal splines developped by I. J. Schoenberg in the early
50’s [SCH], fits very well to the frame of wavelet theory.

A spline function of degree m with nodes in a discrete subset X of IR is a function
f of class C™~1 such that (writing X = (- < z; < z;41 < ---)jez) the restriction of
f to each interval (z;,z;+1) is a polynomial of degree at most m. Thus f is determined
exactly by the polynomial f |(4,,2,) and by the sequence (f(™)(z; +0) — (™) (z; — 0)),ecz.
Thus, we may say equivalently that a distribution f is a spline function with nodes in
X if and only if f(™*+1) can be written as a (locally finite) sum of Diract masses at
X : flmtly = > jez 46(z — z;), where a; = F™)(z; +0) — f(™)(z; — 0) ; integrating
(m + 1)-times f(™+1) gives us f up to (m+ 1) constants of integration (which are exactly
determined by the polynomial f |(z,,z,))-
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A cardinal spline function is a spline function with nodes in a regular grid (X = aZ for
some a > 0), and especially in ZZ. If VJ" is the space of square-integrable spline functions
of degree m with nodes in ZZ, then it generates a multi-resolution analysis. Clearly we
have for any f € Vg™, f(%) € VJ" (since 27 C 7Z), so that we get only to check that V*
has a Riesz basis of the form Np,(z — k))rez. This is obvious by induction on m, since VI®

has clearly an orthonormal basis (No(z — k) x(z — k))kem where x = X[o,1], and since
f eVt if and only if f € L? and f’ € V{*. Our study of scaling functions, and more

prec1sely theorem 3 of chapter 4, allows one to conclude that V{**! has a scaling function
Np+1 given by

z4-1
(24) Neia() = [ Nlt)dt = x ¢ N = xOI42.
. )

The function N,, is called the normalized B-spline of degree m ; it is the function of
minimal support in VJ", and its support is [0,m + 1].
Formula (24) allows one to compute exactly Np,(z) by induction. By instance we

have:
No(z) = x[o,1]
Ni(z) = xpo,1 + (2 — 2)x(1,2)
z? 6z — 3 — 222 —3)2
Na(z) = —Z*X{o,ll + ‘x—”—z"—a‘c—xilm + E—z"")_”xiz’?'i'

Moreover, the Fourier transform of Ny, is easily given by (24) :

(25) Ro(€) = ( 2 :5)%1 :

Moreover, since x is symmetric with symmetry center at z = 1/2, Ny, is symmetric, with
symmetry center at z = -’%l Thus, the auto-correlation function Cy, (&) of Ny, given by

Cm(€) =D | Nm(&+2k7) P= D < Npu(2) | Nim(z — k) > 77,
kEZ ke

can be computed with help of Nopyq :

(26) Cm(8) = D Nemipa(k+m+1)e ¢,

k=-—m

The trigonometric polynomial C,, has been called by 1. J. Schoenberg a generalized Euler-
2
Frobenius polynomial. Of course, the function Lamy1(z) defined by Lomy1(€) = sz%L

satisfies Ek - Loms1(€+ 2kn) = 1, hence Lzm41(0) =1 and Loy (k) =0 for k € Z* ;
moreover | Nm( £) |2= e”‘(m+1)$N2m+1(£) hence Lopmi1 € V™! 1 it is the so-called
Lagrangian interpolation spline of degree 2m + 1, studied by Schoenberg in [SCH].

-Spline functions are related to interpolation through Holladay’s theorem. This theo-
rem can be stated in the following way, for spline with nodes in Z :
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PROPOSITION 6. - Let m € IN. Then :

(1) Vgt = {f € L?/3g € H™+!, f = g(m+1) apnd g(k) = 0 for all k € 72}
(ii) f € V#™+1 if and only if f € H™*? and

| £+ Jlo= wnf {|| F™+D ||, /F € ™Y and F(k) = f(k) for all k € Z}.

Proof. 1t is easy to see that on H™%? the || - || gm+1 norm is equivalent to the following
Npm41(:) norm :

1/2
N1 () =l £ 2 + (Z | F(K) 12) :

keZ
(Indeed, ,
I f 1 = Z I f l{k,k+1}“§1m+1({k,k+1l)
kEZ
m+1 .
DMEICIED N FLEE
kEZ j=1

now, to conclude, it is enough to write || f(f) Z< C{e || f | Hmer +€8~™1 || FIm+1) |12}
where C doesn’t depend on € > 0). Thus ( ~)™+1 is an isomorphism between the subspace
K™ of H™*! defined by K™ = {f € H’“"‘l/Vk € 7, f(k) = 0} and the subspace of
L2(£)m™+1K™, which is therefore closed in L?. To see that (£)m 1K™ = (Vg")L is then
obvious, since f € V{" if and only if f € L? and f(m+1) = Zk z 9k Sk for some (ag) € £2.
Point (i) is proved, and point (ii) follows easily, since f € Vzm‘e* if and only if f € H™+1
and f(m+1) ¢ | 248

We may now construct the orthonormal multi-resolution analysis associated to VJ".

The orthogonal projection operator P{"* onto VJ" can be written as

(27) , PPf=> <flgm(z—k) > Nu(z— k),
- k€Z

where gy, is defined by

N (8)
m(f) m(E)

We can also introduce an orthonormal scaling function om for VJ* by choosing a 27~
periodical function Dy, (€) such that | Dp(€) |°= Cpm(€) and defining om by @ =
gf:. The choice of D,, = /C,, leads to the function of Battle [BAT1] and Lemarié
[LEM1], which is symmetrical with symmetry center at z = -—"-f—gi A choice of Dy, as a
trigonometric polynomial (through Riesz’ lemma) with no roots in the lower half-plane

(Dm(€) = 3 are %€ and | 3" axe™ %% |> 0 for m z < 0) leads to the causal function of
Stromberg [STR].

In order to get a Riesz basis for WJ* = V" n(VJ")L, it is enough to see that (because
of proposition 6) we have f € W if and only if fevi®n ( )™+ K™, hence if and
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only if f = (£&)™*!g for some g € V#™*! such that g(k) = O for all k € Z. Thus
f = Yreg alk + 1)2m 1 {(£)™* Lam41} (27 — 2k — 1), and we've got a Riesz basis

Ap(z — k) of WJ* with Ay = (&)™ {Lapmy1(22 — 1)}. This is Battle’s pre-wavelet
[BAT4], also introduced in [LEM2| and [CHW1]. We have :

1—e—téN1 !2m+2

.&m(f) = %(1E)m+1 i —t_é:]j(_f—/z)
73

et . 1 —etié/2 m+1 " &
= L grmimh (_..—_...__2 ) F(%).
Cm(3)

N ~ _{ _{ ~
Replacing A,, by ¥,,, where 9,, = Cg&z,}ﬁ’;igi’”’ A, we obtain a compactly supported

function ¥, such that (¢¥m(z — k))rez is a Riesz basis of WJ* : this is the compactly
supported pre-wavelet of Chui and Wang [CHW2] 9,, defined by

¢
2)

* | e
(28) Pn(€) = € C(S 4 7) (1——%—--) Ko

(More generally, if ¢ is a compactly supported scaling function, with scaling filter mg and
auto-correlation function C(§), and if (V;) is the multi-resolution analysis generated by
©, then one may associate a compactly supported pre-wavelet ¥ to ¢, i.e. a compactly

supported function ¢ such that (¥(z — k))xez is a Riesz basis of Wy = V5t N Vy [CHWS]
; this function is given by the formula

B(E) = 0+ mmo(S +mB(S)).

We may now compute the orthogonal projection operator QF onto W = V™ n (VJ")+
by defining T'm (£) = X ey | D (€ + 2k7) 2= Yokez <V¥m | ¥Ym(z—k)>e ’5, Ym(z) by
Am = 59—'; such that :

(29) QTf =) <flmlz—k) > dm(z— k)

k€Z

We may also define an orthogonal wavelet, i.e. a function 8,, such that (8, (z — k))xez is
an orthonormal basis of W, by choosing a 27r—per10d1cal function A,, such that
| Am(£) |2= T'p(€) and defining 8, by O 39—— The choice of A,, = /Ty, leads to

the orthogonal wavelet of Battle [BAT1] a.nd Lerharié [LEM1]. Another chmce of 8, is
proposed by Strémberg [STR].

We may then summarize these results in the following way :
PROPOSITION 7. - Let Lop,41, f}gm.,_l be the following Lagrangian interpolation spline
functions of degree 2m +1 :
o Lopt1 has nodes in 72, L2m+1(0) =1, Lzm.;_l(k) =0 fork e Z*
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. igm_;.; has nodes in ~IN U %]N*, fzzm_}.l(%) =1, f,zm.;_l(k) =Qforke ~-INU %]N*\{%}
Let (V]m) jez be the multi-resolution analysis of square-integrable spline functions of degree
2m + 1 (with nodes in 5 7). Then :

N —i m-1
(i) the B-spline Ny, (defined by N,,(¢) = ( l—fg ¢ ) ) is a compactly supported scaling

function (with minimal support) for (V["), with associated scaling filter mo(§) =

lj:c"".e m+1 . .
5 and ;uto—corre]atwn function

Cm(f) = Z N2m+1(k +m -+ 1)8~ik£.

k=—m

ii) the function ¢,, defined by $m(€) = ﬁﬁ is an orthonormal scaling function for
Cm
(V:),-m), which is symmetric with symmetry center at z = —"‘—}l
(iii) the function @,, defined up to a multiplicative constant as a spline with nodes in IN

which is orthogonal to every spline with nodes in IN* is a causal orthonormal scaling
function for (V"),

(iv) the compactly supported function v, defined by

. s 1 _ C': 6/2 m+1
R ] e I C
is a pre-wavelet for (V™) (i.e., (Ym(z — k))kez is a Riesz basis for V™ n (V§")+)

(v) the function Am = (4£)*™*+!(L2m+1(2z — 1)) is 2 pre-wavelet for (V™).
(vi) The function 8., defined by

it =t () R
="' f — hd
™ 2 VCm(OVCm(E2) ™2
is an orthonormal wavelet for (V;"), which is symmetric with symmetry center at
z = 1 if m is odd, and anti-symmetric if m is even.

(vii) The function (ad;)""'*‘lf;gm_,_l is, up to a multiplicative constant, Strémberg’s orthonor-
mal wavelet for (V™).

These results can be generalized to other dilation factors than 2. Indeed for every
A € N" and f € VJ" we have f(£) € VJ". (One can show that if (V;) is a multi-
resolution analysis with a compactly supported scaling function and if moreover Vj satisfies
f € Vo= f(%) € Vo for A =2 and for some another factor A which is odd, then (V;) is a
spline multi-resolution analysis [LEM7]). Now, if we want to describe W§r, = V7 n(Vg™)*
(where V|7 = {f(Az)/f € V§"}), we may use again Proposition 6 to see that if f € W,
then f = (£)™*!g, where g is a spline of degree 2m + 1 with nodes in 17 and such
that g(k) = O for every k € 7, thus we obtain a Riesz basis (Am (z — k))1<r<a-1,kez Of
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Wity with A, » = (£)™+ (Lam+1(Az—r)), where Ly is the Lagrangian interpolation
cardinal spline of degree 2m + 1.

4. Bi-orthogonal spline wavelets.

Bi-orthogonal multi-resolution analyses have been introduced in 1990 by Cohen, Dau-
bechies and Feauveau [CODF] in order to produce linear-phased F.LR. filters adapted to
the fast wavelet transform. It is a general belief in image processing that linear-phased
filters produce less visual artifacts than the other ones. But, for the wavelet transform,
linear phase corresponds to a symmetric scaling function, while F.I.LR. corresponds to
a compactly supported scaling function ; I. Daubechies proved that the Haar function
© = X|o,1] is the only orthonormal compactly-supported scaling function to be symmetric,
so that orthonormality has to be dropped if linear phase is to be used.

Another interesting feature of bi-orthogonal multi-resolution analyses is the fact that
they fit very well the differentiation.

DEFINITION 1. - A bi-orthogonal multi-resolution analysis with compactly supported
dual scaling function is a pair of multi-resolution analyses (V;) = (Vi)iem of L*(R)
with compactly supported scaling functions @, p* such that < ¢ | p*(z — k) >= k0.

To a bi-orthogonal multi-resolution analysis, we may associate oblique projection op-
erators P; from L? onto V; in direction of (V;*)1 :

(30) P,-f=22"'<f]go*(2fz~k)>¢(2jxwk).
k€%

PROPOSITION 8. - Let (V;), (V;) be a bi-orthogonal multi-resolution analysis with

compactly supported dual scaling functions ¢, ©*, and let mo, mj be the associated
scaling filters. Then :

(i) the functions v and ¥* defined by
(B1) (o) = Hmp(S+mB(S) and () = eEmo(S +m)e*(5)

satisfy < ¢ | ¢¥*(z — k) >=bk0, <P | p*(z — k) >=0, < ¢* |<p(a:-—k) >=0 for any
kel.

(i) @; = Pj+1—P; is an oblique projection operator from L*(IR) onto W; = V; 11N (V)4
in direction of (W*) , where W"' =V 10 V'L Moreover Q; is given by :

(32) Qif =) ¥ < f|¢*(2z—k) > ¢(¥z k).

keZ
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The functions v, 1* are called the bi-orthogonal wavelets associated to ¢, p*.

(iii) The family (27/2(27°z — k));jem kez is a Riesz basis for L?(R), with dual basis
(27/24p* (2z - k))jez, kez, and similarly the family

(p(z = k)rez U (229(2 2~ k))jen ke
is a Riesz basis for L2(R) with dual basis

(0*(z — k) kezm U (27/29* (272 — k) jen kez-

Proof. Points (i) and (ii) are straightforward, using the correlation function C(f,g) =
3 f(€ + 2kn).§(€ + 2kn) for p,p*, ¢ and ¥*. We have C(p,p*) = 1, hence for f € Vi,
f=U($)p($),and g€ Vi, 3(6) = V(§)2*(§), C(f,9) = UV (§) + U +m)V (§ +m),
which gives

¢ £ ¢

. _« € «
3)mo(3) +mo(5 +m)mo(S +7) = Cle,e”) =1,
C(¢3 <P*) = Oa C(‘P’ '(p*) =0 and C("/): ¢*) =
Point (i) is proved, as well as point (ii), since Wy is a finitely generated shift invariant
space of multiplicity 1 so that (¢(z—k))rez generates Wy : since Pjy; 0 P; = P; (because
of V; C V;41) and Pjo Pjy1 = P; (because of V* C V%, ,), Q; is a projection operator and
(32) is then obvious. Point iii) is easy as well, because the families (2 12(2 z—k))jem kez
and (27/2¢*(2/z — k));jcz kez are dual to each other and almost orthogonal (just apply
the “vaguelette lemma”, theorem 3 of chapter 2 : we know by the first regularity theorem

(theorem 2 of chapter 4) that 9, ¥* belong to H¢ for some positive ).

We may now complete Theorem 3 of chapter 4 on the differentiation of scaling func-
tions :

mo(

PROPOSITION 9. - Let (V;), (V}) be a bi—orthogona] multi-resolution analysis with

compactly supported dual scaling functxons v, tp and associated scaling filters mg, mg.
Assume moreover that @ € H. Then :

(i) the derivative ' of p can be written as ¢’ = ¢(z) — G(z — 1) where & is a compactly
supported scaling function, with scaling filter fno(§) = 2=z mo(£).

(ii) the primitive [~ p*(t)dt satisfy [ **1 o*(t)dt = $*(x) where 95 is a compactly
supported scaling function, with associated scaling filter 7g(€) = mg(£).

(iii) @ and G* are compactly supported dual scaling functions for a bz-orthogonal multi-
resolution analysis (V )s (V ) Moroever the projection operators P; onto V; in direc-

tion of (V;*)* and P; onto V; in direction of (V‘“)-L satisfy :

d d

(iv) the bi-orthogonal wavelets B, P* associated to B, $* satisfy :

-~

(34) Y= «-——~z/) and ¢* = _4/w P*(t)dt.
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Proof. (i) and (ii) have already been proved in chapter 4, and point (iv) is a direct
consequence of points (i) and (ii). The only thing to check is point (iii). But

+00
<p@) |8 (z-k)>=Y <p'(z—p) | F*(z—k) >

p=0
+o0 +oo
==Y <plz-p | (z—k+1)—p*(z—k) >= D (bcp = 6k-1,5) = bk 0-
p=0 p=0

Moreover, we have

%(Pﬁ): Yo <flez—k) > (Blz—k) —plz—k-1)) =
keZ

S <fleta—k) - e a—k+1) > plz—k) = B (5‘91)

dz
ke

Thus proposition 9 is proved. m

Due to proposition 9, we may now easily construct dual scaling functions associated
to the B-splines Ny, (z). '

PROPOSITION 10. - Let m € N, N,,, be the B-spline of degree m
R 1— e_,‘g m+1
(Nm(€) = (—_}_{_) )
and ¢ € L? be compactly supported. Then the following assertions are equivalent :

(A1) p is a dual scaling function associated to Ny,.

(A2) the function A™*'p (where Af = f(z + 1) — f(z) and A¥+1f = A(A*f)) can be
written as A™tlp = (fz)m*‘l@ where ® is a compactly supported interpolating scaling
function such that & € H™+1,

Proof. (A1) => (A2) is obvious : we have & = N,,,(£) @, hence & = p % N,,(—z) ; thus
® is compactly supported and interpolating ; it is easy to see moreover that ®(%) belong
to the linear span of the ®(z — k)’s. (A2) = (Al) is a consequence of Proposition 9. m

If @ is of the form ® =xn ¢(z) *n§ ¢ (—z) for a Daubechies function yy, then ® is
symmetric with a symmetry center at z = 0, while ¢ will be symmetric with a symmetry
center at z = m——;*'—l-

Thus, we see that if ¢ is a dual scaling function associated to N,,, then the length of
Supp ¢ is at least m+2 (since ® € H™¥1! and is interpolating, we know that the filter My

—ie\m+2
associated to ® contains a factor (L*“—;—£> , hence that the support of ® has length at
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least m+2+m+1 = 2m + 3 [see Theorem 2}}, while we know that we may find a solution
¢ with length of support O (m%) as m — +oo (see Proposition 2 again : write ¢

as A™Tlp = (3%)"‘“ ~® where xy@ is the interpolating scaling function with minimal
support associated to N : we know that Suppy® = [-2N —1,2N +1] and that y® € Co¥

where ay ~ N (2 — %’;}%) ; thus we may choose N = O (5_—“22;_5-) and the length of the
n

support of our solution is 4N +2—m —1 = O (m-212 ) . Thus we approximately get a
in4/3

length of the support of ¢ nine times greater than the one of N,, ; it would be of course
of great interest getting a much smaller support.

A very nice property of those dual scaling functions is that the associated filters are
very easy to compute (if ¢ is such that A™+1p = ( d )m_H ~ 2, then the associated filter

dz

—ie\N e\ N—m—1 -
mo is just mo (&) = (1""2 c)r (1'*'; €) " e (N +: ! (-1—’:-92—‘35’—&)}c and there

is no need of Riesz lemma or another algebraic algorithm to get the coefficients.

Example n° 11. The shortest dual scaling function associated to N;(z) is associated to
2

the filter (3—'*:%:—5) (1+2- b’g’-”—ﬁ) = —fe 3 4 %e””‘f + 37+ 1Ll m

a) the affine B-spline ¢) the associated spline wavelet

0.8}
0.6¢
0.4}
0.2}
0
support ={ -1,1} suppoit = [~1,2]
b) its shortest dua! scaling function d) the associated dual wavelet

support = [-2,2] . support = {~1,2]
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Chapter 6

WAVELETS AND FUNCTIONAL ANALYSIS

Wavelets and functional analysis is a theme which has been fully explored in the be-
ginning of the theory. Results were established with the tools developped in real harmonic
analysis in the 70’s (and which are to be found in the books by E. M. Stein [STEW],
[STE1], [STE2], Yves Meyer [COIM1], [MEY2], [MEY3|, [MEY4] and Frazier, Jawerth
and Weiss [FRIW]) ; these tools are mainly the theory of Calderén-Zygmund singular
integral operators, the atomic decompositions and interpolation theorems. We develop

mainly the example of Lebesgue spaces (using the Calderén-Zygmund splitting) and of
Besov spaces (using a molecular approach).

1. Bi-orthogonal wavelets and functional analysis.

The functional analysis provided by wavelet bases is often given in the following
presentation. We start from two conjugate filters mo, m$ € C®(R/27ZL) satisfying
mo(0) = mg(0) =1 and . '

(1) mo(£)mg (&) + mo(€ + m)my(€+7) =1
and define the tempered distributions ¢, ©* by their Fourier transform
M 3 A 3
(2) (&) = [I mol55) and ¢7(&) = [T mi(5;)
j=1 Jj=1
and the associated wavelets v, ¥* by
(3) D(28) = e Hmi(E+7) and $*(28) = e Emy (¢ + 7)B*(8).

In all cases we have to deal with, the function mo(£)mg(€) is non-negative-valued (V¢ € R,
mo(€)mg(€) > 0) and (1) implies that [ ¢(€)@*(£)d¢ < 27 (P@* being also non-negative-

valued). If [ @(€)@*(£)d¢é = 27 (which is generally ensured through Cohen’s criterion),
we have

(4) Z O(€ + 2km)p* (€ +2km) =1 ae.
kEZ

and similarly

(6) . <Y(z) |p*(z — k) >=< p(z) | " (z—k) >=0 for ke Z
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(7) <¢P(z) |Y*(z — k) >= bk o for ke ZL.

We know that ¢ and ¢* are smooth functions which have a slow growth at infinity
(AN Ve, | o(8) |+ | &*(€) IS C(1+ | € )¥). Thus we may define operators P; and Q;
from § to §’ by :

() B7(¢) = (Z f(& +2kn27)@ (—- + 2k7r)) (..f-)
k€eZ
) G (E fle +2kn2)de (5 + 2k7r)) B()
keZ
[which formally correspond to
(10) Pif=> 2 < flo*(¥z-k)>p(@z—k)
keZ
(11) Qif =) 2 <fl¢* (2 z~k) > p(2'z—k)].
keZ

P; and Q; can be extended as operators on the space E = {T' € §'/ T is a locally bounded
function and Vj € ZZ,

Y 1B (e+ 2km2)p (5 + 2km) |€ LY.
k€EZ

In that case, we have P; o P; = P; and P; is a projection operator on

V;={f € E/3ue L°(R/2rZ)f = ﬁ@(%)}

Moreover P;1; o P; = P; (since V; C V;j41) and Pj o Pjyy = P; (since

Piy1f=0& Zf £+2k7r2’+1)96*( ¢ - +2k7) =0 a.e.
keZ
T\, 5 % 5 — s
=>Zf(€+2k7r2 o' (= +2kr) =0ae. = P;f=0
keZ 2

hence P:(f - Pj+1f) = 0). At last, QJ' =Lj41 — PJ‘ and Qj o QJ' == Q_«;.

Thus, we have “natural” definitions for the projection operators P; and Q;. Now, if B
~ and B* are two Banach spaces of distribution such that we have a duality bracket between
B and B* induced by the bracket betweenS and S’, we may ask the following questions :
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(i) if P;(ENn B) C EN B, does P; operate on B as a bounded projection operator ? If so,
we note V; for the range of P; and Vj* for the orthogonal space in B* to Ker P;. Note that
ViCViprand Vi C VY.

(ii) Similarly, we note W; for the range of Q; in B and W for the orthogonal space to
Ker @Q;.

