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PREFACE

Notre thése principale fait 1l'objet d'un ou-
vrage publié en deux volumes (659 pages) dans la
collection des Springer Lecture liotes ([12],[13] ).

Le texte qui suit reproduit, avec 1l'aimable
autorisation de Springer-Verlag, un exposé extrait
des comptes rendus d'un collogue de Géométrie
Algébrique qui s'est tenu & Halifax (Canada) en

janvier 1971 (Toposes, Algebraic Geometry and Logic,

Lecture lotes in Mathematics 274, 12972). Cet exposé
constitue un résumé assez counlet des résultats

gui forment le coeur de l'ouvrage cité supra.

Paris, octobre 1972




COTANGENT COMPLEX AND DEFORMATIORS OF TORSORS AND GROUP SCHEMES

by Lic Illusie (¥)

In this exposé we outline some applications of the cotangent complex .
to obstruction problems concerning the first order deformations of
flat group scheues locally of finite presentation and’of torsors under such '
groups. An enlarged version with d;téiled proofs will appear in [130 + The
results presente& here were conjectﬁred by Grothendieck in 1968 and 1969.
Those dealing with deformations of flat commutative group schemes play an
essential role in recent work of his and W. Messing on Barsottiufate
groups ([ll], [163).
In § 1 we recall some basic facts about cotangent cémplex theory.
For details the reader is referred.to El%}. The m#in resuit concerns the
obstruction to the first order deformation of a'flét ringed topos. Thanks
to & generai method of deformation of diagramse which owes much to Deliw
gne's céhomologiéal descent theory (8GA 4 V1), we can apply this result
~ to the problems mentioned above. The diagram we use to handle the' ‘
deformations of flat commutative group schemes with ring of operators was

suggested to us by L. Breen's recent work on the structure of Extl(Ga,Ga) (Eﬂl. 

1. Review of cotangent complex theory.

1;1' To éach map of schemes (more generally, 6f ringed{topoi)»’
f @ X ¥
is associated é chain complex of flat QX~Modules, denoted by
Lysy |
end called the cotangent complex of £ {or X over ¥), which generalizes

in & natural way the complex associated by André @J and Quillenl?&]rtQ

(*) part of this research was done while the author was supported by M. I. T.
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a map of rings, It is augmented tewards f)i/y, the sheaf of K&hler
differentials of f, the augmentation eatablishing am isemorphism
~, 1
B (Ly ) =242 X/1
1.2, Suppose f is a morrhism of schemes., Then the homology sheaves
R 1
Hi(LX/Y) are quasi-coherent O ,-Modules. If f is smooth, {QX/Y is locally
free of finite rank and the éugmentation LX/Y ——*.(Zi/y is a quasi~-isomorphism
(the converse béing true when f is local1y of finite presentation). If f is
a locally complete intersection map in the sense of Berthelot (SGA 6 VIII 1),

then, in the terminology of (SGA 6 I 4.8), L is of perfect amplitude

X/Y
[ [-I,Q) s which means that LX/Y is locally isomorphic, in the derived
category D(X), to a complex of locally free sheaves of finite rank concentrated
in degrees -1 and O .(The converse (due to Quillen) is true provided that

Y is locally noetherian and f locally of finite type.) Finally, suppose f
admits a factorization

] ]
E SN f > Y ,

X
where f' is formally smooth and i is a closed immersion defined by an

Ideal I . Then, in D(X) there is a canonical isdmorphism

d

t g Ty py) = (0 — 112 4 ¥ 1

Xy 0

where i!(fzi,/y) is placed in degree O, d is induced by the universal
. : . 1
derivative dX'/Y : 0y -—».SQX,/Y , and t[p(L)’ for a complex L, denotes

ihe complex deduced from L by killing Hi(L) for i<{n, namely

1 2

(0 — L%/B" — 17" — 1M — ),

1.3, LX/Y depends functorially on f in the same way as fZi/ « This means

Y

that each (essentially) commutative square of ringed topoi
X B x

(1.3.1) f l l

Y & ¥
gives rise to a map of complexes

*® .
(1.3.2) g LX/Y —_— LX_'/Y'
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these maps satisfying a certain coherence condition relative to the composition

of squares. Note that ggL = Lng

%/Y in D(X) since the components Of'LX/Y

X/Y
are flat.