(iii) If the distributions ¢ (27z — k) belong to B and ¢*(27z — k) to B*, do we have for all
feB

Pif = Z Y <f | go*(zjm—- k) >p, B~ tp(ij— k)
keZ

where the series converges strongly in B ? And in that case, is the family (0(27z — k))xez
a Riesz basis for V; 7 (Equivalently, do the operators P;,, 7 € £°(Z), || 7 ||o< 1, form
an equicontinuous family of operators on B, where

Pinf=) m? <[|p*(@'z~k) >p,p 0@z~ k) 7).
k€

(iv) Suppose that the P; are bounded on B. Do we have j—ljl-foo Pif=fin Bforall fe B?

(This is equivalent to the equicontinuity of (P;);>0 and the density of {J;cy V. Note that
B is separable in that case).

(v) Do we have lim P;f =0in B ? If B is separable and B* is the dual space of B, this
j—+—o0

is equivalent to the equicontinuity of (P;);<o and (V;cz V' = {0} (and implies of course
Njez Vi = {0}). Indeed, if (Py);<o0 is. equicontinuous and ;5 V;* = {0}, we v*vrite for
f€B, || Pif lB=<P;f|g; >p,p- with || g; |p-=1, and < P;f | g; >=< f | P}(g;) > .
But the range of P} is V;* ; moreover || P;(g;) |l5-<|| P; |5,5, so that (P} (g;)}i<o
is pre-compact in the weak topology of B*. If go is an accumulation point of P} (g5),

necessarily goo € V;*, hence goo = 0. Thus we may conclude lim F; f = 0. Conversely, if
J—+00

lim P;f = 0 for all f, we may conclude by Banach-Steinhaus’ theorem that the P; are

j——o0
equicontinuous, while if g € NV;* and f € B is such that < f | g >=| g ||5-, || f [[B=1,
we have < f | g >=< P;f | g > for all 7, hence g = 0.

(vi) ¥ ((2'z — k)) kez is an unconditional basis for W; for all j, and (¢(2’z — k))kez an
unconditional basis for Vj, if P;f — f as j — +o0, then we have a Schauder basis for B :

(12) VfeB, f= Ngrgookezz < fle*(z—k) >p,p v(z—k)+

N
Yoo < f|9*(2z — k) >p,p- $(2'z - k).

j=0kCZ
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The next question is then to check whether we have an unconditional basis. It is equivalent
to check the equicontinuity of the operators T, € € £°(IN) @ £°(IN x Z), defined by :

T f = }: e < flo*(z—k)>p,pB oz —k)+
kEZ

+o0
YD e < flo*(27s—k) >p,p- Y(27z— k).
i=0keZ
(vii) We have a similar question, when }Em P;f = f and limP;f = 0, so that f =
o0 -0
om, Y i Q;f, for the family (27/2(27z — k)) jez kez-
A way to answer the question of the continuity is often given by the theory of Calderén-

Zygmund operators, a class of operators which have been extensively studied by A. P.
Calderén, E. Stein, R. Coifman and Y. Meyer [STE1], [COIM1].

DEFINITION 1. - A Calderdén-Zygmund operator of class € (0 < € < 1) is a bounded linear
operator T on L? such that its distribution kernel K(z,y) € $'(IR x R) is given outside
from the diagonal by a locally Holderian function which satisfies for some constants C > 0
-and € € (0,1] :

(1) | K(z9) 1€ Oy
(14)
| K(z+h,y) - K(@,0) | + | K2,y +h) - K(z,3) |< c.lm—*___..’fy_‘rm for |h|< 3 z-y].

The point is that the opeators T, are often Calderén-Zygmund operators :

LEMMA 1. - Let ,%* be continuous functions such that for some o, > 0 :

1 . 1

(15) | ¥(z) < (e P and |¢*(z) |< TF [z
(16) | ¥(z+h) — () |<| B[P and |¢*(z) —9*(z+ k) |<| R IP
(17) / Yds = / Y*dz = 0.

Then for n € £2°(Z x ZL) the operator T, defined by T,f = 2iem Xkez nix2 < f |
V*(27z — k) > (2 — k) is a Calderén-Zygmund operator of class €, where o depends
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only on a and B. Moreover, the kernel K,(z,y) of T, satisfies for some constant Co which
depends only on «, § and ¢ :

| Ty llz2,22< Co || 7 [loos S‘ip lz—y| Ky(z,9) 1L Co || 7 llo
z#y
and

sup |k [%z—y [ {| Ky(z,5) ~ K(z,y+h) | + | Knlz,) - Ko (z+h,y) [}
z#y,h|<f|z—yl

<Collmnoll-

Proof. The L*-boundedness is given by the vaguelettes lemma (see chapter 2). The
estimates on the size of the kernel are classical. We prove for instance the estimate for
Ky(z + h,y) — Ky(z,y). It is enough to prove that for 27 | A |> 1

A5 = | 3 mip? (b(272 — K) — bz + 2h — B))$* (2Ty — k)
k€eZ

' 2
Sl llee Co T =y s

. . 3 2e
while for 27 | b |< 1, A; <|| 7 |loo C§2? 232;_’; += and then to sum over j to get the
estimate.

Now, to estimate Aj, it is enough to check that :

| 92z~ k) — 2z +2h ~ k) |<

. 1 1
. 7 2¢p

and | ¥*(27y — k) |< C(1+{21y1—k})1+‘0 , and to sum over k. If | 27h |> 1, it is a direct
consequence of (15) and is valid for all € € (0,c). If | 27k |< 1, we have by (15),

C

|$(@ 2~ k) — b2z + Ph = k) S Grrg —E e

and by (16), | ¥(27z— k) — (2’z +2"h — k) |< C | 27k |, hence

. . . 1 o
Y=k —9@ot2h-k) < (C(1+ [2z—k !)1““"‘) (128 pE=2

for all A € [0,1], and thus

(27 | R [)%
(1+ |27z — k |)1te

| 927z — k) — (2 z + 27k — k) |< C(eo)
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for any € € (0, ?(T-%C%TFE) .

2. Wavelets and Lebesgue spaces.

A striking feature of wavelets is the fact that they provide unconditional bases for

Lebesgue spaces LP (1 < p < +o0), while Fourier series provide an unconditional basis
only for L2.

The case of L? is very clear from the results of the preceding chapters :

PROPOSITION 1. - Let mo, and m{ be two scaling filters in H/2*¢(R /27 ZL) (e > 0)
such that mo(&)mE(€) +mo(E+m)m5(€+7) = 1 and let o, p* be the associated e-localized
scaling functions. Let P(€) = e~**m(§+)3(§) and P*(€) = e~*$mo(§-+7)5* (§). Then
<p(z—k) | o*(z— &) >= bk, and the families (p(z — k)) ez U (27/211)(273: k)),>0 keZ
and (p*(z — k))rez U (27/2111* (2z — k))j>0,kcz are dual unconditional bases of Lz(IR)

Similarly, the families (2//%¢(27z — k))jez kez and (27/2¢*(2z — k));jcz rem are dual
unconditional bases of L%. Moreover for f € L? the three following norms are equivalent :

0 (151 d)” s
(@) (Seez < fle*@—k) >+ /5 Tiea? I< /14 (21 >[2)
(i) (Tijez Them < 1 19* (22— k) >2) |

Proof. See chapter 4. Define 8, and 8} by (0,¢) = [T5_; mo(F)X(-x.x(35) and

85(&) = TI5=; me(35)X[—n,x)(35)- From (1), we have < o,,(a; k) | 03(z — &) >= g
We know that 0p — @ in L? and 8; — ©* in L* as p — +o0, so that < p(z — k) |
p*(z—€) >= 6k ¢- Moroever, we know that ©,¢* belong to L2({1+ | z |)1*2¢dz), so that

P f =Y kez? < flo*(27z— k) > ©(27z — k) is well defined on L?. We have seen that
UV is dense in L? and that nv} = {0} ; the P; are obviously an equicontinuous family

since P; = D;PoDy 1 where D; is the isometry D;f = 2//2f(2/z — k). Thus we already

have Schauder bases (o(z—k))rezU(27/29(27 z—k)) 50, kcz and (27/%9(2 k) jcz ke
Moreover ¢, 9%* € H* for some positive a and f 1y dz = 0 and we may apply the vaguelettes
lemma in order to prove that

1° ) ya2i20@z—k) 13<CD D 1Ak P

| JEZ kEZ
withf =Y ory¢*. =

We now turn to the case of p # 2. For sake of simplicity, we consider regular scaling
functions :

THEOREM 1. - Let mo, m§ € C*°(IR/27ZL) be regular scaling filters satisfying
mo(§)mg(€) + mo(€ + m)mp(€+7) =1
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and p,©* the associated scaling functions (given by (2)) and ,v* the associated wavelets
(given by (5)).
Let p € (1,2) and ¢ = ;E—l— the conjugate Lebesgue exponent of p. If for scme ¢' €

(g,+00] we have o* € LY, then the family (p(z — k))kez U (27/%¢(27z — k) j>0,kez is an
unconditional basis for L?, and its dual basis (¢*(z — k))rez U (27729 (272 — k))j>0,kez
is an unconditional basis for LY. The same results holds for (2//2¢(27z — k));cz rez and
(29/24p* (272 — k)) ez, kem- Moreover we have equivalent norms Ny, N, N3 on L? and NY,
N;,N3 on L9 given by :

min=([1sr dz)w

(Z < o @ —F) >v’)p+

keZ

Nay(f) =
(/ Qo> 2 <19 @z — k) > xpo, (2= - k))gdm)

J20keZ

L3

JEZ KER

Na(f) = [ (}: Yo I< f9t @z —k) > xp,y(2z - k)) dz

and similarly

N () = (/ 17l dx)w

(Z |< 7 le*(z—k) >l")q +

kCZ

N (f) = ‘
([ QD2 < f 19" @z — k) >[* X0, (2 — k))%)

J20keZ

1

M= [ (Z szl<fl¢*(2jz~k)>I2xlo,11(2jw"k)) iz | .

JEX keZ

REMARKS. - (i) If p € (2, +00), just interchange ¢ and ¢*, and p and g.

(ii) For p = 1 or +oo, we cannot have a similar result since L' and L* don’t have
unconditional bases. See below for the discussion of the case p = 1 for the norms N, and
N3. n

Proof. By assumption, we have @, * rapidly decaying at infinity in L? : Vk € N,
z*p and zFp* € L2. We get easily that z%p € LP" for all p” € [1,2], while zFp* € LY for
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all ¢" € [1,¢'). Indeed, we have for ¢"" < 2

1o s ([ earizp¥ o d"yw (f (1+1::1:—wa)1~%1’

(]

and we conclude by choosing N > 1 — 92'— ; for 2 < ¢" < ¢’ we have

[1ere 17 a< ([ 101 dx)gﬁ:_:([lztkq"ﬁ'f«-‘w* 1d)g+

Thus we get that P; is well defined as a projection operator from L? onto V; :

1> exol(z—k) 12
k

S/ (Zlck P (1+!z—kl)N”!so(x—kl”) (Z(H!z—kl)"“)qu
k

k

SIS+ 12—k DVEN (1 [z Ve llp 3 ek IP
k k

and we conclude by choosing N > '}i ; similarly we get
1D ot @—k) lI<Cd et 9.
k k

The family (P;);ez is equicontinuous on L? since P; = DjoPyo Dy ! with D; f = 25 f (27z)
(so that Dj; is an isometry of L?). The density of UV; in L? and UV in LY is easy : if

6 € UV; L, choose w € C° such that || § —w ||g< € || 8 ||q (hence < 1 || w ||g) and write
_ €
|<w]| Pi((sgnw) [w ") >|< = [ By llzo el w [ 5

since w and (sgnw) | w [771e L2, we get .lir_*r_x <w| Pi(sgnw | w |*71) >=|| w || and
j—+o0
thus, if € is small enough, w = 0 and 6 = 0. Similarly, ﬂjem V; =0in LP and (;ex Vi =
in L9 is easy : since we have £ C £%, we know that V; C L? and thus ;5 V; = {0} is 2
consequence of the same property in L? ; then we know that for all f € L9, lim Pif=0
j——o0

in L9, and thus (J;cp V" = {0} ' .

We thus know that we have Schauder bases for L? (p(z — k))kemu(2/2%(27z —

k))i>okcz or (27/%)(2z — k))jez, rez- In order to prove that they are unconditional,
we will study the operators

U,,f.—..-zznj,sz < f|v*(2'z—k) > 827z k), n€L®(Zx Z)
i k

V,,f w== Z}:nj,kzj <f l 1,[)(2j$— k) > 0(2‘7‘2— k)
ik
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where 8 = X(0,1/2] — X[1/2,1]- We will show that for some constant C > 0

(18) Vn e (L X Z), Vf e LP, [[Upf [p<Cl fllall 7 lleo

(19) Vnet®(Zx ), Vf € L || Vaf [lg< C | f llall 7 lleo -

From (18) and (19) we conclude easily that we have unconditional bases for L? or L9.
First, we sum estimate (18) for all r; x = %1 :

| Nusipamser )i
{“lal}z

and thus

/ [ el dn} <1l

We then use Khintchin’s inequalities to get :

r/2
(224:' < £ 19" (22— k) > xpo,(2' =~ k)) < | Unf(2) |5 dn
k

J 4 {"'1:1}2

and thus N3(f) < C || f ||p . Similarly we have N3(f) <C | fllq -
Moreover we have for f € L2NLPandge L2 N LY :

<flg>=)_Y 2 <f|P*(@z—k)><p(2z—k)|g>
F N

—-:/2245 < Y@z —k) >< 2z ~k) | g > xj0,1)(2" — k)dz,
;7 k

hence

1/2
/ (ZZ@' < F1%" (@ = k) >[* xo (22 - k))
< f,9>] < 7k )

(Z S 4 |< g | @z — k) > [ xjo(2z - k)) ds
J k

< Ns(f)N3(9)
Thus || f |[,< CNa(f) and || g |g< CN;(g). The equivalence between || f ||, and N3(f)
gives the unconditionality of the basis (2//2¢(2'z — k));ez kez-

We now prove (18) and (19). This will be done by a tool commonly used for proving
LP? continuity of Calderén-Zygmund operators, namely the Calderén-Zygmund splitting of
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a function f into f = g + b where the “good” function g has small L2-norm and the “bad”
function b has small support and oscillates.

We first prove (18) and (19) in the case where 3 and ¥* are compactly supported :
Supp 9 U Supp9* C [-M, M| (M > 1). For proving the continuity of V,, on L9, we shall
prove that V,* (the adjoint of V;) is of weak type (1,1), hence due to the Marcinkiewicz
interpolation theorem and since V,; is bounded on L? [due to the vaguelettes lemma) we get
that V¥ is bounded on L" for all r € (1,2], hence V, is bounded on L” for all r € {2, +00).

We suppose || 7 [|oo< 1. In order to show that V, is of weak type (1,1), we have to
show that for some constant C we have for all e > 0 a.nd all f e L?

(20) [ {zeR/|V; f(2) l>f}l<-{lfnl

This is done by using the Calderén-Zygmund sphttmg of f : define Q) as the union of those

dyadic intervals I; x = [,f, , sz ] such that T_T f L | f | dz > € and decompose 2 in

maximal dyadic intervals {1 = U(; k)eA I ; then bi is deﬁned as

Z IX15 ( - fdx) Xk

(7,0)er | Lk 1y

Since I; ;. is maximal, the dyadic interval I}‘,k of length 27+ containing I; x is not con-
tained in Q, and thus _['I | fldz <2€e| ;x| . Thus g = f — b satisfies || g [|oo< 2¢ (since
| f|< e on R\Q) and

lg|dz= | flde+ > || fdz|<|| fl-
Jratee= [ isiees 320 [
The Ik, (7,k) € A, are disjoint and we have
9= ¥ (Lals: [ 1114
(G,k)EA 2

Write V) f = V,fg + V,b. We have obviously :
1
Vil fxr, — (—— fd:cx.)
n ( Ik (! Ij’k ! Ij‘k ) IJ'k

Z ne,r28 < jper 0(2%z —r) > (22— 1)

Te, v Clix
and thus

. 1 k—M M+1+k] _:
SuPP V’? (fXI,',k - ; 1. . ¥(./.; ,fdx)XI_,-'k) C [ 2J- ) 2] ] = Ij,k
E Tk
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and

sV @)1 3 Gl [ (7 1dn

(7,k)eA
We thus get :

[ {z e R/ |V, (f)(z) [> €} < (2M+1)% I+ {zeR/|Vig(z) > €} |

<EM+1)1 ]+ Ve 13

and, since V¥ is bounded on L? (with || V;* ||2,2 bounded by C || 7 ||oo) and || ¢ |12<
I ool @ 1< 26 | 7 1, (20) is proved.
Similarly we prove that Uy, is of weak-type (p"”,p") for any p" € (p',p) :

1) | € R/ | Unf(2) | }1<c»””‘

In order to prove (21), we follow an idea of Gripenberg [GRI2] and use a modified Calderén-
Zygmund splitting of f, z},dapted to the wavelet basis. We define {1 as the union of those
I; x such that [ Iin | f|P" dz > €] I;x | and decompose (1 as the union of the maximal

dyadic intervals contamed in : 0= U(J k)eA I; . Then b is defined with help of the
projection operators P; as :

= Y Fxg.—Pifxn.)-

(7,k)eA

The point is that for this choice of b we have :

Uy,(b) = Z Z Z 16,28 < fxr,. | ¥ 2%z —r) > 8(2%z— 1)
(G k)ea | &25 (=58, 251N, #0
so that, once again, Supp Uy (b) € Uyj,kyen (557, EEEL] and | Supp Uy (b) |<

Thus (21) will be proved when we have proved that || g |2< C || f H” w €27P" This is
quite obvious. We have :

Bi(fxix) = D2 < Jxau |0 @z —1) > o2z~ 1)
reZ

where we know (chapter 3) that ¢ and <p can be chosen with compact support (say that
Supp ¢ U Supp p* C [-M, M]). Since p* € L%, we get

. ey~ — 17
< fxga | 0" (@2 =) >IN Fx vl 0 llor 277797 < €279 || * lgn 217",
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and since < fxr,, | p*(27z—r) >=0if | k—r [> M + 1, we have :

| Pi(fxie) IS Ce D o] (2z~k—r)=Ced(2'z — k).
I <M

Thus we have
l9(2) IS F I xmyy, 1 + D Ce@(Zz—k).
(7,k)eA
On R\Q, | f(z) |< € and thus [p\q | f[*dz < P | f ”‘;Z . For estimating

|| 34 €®(27z — k) ||2, we note that @ is compactly supported and belongs to H* for some
a > 0 (because p does); now we write & = ®; + ®; where &; € €, Supp ®; C [0,1]
and [ ®2 = 0 ; the functions &;(27z — k), (5, k) € A, have disjoint supports, while we may
apply the vaguelettes lemma (chapter 2) to @, and thus we get :

1D ed@z—k) 3<CeEd 277 =Ce?) | Lje|=Cen
A A A

I £ 1%

6pll

< Cé?

and (21) is proved.

The proof of (18) and (19) for rapidly decaying v and +* in L? (instead of compactly
supported wavelets) is quite the same. The point is that we cannot have | Supp V,*(b) |<
+o0 or | Supp Uy (b) |< +o00 any more. This will be replaced by estimates of the type :

(22 o1 Vi® e <Cl Tl md Nol3sClT e

(23) fn\ﬁ |T,@) [ dz<C |l fIE and [lglE<ClS T &
and (20) and (21) will then be proved by :
He/ |V 12 119+ {=¢ 0/ |V, () > -;—}]—i—!{ziﬁ/[V;(g) > g};
=LY MLACIESS i
and similarly

o/ 1 UaS() 12 1< 810" [ 1020) P dat 5 Vg -
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Estimate (22) is easy. We use the classical Calderén-Zygmund splitting f = g + b for

f € L. We have seen that || g |oo< 2¢ and || g ||1<]| f ||1 so that || g ||2< 2¢ || f |1 - Now
we write : 1
I Vﬂ*(fXIj,k - m—T( fdz)XIj‘k} l=

Lk

Z ne,r28 < x| 8(2°z —r) > P(2°z —r)| <

I Clix
s[ F@) ] Y 2fxpon (2% —r) | (2% — 1) | dy.
Ij’ IérCIJ,k

Now ¢ has rapid decay in L?, hence [g,g 28| ¢(2%z —r) | dz <[] 2V || sup ngz—l_“;{w' and
!

we have of course |z — &| > &, hence | 2%z — r |> 2477, s0 that

/m\nlv*b)ldx<c > [ S 1w a=2c [ 11]d

G.kyer” lik 5

We now turn to estimate (23). We use the modified Calderén-Zygmund splitting f =g+b
for f € L*". The estimate on H ¢ ||z remains quite easy. On IR\(2, we have | f |< € and thus

fn\n | f|2de < e?" || f |5 . Thus we have only to deal with g; = 2 Given PilFxa;.)-
But we know that ©* has rapid decay in L (¢ = —}?—T) and that || fxy,, Hi:;ﬁ
2¢?" | I; 1 |, hence :
| 1(z) |< Cne D 8(27z — k)
(7,k)

where ®(z) =Y z(1+|r )™V | o(z—r)|. @ satisfies |z [N~ & € L? and ® € H for
~ some a > 0 (since ¢ € H* and has rapid decay in L?); thus writing ® = &; + &2 where
Supp®; C [0,1] and [ <I>2dx = 0, we obtain again by the vaguelettes lemma I g1 [13<

Ce? Y uyen | Tk 1< Ce=2" || £ |12
We now turn our attention to fIR\Q | U, (b) [P dz. We write

Uy(b) = Z EanJ‘/ fl)¢ y—m)dyﬁ(zex—m),

(7,k)cAr 5 rEZ Ik

and thus

@ = 2 32156 15 ) | @ ).

(5,k)EA €25 ACZ

Now we fix § € (p',p") and ¢ = ;?_—1 ; ¥* has rapid decay in L9 so that foral Ne NN :
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|Ua(8) |
SYY X 2 Um0 dxenets -1

(j)k)eA ZZJ. reZ IL,r+mCIj,k

SYY Y () 110 Pa) mrresta -1,

I,
(4,k)EA €237 €L I, r 4 m Cljk l Z,r+m| Te,rem

We introduce the maximal function

M37(e) =swp (7 [ 1160 P o)

.

Then

1
1 1 =~ H 1
P dqd <C M:f(z
(1+|m|)N<|Iz,r+ml A y) < ClTam = ®)

for all 2z € Iy r4m, hence :

| Ua(b) |<C Z Z Z / 2:M;f (y) L+ 2‘31; —r ¥ X[0,1)(2% — r)dy

5HE)EA r IpramClix Itrtm

28
O T 7™

(G,k)EA Teym CI; 1 ¥ Tim

28
o X X, MO

(5,k)eA 25 7 Tin

14 2J
C E/ MPf y)IZJ :C) lNdy'

(4,k)

But if we look at the operator
2/ dy ~
F— / Fly)— =F,
(,z: Ik ()lzy(y__x)lN) _

[ F@la<c [ 1FG) |
R\{ Q

we have clearly

(since flRII?,; Tﬁig;fdi‘ﬂw < C for y € k), while [R5 | F(z) Pdz < C [y | F(y) |? dy :
we have for z ¢ fl,

2 dy 97 /2
< . -
1, PO =y 1< OV e o
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and one more time we may use the vaguelettes lemma. Thus, we may conclude by inter-
polation that

[ F@ P wsc [ [Fe P a,
R\{ Q

which gives

| 1@ asc [ 1Mrw P awse [1717 4
R\Q Q

since Mj is bounded on L? for all s € (p,+o0].
Theorem 1 is proved. =

3. H! and BMO.

We now turn to the case p = 1.

THEOREME 2. - If p and @™ are regular dual scaling functions such that they have rapid
decay in L*° and belong to C* for some o > 0, then the following inequality holds for any
f € H! (real Hardy space)

1/2
(24) é— N Fllm < N(f) = [ (Z Z 47 |< f Y 27z — k) >|? X[O,ll(zjx—k)) dz

JEZ kEX
SClf e
and similarly for any f € BMO
(25)
1 1 M2
21 £ o< N*(7) = sup (I—I—I- S ¥ 1< s 9@k >i2) <C11 7 llsmo
IxCI

(where the supremum runs over the set of all intervals I, and I;; = [—2-'3—, %i}})

REMARKS. - i) For ¢ = p* = x[o,3 (the Haar system), theorem 2 is not true. We have
to replace H! by H}, the dyadic Hardy space which is associated to dyadic martingale,
and BMO by BMO,.

ii) If we look at the basis (o(z —k))kez U (27/2¢(27z — k)) j>0,kcz instead of (27/2¢(27z —
k))jez xez, we cannot obtain a basis for H! (indeed, ¢ ¢ H' since [ o dz # 0). We obtain
a basis for the local Hardy space h! of Goldberg, and its dual the local bmo space [GOL).

Proof. We recall first some properties of H! and BMO (which are to be found in the
celebrated paper of Fefferman and Stein [FEF]).

H? is the space of the functions f € L! such that the.Hilbert transform Hf of f is
integrable (where H f = f * V.P.-L.), equipped with the norm || f ||za=|| f 1 + || Hf |I1 -
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The atomic characterization of H! is the following one : f belongs to H! if and only if
there exists a family of intervals (In)nen, a family of atoms (as)nen associated to (I,)
(ie. Suppa, C I, || an [2<| I |7Y/2, [ andz = 0) and a family of scalars (X,) € £! such
that : f = E::B Ap@yp, and moreover the norm || f || g: is equivalent to the infimum of
Foo | A, | over all atomic decompositions f = 3~ Anay.
BMO is the dual space of H! and is the space of locally integrable functions such

1/2 »
that || f ||emo= sup {T%T i1 f- T%T [ fdz|? dy} is finite. This is a space of functions
I

modulo the constants (]| 1 ||emo= 0). [Notice that the duality between BMO and the
atomic H! space is obvious : for any intervall and a € L*(I) with [ adz = 0, we have

[<alf>I<l allal T2 £ lomo, hence < X Anan | £ >I< (5525 [An]) [ £ llomo if
(ap) is a family of atoms].

An useful notion is the notion of a molecule, an elementary function which can be
easily decomposed into atoms [COIWE], [FRIW].

LEMMA 2. - For € > 0, an e-molecule is a function m such that for some zo € IR and
some A >0, [(1+A]|z—z0 )11 | m(z) > dz < A and [ mdz =0.

(i) Ifm is an e-molecule, then m € H' (Hardy space) and || m ||z < Ce.

(ii) IfT is a Calderdén-Zygmund operator of class ¢, then for any atom a associated to an
interval I = [zg — A, Zo + A] (i.e. Suppa C I, || a ||2<| I|~Y/2, [ adz = 0) and for any
a<e:

/ (1 | A(z — z0) [)1+2 | Ta(z) | dz < C(T, oy &)

Thus if every atom satisfies [ Tadz = 0 (which is usually written as “T*(1) = 07),
then T is bounded on H!.

Proof of the lemma. m is a molecule associated to A = Ag and =y = X if and only if
m = AoM(Ao(z — Xo)), where M is a molecule associated to A =1 and zo = 0. Thus in (i)
and (ii) (due to the invariance through dilations and translations of the atomic H!-norm
or of the estimation on the kernel of T') we may assume A =1, zo = 0.

Point (i) is easy. We write m = Y_, . mxr, where To = [—1,1] and Ty = [—2%, 2]\
[~2%~1,2%=1] for k > 1. Then we have

(/r mr dx) Vo w2 ) m a2,

thus

1 —kEamk
I (m—m . | m|dz)xr, ||2£ C2 k$o—3%
k

and mo = 3_,(m — ]flﬂff‘x mdz)xr, belongs to Hl. Now m — mg = 3§20 Agxr, with
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[ Ak | C27%53 | Tk |71 and ng | T'x | Ak = 0. Rewrite m — mgq as

-+-00
m-‘mg:ZlI‘kIe\ki le‘k
1
-2{:40“‘ 0} (e r i)

The atomic H!-norm of m — my is thus controlled by

T +o0
Z'Z“‘vl*pl—ZI 3 1T % 10 S 25 < 4oo.
k=0

k=0 p=0 k=0 p=k+1

Point (ii) is easy as well. Suppose Suppa C [-1,1], || a Ng< = and [ adz = 0. Then
[ | Taltdz<| T 320l all3< 2 || T |13, - Moreover, if = & [-3, 3] we have

Tofe) = [ K(mv)al)dy = [ (K(,5) - K(z.0)a(v)dy,

hence
o) s = ([ 1K) - K0 Far) <
<l ([vra) e
and thus

/ | & |+2%| Ta(z) |2 dz < C'(T, ¢, a)
R\[-3,3]
provided that & < €. Thus lemma 2 is proved. =

Proof of theorem 2 (continued). Using lemma 2, we see that it is enough to prove
theorem 2 for compactly supported wavelets v, ¢*. Indeed, if we may prove it for a pair

of compactly supported wavelets 1o, 15, we look (for the wavelets 1, ¥* of theorem 2) at
the operators

Tf= Y 2 <fl95(2z—k)>p(@z-k)
J k

and

Uf=) > 2" < f|¢*(27z—k) > ¢o(2z— k).
7 k
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Lemma 1 guarantees that T and U are Calderén-Zygmund operators, and lemma 2 guar-
antees that they operate boundedly on H! and on BMO. (For BMO, prove that T* and
U* operate boundedly on H?); moreover T = U~1. Thus the sequence space

H = {(Aj,k)/[(z 1k 2 P xp00) (272 — k) Pdz < +°°}
JEZ ke

(which is the space of coefficients of functions of H? in the basis (2//2¢0(27z— k))jez rez)
is as well the space of coefficients of H! functions in the basis (27/2¢(2'z — k))jez rez,

1/2
and similarly for the space B = {{u; )/ sup (ﬁ[ Yn.cr | Bik iz) < +oo} which is the
I 1

space of coefficients of BMO functions in the basis (2//2¢3(27z — k)) or (2/%¢*(27z — k)).
Now for proving (24) and (25) it is enough to prove :

) f (Zjez Yrem ¥ I<F19* (@ z—k) >? xj0,(2z - k))zdz <CIflla
i) sup (Jy Sncr? < £ 1627z —0) ) <cl 1)
IP T 215 CI > BMO

iif) for (Ajx) € H and (u;,k) € B, 35, Lx | Ak [ 5k 1S C || Ay el 5 5 -

i) is obvious via Khinchin’s inequality and lemma 2. Choose any w € CZ° such that
fwdz =0and w =1 on [0,1]. Then define T, for n € {—1,1}%*Z by

Tof =3 Y nix2 < f|9* (22— k) > w(2z - k).
ik
Then || T, f 1< C || f ||z: where C doesn’t depend on 5. Thus we have :

f N Tof hidn <C || f llas,
{__.1,1}25)(2:

and Khinchin’s inequality gives :

1/2
/ (ZZ@' < fle*(2z — k) >*| w(2/z— k) 12) dz < C'|| fllar -
7k

Thus, i) is proved (since x(z) <| w(z) ).

ii) is easy to prove when % is compactly supported. Indeed if I; x C I = [z — Ry, 21+
RI] then . . . ’
Supp¥(2’z— k) C I =[z1 — (M + 1) Ry, z1 + (M + 1) By
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(if Supp ¥ C [-M, M]) and thus
< fl @z k) >=< fx; |27z — k) >,

so that (since [ dz=0) :

2 Y@k >P= D] P |< fo—T%/,fdzltb(?"x"k) >|?
I

LxCI LeCI

<Cllixr=3 [ £az B C LTINS PoS CM+1) 1111 oo -

iii) is a classical lemma in harmonic analysis, related to the so-called Carleson measures
[COIM1]. We define Ex as

En={z/>_ ) |\ | x1;, (2)27 > 4V},
Jj ok

1
Fy={Lx/ | LrNEx |2 5 [ L1}

and
Gy =Fy — Fy41.

Then we have

D3 1k sk | = }:{ > M',knﬁ%’,kl}
7 k

NEZ \I; €GN
1/2 1/2
SZ( >, |A,-,k[2) ( > l#j,klz) -
NEZ \I; €GN I; €GN

We write
Hy =Up, ey ik = Ul eqy, Lk, where G is the collection of maximal dyadic inter-
vals (for inclusion) among the elements of Gy. Then

o luixlP= ) ( > | 1j, Iz)

I; rEGN I, q€Gy \I; k€GN J;xCleq
<leld D [y l=llelbl B .
Ig,qEG;v

Similarly

> Iel= >0 ( > | A5, |2)-

Ii €GN 1,4€Gy \L;x€GN,I;kCle,q
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Since I; x € Gy, we have | I; s N Eny1|< 3 | Ijk |, hence

> | Ak P< 2/

1
2
E Ak |2 Xk (2)d2<
I \E | Lk |
I;k €GN, Ik Cle,q Le\EN+L ’

24N+ l It,q 1

and we have proved :
Yo Nkl lSVElnlle D 2V | Hy .
i k N
But Hy = Uy, ,cq;, leq hence | Hy N Ex |> 3 | Hy | and thus

SUS Ik lleiel <avzZiipls D 2V | Exn|
k) k

N

<8v2|ulls Y 2" | EN\Ex41|<8V2Z | plsll Az -
N

Thus, theorem 2 is proved. m

REMARK. - This proof gives a way to exhibit an atomic decomposition for f € H!. Write

F=> > > 2 < f 927z — k) > (2 z ~k)

N I(,,qGG;v IjvkeGN!Ij‘kcIt,q

where Gy and G} are defined as before. Then if ¢ and ¥* are compactly supported, we
get that

ag= >, 2 <[P @z—k)> (2 z—k)

Ij,k GGN )Ij,k CIL,Q

has its support contained in fg,q = [Q%LM, g“*’—];['fi—l-] , while [ agqdz =0 and
’ 1/2
I ae ll2=~ ( > 2 |< f e 27z — k) >!2) < V22N | I, |12,
Ii k€GN, Ik Cleq

so that ma&q is an atom, whereas

1/2
DD Z‘IIN,qlSZf (Z Y4 !<f|¢*(2fx-k)>I2x(2"x-—-k))) dz.

N I €G%y JEZKEXZ
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If 1 and 3* are no more compactly supported, but have rapid decay in L2, then

1
C2N l Il,q lae'q

is a molecule. m

4. Weighted Lebesgue spaces.

Theorem 1 can be extended to more general spaces of integrable functions. However,
one must introduce restrictions on the weight of the Lebesgue space in order to get an
unconditional wavelet basis for L?(w dz).

DEFINITION 2. - For p € (1,+00), a positive function w(z) belongs to the Muckenhoupt
class A, if for any interval I we have

1 1/p 2%1‘
(o) (foree) <o
I I

for some constant C. Similarly, w € A, if :

sup 1 (/wdz)ess supp ! < 400
r | I \Ur zer - w

THEOREM 3. - If p € (1,+00) and w € Ap, then if p and p* are regular dual scaling
functions with rapid decay in L°° and belonging to C* for some a > 0, the associated
wavelet basis (2//2¢)(27z~k)) ;e rez is an unconditional basis for LP (w dz) and the norms
H f ”LP(wdx) and

1/p
( [T <19 @z =0 > xou(@a - k))ww(x)dx)
ik

are equivalent on L?{w dz).

Proof. The proof is essentially given by the continuity of the Calderén-Zygmund
operator on LP(wdz) if w € A, (see [MEY3], chapter 7). Thus we have for n € {—1,1}%
andw € C®,w=1on[0,1] and fwdz=0 :

/ (2245773;,;: <flo*(2z-k)> w(2jx~k)) dw(z)dz < C(w)/ | fIPwdz
7k

where C{w) doesn’t depend on 7. One more time, Khinchin’s inequality gives

p/2

/ SN 4 < 1|9t (@a— K) S| w(@z— k) [ w(x)szC'/ | £ P w()ds,

JEZ kEZ
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and we may use X[o,1] <|w |2 . Similarly w™ 77 belongs to Az, and thus

w(z) 71dz <

/ (z E &< f 9@z - k) > xp,(2z—k)

JEZ kEZ

)mz——a

C/ | f |77 w(z) 71dz.

This gives the equivalence of norms on LP(w dz) (using the duality between LP(w dz) and
L77 (w7 1dz)). m

The restriction “w € A,” is unavoidable, even for the far less restrictive condition:
“the P;, j € Z, are equicontinuous on L?(w dz)” instead of the unconditionality of the
wavelet basis. More precisely, let’s define for a positive function w(z) the function a,(R)

by :
1/p =1
aw(R) = sup (/wdz) (/ w"p‘f‘fd:z:) .
[T]=R \JI I

THEOREM 4. - Let p € (1,+00) and let p,p* be compactly supported dual scaling
functions which belongs to some C*, a > 0. Then :

Then we have :

(i) For each j € Z, P; is bounded on L?(w dz) if and only if a(277) < +oo. (Moreover,
if aw(Ro) < +00), then ay(R) < +oo for every R > 0, so that if P;, is bounded, then any
P; is bounded).

(ii) (P;);>0 is equicontinuous on LP(w dzx) (or equivalently Py is bounded on LP(w dz) and
P;jf — f in LP(wdz) for any f € LP{w dz) as j — +oo) if and only if sup ay(R) < +oo.
IRI<1
Moreover, this condition is equivalent to the unconditionality of the basis
(p(z — B))hem U (2/2$(2z - K))z0kez in LP(wds),

and in that case || f || Lo (w dz) is equivalent to :

1/p
( / Q- 4 I< Fl 9" @z — k) > xjo,y(27z — k))*’“w(z)dx)

F>0kEZ

k+1 /p
+(2 <7lete-n>P [ w(z)dx) .

keZ

(iii) (P;)jez is equicontinuous on LP(w dz) (or equivalently P, is bounded on L?(w dz),
P;f — f as j — +oo, P;f — 0 as j — —oo) if and only if sup ay(R) < +oo (i.e. w € 4,).
R

This condition is equivalent to the unconditionality of (27/%4(27z — k))jez kez-
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This theorem is proved (for p = ¢*) in [LEMS|.
5. Besov spaces.

The case of Besov spaces has been recently treated in an enlightening paper of G.
Bourdaud [BOR]. Our approach will be slightly different. We want to include the Dirac
mass § in the class of admissible scaling distributions, so that we drop the usual Calderén-
Zygmund operator analysis, and use instead a “molecular” analysis, where the molecule is
adapted to the Besov space.

DEFINITION 3. - i) A bump element of 2 Besov space B3P (s € R, p,q € [1,+0]) is a

distribution w such that w has rapid decay in By (Vk € N, z*w € Bg’P) and w belongs
to B5+? for some € > 0.

if) A regular molecule in By'? is a distribution w such that w is a bump element of BP
a.ndf:ckwd:c =0for0< k< —s.

LEMMA 3. i) If w is a2 bump element of BJ? then for any (Ax) € &8, } 4 Aaw(z — k)
(which converges in §') belongs to B3P and

1/p
(26) D Akwlz — k) ||pze< C (Z | Ak l”)

k€Z keZ

(where C depends only on w, s,p and g).

ii) If w is a regular molecule in By then for any sequence (X;,k);>0,kcz Such that

i

(Egﬁw—%%)«:(i | Ak Ip)q/p) < 400

720 kEZ

the sequence

Z Z 272 % pw(2 z — k)

>0 kEZ

converges in S’ to an element of Bg? and :

(27) 13737 29725 k(22 — k) ||paw<

JZ0kEZ

/q
C (Z 2i(s—%+%)q(z | Ak Ip)q'/p) .

i>0 keZ
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Before proving lemma 3, it will be convenient to prove some preliminary results on
bumps and molecules.

LEMMA 4. - Let s € R, p,q € [1,+0] and w € B+*P for some € > 0.

i) Let 4 € C°(IR) such that ), 7(z — k) = 1. Then w is 2 bump element of By? if and
only if the sequence (|| v(z — k)w(z) ||8s.») is rapidly decaying :

VN eN, sup|k|[N||v(z-k)w(z) ll B3 < +o0.
keZ

Moreover in that case zNw is a bump element of Bg? for all N € IN.

ii) The Fourier transform of a bump element w is a C*° function and can be computed as
&(8) = L pez <w(z—k) | €% >¢,co where 3o oz ¥(z — k) =1 as in part i)).

Thus w is a regular molecule if and only if &(0) = B%L?)(O) = %Q(O) = 0 with
N =[-s].

iii) The derivative of a bump element in Bg? is a bump element in B;’I'P . Conversely, a

bump element w in B is the derivative of some bump element in Bg’*'l’? if and only if
@(0) =0.

Proof of lemma 4. i) is obvious. Recall that a function g € C¥ where K >| s | is a
pointwise multiplier of By'? :

K aJ
(28) L s B C U llmge 3N 55 lloo -
j=0
Thus
K .
90 B1o(@) lsgr < C Il (4270 lage Y- | s ek o
=0
<Cy || (t+2")Vw|lpge (1457
while

I a0 llage < D Il 2V(z ~ K)w |5y

keZZ
.
<C Y lIle—Hw lags Y | 505 Tl — ) oo
keZ =0

<Cy D+ RNV | Az~ K)w [|Bge
keZ

343



where I' € C2° is such that I' = 1 on Supp~.

ii) From point i), we see that 3, w~(z — k) converges to w in BJ*? (and similarly
Y rzVwy(z — k) to zNw), so that @ is the limit of kaq(}\-—- k) in §’. We have only to
prove that we have uniform convergence on any compact of R of Y, w~(z — k)(¢) (for

the uniform convergence of derivatives, replace w by zNw).
Choose again I' € C° such that I'y = 1, and write :

|walz = k)(€) |=I< walz — k) | T(z - k)e™*¢ >|<
| @~ B) llngell Dz~ £)e'™¢ || 5

where p’ = -E5, ¢’ = —Z7. Then notice that we have (using (28) again) :

I T(z — k)et™¢ Ipger=IT (z)e™=¢ e N D¥.

iii} We notice first that for a bump element w of B;** and a C* function 6, the
sequence || 6(z — k)w || p;.» has rapid decay (same proof as for i}, hence, writing

17 = B llpgmsr <1 1 = B)) g + | 0t — ) 1355
<0 (=R lIogs + w2tz =8 sz )

we get that || ')'(x k)2 dw | Bs-t has rapld decay if w is a bump element of B3P, Conversely,
assume that w is a bump element of B2? such that &(0) = 0. Write wy(z — k) = ax +

(f wr(z — k)dz) v(z — k) = ax + exy(z — k). Then (ex) is a rapidly decaying sequence, so
that 0y = ¥, exv(z—k) € S(IR) ; moreover [ Q1dz =3, € = [ wdz =0, thus ﬁ\l(O) =0
and é;gﬁl = e S'(R): 0y = £ 0, with 0, € $(R), so that 01, is a bump element of
B;“‘I’P. We now turn our attention to wy = Y, k. If we look at ax(z+k) = Bk, we see that

Supp B C Suppy and < Pk | 1 >= 0 ; hence f = %Bk where Supp By C< Supp~y >
(the convex closure of Supp+y) ;moreover || Bx ||ps+10< Cpg || Bk ||Bsr (since B is
supported in a ﬁxed compact set), and thus || By er.ﬂ P C | vz - kjw lBg» ; then

we get w1 = 34 & Bk(z — k) = £ w, where wy = Zkez Bi(z — k) is a bump element, of
Bitlr w
q

Proof of lemma 3. i) is easy. If w is a bump element of Bj? and w € Bg'*“"p; then w

is a bump element of Bp+2’p using the Littlewood-Paley-Stein characterization of Bg?
(i.e. choosing 8 and 6; € C* such that Supp by C [-2,2], Supp b, C [~—4,—-1] U[1,4] and
| 6o |2 +Z+ -0 | 91(2,) |2= 1, we define Sof =| 6o |? f and K; [ =| 61( ) 12 f; then
feByFifand only if f € §', Sof € LP and (27° || A;f ||p)i>0 € £4(N) and |} f |
equwalent to || Sof llp + 11 27° || Ajf llpllee), we see easily that for e € (0,¢€),

“ f "B;'*'“’PS C ” f “BZ’P” f ”g;-&—e,p)
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while || f I{B;+,§,,,§ Ca || f |s+aw for a € (5, €); putting f = 7(z — k)w, we see that w is
a bump element of B;+%’p .
Now, in order to prove (26), it is enough to prove (writing ¢ = s + %)

(29) I Z Akw(z — k) ||Bz»< Cu || Ak |ler for w a bump element of Bp'F.
keZ

But when p = ¢ we may localize the calculus of the norm BS? :if v € (¢° is such that
Yoz V(z — k) =1 then || f ||pz» is equivalent to (3 4 || FY(z— k) H%;,,)}E. Hence we

have :
|3 Aol — ) [

keZZ

<C Y Y vz p)ww(z— k) (B

pEZ k€EZ
<C Y (O Al wa(z—p+k) |lags)?

pEZ k€ZZ
SCY (O 1M Plwrlz=p+k) 5g) (Y Nl oz —p+k) l[pg)”™

pEZ kER kEX
=C(Q_ llwr(z— k) llagw)? (X | Ak 7).

k kcZ

Point ii) is more delicate. We first notice that we may assume s > 0. Indeed if s < 0, we

. No . .
may write w as w = %?‘}- with N = [—s]+1 and Q a regular molecule in Bg“"N P« moreover
we have obviously

+°° 1 N dN +°° — i N
S S atulaie = = i (z:z{z m,-,kwx_k)),
14 =0 £

and the estimate (27) for 2 and s + N > 0 gives (27) for w and s.
Now if o > 0 and A > 1 we have

| £(A2) lBgw< CAT™5 || f [lBgw -

Hence, for w a bump element in BJ? (s > 0) which belongs to Bi*t<?, we choose a such
that o € (0, min(s,€)) and define

wy = E 2’2:/\:,-,1@00(23'3: —k);
keZ
then :

[wj e < C2GT5%0%) | 370, pur(z — k) || pgras
k
< CIZJ'(%_%'{*S'*‘Q) (Z l Aj,k ‘p)%
k
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(since w is a bump element of B§t*?), and similarly
I wj l|pa-aw< C27GT7 o) (3 | 2 P) 5.
k

We may now estimate

+co +oo +oo e
I wellpge=1 So(}_we) llp + (Z 270 || A5 we) H%) :

We have :

| So(we) llp<< C27 2833+ (3 | Agk [P)3 = C27%%ee ;
k

(ee)e>0 € 27 and (27%) 50 € £7°T, hence Y., || So(we) |[|p< +oo. Similarly, foroc = s+
27 || Aj(we) llp < C27°2777 || we || 5gee
< Coea=iegtG=s+)(§ " | ag P)7
k

< UG5+ (N " | Agp |P) ¥
k

and thus 272 || A;(we) [|p< C27%~¢ey, and (27) is proved. m
A direct consequence of lemmma 3 is the following one :

THEOREM 5. - Let v, p* be distributions such that for some s € R, p,g € [1,+00)p is
a bump element in B3** and ©* a bump element in B;"’p (' = 325, q = 3—3—1) Assume
moreover that :

(2) forkelZ, <p|le*(z—k)>=6bkp

() e(3) € {3 nelz—k)/(M) € £}
() 9*(5) € {2 Mep (== K)/ (W) € £}

and define mq, m§ as $(2€) = mo(&)@(€), &*(2€) = mE(€)H*(€) and the wavelets 1, *

as
$(28) = eTEmE (& + m)p(€), ¥* (26) = e~ mo(€ + m)B(£).
Then : . '
(p(z — k))kez U (27 %9(27 2 — k) j>0,kez
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is an unconditional basis for By*, and the norm || f |

B is equivalent to :

Lol

(30) (Z < fle*(z-k) >}?’> +

kecZ

(221(—~—+a)q(z 27 % l< f l’qb (213; — k) >lP)P)

j=20 keZ

REMARK. - If p = +o0 or ¢ = +00, we cannot have a basis (By? is no more separable).