Proposition 1.3.3 (base change). Suggose {1.3,1) is defined by a cartesisan

square of schemes such that Tor. (OX’O ) = 0 for i>0 (which is the case

for example if X or Y' is flat over Y). Then (1.3.2) is a guasi-isomorphism,

104. Let .
£
{(1.4.1) X ez Y e

be maps of ringed topoi. Then there is a canonical, exact triangle in D(X)

(1.4.2) / \

t* LY/Z “—~——€>I.

where the maps of degree O are those defined by'functoriality of the

cotangent complex. It is called the fransitivity triangle. It depends

functorielly on {1.4.1). The map of degree 1 in (1.4.2) is sometimes denoted

by K(X/¥/2), and called the Kodaira-Spéncer map (or class). When_(l.ﬁ.i)

"is defined by smooth morphisms of schemes, K(X/Y¥/2) coIncides with the

usual class in H (X,T 3 f*?ly/z), where T is the tangent sheaf of f

X/Y X/Y

(dual of S)X/Y

1.5.  Let f X ~> Y be a map of ringed topoi, and let M be an waMcdulet

By a Y-extension of X by M we mean a factorization

X...._i....)xr
fl/
Y

where i is’an equivalence cﬁ the undérlying topoi and on the rings indﬁéeé
a surjective map QX' - gx whose kernel is of>§§uare zero and isomorphic
to M as én‘QX-Module. Maps of Y~extensions are defined in the obvious way.
Note that if f is defined Sy‘a map of schemeskand M is qugsi—coherent, then

the above factorigzation comes from a factorization in the category of schemes, -
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The interest of the cotangent complexrin the theory of deformations comes
from ¢

Theorem 1.5.1. There exists a canonical, functorial isomorphism between the

set of isomorphism classes of Y-extensions of X by M, equipped with the

group structure defined by the usual addition law on extensiohs, and the

group Extl(Lx/Y,M). Moreover, the group of automorphisms of any fixed Y=

~extension X' of X by M is canonically isomorphic to Exto(LX/Y,M).

(The last part is, of course, a trivial consequence of the isomorphism

o
Ho(LX/y)”’"'QX/Y (1.1)).

1.6, Consider a commutative diagram of ringed topoi

X.—-—é;...—}x!

e

(1.6;1) » oy ___i_mg»yt

L

8

where j 48 an S-extension of Y by some QY—Module J and i is a Y'wextension

of X by some QX—Module I , Such a diagram defines & map of Qx~Modules

s

() % — 1

We shall call f' a deformation of f over Y' if () is an isomorphism. If f
is flat, then any deformation f' is automatically flat, as a result of the
well~known flatness criterion, The key result in deformation theory is the

following, which is a formal conseguence of (1.4) and (1.5.1) :

Theorem 1.7. Let

X =ty s s

be maps of ringed topoi, and let § : Y ~—> Y' be an S-extension of Y by

&n Oo-Module J . Then 3
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(1) There exists an obstruction

%)

whose vanishing is'neceSSary and sufficient for the existence of a deformation

£t of £ over I!

(i1) When o{f,j) = O, the set of isomorphism classes of deformations

£t is an affine space under Extl(LX/Y,f“J) end the group of automorphisms of

a fixed deformation is canonically isomorphic to Exto(LX/Y,fKJ).

(ii1) The obstruction (f,J) can be written as a Yoneda cup-product

w(£,3) = (£%e(3))REX/1/8)

where K(X/1/8) e Extl(Lx/Y,foY/s) is the Kodaira-Spencer class (1.%) and

e(§) € Extl(LY/S,J) is the class defined by j (1.5.1).

2. Equivariant deformations.

2.,1. Fix a scheme‘s and a group scheme G over § . Let X, Y be Geschemes,
and 1ét f ¢+ X—>»Y be a Geequivariant map. We shall.assume G ar‘f to be
flat, To avoid technical complications, we shall also assume f to be a |
complete intersection map in the sense of Berthelot (SGA 6 VIII 1) (recall‘
this implies (1.2) that ;X/Y is a perfect complex), Taking intp account the

sction of G, and using the base change property (1.3.3), we can define a

complex of G~QX—Modules, or more precisely'an object
G b :
(2.1.1) _ LX/Y~ € ob D (BG/X)

uniqué up to unique isomorphism, in such a way that the underlying complex

—~

. . . . : G 1
Qf QX-Modules is canonically isomorphic to LX/Y in D{X), and HO(LX/Y) - jjzx/y

as a G-Oy~Module (l). Here BG means the classifying topos (SGA 4 IV 2.4) of

. G considered as a sheaf of groups for the fpgc topology on the category of

(1) These conditions do not characterize L§/Y !
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all schemes over 8, and BG/X is the topos of objects of BG over X ;3 BG (hence
BG/X) is equipped with the canonical ring defined by the structural rings of
schemes over S, When X admits an equivariant closed embedding i : X —> X!

into a smooth.g-scheme X over Y, Li/Y can be taken to be the complex of
G-0y~Modules (cf. (1.2))

0 — 1/1° —4 i“(Q)lc,/Y) —0

where I is the Ideal of i ., In the general case, the definition of (2.1.1)

is a little involved ; some indications age given below. Note that if X, ¥

are trivial Geschemes, then we have Li =1 where L

/Y X/Y

X/Y is viewed as a
complex of trivial G—QX—Modules.

The equivariant cotangent complex Li/Y enjoys functorial properties
analogous to those satisfied by LX/Y « In particular, a composition of

G-maps gives rise to an "equivariant transitivity trisngle", hence to an

Yequivariant Kodaira-Spencer class', Details will be omitted,

2.2, Consider a commutative diagram of G-schemes over S of the form (1.6,1)
where all maps are G-maps and i (resp. j) is a closed immergion defined by
an Ideal I (resp. J) of square zero., So I (resp. J) is a G0y~ (resp. G-QY-)
Module and the canonical map "y > 1is a G-map, We shall call f' an

equivariant deformation of f over Y!' if the underlying map of schemes is a

deformation of f in the sense of (1.6), or equivalently if the canonical
map %7 > I is a G-isomorphism.
The following result is a consequence of {(1.7). A sketch of proof

will be given below.

Proposition 2.3. Suppose @ and f ¢+ X —> Y satisfy the hypotheses

é{ (2.1) . Fix a closed equivariant embedding j ¢ Y —> Y' of G-schemes over S,

the Ideal J of j being of square zero. Then there is an obstruction

G

. 2
w(G,f,j) & ExtG(Lx/Y’fo)

whose vanishing is necessary and sufficient for the existence of an
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eguivariant deformation f' of I over Y'. When @)(G,f,j) = O, the set of

isomorphism classes of eguivariant deformations f' is an affine space under

Exté(Li/Y,fo), and the group of antomorphisms of & fixed f' is canonically

: . 0., G ;3 i
isomorphic to ExtG(LX/Y’f J).(HBere the notation ExtG(L,M) for L, M & ob D(BG/X)

is short for Ext (Ba,.;L,M).)

2y
It is also possible to write o{G,f,3j) as a cup~product with an
equivariant Kodaira-Spencer class, A precise statement will be given in the

particular case of torsors, which we are now going to examine.

2.4.  From now on we shall assume G to be flat and locaily of finite
presentation., By the well-known theorem giving the local structure of algebraic
groups this implies that G ~> S is a (locally complete intersection map {in the
sense of Berthelot (1)). Let‘f :t X =Y be a Gemap of G-schemes over S, the

action of G on Y being trivial, Denote by GY the group scheme over Y induced

by G‘(i.e. GY = G xSY). Recall that X is said to be & principal homogeneous

space (or torsor (2)) undexr GY if the following conditions are

satisfied ¢

(i) the map Gy x X —> X x X, {g,x) > (gx,x) is an isomorphism

Y
(41) £ : X — Y is faithfully flat and quasi=compact.