But we have still equivalence between || f ||:.» and (30), and we have weak convergence
of

Z<f|<p (z — k)><p:c—k)+zz:2’<f|v,b 27z — k) > (272 — k)

J=0keZ

to f (in the topology o(BJ?, B, 4 -

Proof. We prove that ) and ¥* are regular molecules (respectively in B3P and B;;s’p ’) .
Indeed, we have p(%) = Y 1oz < ©(3) | ©*(z — k) > ©(z — k), and (A =< () |
©*(z — k) >)kez is a rapidly decaying sequence. Thus, we see at once that mo and mj
are C*® periodical functions and that ¢ and ¢* are bump elements. The only thing to
check is that (in case s > 0) f Pp*z¥dz = 0 for 0 < k < [s]. We may of course assume
s ¢ IN (because if p is a bump in BJ?, it is a bump in Bit*? for every a € (0,€) where
p € BJteP, while p* is obviously a bump in B *T%F ')

We will prove that if s > 0 then necessarlly mo(r) =0 (so that $*(0) = 0). Assume
~ this is true, and define ¢ and ¢* by $(§) = == $(€) and $*(§) = ‘E"l ©*(€). Then

% and @* satisfy the hypotheses of theorem 5 for B;~1* and Bq,”'l’p : @* is clearly
a bump element in B;?”'l””, because ©*(z + 1) — p*(z) is a bump element in B ,*?
and [(p*(z+1) — (:c))dx = 0 ; since s > 0, we know that @ is integrable (since
I ev(z — k) fla<] Supp’r %541l wv(z — k) [l,< € | Suppy '~ (z — k) || Bs:») s0 that

in §', Yrez 0(z — k) = Yy $(2km)e e2FTE = 3(0) (since B(2kr) = 0 for k # 0, as a
consequence of mg(7) = 0); then ¢ can be defined as

+o0 -1
. =y B d _
o= E Zi;p(m —k) =~ 2 —--—<p(:z: k) (remember that E I (p(a: —-k)=0);
k=0 k=-—oo kcZ

then using a partition of unity 1 =),z 7(z — k), we see that

(T (e =N oz — k) and (o Alz =B soele— )

k<0 k>0 k>0 k<o
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have rapid decay in B;”I’P . We have moreover

2mo(€ eié +1.,
g_g)g " (€).

1+e 2

Finally, the duality between ¢ and ¢* is almost obvious : we write < @ | @*(z — m) >=

Zkzo < -f—xgo(z — k) | *(z — m) (we have no problem for z growing to +oo since $*

decays rapidly while ) d—digo(m — k) grows slowly : || v{z — k) X150 Ed;(p(z -4 | Bs-10<
C(1+k) for k > 0), and thus -

b(2¢) = @(£) and £°(2¢) =

<(,5[<;5"‘(x-m)>=z——<<p(x~—k)lgo*(:c+1—m)>+<§0(z—k)]go*(z—m)>
E>0

=) (~8k,m—1 + 8k;m) = bk.0.
k>0

Now, iterating the proof that mo(n) = 0 if s > 0, we get that if s > N then mo(7) =
N - N »a
a%mo(w) = eee= af‘%ymo(:vr) =0, hence ¥*(0) =--- = %—y’ﬂ()*(c}) = 0.
Thus we have reduced the proof to the proof that mo(r) = 0.
We begin by the following easy lemma :

LEMMA 5. - Let (1 € L*™® be such that for some € > 0, |z [**€ 1 € L™ and 0 € C*. Then
the following Poisson formula holds for all £ :

(31) > a(k)e 2 = > (€ + 2kn)

k€Z kEZ

(i.e. for all £ both series converge to the same limit).
We postpone the proof of this lemma at the end of this proof.

We apply lemma 5 to 1 = p(z) * g*(—=z). It is easy to see that convolution is well
defined on BJ® x Bgi* , with values in B}t :if 6y defines Sy and 8, defines the dyadic

blocks A; and if 0,71 € C, Yoo = 1, v16; = 1 and O & Supp 1, define 3 f =| 70 (£) |2
fand T;f =| '71(—2%) |2 f, then : So(f *g) = Sof *Y,,9 and Aj(f *g) = A;f * T;g, so

that
1505 % 3= glleosli Sof lloll 2~ ol
0 0

and

| 8505 9) lloo 2 < 3711 A gl g llr 25+

720
< (E 25 f 117 zjeq) (Z I T5q 1% Zjaq') -
iz0 720
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Proof of the lemma. If g is such that g € C¢and | z |'*€ g € L®®, then ) _, 5 g(z +k)
is Holderian, hence its Fourier series converges pointwise :

}: glz+k)= Z §(2km)e 2km=,

kEZ kEZ
Apply this to g¢ = Q(z)e "¢ and z=0. m

REMARKS. - i) We may as well characterize homogeneous Besov spaces by using the
Lemarié-Meyer wavelet basis (where the orthonormal scaling function ¢ belongs to the

Schwartz class § (IR)). We find that a temperate distribution f belongs to B 2F if and only

if (Yrez 2/ |< F|$(27z — k) >|P)* belongs to £(Z).

We cannot easily replace the Lemarié-Meyer wavelet basis by another basis, because
in general the null set of the wavelet transform f — (< f | ¥*(27z — k) >|)jez,kez is not
included in the set of polynomials [LEM10].

i) We may encounter non-zero coefficients for a wavelet series converging in some Besov
spaces to zero. For instance, let ¢ be the Haar function x[0,1/2] — X[1/2,1] and write §, the
Dirac mass at 0, like §(z — 0") or 6(z—07) :

+o0
§(z—0%) = xp,1 + ¥ ¥(2z)
j=0

+w . .
5(11 - 0_) = X[-1,0] — Z 2J¢(27$ + 1)
i=0

Both series converge to 6 in B§’2 for s < —-%. Thus, 6 seems to have no unique expansion
in the Haar basis. This is not a paradox, since in fact the Haar basis cannot analyze
Besov spaces with too negative indexes : the analyzing wavelet 1 doesn’t belong to B3 2
for o > 1 so that < - | ¢;,r > is not a bounded linear form on B2 for s < —1. If we
look at lemma 3, we see that ¢ is a regular molecule in Bj® for —1 < s < 1 so that for
any sequence (Aj,k)j>0,kez 50 that 3is0 3 pem | Ajk |2 47° < +oo and (ux) € £2(Z), the
series 35 ukP(T — k) + Y50 Lkez Xik25 (22 — k) converges in By? (-1<s< ) :
in the range -1 <s < —-;—, where the oscillation of ¢ is stronger than its regularity, one
cannot recover Aj j from the sum of the series. m

6. Local analysis.

Of course, as well as the continuous wavelet transform, the wavelet bases are a good

tool for the investigation of local regularity. For example, Jaffard’s theorem (theorem 3 of
chapter 1) becomes :

THEOREM 6. - Let ¢, p* be compactly supported scaling functions, a € (0,1) and f a
measurable function on IR such that | f(t) |< C(1+|t|)*, a.e. Then:
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i) if for some zo € IR we have sup f z)__f f,") < 400, ihen forallj € 7L and k € ZZ,
r—Zg

x#zo
|< f ¥l >I< C'27IGT (14 | k— 27z |%)

where ¢, = 2’2;1;’)* 27z — k) and ¢,* are the compactly supported dual wavelets asso-
Ik
ciated to p,p*).

ii) Conversely, if |< f | ¢}, >|< Ccreilz+e) (1 + ——‘k—"’fﬂf—;—-) , if o € C**¢ for some

1+log+ Izo—';}rl

€ >0 and f € C¢ for some € > 0, then | f(z) — f(zo) |[KC" |z — 20 |*.

If the assumption f € C°¢ is dropped, we can only conclude that f belongs to the
microlocal space C3:~ of J. M. Bony (see [JAM] for a discussion of wavelets and microlo-
calization).
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Chapter 7

MULTIVARIATE WAVELETS

In this chapter, we present the theory of multivariate wavelets. Besides the separable
wavelet bases, which were introduced in the very beginning of the theory, we describe
briefly the theory of generalized wavelets associated to dilation matrices. We focus mainly
on the existence of localized wavelets, and give only bibliographical indications for the
other questions on multivariate wavelets. The reason why we choose this presentation
is simple : separable wavelets present no difficulty, non-separable wavelets are still not
clearly understood, while the existence problem has been thoroughly investigated by K.
Grochenig, R. Q. Jia and Ch. Micchelli. Moreover, the algebraic computation, involved in
the existence theorem (theorem 4) are a good example of multivariate wavelets techniques.

1. Multivariate wavelets : a general description.

Morlet wavelets can easily be generalized to the multivariate case. Indeed, the affine
group az + b (which describes the action of translations and positive dilations) can be
defined on R? as well as on IR. Moreover, in contrast with the univariate case where the
space H? of analytical signals plays a significant rdle as an irreducible subspace of L? (R)
invariant through the action of az + b, there is no such canonical subspace of L2(IR%). The
admissibility condition on ¢ € L2(IR%) to define a wavelet transform in L2(IR?) is :

too dA
(1) dCy > 0 such that V¢ # 0, / | H(X&o) | <= Cy.
0

(For d = 1, and for ¥ real-valued, (1) is just equivalent to 0+°° | (&) |2 -”% < 400 and
¥ # 0). If (1) is satisfied, then we have the same formulas as in dimension 1:

(2.1) the Ya,5(z) = Fz ¢ (E52) are the wavelets (a > 0,b € RY)

(2.2) the C(a,b)(f) =< f | Ya,p > are the wavelet coefficients
1 [tee da
(2.3) f= Sy /s /Rd_ < S ¥ap > Yap iz db.

Formula (2.3) expresses that the family (¥4,),50 3cr¢ is a tight frame on L? (R?) (for the
measure —#2;db on (0, +o0) x RY).

A convenient way to impose (1) is to choose a radial function 9. In that case, (1) is
equivalent to a mean-zero condition : if ¢ is radial and | z |2%¢ ¢ belongs to L2(IR?), then
(1) is equivalent to [ 4 dz = 0. A popular choice of ¥ is the so-called Mexican hat

(3) % = (=A) (e~ 1=,
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This function was by instance recommended by D. Marr in his book Vision [MAR] for
the multi-scale processing of images. The image f (considered as a signal f € L*(RR?)) is
represented by its approximates f, = P, f, where P, f = e—cli=ll® f the advantages one
may advocate for the use of P, is the optimality of space and frequency localization of the

2
impulse response We —E=E and its isotropy (invariance under rotations); moreover
one have the relationship Ps(Prf) = Py4.(f), which says that the approximate Py, (f)
can be computed from the approximate P.f. Then, in order to compress the information
contained in {Py f)o>0, D. Marr suggests to sample the scales o as 6; = 0}, and to replace
(P5;(f)) by the information on the zero-crossings of (—A)(Py;(f)) : z; is a zero-crossing
of( A)P, (f) if V(P AN (z5) # 0 and (- A)P,.(f)(z;) = O ; the choice of —A was
advocated by D. Marr because of the localness of —A (hence the choice of a differential
operator), its invariance under translations (constant coefficients), dilations (homogene-
ity) and rotations (isotropy); —A is the operator with the lowest degree satisfying these
properties. Roughly speaking, the zero-crossings correspond to edges in the image, and
Marr’s conjecture was that one should be able to reconstruct f from the zero-crossings of
(=A)(P(f))- This conjecture was proved to be false by Y. Meyer [MEY7].

Another way to introduce isotropy in the Morlet wavelet representation is to take a
bigger group G than the affine group, by including in G the rotations besides the dilations
and the translations. This generalization has been developped by R. Murenzi [MUR] and
is generally used in physics when applying the continuous wavelet transform.

The discretization of the (affine) Morlet wavelet representation is similar to the uni-
variate case. Indeed, one first discretizes the scale parameter a, mtroducmg thus filter
banks W1th constant quality factor: f — (f * %a, )jezm, where Pa i(z) = d/ 2%(——%),
a; = al, and then one samples the filtered outputs on an uniform grid whose mesh is
proportionnal to the scale:

(f = ‘La,-)je% — (f=* Kzaj (nbﬂaj))jez,nemd'

The d-dimensional analogue of the vaguelettes lemma holds (for functions f;x such that
|z !%”"‘ fix€L?and | £ f;-,k € L? uniformly in j and k and [ f; xdz = 0, we have:

2

Z E )\j,ka“j'g'fj,k(a_j(x - kboaj)) < C{a,bo) ZZ | Ak Iz)

JEZ kcZ? L2

Thus Daubechies’ theorem (theorem 1 of chapter 2) can be easily adapted to the d-
dimensional case :

THEOREM 1. - Let ¢ € L2(IR%) be a Morlet wavelet :
+oo . d\
(4 veoro, [ 190a) T =1

and suppose that for some € > 0, [ | z |4*2¢| 9(z) |? dz < +oo and [ | € [2¢] $(¢&) |?
d¢ < +oo. Then if a is close enough to 1 (1 < a < ap) and if b is close enough to 0
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(0 < b < bo(a)) the family

($54(2) = & 59 (a7 2 — kb)) jem peme

is a frame in L*(IR%) : there exist constants A, B > 0 such that for every f € L*(R%

AIFIBS Y. Y I<F e >P<BIfI3-

JEZ ke

The next step is to introduce wavelet bases. In case one uses dyadic dilations, one has
to use 2¢ — 1 wavelets to generate the basis, instead of a single one. Indeed, the theorem of

P. Auscher and P.-G. Lemarié-Rieusset described in chapter 2 (theorem 2) can be partly
generalized to the case of dimension d :

THEOREM 2. - Let E be a finite set, (¢)ccr be | E | functions in L?(IR?) and assume
that:

(i) the family (2759 (2/z — k))jcz kezd ccE IS an Hilbertif.n basis of L*(IR?) ;
( i) for some positive a, | = |5+* ¢, € L? and | £ |* ¢ € L? (and [ ¢.dz = 0)
then the space Vo, the closed linear span of the functions 27 g‘gbe(zj z — k) for 7 <0,

k € Z%, € € E, has a Riesz basis of the form (ps(z — k))reze sep and we have :
|El=(22-1)|D].

We will comment below theorem 2 in a more general setting and make the comparison
with dimension 1.

Before this, we recall the brief history of multivariate wavelet bases. The first bases to
be constructed were separable bases and they were constructed in analogy with the Haar
basis.

In dimension 1, the decomposition of a function on the Haar system may be viewed
as a dyadic martingale : if f € L? has its support included in [0,1], then P;f (7 > 0), the
orthogonal projection of f on the space V; associated to the Haar basis, is measurable with
respect to the o-algebra¥j generated by the dyadic intervals [ 57 —2%—] (0 < k < 27) and the
conditional expectation E(Pj4+1f | ;) satisfies E( PR I ?}) = ( P; f. In dimension d, one

replaces the dyadic intervals by dyadic cubes [5}, —’»—-——] X %}, katl 'H] (b1, ka €
{0,1,---,29 — 1}) and one obtains martingales on [0,1]¢. Of course, the o-algebra ?}(d)

generated by dyadic cubes is the product o-algebra of d copies of the o-algebra ?;(1)
generated by dyadic intervals.

Similarly, starting from a multiresolution analysis (Vj(l)) jez of LZ(IR) with associated
orthonormal scaling function ¢, orthonormal wavelet ¥ and orthogonal projection opera-

tors PJ-(I), we may define an orthogonal projection operator PJ-(d) in L* (IRd) by taking the
(tensorial) product of d copies of Pj(l) :

(d) _ p(1) (1)
(5) PJ- —Pj ®'”®Pj .
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The range of PJ-(d) is then Vj(d) = VJ-(I)é e ®V3-(1), the closure in Lz(]Rd) of Vj(l) ®-- -®V}(l).
V-(d) has an orthonormal basis gog-fi,z = 23’-‘§§0(d) (23‘_.,; "k))jez,kezd where p(@ = p®. .. Q¢
(so that go( ) = =ik @+ ®pjk,). The description of W(d) the orthogonal complement
of VJ(d) in VJ(_*_) , 1s then very easy to get : writing V;(*l_)l = V[ e ij where V}OI = Vj(l)
and ij = WJ-(I) (W}l) being the orthogonal complement of Vj(l) in Vj(_}l_)l), we obtain :

(6) WD = o vig...evl
e #(0,-+,0)

and thus we have an associated orthonormal basis of L2(IR%)

(n {(Begn=2i0aie k) e
€ :;-é. (0’...,0)’ 1/)[0} =, ,‘/)11] — 'l,b, j c z, ke zd.

For most applications, formula (7) is better than taking directly the basis of L2(RR%)
obtained by tensor products of the basis of L(IR) : ¥j, k, ® ¥i ks **° ® Py ks See
however [MADA] where the tensor product of bases is preferred.

Of course, the formalism of (5) (6), 57) can be used for d different multi-resolution
analysis V(ll), V(l) (to define V( ) =V; 1)® ®V;(d)) and oblique projection operators
P;; (assocxated to 2 bx-orthogonal multl-resolutlon analysis (Vii)s (V};)). For instance, if

P} is associated to V!, V! and P} is associated to V,?, V** and satlsﬁes £ P} = PP (see

chapter 5 proposition 9), then the vector projection operators P (P {1} P{z} P{d})

with P{k} = P'Sl PR ® P b,k provides a multiresolution analysis of the square integrable
vector ﬁelds on R% ie. of L2 (IR%)%) such that :

ﬁ.}%(ﬂ:PJ?@...@P}’(ﬁ.ﬂ

(so that divergence free vector fields are projected on d1vergence-free vector fields [LEMY]).
“We then obtain a notion of multi-resolution analysis for LZ(R%) :

DEFINITION 1. - A multi-resolution analysis of L*(IR?) is a sequence (V;)jez of closed
subspaces of L2(IR?%) such that :

(8.1) Vi C Vg1, ﬂ V; = {0}, U V; is dense in L.
J€Z J€Z
(8.2 feV; iff 1(20) € Vi

(8.3) Vo has a Riesz basis of the form (p(z — k)) emga-

The next step was to describe multi-resolution analyses which were not obtained by
tensor products of univariate multi-resolution analyses. Such examples have been given
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by S. Jaffard (using box splines [JAF1], see also E. Riemenschneider and Shen [RIE]) and
G. Battle (using polyharmonic splines [BAT2]; see also P.-G. Lemarié [LEM2] and W.
Madych [MADY]).

Of course, the use of tensor products gives a special r6le to the direction of the axes. In
order to define a more isotropic discrete wavelet transform in L?(IR?), J. C. Feauveau [FEA]
introduced an intermediate space between V; and V;i, called V;4;/2, by the following
axiom : let A be the operator (z,y) — (z+y,z—y) (so that A%(z,y) = (2z,2y)) and assume
that for all f € Vo, f(A™(z,y)) € Vo ;then f € V;41/2 iff and only if f(A~% 1 (z,y)) € Vo.
Then if (¢(z — k))tez= is an Hilbertian basis of the orthogonal complement of V5 in Vy/2,
the family (27/2¢(A7z — k));jez kcz> is an Hilbertian basis of L? (R?).

This construction has been extended to other linear transformations than A :

DEFINITION 2. - A dilation matrix is a matrix A € Mg(Z) such that all eigenvalues of
A have a modulus greater than 1.

A generalized multi-resolution analysis associated to a dilation matrix A is a family
of closed subspaces V;, j € 7, of L? (]Rd) such that :

(9.1) Vi CVjq, njez Vi= {0}, Uje% Vi = Lz(md)
02) feV;e f(4z) € Vi
(9.3) Vo has a Riesz basis of the form (p(z — k))reze-

If Wy is the orthogonal complement of Vj in V3, then Wy has an orthonormal basis of
the form (Ye(z—k))rema, 1 < € <| det A | —1. However, these wavelets 1 are generally not
easy to compute, except for the case det A = 2 where there is one wavelet and where there
is an explicit way to compute it. This is a very good reason for which dilation matrices
with determinant equal to 2 have been frequently used in generalized wavelet transforms.

2. Existence of multivariate wavelets.

As in dimension 1, wavelet bases are provided by multiresolution analyses. In [LEM9],
the following result is proved :

THEOREM 3. - Let A be a dilation matrix on R® and let p,5 € C*°(R*\{0}) be two
positive-valued functions such that p(Az) =| det A | p(z) and p(*Az) =| det A | p(z).
If

(¢e,j,k =| det A ij/z ¢e(Aj33 - k))je%,hezd,ISeSE
and . '
('p:,f,k z"‘ det A l]/z ¢:(AJ$ - k))jez,kezd,ISeeE

are bi-orthogonal Riesz bases of L*(IR?) such that :
(i) for some a > 0, p(z)2/?+%p, and p(z)}/?*+*¢} are in L?
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(i) for some a > 0, p(z)*t. and p(z)*P* are in L2
(iii) [ tpedz = [ Pidz =0

then the oblique projection operator P, defined by

E
Pyf = Z Z Z < fl¥iie > Yesk

e=135<0 kcmd

can be rewritten as

D
Pof =) > <[fleilz—k) >ps(z—k

5=1kegzd

where (p5(z — k))1<s<p keze is @ Riesz basis of Ran Py and (p3(z — k))1<s<p kcme 2
Riesz basis of (Ker Po)t, and D = Tth%’-'—T'

The main contrast with dimension 1 is that we may loose decay properties of the
basic functions. Indeed, Y. Meyer has given a very nice example : take the wavelet basis
(5% = 27/2¢(272— k) jez kez described by Meyer and Lemarié (example n°® 6 of chapter
5), and the associated separable basis in L2(IR?) (with wavelet, ¥; =¥ @ ¥, P2 = ¥ ® 0,
Y3 = © ® ¢ which belong to S (]Rz) and whose Fourier transforms are identically O on a
neighbourhood of 0) ; then apply the operator U defined by Uf(¢,n) = é}:%r f(&,n);Uis
an isometry on L? and transforms the wavelet basis (¥e,;x = 27t (21.?3—’6))15@53,55%):522
into another orthonormal wavelet basis U(v;x) = (Ute)jx = 27 (Ut)(27z — k) ; the
wavelets U, belong to S but we cannot find a Riesz basis (3(z—k)) ez of the associated
shift-invariant space Vp such that @ be integrable [LEM9], [AUS2].

We now discuss the reverse problem. Provided that we have a multi-resolution analysis
of L? (Rd), do we have an associated wavelet basis with the same decay properties as the
properties of the scaling function ?

‘This problem has been answered positively by K. Grochenig in 1987 provided that
| det A |> 41*22 [GROEL]. In case of a compactly supported scaling function with globally
independent translates, a positive answer was given by Jia and Micchelli in 1991 [JIA].
Finally, the case where det A = 2 is obvious.

THEOREM 4. - Let (V;), (V;*) be two generalized multiresolution analyses associated to
the same dilation matrix A. Assume that Vo has a Riesz basis (p(z — k))xege and V3§ a
Riesz basis (¢*(z — k)) yege such that

< plz—k) | p*(z—£) >= bk o(k,L € Z%.
Let finally Wy be the space Wo = Vy N (V)L and W¢ = Vi N V', Then :

(i) if det A = 2, Wy, has a Riesz basis ((z — k))rcze and W has a Riesz basis (¢*(z —
k))rcme such that < ¥(z — k) | ¥*(z — £) >= bk,¢ and moreover one can choose ¥ and *
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with the same decay properties as ¢ and ¢* (i.e. ¢ and ¢* € L? (p(z)1+°‘dx) if ¢ and go

do [for any posztwe |, ¥ and ¢* have rapid decay in L? if ¢ and ¢* do (1 e. Vo € N9,
2% and z*9¥* belong to Lz) ¥ and ¥* have compact support if ¢ and p* do).