These also amount to saying that after some fpqc base change Y!' ~> Y (for

!

tion. They imply f is a complete intersection (because the latter property

example, f)} X becomes isomorphie to G acting on itself by left multiplica=
is local for the fpgc topolegy (SGA 6 VIII 1.6)). So, by (2.1) the equivariant
cotangent complex Ly, is defined. | Denote by £ : BG,y —> ¥ the
canonical map { fi . i  Mtaking the global sections invariant under G"),
- It can be shown by descent that Rfi(Li/Y) is a perfect complex, of perfect

amplitude C [-l,@}(SGA 6 I 4.8), and that the adjunction map

(1). which here is also the -sense of (EGA IV 19,3.6) because of (SGA 6 VIII
1.4).

(2) from the French "torseur®,
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Gr..G,.G a
Lf fo(LX/‘i) — Lysy

: . s »* G, .G . .
(hence, too, the adjunction map Lf fo(LX/Y> — LX/Y ) is an isomorphism,

Definition 2.5.,.Let Y be a scheme over S and let £ : X —> Y be a torsor

G
Y X/Y

called the co-Lie complex of X over Y,

under G. . The complex Rfi(L ) € ob Db(Y) will be denoted by ZX/Y and

2.5.,1. The formation of the co~Lie complex commutes with any base change
I* —> Y . If X is trivial over Y, i.e. f admits a section s : Y —> X, then

we have

~ *®
IX/Y Ls (LX/Y) .
In particular, take Y = S and X to be G acting on itself by left multiplica-

tion. Then we have

~ ¥
IG/S — Le (LG/S)«

where e 1 S > G is the unit section, The complex IG/S

ZG, is called the co-lie complex of G, and will be discussed later. It was

, often denoted simply

first introduced by Mazur-Roberts[ii] for a finite G, When G is smooth,
it coincides with the sheaf of invariant differential forms toG, dual te the

1ie algebra of G .

Theorem 2.6, In the situation of (2.5), let j : Y&> Y' be an S-extension

of Y by a guasi-coherent QY-Module J « Then there exists an obstruction

v
/Y

1

L
©(G,f,3) € EXY,X . 8 J) h

whose vanishing is necessary and sufficient for the existence of a torsor

ft ¢ X' — Y! under Gy, such that Xt XY'Y be isomorphic to X (as a torsor

under GY)' When W(G,f,j) = 0, the set of isomorphism classes of such

: L
. v
torsors X' is an affine space under Hl(Y,IX/Y 2 J), and the group of
L L
v
automorphisms of a solution is canonically isomorphic to HO(Y,IX/Y & J) .

(1) For L & ob D(Y) we set L” = REom(L,0,)
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In effect, it is easily seen that a torsor X' under G, inducing X

Y'
on Y is the same as an equivariant deformation of f over Y' (2.2), Therefore
the theorem follows from (2.3), since by descent we have

i,,G ® ~ i
ExtG(LX/Y’f J)} =~ Ext (zx/y,q)

. L
HI(Y,Z;}Y 8 J) (zX/Y being perfect).

Remark 2.6.1. Suppose G is smooth. Then I;;Ykkis nothing but the Lie
Algebra tG of GY twisted by the torsor X via the adjoint action of GY :
LGy _
G

¥ o dfn Y
Yypg = Pypp = X x fa, J

and (2.65 is easy to prove directly. Observe that equivariant deformations
of X locally exist_and that any two deformatfons are always locally isomorphic,
the sheaf of automorphiams'of.a given’éeformation being identified with tx/f .
Hence the obstruction in H2 is oﬁtained by a cl@ssical cocycle calculati&n

vest expressed in Giraud?®s lungumge of Vgerbes" Ea.

2.7. 1t iz possible by demcent to cohstruct from tiae Kodeira-Spencer class (1.4) a

canonical class, called the Atiyah class of X,

(2.7.1) at(X/1/8) € Ektl(ZX/Y,tLy/s)

. . -
~0hb3 v " "

where tLY/S stands for the pro-object of truncated complexes ﬁég tE? LY/S )

Az in {1.7), the obstruction w(G,f,3) of (2.6) can be written as a

- cup=product
(2.7.2) W (G,f,3) = e(at(X/T/8)

where e(j) € Extl(LY/S,J) = Extl(tLY/s,J) is the class of the Y-extension J »

When both G and Y are smooth, at{X/Y/S) coincides with the class in

8 521 ) constructed by Atiyah in [3] N

BT, ¢ Y/s

X/Y

2.8, Sketch of proof of (2.3). a) Recall that to any Gescheme X over § is
assdciated in a functorial way & simplicial scheme over S, called its

nerve 3

Ner(G,X) = (L,.. 6" x X% ,..exXx 2 X)

1y for the notation 1:.£n , see (1,2),
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‘(products are teken over S, faces and degeneracies are given by the standard

formulas 3

Hj

do(gl""'gn’X) (82"--18ntglx)
dl(gl’;"'gn'X) = (81829831"'98an) '
etc.). So, in the situation of (2.3), we have & commutative diagram of

simplicial schemes over S :

Ner(G,X)
(2.8.1) Ner(G,Y) ———> Ner(G,Y')
Ner(G)
where Ner(G) is short for Ner(G,S), Thanks to the hypotheses and the

flatness criterion, it is easily checked that an equivariant deformation
of X over Y' is the same as a deformation. of Ner(G,X) over Ner(G,Y') as

& simplicial scheme, l.e. & commutative square of simplicial schemes

Ner(G,X) —> 2

| l

¢ Ner(G,Y) ——> Ner{(G,Y')

such that, for each n ¢ N, Zn — " x Y' is a deformation of

" x X —>G"x Y (as a map of schemes),

b) Recall that any diagram D (i > Di) of ringed spaces defines
(5GA 4 VI) a ringed topos still denoted by D and called the total topos
of D , A Module on D consists of a family of Modules Ei on the Di together
with transition maps f*Ej -3 Ei satisfying certain compatibility conditions,
So (2.8.1) defines a diagram of ringed topoi, in which the triangle is a
Ner(G)~-extension of Ner(G,Y) by an Idéal of square zero, which will still
be denoted by J for simplicity. Moreover, a deformation Z as above is the
same as ; deformation of Ner(G,X) —> Ner(G,Y) over Ner(G,Y') as a map of

ringed topoi. Therefore we can apply (1.7) and the problem boils down to
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identifying the groups Exti(L £%7) with the groups

Ner{(G,X)/Ner(G,¥Y)*
i,,G 4 :
Extg(Ly s I79) o2 (2.3).

¢) First of all we have to define Li/Y

. Let us indicate very briefly
how to do this. By an analogue of the nerve constructidn, we get & map of
ringed topol Ner(G,X) ——> BG/X s, which, by descent, induces & fully
faithful functor

() PP (Ba —> D?(Ner(G,X))

/X?qcoh
b . . .
where D (BG/X)qcoh is the full sub-category of D{BG/X)defiﬁe& by thess complexes
whose cohomology is bounded and quasi-coherent., Now, thanks tc the hypotheses
and the base changed property (1.3.3), it can be shown that LNer(G,X)/Ner(G,Y)
: : s : . G
is isomorphic to the image under (=)} of an object LX/Y /X)qcoh

{unigque up to unique isomorphism)., The identification desired at the end

of DP(Ba

of b) follows from the fact that () is fully falthful, This completes the
proof of (2,3)., The Atiyah class (2.7.1) and the formula (2,7.2) are easily
deduced from the Kodaira-Spencer class of the vertical composition in

£2.8.1) and from (1.7 (1ii)).

kRemark 2.9. There is an glternate approach to the results of this section,
which is based‘on;Deligne‘sktheory of Picard stacks {SGA & XVIII). It also
yields interesting refinements, forkekample the following, which will be
appreciated by the specialist : in the situafion of (2.6), assume

WG, f,j) = 0 z‘then the Picard stack of eqﬁivafiant‘deformations of X over

v L
Y'! is represented by the complex jx(xi/Y -] J)[l],

3, Deformations of non-commutative, flat group schemes.
"In this section, we fix a scheme § and a flat, locally of finite

presentafion group scheme G over S.