(i) if | det A |> 42 and p,p* have rapid decay, then Wy has a Riesz basis (the(z —

k))keme,1<e<|det A{_land W{ has a Riesz basis (¢7(z — k))kez¢,1<e<|det a—1] Such that

< Pe(z — k) | ¥y (z ~ € >= b,46k,e and moreover one can choose P, t; with the same

decay properties as p and ©~.

(iii) if p and ¢* have compact support, then Wy has a Riesz basis

(Ye(z = k) kemd,1<e<det a1
and W§ a Riesz basis
(e (z — k) kemé,1<e<|det a]—1
such that < c(z — k) | Y5 (z — £) >= d¢,56k,¢ and 3,9 have compact support.

REMARK. - If ¢ = p*, one can take ¥ = 9* in (i). Similarly, in (ii), one can make a
Gram orthonormalization of (¥e(z — k))1<c<|det A|—1,kcz¢ t0 Obtain an orthonormal basis
| Ye(z — k)) 1<e<|det a|-1,kcz¢ Of Wo with rapid decay (if the ¢¢’s are rapidly decaying).
The case of compactly supported wavelets, however, seems to remain open. =

Proof. The idea of the proof for (i) and (ii) is very easy (except for the case of
compactly supported wavelets in (ii)). If we write 1o = ¢, we have two shift invariant bases
for V; :namely the family (¢e(z—k))o<e<|det 4|—1,kczz¢ and the family ((det A)/2p(Az—
k))reme- We take (ke)oc.ciaer aj—, | det A | representants of the classes in 7Z°%]AZL?, and
rewrite the second family as (pe(z — ))0<e<}det Al-1,kcze Where o, = (det A) 120(Az —
k.). Similarly, we write ©* = (det A)}/2p*(Az — k.).

We may now forget the multl-resolution setting of our problem. If (¢c)o<e<p is such
that (pc(z — k))o<e<p is a Riesz basis of a closed subspace Vo of L?, and if (¥c)o<e<n
are D functions in Vp, at which condition do those functions . generate by translations
a Riesz basis of Vo ? Similarly, if (¢:{z — k))o<e<p,keze is a Riesz basis of some space
Vo and (¥?)o<e<p are functions in Vg, if moreover < pc(z — k)/p;(z — €) >= b 6k e,
at which condition do the functions 3} generate by translations a Riesz basis of V0 such
that < P(z — k) | 3(z — £) >= be bz ?

Jia and Micchelli have provided an elegant setting for this problem. They assume that
e and p? belong to a space L3 defined by :

felae Y |flz—k) |e L*([0,1)%).

kczd

I 1 € Vo, then oy € Lo if and only if D cpa Y. < ¥ | 0i(z — k) >|< +00. Moreover we

have
b= Z{ > <vleile-H> e-*<’°*f>}sae(e).

€ kczZd
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Therefore, one introduces for f,g € L, the 27er—periodical function :

C(f,9)(€) = Z <flglz— k) > e t<kIE>

kezd

= Z f(€ +2km)3(¢ + 2km)  a. e

kezd

Then the answers to our two questions are (if ., ¢} belong to L2) :
j) if 9. belong to L3, the family (Ye(z — k))keze 0<e<p is @ Riesz basis of V; if and
only if the function det((C(¥e, ¥y))ogce<D,0<n<D) never vanishes.

ji) if ¥ and ¢} belong to L3, they generate by translations bi-orthogonal bases of V,
and Vg if and only if we have : '

(C(%esop))oge<D,0<n<p * (C{0es¥p))oge<n,0<n<D = Idp.

Moreover, if @, and tpe belong to L2 and if (Ye(z — k))o<e<p,kezme is a Riesz basis of
Vo, then its dual basis (¥}(z — k))o<ce<p,keze in Vg exists and the functions ¢ belong
to Lo. This is based on the fact that the Wiener algebra A = {f € C(R%/2xZ%)/f =
S kema fre P <FIE> with 3= | fi |< +o0) satisfies that if f € A doesn’t vanish then ;€A
(Wiener’s lemma).

We may replace Ly by subspaces as for instance {f € L?/p(z)}/?>f € L?}. One
obtain similar properties, based on the fact that Wiener’s lemma is true in the associated
spaces of periodical functions [LEM9].

Thus the proof of (i), (ii) or (iii) is reduced to the following problem : given the
first row of the matrix (C(ve,})(€)) (since Yo = ¢), can we complete the matrix in
such a way that it belongs to GLp(IR) for every & 7 Of course, we want the coeffi-
cients m,,, to satisfy the same estimates as mo, (i.e. men = Y pege me,mke_"<k<5>
with 3, cza p(k) 2% (men,k)? < +o00 if @, ¢ belong to Lz(p(z)1$2°‘dx)) ; if e and
©: have compact support, we are looking for trigonometric polynomials m., such that
det((me,q)) = coe™*<Fol€> for some co # 0 and ko € Z? (in order that (me,,)~" has coef-
ficients which are still trigonometric polynomials, hence that %} have compact support).

9
Now, if | det A |= 2, we have to complete the matrix (C(‘o""’s) 7) . An easy
Clp,01) ?

solution is given by (g&:’gg% —CC(’ g;l :P 92))) : indeed, we have its determinant equal
$ 3

to C(p,p3)C (o, ©*) + Clp, 01)Clp1,0*) = Cp,p*) = 1. .
C (s p0)
For a more general A, we have to complete the matrix : 2...2 | (where

Clp,0b-1
D =| det A |, and we know that 30— C (i, 0)C(ek, ©*) = Clp, ©*) =1).
If ¢, p* are rapidly decaying at oo, then the functions

Clp,0e)(6) = ) pgee™ <HE>
tczd
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are C*.
Now, if we define p : R%/27Z% — §2P-1,

£ — - (Cloro)s > Clr0h1));
o>

YClpel) 2

we see that u is well defined and smooth. Thus, if d < 2D — 1, g cannot be surjec-
tive, and one may find a point (ao,-*-,ap—1) which doesn’t belong to u(R® /2w L%). Let
(€:)o<i<p-1 be an orthonormal fa.mﬂy in C? with & = (g, -, @p—1) and write

C(p, s)

: = ) wk(§)&.
Vo

o Clos0) I? Cle,05_1) k=0

We claim that we may complete our matrix in the following way : in the basis (&), we
complete the first row Zk =0 ! wi(£)&x by the D — 1 rows A&y + @x(¢)é% (1< k<D —-1);
if A € (0,1) is small enough, the determinant never vanishes on R?/27Z* : indeed the
determinant is equal to AP~2(Awo — S pry | wk |2) = AP~2(=14 | wo |? +Awo) ; we know
that wo # 1 for all ¢, hence | 1 — wp |> € for some € € (0,1) ;now if 0 < A < 5%3__—:1
we have if wo & (0,1], Awo — (1~ | wo |?) # 0 and if wo € (0,1], ~1 + dwo + wg <
~1+Al-¢€+(1—-¢?<0.

Thus, we have proved point (ii) for rapidly decaying scaling functions ¢, ¢*. The
case of compactly supported scaling function is more delicate. Indeed, we have to prove
directly the existence of dual compactly supported wavelets 1,7 : the compactness of
the support would be lost in a Gram-Schmidt orthonormalizatior process.

As a matter of fact, the answer is given by a theorem of algebraic geometry, the
Quillen-Suslin theorem which solved in 1976 Serre’s celebrated conjecture on the freeness
of finitely generated projective modules over k{ty,:--,t,]. A by-product of this theorem
(see [ LAM, p. 146) expresses that if k is a field, then any finitely generated projective
(left) module on k[ty,t71,---,tN,ty'] is free. In our case, we want to find ¥.. If we
define M as the class of compactly supported functions in V;, we have a module over
Clt1,t1t,- -+ tq,t7], where the scalar multiplication is given by :

P(tl)tila' "atd:t;i‘l)f = ?”I{P(e—iﬁsei&’ ot ’e-—i&’ci&d)f(e)}

(where ¥ ! is the inverse Fourier transform). Of course, M is free, with (©o,-*+,p-1)
as a basis. Now if Mg is the class of compactly supported functions in Vy and M; the class
of compactly supported functions in Wy = V3 N (V)L we have still modules for our scalar
multiplication ; moreover, Mo is free (with basis ¢) and we want to prove that M, is free
(any basis of M; would provide us with compactly supported wavelets). M; is projective,
since Mo ® M; = M and M is free, and finitely generated : if Fy is the projection operator

on V, associated to v and ©*, then (I — Po)(po),- -, ({ — Po)(yop—1) generate M;. Thus
the Quillen-Suslin theorem can be applied.
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3. Properties of multivariate wavelets.

Separable dyadic wavelets don’t present any peculiar difficulty. Their properties (func-
tional analysis of Lebesgue, Sobolev, Holder, Besov spaces) are the same as for the uni-
variate case and are fully described in the book of Y. Meyer [MEY2]. Just like for the
univariate dyadic wavelets, this analysis lies deeply on the Littlewood-Paley-Stein theory
[STE1], [CODM1].

Non-separable wavelets are still not clearly understood. See for instance the paper by
Cohen and Daubechies on the regularity of scaling functions associated to some dilation
matrices on IR? with determinant 2 [COD2). Another valuable reference is [VIM2).

One may also quote the investigation of scaling functions ¢ which are characteristic
functions of sets in IR® (so that we obtain self-similar tilings in R? [GROEM]).

Multivariate wavelets have begun to be an active field of investigation, but we believe
that useful results are still to be found or understood before we are able to present a
coherent state of the art as in dimension 1.
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Chapter 8

ALGORITHMS

The numerical aspects of wavelet theory played an important part in the success of
wavelets, but are still bewildering the beginners by some unusual ways of computation.

Mallat’s algorithm is of course the heart of the matter. (Indeed, when 1. Daubechies
introduces her basis in [DAU1], she deals only with the associated scaling filters and always
keeps close to the related fast wavelet transform). But, whereas it is a fast and efficient
algorithm, those qualities can be spoilt by many difficult issues for the wavelet beginner
; among them, we may quote two widely discussed points : the initialization of Mallat’s
algorithm (how do we compute the projection on the scaling functions on the finer scale,
before using Mallat’s algorithm for going from fine scales to coarse ones ?) and the border
effects (when dealing with a function defined on an interval instead of the whole real line).

1. The continuous wavelet transform.

The first wavelet transform, introduced by J. Morlet, is still used in many applications,
and many people use an algorithm written by R. Kronland-Martinet for complex-valued
wavelet transforms (using analytical wavelets).

In practice, the computation of a continuous wavelet transform may be described in
the following way. For a fixed scale a, one tries to compute the coefficients

(1) Clad) = — [ 109D

The mapping f — C(a,b) is a convolution operator and (1) is performed through the
fast Fourier transform. If we have a sample (f(kbo))k,<k<ko+2¢ and if the spectrum of

%zb(;f—) is essentially contained in [0, %f»] , then one may write :
R , int{k+ko)
(2.1) f (%—;’—2%) ~ ag for 1 < £<2M, where ap = by 2,2::1 f((ko + Ic)bo)e_2 e
= ixt(k+Ep)
(2.2) C(a,k + ko)bo) ~ Bi for 1 < k < 2M, where B = Ei:l Vayp (aié’%g) o:ge2 M

Thus we need in order to compute C(a,b) to know a tabulation of b (agxzz’%gl) (or to

compute these values), and then to perform two FFT : the cost of those FFT is O(N log N),
where N = 2M is the number of datas. If we want to compute J voices (i.e. C{a;, (k+ko)bo)
for1<j<Jand1<k<N =2M), the total cost is O(JN Log N).

In case 1 is compactly supported, one may be tempted to compute the convolution
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directly. Typically, one knows (f((k + ko)bo))1<x<2m and we want to compute

; 1 - [z-— (k + ko)bo
C(a}, (k + ko)bo) = / f(z) \/,-1,0 ( ) dz

J
al @op

2 Y " bof((g+ ko)bo) - > ¥ ((q -;;C)bo>

for jo<j<jo+Jand1<k<2M If Suppy C [-A4, 4] and -:—,95- < 1, we see that the

o -
number of operations needed to compute C(ad, (k + ko)bo) is 0 (ZA %—é—) (hence 0 (ag_io)

if A,ao,bo are fixed), hence the total cost for computing the J2M coefficients C (a%, (k+
ko)bo) will be O(ag N). This is a very high cost, since it is exponential in J. Therefore, M.
Holschneider introduced the so-called “algorithme & trous” [HOL] in order to reduce the
cost.

Let us explain how we may reduce the cost. If we assume that we want to compute

Clm) = [ 1@ garz (S ) 4o

for1<m < Jand 1< n< N =2M and if we assume that ¥)(Z) belongs to the space

Vo of a multi-resolution analysis (¥(§) = >_IL, aqo(z — g), (3) = Z;io Bep(z — q)),

then one sees that one may compute C(m,n) recursively, by defining :

D(m,n):/f(m)zr:/ch<x2;n> dz, 0<m<J,neN :

we have obviously

d1
D(m+1,n) = Z %ﬂqD(m,n + g2™)

=40

q1
1
Cim+1,n) = —a,D(m,n + g2™).
( ) Z: V2P 2"
9=q90
Hence, the cost of the computation of D(m + 1,n) or C(m + 1,n) (once the D(m,n) are

computed) is 0(1), and therefore the total cost of the J - N coefficients C(m,n) is 0(JN)
(which is linear in J instead of exponential !).

REMARK. - We have not exactly presented the “algorithme & trous” , but a modified

presentation given by I. Daubechies in [DAU3] which makes this algorithm very close to
Mallat’s algorithm.
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2. Mallat’s algorithm.

Mallat’s algorithm, which is a fast wavelet transform adapted to orthogonal or bi-
orthogonal bases, may be viewed as a mixture of the Laplacian pyramidal algorithm of
Burt and Adelson [BUR] and of the sub-band coding scheme of Esteban and Galand [EST).

The algorithm of Burt and Adelson was introduced in 2 dimensions, for image pro-
cessing, but we will explain it here in an 1-dimensional setting to make the presentation

more clear. Given a discrete signal (fx)xez, one smoothes the signal by taking average
values :

) _ q1
(fe)kem — Al(fi)kez) = (fk =) cqfk“q) :
7=qo keZ

Of course, this average signal is varying slower than the initial one, so that one may
sub-sample it :

(Ff)kez = S((f)rez) = (for)rez-

If we want to make a comparison between our former signal (fx) and our new signal ( fgk),

we’ve got to interpolate ( fgk) to odd values of k : this is done in two steps ; the first one
interpolates the missing values by O :

(far)kez = I((for)) = (g = frx if k€2, =0 if ke€2Z+1)
and the second one smoothens this interpolation :
a1

(9) = A'(gx) = (h = Y dggk—q)kez-

g==q})

We may then represent our signal as :

(fx) = A'ISA(fx) + (&) = A'I((fox)) + (ex)-

The signal (f2x) is defined on a coarser grid than (fx) (2% instead of 7) and the residual
signal (ex = fx — hi) is small in the regions where ~( fx) is regular. Of course, one iterates
the transform on {f3x) in order to have a signal (f 4k) defined on a still coarser grid and
another residual error, and so on.

The difference between this algorithm and the fast wavelet transform lies in the anal-
ysis of the residual signal (ex)rez. In Mallat’s formalism, the (ex)rez are over-sampled
whatever regular or not the function f is and one may decimate the €; and keep only the
€2k, k € ZL. Wherever f is regular, the remaining €;; will be small and one may neglect
them as well as in Burt and Adelson’s scheme.

In the subband coding scheme, one splits a discrete signal (fi) in two signals (g2x),
(hax) with the following requirements : (gzx), (h2x) are sub-samples of convoluted signals:

g1 4
(3) g2k = Y Cqfak—q and hop =) dyfak—g
9=qo 9=qp
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and the transformation is isometric :

(4) SolflP=2> loaP+2) | ha .

k€eZ keZ keZ

If we take the polar form of (4), we obtain :

(5) Z JxPr =2 z: { qzl cqf2k~q} { qu cq‘ﬁZk—q} +

keZ k€EZ \qg=qo 9=q9o0

%
{ Z dqfﬂc—q} { Z dq‘P2k—q}
9=qq 9=qq

which gives (taking fi = 6k,ko» Pk = Ok,k, ) ¢
(6) For ko, ky € 72, 2 Z C2k—koC2k—k, + 2 Z d2k—koA2k—ky = 6k0:k1 g

k€Z kez
(6) is equivalent to (4) and may be rewritten (defining

mo(€) = Z cxe ¢ and m,y(€) = Z dre™*¢) as
keZ keZz

(7.1)  [mo(€) +mo(€+m) |2+ mu(€) + mi(§ + ) °=2
(7.2) | mo(€) — mo(€+m) |2 + | ma(€) = ma(€ +7) P=2
(7.3). (mo(&)+mo(&+m)) (o (§)—o(£+m))+(ma (£) +m1({+m)) (M1 (£) -1 (§+7)) =0,

(Just take for (7.1) ko and k; even, for (7.2) ko and k; odd, for (7.3) ko even and k; odd).
Thus, if we write

mo(€) = —\}—i(uo(za + etug(2€))
and

my(§) = \/—(ul (2¢) +€*vy (2¢€)),

where ug,vg,%; and vy are 27-periodical trigonometric polynomials, we obtain that (4)

is equivalent to the fact that (uo(g) ‘vo(f)) is unitary for all»E. Notice that vg,v; are
- u1(€) vi(€)

almost uniquely determined by ug,u; : indeed we have necessarily

vo(€) = —eNéy0@1(€) and v1(€) = €M EroEio(€)
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for some unitary constant 4o (and since we have implicitly assumed the coefficients cx
and di to be real-valued, this gives 7o = +1) and some constant N € ZZ. (This unicity
may be proved easily by algebraic reasoning ; it is also a by-product of theorem 1 of
chapter 8 : if w is any compactly supported function such that (v2w(2z — k))xez is an
orthonormal basis of a space Vy C L2, if &(¢) = mo(g)(b(%) and B(¢) = my($)a(5),
then (a(z — k))kez is an orthonormal basis of a space Vo C V; and (B(z — k))kez is an
orthonormal basis of Wy = V55 NV, ; B8 has automatically a minimal support and thus is
unique up to a shift or a multiplication by an unitary scalar). Another useful remark is
that | uo(€) |? + | vo(€) |*=1 is equivalent to | mo(€) |2 + | mo(¢ + ) 2=1.
Thus the basic equalities of orthonormal scaling filters

| mo(€) I + | mo(€+7) |*=1

(expressing that the scaling function ¢ generates an orthonormal family (p(z—k))rez) and

my(€) = e *rmo(¢ +7) (where ) = m1(§)¢(-§) is the Fourier transform of an orthogonal
wavelet ¢) are equivalent to the isometric relationship (4).
Moreover the polar formula (5) gives us a reconstruction formula :

(8) fio =2 Z C2k—koG2k +2 ) dak—kohak-
= kEZ

The link between wavelets and quadrature mirror filters (i.e. functions mo(&), my(§)
satisfying (7.1) to (7.3)) is easily described. Indeed if (V;) is a multiresolution analysis
associated to a compactly supported orthonormal scaling function ¢ and a compactly
supported orthonormal wavelet 1, and if P; is the orthogonal projection operator onto V;,
and Q; = Pjy1 — P;, the decomposition Pji; f = Pj(Pj41f) + Q;(Q;+1f) can be read as:

D Fiwap2 0@ iz k) = 3 502 0(Fz— k) + 3 p2 9(@ s~ k)
k k k

where :

fik =Y fir1,q < 20D 200041 — g) | 27/2p (295 — k) >
q

- E < \/§§0(2x —q+2k) | o) > fit1,q
q

=Y <V20(2z +q) | 0(z) > fi41,26—q
q

and fik =Y < V20(2z+ ) | $(z) > fiz1,26—
q

so that f;x and f;-,k are given by formulas similar to (3). Moreover

| Pianf 3= P57 15+ 11 QiF 113
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becomes

Z | fivrk 2= Z | fi6 2 +Z | Fik 1%

hence we see that we have a quadrature mirror filter

[y

1 L .
mo(8) = Z5 3 < VEplz+) [e(e) > 1 = 23 <p(g) |plata) > e s
q q
~ thus our orthonormal scaling filter of chapter 5 is a quadrature mirror filter.
We may now present the Fast Wavelet Transform of S. Mallat. Given two bi-orthog-
onal compactly supported scaling functions @, ¢*, and associated wavelets ¥,¢*, we are
looking for a fast computation of the wavelet coefficients

< flojp>=<f |2y (@z—k)>.

This computation is organized in the following way.
Define (ak)rez and (bi)kez as ax =< ©(£) | p*(z — k) > and by =< p(z — k) |
©*(£) >: we have $(2¢) = (3 ake“kf)go(f) and ¢*(2¢) = 1( bre *¢)p*(€). We
suppose that ¢,@* are compactly supported (and real-valued), so that ax and b equal 0
for all but finitely many ko. Now, remember that ¢,4* are defined by

$(26) = 3 S (-1 b (g)

"/‘;*(26) —_ Z(—l)kakei(k—l)‘f(ﬁ*(f).

The wavelet coefficients < f | Vvi > k€L, correspond to the determination of

DO | -t

Qif =Y < fl¥ix > ¥ik = Pitaf — Pif = Piyaf — Pi(Pjaf).
k

Hence we have :

Zz<f|¢1k>¢bk“ Pj 1S - ij(P.‘f1+1f)+Pj1f"Pj1—1(Pj1f)+

j=jo k

o+ Pjop1f = Pig(Pjo41f) + P f

and the computations are organized as follows :
Step 1. - Begin with the determination of Pj, 41 f, i.e. of
i +1,k =< f | ‘P;1+1,k >.
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Step 2. - Compute recursively s;x =< f | pir > and djx =< f | ¥ix > by the
relationships :

(9.1) S5k = Z \/—b—ésg-{—l 2k—¢
ez
(9.2) d;x = Z )t_lae—lsj+1,2k—e
e V2

(9.1) and (9.2) are easy to prove. For instance, write

sik =< Pip1f @i >=D <[f|®i1e>< el 0ip >
LEZ

= 2 Sj41,6—5= b£-2k-

L

As we have already noticed it, (9.1) and (9.2) can be viewed as convolutions followed by
sub-sampling.

Finally, the Fast Wavelet Transform of S. Mallat is the algorithm whxch transforms
the sequence (s;, +1,k)kez into the sequences

(850,6) kez U ((dj,k)kez) jo<i<si -
The inverse transform is given by the formula :
(10) Sj41,k = Z T3 tk-2esie + > \}5(-—1)"“62,3_;;..1@,3
eez eEZ
(10) is as easy as (9.1) : just write
Sj+1,k =< Pip1f | 0110 >=<Fif | 0j 410> + < Qif | @?{1,k >
This formula can be viewed as interpolation by 0 ((s5,6) = (85,%) with §; ; = 0if k is odd,

= 8;,k/2 if k is even and similarly (d; x) — (d;x)) followed by convolution:

Sj+1,k = Z aeS,,k e+Z )2b_e—1d; ks
ZG% iEZ

The complexity of this algorithm is easy to evaluate. Assume (for the sake of simplicity)
that f is periodical with period 2V > ( )% and that we want to compute

(dik)jo<iciiickcan+  and  (85,k)1<k<an+io
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knowing (s, +1,k)1<k<on+i+1 . (Indeed, if [ is 2N _periodical and 7 > N then
Sjkrat+i = Sjk and  djppones = dj).