3.1, Using the action of G on itself‘by left multiplication, we have
defined in (2.5.1) the co-Lie complex of G, IG £ ob D(S), from which we

can reconstruct LG/S by means of the canonical isomorphism (2.4.1)

. 3 ~
Lf (ZG) e LG/S

I
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wﬁere f:1G~>38 is the project?cn. We could as well have used the action of
G on itself by right multiplication to define analogously an objedt Zé of
D(S). but IG and Zé would have been canonically isomorphic since both have
to bé canonjcally isomorphic teo Lex(LG/S) where e :AS -’G is the unit :
section. Yet, if.we denote by G° the opposite group and let G x c° (1) act
on G by (g,h)x = gxh, we can define a finer object than IG , namely

o o
G (LGXG )

- e € . ob D(Ba}

(3.1.1) Z, %" me

. o ‘
where LGXG € Ova(B(GXGO)/G) is the equivariant cotangent complex of the

G/S
GxG®~scheme G (2.1.1) and fGo : B(GxGO}/G -—» BG is the canonical map
defined by f | (fio is "taking the sheaf of global sections invariant
snder G° "), It follows easily from the definition that the object of D(8)
deduced from gG by forgetting the action of G is can&nicallj isomorphic

to IG « When G is smooth over S, ZG is nothing but w the sheaf of right

G’
invariant differential forms of degree 1 , equipped with the adjoint action
of G .

From ZG we can reconstruct the co-Lie complex of any G-torsor. In

‘ effect, let Y be a scheme over S and X be & torsor on Y under G, . By the

Y
classifying property of BG, X defines a map p : ¥ —> BG such that p (PG} =~ X,

where PG is the universal torsor on BG. Then we have
~r k.3

(3.1.2) ZX/Y“"“ P J={G *

which generalizes the formula of (2.6.1).

3. 20 Supp@se now S is a T-schgme and we are given a T~extension S!? of 8
by a gquasi-coherent gs—Module I 41¢8~>8", We want to pimpoint the
ob§truction to the existence of a deformation of G over S', by which we
mean a flat grbup scheme G"over St together‘with an isomorphism

G!* xs,S =% G (note that if G is commutative, G' need not be commutative).‘

Before stating the main result, we need a notation,

(l) unless otherwise stated, products are taken over S,
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3.3 Let w ¢+ X —> Y be a map of ringed topoi, which for simplicity we
shall assume to be flat. Denote by Ab the category of abelian groups. In

Q}éj III 4.10) we define an exact functor
RD (¥/X,-) : DY(Y) — D¥(4b)

with the property that, for E € ob D+(Y), there exists a canonical, functo=-
rial, exact triangle
RI” (X,u™E)
(3.3.1) ;////L R\\\\g
N
RI' (Y/X,E) —>» RI"(Y,E)
where % is the restriction map. The cohomology groups

dfn

B (Y/X,E) g'RT (¥/X,E)

are called the relative cohomology groups of E mod. Y . They are related to
the absolute cohomology groups by the exact sequence of cohomology of (2.3.1) :
i+l

ees = HY(Y/X,E) —> EY(Y,E) —> BS(X,v*E) — B (y/0,E) — ... .

We can now state

Theorem 3.4, In the situation of (3.2), there exists an obstruction

1

+ 3 v L
w(G,1) € B7(BG/S,L, & I) (]

‘whose vanishing is necessary and sufficient for the existence of a deformation

of G into a flat group scheme GY over S'. When «(G,i) = O, the set of

isomorphism classes of deformations G' is an affine space under

HZ(BG/S,lg @ I), and the group of automorphisms of & given deformation is

L
canonically isomorphic to Hl(BG/S,Zé # I). Morsover, there exists a canonical

class, depending only on G —> S -—=> T ,

> v D
c(G/S/T) € H (BG/s,gG ® tL

)

S/T

whose cup-product with the class e(i) € Extl(Ls/T,I) defined by the

(l) For L € ob D{(BG), pYifs RHom(L,0), The relative cohomology groups are

taken with respect to the unit section map S = BG .
2 3 3 "y 4 n
(%) Aas in (2.7), xLS/T stands for the pro~-object "lim t[hLS/T .
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T-extension i yields the obstruction w(G,3i) :

@ (G,i) = e(i)e{a/s/T) .