We know 2N +71+1 coefficients $;,+1,k and we want to compute

J1
gN+jo 4 Z‘ oN+j . gN+j1+1
7=Jo

coefficients s;k or d;jr : this is the same number, and indeed Mallat’s algorithm is a
mere change of basis. Now, the complexity for computing s; x or d; x from (s;41,x) is 0(1)
because of formula (9.1) and (9.2). Thus we find that the total complexity is

oN+5o (1) 4 2N+ +10(1) + -+ + 2N+ 0(1) = O(2N 7111y,

and it remains proportional to the number of data whatever the number of scales of
decomposition is.

3. Wavelets on the interval.

One of the main problem in the wavelet formalism was the fact that it is defined on
the whole line, while in numerical applications one could deal only with functions defined
on a bounded interval. Thus, one had to investigate the problem of truncation in the
wavelet approximation.

Among the solutions that were used in the beginning, we may quote the following
ones (we will always assume that we deal with compactly supported bi-orthogonal scaling
functions ¢, * and that we deal with a truncated function f |, ,~, for which we want to
compute the coefficients d; &, Jo <7 < 71) ¢

o the first solution is to extrapolate f outside [0,2"] by 0. Thus we have a function f
defined on the whole line. But we encounter two problems. The main one is that, unless
f vanishes at the boundary of [0,2"], we have introduced discontinuities at 0 and 2N,
and this will be reflected in high-valued wavelet coefficients near 0 and 2V and thus in
a non-negligible border effect in the reconstruction of f. The second one is the fact that
we destroyed the independency of our analyzing functions : indeed if £ is the length of
the support of ¢* and L the length of the support of the associated wavelet ¥*, in order
to compute P;.1(f) we need 2V++1 4 £ — 1 coefficients (corresponding to the scaling
functions ¢}, , whose support encounters (0,2V)), and 2¥+/ + £ — 1 coefficients for

P;(f) and 2N+ 4+ L — 1 coefficients for Q;(f) : thus we need more coefficients for P;( 5)
and Q;(f) than for Pjy1(f).

e a second solution, which is frequently used, is to extend f into a 2V -periodical function f .
Besides the possibility of using FFT in the computations (which is mainly interesting when
dealing with non-compactly supported scaling functions), the advantage of this solution
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is that we recover the independency of our analyzing functions. Indeed, the coefficients
< ): | pjp >o0r < f] $;x > (for j > —N) are clearly periodica}: < f] OF kpan+i >=
< f| ¥} x> . Thus we need 2N+7 coefficients for computing P;(f), 2V *7 coefficients for
Q;(f) and 2N 7+ coefficients for computing Pj41(f).

As a matter of fact, we have thus constructed a periodical wavelet basis for L2([0,2"]) :
we have

+oo 2¥
f fojpdz = ] £Y etalz+p2N)dz
(and so on...); it is then easy to see that
1 [=e}
ﬁ Z (p_N,g(.TJ + pZN) U U \/—2_3- Z 11)3"};(33 + pZN)
PEZ j=-=N PEZ 0<k<2N+i
and
1 oo}
77 = 2 e-wale+e2") U 32 VETY (e p”)
PEZ j=-N PEZ 0<k<2N+i

are bi-orthogonal bases of L?([0,2"]) and provide bases for spaces of regular periodical
functions (if ¢ € H?, then we have a basis for H*(R/2NZ) for 0 < s < o).

o a third solution, introduced in order to alleviate the discontinuities at 0 or 2N is to
extend f on [—2¥,2.2¥] by symmetries : on [-2¥,0], f(z) = f(~z) ; on [2V,2V + 2V,
f(z) = f@N*t —2). If f € C%([0,27]) (0 < @ < 1) then f € C%([—2%,2V*1]). Besides
keeping the regularity of f up to order 1, one finds another advantage in this solution :
one recovers again the independency of the analyzing functions, provided that one deals
with symmetric scaling functions (hence with bi-orthogonal scaling functions, since there
is no symmetric compactly supported orthonormal scaling function but the Haar scaling
function ¢ = X[o,l])- Indeed, let’s assume that ©,p* are even functions, and thus that
¥,9* are also symmetrical: ¥(1 — z) = ¢¥(z), ¥*(1 — z) = ¥*(z). Now, if k/27 € [-2V,0]
and Supp p; i C [—2¥,2"], we have

< Fleje >=< f(=2) | o} p(~2) >=< f(2) | ¥}, (=) >,
and similarly for k/27 € [2V,2-2%] and Supp ¢}, € [0,2-2%],
< f ! go;f,k >=< f I @;,2N+i+l_k >3

thus we have only to know the coefficients < f | o}y > for 0 < k < 2% in order to know
P;(f) on the neighbourhood of [0,2"]. Similarly, for Supp P} C [—27,27] we have

< flohe >=< f(~2) | ¥} al=2) >=< F | ¥} 41 >
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and for Supp w;’k C [0,2N+1,
< floe >=<F@N* —z) | $]4(2V T —2) >=< fl Y5 oNtit1 g1 >

so that we need only to know the coefficients < f |j > 0<k< 27+N 1.

Once again, we have constructed a basis for L2([0,2V]). Indeed if j; is big enough so
that 27% times the diameter of Supp ¢ is less than 2~ (and the same for *, ¢ and ¥*)
Wf have a basis (‘ﬁjo,k)ogk§2”+50 U(¢j,k)j2jo,05k§_2i+”—l with dual basis (p;,k)OSkSW'O""N U
(%7 1) 5 >j0,0<kc2io+ ¥ 1, Where :

Bio ke = 2]‘0/2@(2.7‘0:5 — k)
for 1diam Suppp < k < 270+¥ — 1diam Supp e,
Biok = 2270 (2°z — k) + p(2°z + k) |[o,27]
for 0 < k < 1diam(Supp ©)s
Bjoyk = 2012 (p(27 — k) + (270 — 20N 1 E)) {0,0%)

for 270N — 2diam(Suppp) < k < 27o+N and

Pip =222z — k)

for ;diam Suppy < k < 27N — Zdiam Suppy — 1,

Pip =222z — k) + (27 + k + 1) |[o,2v]

for 0 < k < 1diam Supp ¢ and

ik =222z — k) + P27z — 2TV F 4+ £+ 1) |jp,2m)
for 27N — ldjam Suppy —1 < k< 2/+N -1

(and similar formulas for 4} ; and {5;,,‘). Indeed, the bi-orthogonality is easy to check,
and we have already seen the completeness of (&} ,)U (‘(,/;;’ .) (since < f | 05k “rR=<[|

BFk >lo,2v] and < fl ik SR=< [ ‘Z;o,k >(0,27])- The stability of the bases is easy to
check, as a consequence of the stability of the wavelet bases on the whole line. This basis
is called the folded basis by Cohen, Daubechies and Vial in [CODV].

Both the periodical basis and the folded basis are not well fitted to the study of regular
function spaces with regularity greater then 1 (such as C7(|0,2"]), H*([0,2V]),---). A
reason that we may easily point is that they don’t allow the reconstruction of polynomials
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on the big scales basic functions : indeed z [[o,zN | is not periodical and cannot be written
odg+N

as Zk"‘o ck‘PJCH
In 1990, Y. Meyer proposed a solution which allowed the analysis of H*([0,2"]). He
started from an orthonormal Daubechies scaling function ¢ (with Suppp = [0,2M — 1])

and defined V[0 2] as the space {f |jo,2v) /f € V;} where V; was as usually the closed

linear span of the 2//2¢(27z — k) = @; x, k € Z. Then V} "1 contains the polynomials

1,z,+++,zM~1 (restricted to [0,27]), and we may easily characterize H?[0,2%] for s < s

(where s is'the regularity index of ¢ : 5o = max s) in terms of the orthogonal projections
‘P L

p;o,z”] from L%([0,2N]) onto Vj[o’le.

N
As we have already seen it (theorem 4 of chapter 4), a basis for leo’z Vi exactly the

family (p(27z — k) lio,2¥)) ~2m42<k<2i+n _1- B J > jo where 2M — 1 < 270+N=1 then a
Gram-Schmidt orthonormalization of this basis gives a basis ©; ¢ such that :

o for —2M +2 < k < -1, $; x(z) = 20-2)/25, (2770 z)
o for 0 <k <29+N —2M + 1, $; i(z) = 27/2p(272 — k)
o for 27N —2M + 2 < k <27V — 1, 3, i (z) = 200025, | s4n (27790 (z —27) 4 27).

Now, if we try to describe the orthogonal complement w02 "] of V[0 2"l 4 into V1% 2N], we
may search for a supplement X; and use agaln a Gram-Schmidt orthonormahzatlon of
course, from V; 1 = V; +W;, we see that VJ[ 1 "1 is generated by the functions 27/2 (2 z—
k) lio, 2v] (=2M + 2 < k < 274N — 1) supplemented by the restrictions of the wavelets
29/24(29z — k) |j0,2v) (—2M +2 < k < 27+N — 1) (where the wavelet ¢ satisfies Suppy =
[0,2M — 1)); but we have too many supplementary functions, as we already have noticed

it when discussing the extension-by-0 solution. But as a matter of fact it is very easy to
determine, when j > j0, the 2M — 2 functions to be eliminated : for —2M + 2<k<-M

and 27+N — M +1 < k < 271 — 1 we have indeed ¥;k 0,27 V[ 21, (Just write
©j+1,2k |jo,2v]= 0 for ~2M +2 < k < —M and expand ©;1,2k 00 Pj,¢ and 1/),, -+). Now,
~ a Gram-Schmidt orthonormalization of the family

©j,—2M+2 |[0,28]° "+ P5,29+7 _1 |[0,28]s ¥s,~M+1 |[o,27]s "+ > Vj,28+ 7 _ar |[0,27]
~ N
gives an orthonormal basis ;& of W}O’z ], with the properties :

'db,k—z 1/’;01:(2’ ~Jog) for ~-M +1<k<—1
o Pix = 27¢(2’x—~ k)forO<k<2+tN _aM+1
"Pa,k—? D kit (P90 (2 — 2N) 4 2N) for 27HN —2M 42 < k< 27N — M.

Thus we have border functions of, af, 8f, ﬁ,f such that for 7 > 50 :
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0.2V 2M -2 . . ‘ ‘ 27tV oM+l
PP =3 <12 (@n) > 2Pef (@) + Y, <flesk> ekt

k=1 k=0
2M~2 » - . -
Y <12 (@ (z - 2") > 220 (27 (z - 2V))
k=1
while
e - ) = E < £ 218E(2x) > 272 6F (2 2)+
k.—_
27tV oMl M-1 ' . ‘ .
Yo < Flia>die+ Y, < f|277BF(2 (z—2")) > 2/2pF (27 (z — 27))
k=0 k=1

with moreover
Supp o, Supp B C [0,2M — 2|

and
Supp af, Supp BF C [-2M + 2,0].

Although Meyer’s construction provides a nice theoretical solution for wavelets on

[0,27], it had to be modified because the Gram-Schmidt orthonormalization was not well
conditionned.

The simplest modification is to be found in [CODV]. The construction of Cohen,
Daubechies and Vial is very easy ; since we want to have the polynomials in our big scale
basic space, we have to include them in our basis ; but since we want to separate border
0 and border 2%, we have to split each polynomial on two half-polynomials (a left-hand
part and a right-hand part). Now remember that for 0< k<M —1,3, 5 oz —£) =
zk + Qk—1(z) where Qk 1 is a polynomial of degree less than k. Thus we may consider
the subspace ‘{7 of V}O 2] spanned by :

efork=0to M -1, Z£<eo ek@j,e l[o,z”}
oforlo <L 2N — 41, sy
efork=0to M —1, E£>2;+N_21 ﬁkst,e l[o,z”]

where £y > 0, £3 > 2M — 1. We have thus a basis of V (whlch has dimension d =

XN _ gty +1+4+2M ). Moreover it is easy to see that V C V;+1, so that we may
look at the sequence of the orthogonal projection operators V; from L2([0,2V]) onto V;
as a multi-resolution approximation process. Cohen, Daubechles and Vial choose {5 = 1
£; = 2M in order to have dlmV = 27tV Such a choice is motivated by the fact that
in image processing the size of the images is usually a power of two and also by the fact
that in that case dimV;4; = 2dimVj, which corresponds to the empirical meaning of
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the scale (and allows to develop wavelet packets on the interval by iterative division of
even-dimensional spaces into two subspaces of equal dimension [see chapter 9]).

Other modifications have been proposed, more or less equivalent to the one we exposed
here. In particular A. Jouini and P.-G. Lemarié-Rieusset [JOU] developped the notion of
bi-orthogonal multi-resolution analysis on the interval and could extend to the interval the
commutation property between differentiation and projection operators (with applications
to the duality HX[0,2V], H*[0,27]).

4. Quadrature formulas.

In this section, we pay a few words to the topic of effective calculus with wavelets
and scaling functions. We consider bi-orthogonal compactly supported scaling functions
o, p* with scaling filters mq, m$. Standard references for this section are [LEM3}, [BEY1],
[BEY2], [SWE], [TEN] among many others.

i) Moments : The calculus of f zFp dz is very easy to do. Indeed, it is equivalent to

k
compute (é’—e) P |e=o . But we have $(2€) = mo(£)B(€), hence :

k-1

dk
(11) (2* - 1)357;‘/3 le=o=
€=0

() #@@m¢0)

and, from $(0) = 1, we can compute (j‘%)k(ﬁ at any order by iteration of formula (11),
since the derivatives of mg are obvious to compute.

ii) Tabulation : If ¢ € L* (so that ¢ is continuous), it is very easy to tabulate (. Indeed,
we have a two-scale equation

B
(12) <p(-92£) = E arp(z — k) where suppp = [4,B]
k=A

so that if we know ¢ on 7, we may compute iteratively ¢ on Z/ 27. Thus we just have to
know p(k), A+ 1 < k < B — 1. But those values are solutions of a linear system :

B
For A+1<k<B-1, p(k)=)_ awp(2k—1)
=1
(13) 51

> plk)=1.

k=A+1

Write (k) = €k, with ¢ = 0 if £ < A or kK > N ; then the system (13) has an unique
solution (ex)xez. Indeed if (€x) is any solution of (13) (with ex =0 for k ¢ {A+1,---,B—
1}), then we write Py(€) = Ef;j+1 exe k¢ and 8y = Po(&)x k(&) where K is a Cohen
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compact set associated to mg. Then we define 6,,,; as 0;:1(6) = mo(-g)@ (%) We have

Orm1(€) = T1721 mo(55) Xk (geér) Po(geéer), hence 6y — Po(0)¢ in L' (by dominated
convergence theorem), and since Py(0) = 1, §my1 — @ in C°. But we have (k) = € for
all k € 7ZZ, hence by induction on n :

B B
0n+1(k) = Z a.gen(Zk — E) = Z Ap€ok—¢-

fke{A+1,---,B—1},wefind 0,41(k) = €x ; if K < A then 2k —£ < A hence €25¢ =0
and 8,,,1(k) =0 ; if k > B then 2k — £ > B hence €zx_¢ = 0 and 8,41(k) = 0.

Thus we may determine ¢ by solving an eigenvalue problem for a finite matrix. An-
other way to determine ¢ is the cascade algorithm of I. Daubechies [DAU1]. One ap-
proximates ¢ in C° by g,, where gp+1(§) = mo(—g)@n(-g) and go is such that ), |
do(& + 2km) |€ L, §o{(2km) =0, §o(0) = 1 and ég}) Yokez | §(€+2kx) |=1; then §, — ¢

in L', thus we have a nice approximation of ¢. One usually chooses for gg a spline function,
for sake of simplicity. Nevertheless, the convergence of g, to ¢ need not to be rapid. S.
Durand [DUR] has shown that in order to have a good convergence one should require on

go that §o and ¢ should have on 277 not only the same values but also the same first
derivatives.

iii} Derivatives of ¢ : In order to tabulate %E, one may use the fact that %:i = p(z) —

&(z — 1) where @ is another scaling function. One may also use the two-scale equation
(12) to get the system

B
For A+1<k<B-1, ¢'(k)=) 2au(2k—2)
£=A

(14) B-1 B-1 d
Z ©'(k) =0 and Z ko'(k) = —z’EEmo(O).
k=A+41 =A+1

iv) Primitives of ¢ : We may remember that f:+1 ©(t)dt is a scaling function so that we

: Etl
may compute easily k1 p(t)dt. For [,* ©(t)dt, expandyp on the p; , functions.
k oF s

v) Bilinear integrals : If we want to compute [ 1(z — k)pz2(z — €£)dz for two scaling
functions, we just have to notice that ®(z) = [ ¢1(y)p2(y — z)dy satisfies itself a two-scale

equations (with filter M(¢) = my(€)m2(€)). It always satisfies & € L' (but may fail to
generate a Riesz basis, because M may violate Cohen’s criterion).
For trilinear integrals, one should work with 2D-scaling functions

®(z,y) = / p1(y)p2(z — z)ps(z — y)dz ;

the computations are similar but more heavy.
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vi) Quadrature formulas : Now, we want to compute s;x = [ f(z)27/%p*(27z —k)dz given

the sampling (f(& 57 ))kez- (From the values s; ; estimated for the 1arger J compatible with
the sampling, one deduces the values sg, £ < j, through Mallat’s algorithm). The first
solution is to use a naive formula

(15) sje 272N f( (£ — k).
: 1<y
If o* reconstructs polynomials up to degree M, we have (%)ké*(%w) = 0 for £ # 0 and

0<k< M, hence ) ,., £kp* (€) = [ z*p*dz. Hence formula (15) is valid on polynomials
up to degree M.
We may need further accordance than to degree M, to have a better accuracy for a

regular f, or want to shorten the computations (since the length of Supp ¢* may be much
longer than M + 1). We search then for a formula

_; £
(16) sik 22790y f(r) ke
1.2y/4

which is exact on polynomials up to degree Q and where (ax)recz takes for all but Q +1
indexes k the value 0 : ag, @1, ,ag # 0 and o = 0 elsewhere. Then oy is given by :

(17) for ke {0,---,Q}, ax= / ﬁ (z — E) p*(z)dz

t£k, £=0 k—¢

and thus may be easily computed since we know how to compute the moments of p*.

More elaborate formulas, including Chebychev collocation, have been developped by
W. Sweldens [SWE]. Remember also that the coiflets ¢ (example n° 8 in chapter 5) were
constructed with size of support 3M —1 so that for all k € {0,---,M -1}, [ zFp(z—£)dz =
£* ; hence for a coiflet, we may use the formula : s;; ~ f (~2’°7

5. The BCR algorithm.

Among the applications of wavelets to numerical analysis, we choose to expose the
BCR algorithm introduced in 1989 by G. Beylkin, R. Coifman and V. Rokhlin {BEY1].
The idea is to represent a linear operator on L*(IR) by a matrix in a wavelet basis. If
we discretize T € L(L?,L?) by Ty = PnNTPn, where Py is the orthogonal projection
operator on the space Vv of a multi-resolution analysis generated by a compactly supported

orthogonal scaling function, we are going to see the way to use the wavelet decomposition
J

Ve =VN_s® & Wpyn_i toget a better representation of 7.
k=1
The standard form of Ty is obtained by the change of basis from the scaling functions
(o n,k)kez to the wavelet basis (pn-Jk)kez U (UN—k)ec(t, 7}, kez- We have

TN—ZAe+sz'+ZZCee'

=1 é=18=1
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with Ag = PN gTQN-¢, Be = QN-pTPn_7,Cee = QN-0TQnNn—¢.
The non-standard form of Tx is obtained by a change of basis, not in Vx but in the

space Vy®V of matrices onto Vi : we replace the 2D scaling function basis (o y x®¢ Nk')
by the 2D wavelet basis

(oN-sk ®ON—-JK") (k,kYez? U (UN-tk @ ON-2k') 1<€<J, (k k") ez? Y

(ON—t,k @ UN—,k)1<e<d,(kk)ez? U (ON—t,k @ UN—t,k)1<0<T, (k k) eZ? -

I.e. we have written :

J
In=Tn-y® ETN—&H —TIN—:
=1

J
=TN-s© }: QN-eTPN_¢+ PN-eTQN—t+ QN-eTQN-¢.
£=1

In the non-standard form, we don’t let wavelets at different scales interact but replace this
interaction by the interaction of wavelets and scaling functions at the same scale.

The non-standard representation is especially interesting for pseudo-differential opera-
tors (as e.g. parametrics of elliptic differential operators) or Calderén-Zygmund operators,
because for such operators the distribution kernel K(z,y) has its singularities concentrated
on the diagonal z = y ; hence in the 2D wavelet basis, its coeflicients are concentrated on
wavelets located near the diagonal. It means that when one neglects the small coefficients,
we obtain a sparse matrix whose number of non-zero entries grows linearly with the num-
ber of data instead of growing as the square of this number. Another interesting feature
is the fact that these operators behave almost homogeneously with respect to dilations, so
that the obtained matrix can be well handled with a simple preconditioner.

Thus, the non-standard form is efficient for the compression of pseudo-differential
operators. The standard form is especially interesting (for pseudo-differential operators)
for iterative algorithms, because it allows a fast multiplication of matrices. (Be careful
that the non-standard matrix doesn’t obey any more to the usual matrix algebra. In order
to compute T'(vy) we have to write

UN =UN-1 +TWN-1 = UN_2F+WN-2+WN-1 =" =UN-gFTWN-J T+ T WN

and to write vy in a non-standard way as :

/ UN~J \

WN-J
Un—J-—1
Wy J—1

D
2
il

UN -1
WN -1 )
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then multiply o by the non-standard matrix

(AN_J BN._.J 0 0 e e \
Cn_g Dn_y 0 0
0 0 0 By_j-1 ©
M= O O CN-J-1 Dn_y-1 O
0 0
' : 0 By
\ : s : i Cyo1i Dw-i)

(where Ag = PyT Py, B = PrTQk, Cx = QxT P, Dy = QxTQx) which gives

aN-J ‘\
BNn-J
aN—-J-1
BN-—J-1 where ax € Vi and By € wi

Q2
Z
Il

KQ:NI

BN -1

and finally T'(vn) = Z‘Z:l an_e+Bn—e= (1,-+-,1)&n. Of course we don’t have TZ(vn) =
(1,---, I)Mz‘('}]v)‘

6. The wavelet shrinkage.

From the very beginning, wavelet transforms have been viewed as a tool for compres-
sion or de-noising in signal processing. The idea is to set to 0 the wavelet coefficients which
are under a given threshold €. In compression, they are looked at as unsignificant : those
wavelet details are neglectible with regard to the coarse approximation Py f (where one ap-
proximates f by PyyJf, then makes a wavelet transform Pyysf = Psf + Z =0 PJ+£ f)-
In de-noising, they are looked at as unreliable because lost in the noise.

Many authors have investigated de-noising through wavelet coefficients thresholding.
Among them, we quote the wavelet shrinkage algorithm of Donoho and Johnstone [DON2].

These authors are interested in recovering a function f(t) on [0, 1] from the noisy data
ye=f (EN‘%—J—) + 025 where 0 < k < 2N+7 _ 1 and the z; are a white noise. They use the
wavelet transform on the interval of Cohen, Daubechies and Vial to get wavelet coefficients
(k) s <j<N+J—1,0<k<2i—1 and coarse scale coefficients (s,x)o<k<27—1. Then they make
a soft thresholding : @, = sgn(w; k)(] wjx | —t)4+ with treshold ¢ = +/2(N + J)o, and
compute from (; ) and (57%) the estimate f(£), € [0,1].

D. Donoho proved that this estimate is very near to be optimal among all measurable
procedures, provided we have an a priori regularity estimate on f. This near-minimaxity
result relies heavily on the fact that wavelets provide unconditional bases for many smooth-

ness spaces (as Besov spaces) so that wavelet shrinkage is a smoothing operator with respect
to those smoothness classes.
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Chapter 9

FURTHER EXTENSIONS OF WAVELET THEORY

In this chapter, we will say a few words on some generalizations of wavelet bases.
An immediate generalization is the notion of multi-resolution analysis with multiplicity
r : the space V; is no more generated by the translates of a single scaling function ¢,
but by the translates of r functions ¢;,+++,©,. Another generalization is the notion of
wavelet packets, which associates to an orthonormal scaling filter m a whole library of
orthonormal bases of L2(IR) together with a selection algorithm for finding the best basis
for a given signal. Such a best basis algorithm has been also developped for the local
sine transform of Malvar, which allows an adaptative time-frequency analysis, where one
constructs an adaptative segmentation of the time axis (whereas in the setting of wavelet
packets one constructs an adaptative segmentation of the frequency axis). Finally, those
best basis algorithms have been recently criticized by S. Mallat, who introduced a new
adaptative time-frequency algorithm, the so-called matching pursuit.

1. Multiple scaling functions.

An extension of the notion of multiresolution analysis was pfoposed in 1992 by Good-
mann, Lee and Tang [GOO] :

DEFINITION 1. - A multiple multiresolution analysis of L*(RR) is a family (V;)jez of
closed linear subspaces of L®(IR) such that :

(i) V5 C Vi1, Njexz Vi # {0}, Ujen Vi is dense in L?
(i) f(2) €V; & 1 02) € Vinn
(iii) there exists a finite number of functions @1,+--,on such that the family (p(z
£))1<e<N,kecz is a Riesz basis of Vp.

A natural example of such a generalized multiresolution analysis is provided by the
spline functions with multiple knots.

Multiple multiresolution analyses share many properties with the “classical” multi-
resolution analyses. (See for instance Chapter 4 where we deal with such analyses). The
scaling filter mg is replaced by a N X N matrix Mo(§); its properties have been studied
by L. Hervé in [HER].

However, besides spline functions, there is not so much examples of multiple multires-
olution analyses in the litterature. A striking example has been given by Hardin, Kessler
and Massopust [HAR] : they obtain continuous orthonormal scaling functions with a very
short support (N = 2, Supp p1 = [0, 1], Supp 2 C {0,2]).
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2. Wavelet packets.

Wavelet packets have been introduced in 1990 by R. Coifman, Y. Meyer, S. Quake
and V. Wickerhauser [COIM4]|. They have been developped as a tool for coding and
compression ; their use in analysis encounters some obstacles because of the lack of control
for the frequency localization of the wavelet packets [COIM2].

The idea of wavelet packet comes from the following remark : whereas scaling filters in
wavelet theory can be viewed as quadrature mirror filters, the algorithms for which the two
families of filters were introduced are very different in the splitting of the phase space they
are related to. In case of Mallat’s algorithm, Vj is splitted into V_; @ W_; : Vj is roughly
speaking a space of “band-limited” signals with bandwidth 27, and each V_; and W_;
have bandwidth 7 ; then one splits V_; into V_, @ W_, while W_; remains unchanged,
and so on. In case of the subband coding scheme, one splits the space of band-limited
signals with bandwidth 27 into two spaces of bandwidth 7, and then one splits again each
space into two subspaces, and so on. Wavelet packets were introduced as a description of
the intermediate algorithms between those two cases.

More precisely, let ¢ be a compactly supported orthonormal scaling function, with
associated scaling filter mo(£). Let m; be the associated filter : m;(£) = e™*mo(¢ + n),
so that one may define the associated orthonormal wavelet ¢ by $(2¢) = my (&)o(8).

DEFINITION 2. - The basic wavelet packets (w,(z))nen associated to the orthonormal
scaling function ¢ are defined by :

(1) W (€) = Hm% 2J) &( N), n_ze,za e € {0,1}.

=1

THEOREM 1. - Let V be the closed linear span of p(z — k), k € ZZ. Then :

i) For all ¢ € IN, the family (2~ /24, (2792 — k))o<n<2e,kcz is an orthonormal basis of V.
ii) More generally if [0 1) is decomposed as a disjoint union of finitely many dyadic intervals

[0,1) = Utn, q)EQ[ L, 2t1), the family (2792w, (2792 — k))(n,q)cq,kcz is an orthonormal
basis of V.

This theorem can even be generalized to infinite decompositions : in [COIM2], it is
shown that if mg(€) is the scaling filter of the Lemarié-Meyer wavelet then for each infinite
disjoint decomposition [0,1) = [, q){.;f, ,2t1) U D (where D is denumerable), then the

family (2-9/2w, (2792 — k))(n,q)c0,kez is still an orthonormal basis of Vo.
Proof of theorem 1. This theorem is obvious. mg and m; are two conjugate quadrature
mirror filters, this if w € L? is such that (w(z — k))kez is an orthonormal basis of a

space (1, then wo and w; defined by @ (2€) = mo (€)@ (&) and @y (&) = m, (€)@ (£) generate
1 z __ 1 z
orthonormal bases (%wok k) vz of a subspace {1g and (W“’l(z k))kez of a

subspace {23 such that Q = Qo Q5.
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Thus we may split Vp into V5,0 and Vp,1, then split Vo o into Vo 0,0 and Vo 0,1 and Vo,1
into Vo,1,0 and Vp,1,1, and so on up to step ¢. Then we have

1
Vo = @
(€15--+5€9) €{0,1}¢

VO,€1 3***3€q

and a basis of Vo,61,164

is given by (Z"Q/zwz: €j2,-..1(2”"7z — k))kez. Thus point i) is
proved.

Point ii) is very easy. We may choose for each Vo, ... e . to split it into two parts or
to keep it as a single space. Each finite partition of [0,1) corresponds to a finite sequence
of choices.

For instance, Mallat’s algorithm corresponds to the splitting

Vo = Vo,0® Vo,1 = V0,0,0 ® Vo,0,1 ® Vo,1 =+~

ie. Vo=V_yOW_No W-N«}jl @---BW_; withV_y = VO,e;=0,-u,eN=0 and W_x =

V0,61=0,e2=0,,exc -y =0,exc=1; thus [0,1) is split into [0, z%) U UY [&, &). In constrast, the

subband coding scheme corresponds to the splitting Vp = & Vo
(61,' v ’GN) € {01 l}N

€1, EN

N—'
and [0,1) = i:o 1[';173 %l)

e S The el B WA e packel ASS OO ATe A D AhE]
1.5 - 2 2 — 2
1 1 1 1
05 0 o4 0
0 -1 -1 -1
-05 -2 -2 -2
0o 10 20 o 10 20 0 10 20 0 10 20
WO (phi) W1 (psi) w2 W3
2 2 2 2
1 1 1 1
0 0 0 0
-1 -1 -1 -1
2 -2 -2 -2
10 20 10 20 10 20 10 20
w4 W5 ws w7
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What is the purpose of introducing such bases ? The idea is that wavelets are well
fitted to the analysis of localized singularities (as a Dirac mass for instance) but have a
rather poor frequency resolution ; in contrast, the subband coding scheme may focus very
well on a given frequency but at the cost of a loose space resolution. Now, having a whole
family of bases should allow one to choose for a given signal a “best basis”.

What is a “best basis” ? We consider a signal f € V, with finite length (i.e. Supp f
is compact, or f is periodical, or f is restricted to an interval,:--) and we would like to
compare the expansion of f onto two bases (ex) and (nx). The tool which is frequently
used is the entropy of the expansion :

B () = 1< 1 | e 5[ logs (L),

|<Flex >

If f is proportional to €x, then E(f, (ex)) = O ; otherwise

E(f,(fk))ZIIfllﬁlogz( I 7 Iz )>o.

Ml;ax|<f|€k >|2

Thus the entropy measures the concentration of the expansion of f onto (ex). The best
basis (inside a family of orthonormal bases) will then be the basis which minimizes the
entropy.

The best basis algorithm for wavelet packets is described in the book by V. Wicker-
hauser [WIC], and in many papers (see the talk of R. Coifman at Kyoto for instance [COI]).
The algorithm is based on Shannon’s formula for entropy : if a basis (ex) is decomposed
in (€x)kex, and (ex)rek, and the function f is decomposed in fi = Y p < f1 | €x > &
and fa =Y g < f2| €x > €k, we have obviously :

_ 2 | 13 21 ILS13
E(f’ (ek)) ” f1 ”2 log, ” fi “§+ ” fa ”2 log, “ 1 ug + E(fh(ek)Kl) + E(fz,(fk)Kz)-

Now if we replace (ex)x, by another basis (nx)x, for Span(ex)k, and (ex)x, by (nx)x.,
we find that the minimum of

E(fa (EK)Kx > (Ek)Kz)’E(fa (Gk)Kx ) (nk)Kz)sE(fa (nk)Kx ) (ek)Kz)’E(f’ (nk)Kn (nk)Kz)

is determined by the minimum of E(f, (€x)k,) and E(f1,(nkx)k,) and by the minimum
of E(fz2,(ex)k,) and E(f2,(nk)k,). Thus the strategy is clear : we have, at each level
K, spaces Vo, ,....cx and projections of f on Vp,e€1,--+,ex (which we note f,,....ey
27K < Flwn(2 Kz —k) > wa(2 Kz~ k), n = Y ¥ €;29-1 and bases be, ... =
(27 K/2, (27 Kz — k)). We begin at level L, with basis B¢, ,....c;, = be;, e, 10T Voe; o er5
then inductively define bases at level K from bases at level K + 1 by comparing F =
E(fey, s Deyyesexc) tO

| fey,eoexe I3 2
fer,oyex,0 ”§+ | Jer,oyex 1 ||z log, ”

| fer,ome I3

f€1 7"'s€K11 ”%

A =” fCly"':CK:O ”% 10g2 ”
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+E(f51 3y €K,0 551 ;"‘:5}{:0) + E(f€1 y"',éx,l’ﬂéx 3“':51{:1)'

If E < A, we keep B¢, ,....ex = bey,...exc 3 if E > A then we put fe, ..cic = Bey,ovrexc,0 U
Bey, - ,ex,1 (and we have E’(fel,...,5‘,{,13':1'._.’E , = A in that case).

This gives a very fast algorithm for the best basis selection, (due to the embedding
properties of the different spaces we deal with).

3. Local sine bases.

Local sine bases have been introduced in 1987 by H. Malvar [MALV] as a way to define
an orthonormal basis adapted to the windowed Fourier transform. (Remember that one
cannot find an orthonormal basis of L2(R) of the form g(z — k)e~%""* such that zg € L?
and g’ € L?). The Malvar basis can be defined in the following way : choose a window
function w such that w € C°(IR), Suppw C [-3,2],0 < w <1, w(l —¢) = w(t) and for
all t € [-1, 1], w?(t) + w?(—t) =1 ; we call such a function a Malvar window.

THEOREM 2. - Let w be a Malvar window. Then the family
(w(t — 20)) ez U (V2w(t — 28)cos(kt))sez,k>1 U (V2w (t — 2¢ — 1)sin(knt)) eez ko1

is an Hilbertian basis of L*(R).

Proof. We define W, by : f € Wy, if and only if f(z + 2£) € Wo, f € Waeq if and
only if f{z + 2¢) € W;, and :

1 3 11 1 3
f€Wo & Suppf C [= 5,51, 1(8) = J(~t) on [-3, 5, 1) = f(2—t) on [5, ]
3 b 1 3, 3 5
f € Wl had Suppf[:.ia 5]: f(t) - "'f(z - t) on [5’ 'i]: f(t) - "'f(4 - t) on ['é's 5]
L
Then wehave L2 = @ Wo,. The orthogonality between W, and Wy is obvious if
Lell

[€—8|>1;if£=2¢+1, we write for f €W, and g € Wy
e+1/2 ¢
/ fgdz = / £(2)3(2)dz = / (F(@)3(z) + £(2€ — 2)3(2¢ — 7))dz = 0
e~1/2 t-1/2

because one of the functions is symmetric around £ and the other one is antisymmetric.
The completeness is easily proved : write

f=2_ fXie-p,ery]
f1=v/A

o F@) X100 1)(®) + (2L = 2)X (o1 0111 (2)
= Z 5

+
cZ
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f(‘U)X{z——;-,H%}(x) - f(2t— ‘C)X[z-g,u-%](z)

2
=Y a=)

e

with

flz)+ f(4€+2—1z)

flz) + f(4 - z))
2

g2e(z) = X{ze—-;-,ze+-;-)($) ( + szg...%ﬂH%}(;c)

2
and
— fl4L+2— —f4l+4-
g2e+1(%) = X[ze—1,2¢43)(2) /(=) f(; +2-2) + X[ze43,2e+ (%) 1) f(?z * x)

4
We have g, € Wy, and thus L2 = @ W,.

Now we claim that w(t — 2€)) U (vV2w(t — 2€)cos(knt))kez is an orthonormal basis
of Wy,. We may assume £ = O ; we thus have to show that : T : u(t) — p(t)w(t) is an

isometry between the space of even periodical functions in L?(IR/Z) and Wy. But Tu € Wy
is obvious : on [—1, 1], Tu(t) = u(t)w(t) = u(~t)w(—t) and

Ti(1 - 1) = u(1 - (1 — 1) = u(1 - (t) = (=1 + (1)
= p(l+t)w(l +t).

Moreover, we have :

3/2 1/2
Jomue = [ e P a0+ e -0 P
-1/2

—-1/2

1/2

= [T 1u0 P+ aa -0 P (ince (- 1) = u(1+1)
1 2

~ [wera=3 [ luepe.

In order to conclude, we have just to check that T is onto. Define for ¢ € Wy,
ulp) =) ot —20w(t—20 + > (20— t)w(2t - t)
e Y/ A
we have
T(n(p)) = w(t) (Z ot —20w(t -2 + Z p(20 - t)w(2e — t)) ;
L cZ
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ift € [—1, %] this gives

T(u(p)(t)) = w(t)o(t)w(t) + o(-t)w(t)w(-t) = 2p(t) ;

if t € [-1, 3], we have :
T(u(f)(@) = w(t)e(t)w(t) + (2 — )w(2 — )w(2 —1t) = 2p(¢) ;

thus T'(u(y)) =
Similarly, (v2w(t — 2€ — 1)sin(knt))kez is an orthonormal basis of Woey1. Indeed,

S : p(t) — p(t)w(t — 1) is an isometry between the space of odd 2-periodical functions in
L*(R/Z) and W;. Thus, theorem 2 is proved. m

Malvar’s basis provides then an elegant solution to the problem of finding an orthonor-
mal basis for the windowed Fourier transform. We can have even a better basis : we can
adapt the basis to an arbitrary locally finite decomposition of R into intervals, as it was
shown by R. Coifman and Y. Meyer [COIM3] :

THEOREM 3. - Let (z;)jez be a sequence of real numbers such that z; < zji1,

1113 z; = +o00 and lim z; = —oo. Let (ej);ez be a sequence of positive numbers
§ 400 F—r—00

such that o + a;41 < Zj41 — z;. And let (w;);cz be a sequence of functions such that :

() Suppwj C [z7 ~ &, 7541 + @j41]
(i) on[zjt1— @jt1, T4 + 241, wilz) = w1 (22541 — 2)
(i) O0<wj<land 3 pwi(z)=1

Then the family p;i(z) = ‘/%+x~=; z)cos {%l}, J €Z, k€N, is an

orthonormal basis of L%(R).

Proof. Write f = 3 fw} = 3 fjw;, where on [z; + a;,z;41 — B5], f; = f,
on [z; — a,z; + o], fi(z) = f(z)w’ (z)+f(2x’~z)w (22:=2) and on [Zi+1 = 41,2541 +
ajq1), fi(z) = LelwilE)= f(2ﬁ+x—z)w, (2214, -2) (notice that on [z 41 — @41, Tj+1+ @j11),s
wj (z)w; (22541 — 2) = w:+1($)w:+1(2$:+1 — z) = w;(z)w;41(z)). We have

fiw; = &-z(ﬂ (Z f(z = £L;)(-1)*w; (= — LL;)

LeZ

+ Y (—1) w(2z; — z - LL; )f(zx,—x—eL))

e

where L; = 2(zj41 — z;), and thus each f in L? can be decomposed as }_ 5 g;w; where
g; is Ly -antl-penodlca,l and satisfies g;(z) = g;(2z; — z). Now, g; can 1tse1f be written as

k —
_ Z gj,kcos(z +1):rr(z "5.1)’
L;

keZ
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and thus the family ¢;x is complete. The orthonormality is obvious : ¢; ;7 k = 0 if
{ .7 '—j’ IZ 27

©5.k(2)0i+1,0(2) = =05k (22541 — 2)0j 41,0 (22541 — Z),

so that < ;x| pjp >=0if 7 # ' ; now if 7 = 5', we have

CcOS
; ZTity — Tj L; L;

- (wj(2)? + w;(2z; — z)*)dz
Ty — Q541 — . ! a— .
+ / i 2 cos 2k + V)7 (z x”)cos (2k' + 1)7(z — z;) iz
x

z5+ay — k' —
/@j,k@j,ktdm =/ 2 (2k+ V)n(z xj)cos (2K + 1)7(z — z5)

b Tj41 = Tj Lj L;
Ziq1 —_ | —_—
+ / 2 o (2k + 1)7{z — z;) cos (2K + V)7(z — z4)
zj1—ajer L+l — Tf Lj Lf

+(wj(2)® +ws 2241 — 2)%)dz

3 jm 4 (@k+1)mt (2K +1)nt

dt = 5k, ke
Thus theorem 3 is proved. m

The main interest of the above construction is the merging property : we may easily
delete the point z; in our subdivision of R by the following procedure : we replace the
windows w;_ (defined on [z;_; —;_1,7;+;]) and w; (defined on [z; —a;, z;41 +j41])
by the window w defined on [z;_3 — aj—1,Zj41 + aj41] by w(z) = Vw;_1(z)? + w;(z)2.
Then we have the following useful relationship :

1
Span (‘Wj (x)cos%l, ke ]N) @ Span ('U}j_.1 (z)cos (%;"(2“_(;—_?3“‘) ke ]N)

(2k+ )7 (z — z5_1)
2(zj 41 — Tj-1)

= Span (w(z)cos k€ ]N)

which allows, as for the wavelet packets, a best basis algorithm (based on Shannon’s
formula of entropy) for choosing the more suitable segmentation of IR for a given signal.

The references for this local sine transform and the associated best basis algorithm are
the same than for the wavelet packets [WIC], [COI] ; demo software for such algorithms
is available by anonymous ftp at Yale University (ceres.math.yale.edu).

4. The matching pursuit algorithm.
The matching pursuit algorithm was introduced in 1992 by S. Mallat and Z. Zhang
[MALL?2] for representing highly non-stationary signals, for which the best basis algorithms

described in the previous sections cannot be optimal.
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The idea is to expand a given signal in a small number of time-frequency atoms, and
in order to make this number of atoms as small as possible to select atoms that match the
different structures included in the signal. In the setting of best basis algorithms, one seeks
a global optimization of the entropy of the representation of the signal on a basis selected
in a given library, but this global optimization may fail to be efficient if the signal contains
very different structures : each structure may be better represented in its own basis. Thus,
after having determined a first component of the signal through the use of a first “best”
basis, one should analyze the remaining signal through a second “best” basis, and so on.
Then, one doesn’t deal with (global) bases any more, but only with superposition of atoms
of various shapes and properties.

The matching pursuit algorithm of S. Mallat is then the following one. Given a
separable Hilbert space H and a “dictionary” D, i.e. a family (ez)gep of unitary vectors
in H such that the linear span of the e4’s is dense in H, one tries to represent a given
f € H by a superposition of the eg’s by selecting the best ey that approximates f, and
then the best one that approximates the remainder, and so on ; since H is (a priori)
infinite-dimensional, this best e; may not exist, so we fix € (0,1) and seek eg4, such that:

|< fled, >|= asup |< f|eq>|
deD

and write f =< f | eq, > €4, +91 = f1+g1 ; then we define inductively g, (and fr. = f—gn)
by gn =< gn | €4, > €d, + gn+1 Where |< gn | €, >|> asup |< gn | e >| . Of course we
deD

have || gn [I5=|< gn | ea, >|* + || gn+1 |} ; and thus (writing f =g )

+co

D I<gnlea, >N FIE -

n=0

As a matter of fact, adapting a proof of Jones [JON] for the statistical algorithm named
the projection pursuit regression, Mallat and Zhang proved that || g5, ||z— 0 as n — +o0,
so that : ‘

+o0 too
f=Y <gnlea,>ea, and | flh=)_ I<gnles, >".
n=0 n=0

Moreover, though the summands are not pairwise orthogonal, we have the following control

on the partial sums
n—1

fa=Ff—gn=)_ <ogxles >eq
k=0

+o0
17— Fa =l gn = )_ 1< gr | €0 >

k=n

The dictionary used by Mallat and Zhang, called “the time-frequency atoms”, is the

collection of the functions
1 t—u ;
gs,¢,u(t) = 7 ( . ) ettt
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where g is a fixed single window function in L?(IR) (usually a Gaussian). Thus, we have
a family of analyzing functions which is invariant by translations, dilations (as for the
wavelet transform) and modulations (as for the windowed Fourier transform).

Of course this family has to be discretized in order to get an implementable algorithm.
(Mallat chooses the dyadic sampling for the scales : s = 27 (5 € ZZ), the related uniform
sampling for the frequency : ¢ = k277 (k € Z) for s = 27, and as uniform sampling
u = kb for the position, where the mesh §, corresponds to the initial sampling mesh for
the analyzed signal).

As a conclusion, let’s have a few words on complexity. For a given signal of size
N, we can compute its wavelet transform with an O(N) complexity ; if we compute its
representation in the best basis (in the wavelet packets library or the local sines one),
we need an algorithm with complexity O(N log N) to find the best basis. Of course, the
matching pursuit algorithm requires much more computations : -+

It means that we have to pay a high cost when we want to develop a time-frequency
analysis of a signal with no a priori informations (i.e. a signal whose structural components
are not assumed to belong to a given family of signals). Reversely, in signal analysis,
one often analyzes a well determined class of signals (having a physical meaning) and
one reduces drastically the computational cost by choosing a devoted family of analyzing
functions instead of an universal one. It means that the dream of an universal time-
frequency algorithm is probably just utopistic, and that the collection of wavelet bases (or
algorithms) is much wider than the one we reviewed in those few pages.
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Chapter 10

SOME EXAMPLES OF APPLICATIONS OF WAVELETS
TO ANALYSIS

In this concluding chapter, we give some examples of how wavelets can be used in
analysis. Of course, this is not an exhaustive treatment of the applications which have
already been developped. ,

We focus on two points. The first one is the analysis of the so-called Calderén-
Zygmund operators. We prove the T'(1) theorem of G. David and J. L. Journé and expose
some properties of the paraproduct operators (including the div-curl theorem).

The second point (which will be only sketched) is the local analysis of the Riemann

. 2 . . . .
function §_7° Zye!™ %, which has been an important test function for wavelet tools in
microlocal analysis.

1. Wavelets and para-products.

Para-products have been introduced by J. M. Bony [BON] as a tool for the study of
propagation of singularities in non-linear PDE’s. They played a key role in the study of
Calderén-Zygmund operators [DAV]. In the setting of wavelet theory, the para-product
7(b, f) for b € BMO and f € L?*was defined by Y. Meyer as :

2d..1

(1) =(,f)= Z Z Z 258 < b | Ya(2z—k) >< f | (22— k) > 9o (272 — k)

JEL ket a=1

for a basis of orthonormal wavelets (2/%/2%, (22 ~ k) ;e kezé 1cacad—1 of L2(R?) with
an associated orthonormal scaling function ¢ such that ¥, and ¢ have rapid decay in
L*(R%) and belong to the space C¢ for some € > 0.

We are going to use a generalization of such operators :

PROPOSITION 1. - Let B be a set of functions in L?(IR%) such that :
(i) for all f € B, Supp f C K (where K is a fixed compact set) ;
(ii) there is an € > O such that for all f € B, f € H® and || f ggcﬁ landlet Bo={f €
B/ [ f dz = 0}. Then if (o), (B k) (Vi,x) (J € Z, k € Z°) are families of functions
in B (in By for Bk, 7;,x) then for all f € L? and b € BMO(R?) we have

(2) YN 24 b | Bia(2z~ k) >< f | a2z — k) > (@ - k)| <

JEZ kcd

Cs || b lemol| £ |2

388



where Cp depends only on B (i.e. on K and ¢).
The proof lies on the following lemma :

LEMMA 1. - Let Q; x = {z/2’z — k € [0,1]%}. Then we have for all open set 0 :

(3) Z szd |<b|Bik(2z— k) >|*< Cs || b |Bmol O
Qi CO

where Cp depends only on B.

Proof of lemma 1. If {1 in an open set such that Qi C 0= Supp B; k(272 — k) C Q,
we have, writing b= (b — ‘—é-!- Jabdz)xg -

I= Y% 2¢)<b|Bix(@z—k)>P= T 27¢|<b|B;e(2z—k)>|*.
Qj,k cnN Qj,k cn

Now, we apply the vaguelettes lemma (theorem 3 of chapter 2) to see that

1<) N 27 |<b|Bin(@z—k) >P<Cp |B1E< Co | Q| b |Emo -
FEXL kcZe

Thus it is enough to show that we may choose £l with | £ |< Cp | | . Choose M such that
K c [-M,M —1]¢ and decompose {} into maximal dyadic cubes (I = U, ko) @io ko~ I
Qjk C Qjo,ko» then Supp B C {1, ,k, Where Q) x, = {z/2%z — ko € [~M, M]?} ; thus
we define 1 = U(J’o,ko)e A o ko and we see that we have

181 ). @M)?| Qo = 2M) | Q).
{Fo,ko)EA

Proof of proposition 1. We apply again the vaguelettes lemma to see that :

J = Z 2%7d < p i ﬁ,-,k(zfz—k) >< f l a,-,k(zfx - k) > ’Yj,k(2j.’z~— k)
k

.

7

<Cp . 2% < b| Bin(2iz — k) >P|< F | aji(2iz— k) >P2.
J kK

2

Now, we define . .
e*(z) = sup 27%|< fleyx(2iz—K) >|.

zCQ7,k

Since ajx € H¢, we have a;; € L™ with 0 < 7 — 1 < 28 hence writing L + 1 =1 (with
§<2) :

24 |< f | (2 z — k) S|< (279 / | £ 1* do)tec,,

Oy,
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hence

i/s
« <o (k- Lise i) =Ciile)

zeQ

and
| e* 2 C |l foll2<Cs | fl2-

Now we define 0y = {z/a*(z) > 2V} and Wy = {z/2V < o*(z) < 2V*1}. We have :

Z22N|WN|5/a*2dzg4222N|WN|

NeZ NeZ

and

S 2N janl= Y Y 2N [Wkl=§ 3 2 Wil

Nez NeZ K>N KezZ

We define moreover

Aw = {0, k)] 2% |< | ajp(@z— ) >|e (2N, 2N 4]},

Then
(4,k) € AN = Q;x C Qln,

hence

D> 2% <b| Bz — k) >PPI< f | eiu(Zz ~ k) >
i k

<Y 24 <b| BRIz k) >[? 4N

N (j,k)eAN

<Y 198 4970 | b Ao (by lemma 1)
N

<C"| b |l&moll @* |2 and Proposition 1 is proved. m

COROLLARY. - Under the hypotheses of Proposition 1, we have that

(f,9) = DD 250 < f | aju(2z— k) >< g | % (22 — k) > B (27 ~ k)
i Kk

is a bounded bi-linear mapping from L* x L? into the Hardy space H(RR%).

Proof. Since H!(IR?) is the dual space of VMO(IRY) = (% (IR%) BMO(RY)  this is deduced
by duality from Proposition 1. m

We then obtain the following nice result of S. Dobyinsky [DOB] :
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THEOREM 1. - Let (V;), (V) be two bi-orthogonal multi-resolution analyses of L (RY)
(associated to dya.dzc dxlat:ons) such that they have dual compactly supported scaling
functions ¢,p* and p,p* belong to the Holder space C¢ for some € > 0. Let (¢4),

(¥a)1<a<2¢—1 be associated compactly supporied dual wavelets. Then for any f,g €
L*(RY)

241

a(f,9)=fa— > D, Y 2Y9<f| a2z —k) ><g|Pa(Pz—k)>

a=1 JEZ kcZ?

Pa(2z — k)PL (27 z — k)

belongs to the Hardy space H!(IR?), and g(-,-) defines a bounded bi-linear mapping from
L? x L? to H1.

Proof. We write ¢(f,g) = A1(f,g) + A2(f,9) + As(f,g), where :

291 j-1

As(f,) = TS E T ¥ vt <0 <ol e B>

a=1 jeZ ke f=1 l=—o00 rcZ4
Yp(2tz — )95 (P z — k)
291

_Y Y Y S <t (@n—p) ><g|Pal@z—k) >

a=1 jEZ ke pcus ) i
p(2'z — p)P5(2'z — k)

2¢1

Az(f.9) = DD Y <SPz -k ><g|p(@z-p) >

a=1 jEZ kcn? pcZd ‘ )
Ya(2z — k)5 (22 — p)
A 21 21 92jd “(2iz —k
3(f,9) = 3o JEZ Zkezd E pEZ,(8,p)#(,k) <flos(2z—k>

< 9| Bp(@z - B), a2z — KBz — p).

Now we may apply the corollary of Proposition 1 to each term Ay, Az, Az to conclude.
If we assume only p,p* € H¢ (instead of C¢), theorem 1 is still valid provided that
moreover for all k € Z4, ©(z)@*(z — k) belongs to H¢. For instance, theorem 1 is valid for

the Haar basis (p = ©* = xjo,1¢). ™
2. The div-curl theorem.
The Hardy space H1(IR%) enjoys much better properties than L*(IR%). For instance,
it is a dual space and thus enjoys weak compactness properties which are useful in analysis.

A striking example for the study of Navier-Stokes on Euler equation on IR? is discussed
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by Evans in [EVS]. A key tool is then the div-curl theorem of P. L. Lions and Y. Meyer
[COIL) :

THEOREM 2. - If f,g € LL _(R?) are such that Vf, Vg are square-integrable, then
%{?%% - %‘5"2‘% belongs to the Hardy space H!(IR?) and

| 328y Byaz ¥ < C Y VS |l Va2 -

Proof. We adapt here the proof by S. Dobyinsky [DOB]. We select a bi-orthogonal multi-
resolution analysis of L2(IR) with compactly supported dual scaling functlons ©,*, and
compactly supported wavelets 1, 1*. +11\/Ioreover we assume that ¢ € C’l"fe * e C¢, and
write § =3 4509 (z— k), 8" = [ZT e (t)at, P(z) = ¢'(z) and ¥* = f tl) (t)dt We
assume all these functions to be real—valued

We note ploh0] = oo oLl = 3 Hlhio] = o HILI = ), HHObIO] = | H*OhI1) =
o*, *[1] o] — v*, 0 *[1],{1] — wa« a.nd

so;f;:;ez)(ﬂx M) 2.7 €x]{m](2f$ _ kl)pliz][nzl(ziy _ kz)

and the same for ¢} *(se2)(mm2) Then for each (n1,72) € {0,1}2 we have bi-orthogonal
bases of L?(IR?) given by :

{ex,€2)(m ,7?2))

(o5% FETKET? (e1,62)#(0,0)1

( *(e1 €2)(m mz))
Pk FETKETS, (eg1¢0) #(0,0) "

Thus we know that if &, 8 € L, then q(y, n,)(e, 8) € H*(IR?) where

An1,ma2) (a’ﬂ) = aff — Z ZZ < l (ng}t,ﬁz)(ﬂl,ﬂz) >

(e1,62)#(0,0) 7 &
< ﬁl *(51,52)('71,7)2) > (p(fl,fz)("h,ﬂz)(p;‘,(lsx,Ez)(ﬂx,ﬂ'z)

(by theorem 1). We then write :

85 dg afag af dg

af o9

)+

We thus have to show that the remainder R belongs to H 1(}Rz) We rewrite R following
the rules : :

0 .
< };i- l -5'?’;21);20’"2) >=2 (< fl 90§°éi32§‘i!l”’ >—<f| @ﬁ?éjz,:)cil’"z) >)

f | (1,e)(0 o
<%z | {521 O0m) > —9d < £ | pie)tne) >
0
< 5’% | 99:,(}?:12:3(1,712) >=27 (< gl p*(olfzz(o,nz) >—<g] 9,*(0 ?252;'12) >)
Bg *(1, s . «(1, o,
< 3z e ma) 5 97 < g | p3{be)Oma)
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and similar rules for %5 and nz =0, or é% and n2 = 1. Thus, we obtain :
B =3 e ) #(0,0) 27 Lok 4 <7 80(5”5’)(1 D scgl 90*(“ €2)(0,0) > 22w, ) (272 — k)

with
¥ o —(z)Y* (2)B(v)6" (v) + ¥(=z 5,)80(?9"*'1) *(y+1)
W)= (@) (@) ()w (v) - w(m) "(@elv-1elv-1)
vioy = @2 @I W) + (e = 1e* (=~ 1)b(y)d* (v)
DT 15E@)" (@ W) () ~ Bla+ 1" (= + ()" (v)
and

w(,1) = —¥(2)9* (2)$©)P* (¥) + $(2)9* (2)(¥)¥* (v)-

Now, the wy, ,) are compactly supported, C¢ and have mean zero :

//w(eh@)(x,y)dz dy = 0.

Thus they belong to Bf’l and we have :

H R HB?J <C Z 224.7' i< f ! §0§fi’€2)(1'1) ><g } <‘03(‘51,453)(0 ,0) >‘
(51 152)75(0’0) J k

1/2
sc( Y XA ey >12)

(e1,e2)5#(0,0) 7 &

1/2
( > YA <] >12)

(e1,e2)#(0,0) 7k
SC Vil Vo lla -

(We have used the following easy corollary of the vaguelettes lemma: ifw € C*¢ is compactly
supported and satisfies [ w(z,y)dy = [ zw(z,y)dy =0, then

224’ |< 1 Zw(@z - k) >*< II Hz)

j
Since BY"'' ¢ H'(IR?), theorem 2 is proved. m
3. Calderén-Zygmund operators.
Paraproduct operators « (b, -}, with 5 € BMO, are examples of a wider class of opera-
tors which we have already encountered : the Calderén-Zygmund operators.

We recall some basic definitions on this topic.
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DEFINITION 1. - A singular integral operator T is a (bounded) linear operator from

C(IR?) to D'(IRY) such that there exists a continuous function K(z,y) on R x R%\{z =
y} such that :

(i) Vf e CP, Vge C® withSupp fNSuppg =0, <Tf|g>= [ [ K(z,v)f(y)§(z)dzdy

(i) For a constant C and for all (z,y) € R® x R?, z # vy, | K(z,y) |< C’T;;}a;

(ili) For a constant C, a constant 6 € (0,1] and for all (z,y,2) € R? x R? x R? such that
z#yand|z|<i|z-y]:

5
z
| K(z,y+2) — K(z,y) | + | K(z,9) — K(z+ z,9) |I< C'r;‘_—-z;l—l—d_;-g.
The kernel K describes the behaviour of T for functions f,g with disjoint supports.
If we want information near the diagonal z = y, we have to introduce another estimate :

DEFINITION 2. - A singular integral operator T is said to satisfy the weak boundedness
property (which is written “T' € W BP”) if there exists a compact set Ko with non-empty
interior, a constant Co and a number N such that for all f,g € C3° with support included
in Ko, all zo € R® and all A > 0 :

(@) 1< Tl /20 | 52502 >1< G0 Y 15 oo 30 11922 o -
fa|<N la|<N

The last definition we shall need is the definition of the distribution T'(1) associated
to a singular integral operator.

DEFINITION 3. - If T is a singular integral operator with kernel K{z,y), then T(1) is
the linear functional on

Do = {g € C®(RY)/ [ ¢dz = 0}
defined by :

) <TWlo>=<Txs) 19>+ [ [ Kz - K(zn)a@)1 - xo(0))dody

where X, is any function in CZ° such that x; = 1 in the neighborhood of Suppg and x4 is
any point in Suppg.

(Of course < T'(1) | g > doesn’t depend on the choice of x, or z,).
A Calderén-Zygmund operator is a singular integral operator which can be extended

as a bounded operator from L? to L2. Such operators are characterized by the celebrated
T(1) theorem of David and Journé [DAV] :

THEOREM 3. - Let T be a singular integral operator on R%. Then T has a bounded
extension on L? if and only if T € WBP,T(1) € BMO,T*(1) € BMO.
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Proof. The necessity is a classical result : if T is a Calderén-Zygmund operator, then T
maps L* to BMO, Hence T'(1) € BMO(and T*(1) € BMO). For the converse implication,
one may assume T'(1) = T*(1) = O : indeed replace T by Tp — n(T(1), ) — n(T*(1),-)*,
where 7(b,-) is the paraproduct operator with b € BMO. We have already seen that
n(b,-) € L{L?, L?) and it is obvious that x(b,-)(1) = b in BMO.

Now, we use a wavelet basis of L2(IR%) (2/5¢(27z —k)) (1 < e <20 —1,7 € Z,
ke Ed), such that 1) € CV¥ and is compactly supported (where N is given by condition
(4) of weak boundedness property). T(27%t(2'z — k)) is thus well defined. We are
going to show that we may apply the vaguelettes lemma to the family (T'(27 %¢€(2f:z: -
k))1<e<2i-1,jem keze (and thus obtain the L?-boundedness of T).

Because of the invariance of (4) or of the estimates on the size and the regularity
of K through dilation and translation (the operator T' and A;"jﬂo T A, z, satisfy the same

estimates, where Ay ;,(f) = A’gf(—x:r”l)), it is enough to prove that [ T¢¥.dz = O,
T(¥e) € L*((1+ | z |)2+*dz) N H* for some o > 0 and that :

1/2
(fusi+n®iTwa P ds) " +1 7060 s O,

where C; depends only on

_ d+-§
Ny K@) o sup P2 K(oy) —~ K(my+2) ||,
z<i(z—y) !zl
wp | K2 - K [ Ko
a<i-n| 2] |

and

sup sup sup
A =z f,gCCP (Ko)

{ 2 < T(F(25%)) [ 9(252) >| } .
Liaten | 53L lloo iajen I| 522 lloo
Now, this can be easily shown :

e [ T(3e)dz = 0 because T*(1) =0
¢ If Supp ¥ C [-M, M]? and | z |> 2M, we have :

T(e(a)) = [ (K(z,3) - K(z,0)(s)d,

and thus
‘ y ‘28 1/2 , 1
| T(e) () <] Ye ll2 (/[__M’M]d C’m@) <O e |2 Tz |8
and thus

[ |z |7 T(6)(z) P dz < -+oo.
jzl>2M
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e The next step is to show that for f,g,h compactly supported functions of class CN we
have :

6)  <T(f) |h>—<T(f) | gh>= [ [ K(2,9)(0(v) — 9(2)) £ (0) h(2) dz dy

as a consequence of the weak boundedness property. Indeed, if we use a resolution of
identity 3, gza(z—k) =1withp € €% (R?), we have

<T(fg) | h>
= X > [ [ Keiwetietas - BREe(az -~ dazdy
Supp p{Az—k) NSupp p(Az—&)=0
+ D Y <T(fep(Az—K) [h-p(dz—8) > ;

Supp p(Az—k) NSupp p(Az—L)#0
the second sum is rewritten as

2. Y o) <Tre(ar— k) | holaz -0 > +
Supp w{Az—k) NSupp p{Az~E)#D X
S <T(-a(ENe(as - K | he(az -0 > .
A

Supp @(Az—k) NSupp ¢(Az—£)#0
Due to the weak boundedness property, we may estimate the last sum by C(| supp f |
A79) . A1 . A? where A~ corresponds to the number of indexes in the sum, A~ to the
norm of ||g(2%k) — g(£)|| v (4 > 1) and A? to the weak boundedness property. Letting
A go to +oo, we obtain (63‘
¢ One sees easily that if w = 1 on a neighborhood of 0, then ||T(w(2522)) ||, < C where
C doesn’t depend on z5 or A : just use T'(1) = O to see that on a neighborhood of z,
I — Io

T@(E52) = Caur = [ (K(a3) - Klzouu)) (1 - w(L522))dy

and estimate the constant C;, ) through the weak boundedness property.

o Thus we see that T'(),) is bounded : if w =1 on Supp ¢ then

T(e) = PeT(w) + / K(z,9) (be(y) — e(2))w(v) dy.

¢ Now, we just have to see that T'(¢) € H* for a € (0,6). Indeed, if z and h are given
in R*andw=1ona neighborhood of both z and z + h, we have :

Th(a+ k) = Telz) = [ (K(a+hyy) = K(@0) (ely) = ()1~ wl))dy
- [ K@+ h,9)(0o) - velo+ Wu()dy

+ / K (2, y) ($e(v) — te(2))w(y)dy
+ (Ye(z + k) — ¢(z))Tw(z).
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Hence we have (choosing 8 € («, 6) and 7 € (0,a)) :

&
~——“—‘-'—lm | $ely) — el=) | dy

lz—y|>2ih] | T =

e /lz-yl>5]hl oy | v mvede) [y

| Tpe(z) — The(z+h) | < C

1
e /1=—yl<5lh| lz+h—yl? | $e(y) — Ye(z + ) [ dy

+ C | Ye(z) — e(z + h) |

<c’ LR ) — () P d
SO\ ey To =y 777 | #0) — @) [Py

h |27
’ /lx—yksm EJ—_S}‘—FE | $elv) = vela) [* dy

* / a | Ye(y) — Ye(z+ R) |> dy
!

z—y|<5|h] l z+h—y Id+27
+ | Ye(z) — Ye(z + h) 12}1/2

~ and obtain

[ [ 1760@ -0+ 1) P dory g <

dz dy

2

C'l// | Ye(z) — Ye(v) | o=y
Thus theorem 3 is proved.

Another way to prove theorem 3 when T'(1) = T*(1) =0 is to estimate the size of
the coefficients of the matrix T in the orthonormal wavelet basis (27%9¢(27z — k)), i.e. to
majorate

|< T2 8¢ (2z — k) | 27 Eper (27 2 — k') >

As a matter of fact, one can apply Schur’s lemma on the coefficients of the matrix of T,
even when one uses the Haar basis instead of a CV basis [COLJ]. Moreover the Haar basis
can be easily modified to prove the T'(b) theorem (where the test-function 1 in theorem 3
is replaced by a para-accretive functions b).
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4. The Riemann function.

Riemann’s function Z —1 57 1 givn®t wag proposed to Weierstrass as an example of
continuous and nowhere differentiable function. But neither Riemann nor Weierstrass
could prove its non-differentiability. In 1916, Hardy proved the non-differentiability on
irrationals and on a certain class of rationals. Then in 1970, J. Gerver proved very surpris-
ingly that the function was indeed differentiable on rationals g— with p and ¢ odd numbers
and non-differentiable elsewhere.

M. Holschneider tried to give a wavelet based proof of the result of Gerver. He
used the continuous wavelet transform of J. Morlet, with the ana,lytlcal wavelet ¢(t) =

o0

W [HOT]. Then the wavelet transform of W(t) = L™t is the function

n=l n?
F(b+ia) = Coa®/?(8(b + ia) — 1), where 0§ is the Jacobi function 8(2) =1+2) " itz
Since | 8(b + m) |< Ca=/2 for a < 1, we find that W is 1/2-Hélderian.
Now, if z is irrational, Hardy and Littlewood proved that for some sequence of positive
numbers a, — 0 and some posmve constant C we have | 0(z + zan) | a/* > C, hence

| F(z + tay) |> C w i=c anan and W cannot be better than C% at z.

For the rational points, one uses the theta group Gg generated by K2 : 2z« z+1 and
U:z— —1, The rational points are split in two orbits : the orbit of 1 consists of exactly
the ratlonal % with p and ¢ odd numbers and the orbit of O is the rest. The réle played
by G comes from the well-known formulas :

8(K2%2) =0(2) and 8(Uz) = V—izb(2).

At any point z of the orbit of 0, we have

+0(Valb +ia) )

wies

a20(z + b+ ia) = Cya

b+1ia

where the constant C, is given by Co = 1, Ck2, = C, and Cy, = \/%‘Cz. The idea is

to compare this formula to the wavelet transform of C; |t — z |2 +CF |t — z [§, with
CF = elav0r,
One find that such a transform is given by :

NG
SR + & 1
To(z+b+ia) =CoClaz (b+ia>

so that we may write
W(t) =05 |t—z[Y? +0f [t—z Y% +o(t).

The remainder is indeed differentiable (since it has wavelet transform 0(y/a(b + ia) $—).
The orbit of 1 is even easier to handle. Indeed, we have

a3 0(1 + b+ ia) = a? (20(4b + 4ia) — 0(b + ia));
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and developping around 0 we find that the principal part is 0, so that
a%6(1 + b +ia) = 0(v/a(b+ ia)2¢).

Thus M. Holschneider, in a joint work with Ph. Tchamitchian, could give a wavelet-
based proof that :
) W) is Ccl/?
i) W{(t) is not better than C3/4 at any irrational
i) Wit+z)=Cl|t—=z 13_/2 +C7 |t —z |Y* +W () + agt + o(t) for z on the orbit
of 0 under Gy
iv) W is differentiable at z for = on the orbit of 1 under Gy.

This result was recently improved in two divergent directions by Y. Meyer and S.
Jaffard.

Y. Meyer made a more precise analysis of the behaviour of W on the orbit of 1 [JAM
: if = is on the orbit of 1, then

Wet1) =0l + Y0 18 [ () + 3 16 [FFon(3)
n20 n>0

where v € C®°, v} are 27-periodical functions, f02 " v%dt = 0and v} € C3t". This “chirps”
expansion of W is based on the wavelet transform of W performed by Holschneider and
Tchamitchian, and on the ridge and skeleton extraction algorithm of Torresani [TCH]
which was introduced for the wavelet analysis of asymptotic signals. For such signals, the
signal is directly recovered as the restriction of the wavelet transform to a subset of the
time-frequency space, called the ridge of the transform.

S. Jaffard on the other hand drew his attention to the irrational points [JAF5]. He
proved the very beautiful following result :

Fzg @ andif gf:- is the sequence of its approximations by continued fractions, define

7(z) =sup(r/ |z — *Z——:— |< =L for infinitely many m’s such that p,, and ¢,, are not both

L
odd}.
Then :
i) e(z) = § + g5¢zy Where o(z) = sup{B/ lim sup %ﬁn < +oo}

y—z

#
ii) the Hausdorff dimension d(e) of {z € R/a(z) = a} is given by :

W

dla) =4a—2 for - <a< -

[
.

=0 elsewhere,

(We may write as well d(a) = 2 where 7 is the common value 7(z) of those z such that
a(z) = a).
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His result is based on the microlocal analysis by wavelets [JAF3] (transformed into

a tool for multifractal analysis in [JAF4]) applied to the wavelet transform of W(t) of
Holschneider and Tchamitchian.

Thus the original ideas of Holschneider led eventually to a deep renewal of our knowl-

edge of the Riemann function, due to the new technology developed recently in microlocal
analysis.
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