3¢5, The above result improves those of Demazure in (SGA 3 IIT) where, aside
from the fact that only the smooth case was discussed, the problem of
- deforming G as a group scheme was not considered as a whole, but rather
broken down into successive steps : (i) deform G as a scheme (ii) deform
the multiplication G x G —> G (iii) render it associative. As Grotherndieck
pointed out, the partial obstructions encountered in (loc. cit.) turn out
to be the images of @ (G,i) into the successive quotients of the filtration
of HB(BG/S,gé Z.I) arising from the "Moore spectral sequence' :
.o b '
Hq(Gp,Z(; g I) if p21 L

» v
B - —> HE(Be/S,[; & 1)
0 if p4O

A complete discussion will be found in [12].

3.6, Sketch of proof of (3.4)., a) Let Y be a scheme. The functor

G > Ner(G) (2.8 &)) from the category of group schemes over Y to the category
of simplicial schemes over Y is fully faithful, and it is easy to see that
its essential image consi;ts of exactly those simplicial schemes X over Y
which satisfy the following exactness conditions :

(i) Xo —3> Y is an isomorphism ;

(ii) for n »2, the canonical map

1 eee X X (n factors) R

*x X 1
[+

o]

X —X
n

obtained by writing the interval [O,n as an amalgamated sum, is an isomor-
phism 3

(iii) the squares

dl dl
xa —_— X1 X2 —_— Xl
dzi dl’ and l do l do
d1 v do
X X, —> X

x1 [] 1 [}

are cartesian. ((ii) expresses the fact that X comes from a category object,
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(1) + (i1) that X comes from a monofd, (31) + (441) that X comes. from a
groupoid.}

b) Using a) and the flatness criterion, we see that a deformation of
kG into a flgtlgfoup scheme over S' is essentlally the same as a deformation
of Ner(G) into a flat simplicial scheme over S' or, equivalently, a deforma-
tion over S' of the corresponding ringed topos (2.8 b))}, Therefore we can
again apply (1.7), and wﬁat remains is  to identify .the groups
EXti(LNer(G)/S’fKI) for 0£i €2 , Now, by looking at the exact triangle
of the composition Ner(G,G) -> Ner(G) —> S , it is not too hard to prove

that there is a canonical isomorphism‘
v b

%1y 22 g lpa/s,r) @ 1)

Ext®(L 1Lg

Ner(G)/8*

{actually I could be replaced by’any complex with bounded, guasi~coherent

cohomology), and that concludes the proof,

4, Interlude on Lie and co-Lie complexes.

The group schemes considered in‘thisksecticn are assumed to berflat
and locélly of finite presentation over a fixed scheme § .
4,1, Notations. Let G be a group scheme over § , Recall that the co-Lie
complex ZG is of*perfect amplitude[:[—l,@, hence has only two interestiﬁg
cohomology sheaves, namely

Wg = B, omg = B

The dual of ZG‘ i.e.‘X; = Rggg(ZG,QS), is called the Lie complex of G . It is
perfecf, of perfect amplitudec:EO,i}. Its two possibly non zero cohomology

sheaves will be denoted by

R PUAY 1,.v
tg = E (IG) . V; = H (ZG) v .
Note we have
¥ ~ ‘ v
tGéng) . n, = (“JG)
(where =¥ = Hom(»,gs). Therefore the basic invariants are W Vg (and the

class in Ext?&de,nG) (resp. Extz(vG,tG)) defined by ZG (resp. Ig)).

We shall first give two general methods for computing XG .
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#.2. Suppose we are given a closed embedding of G into a smooth group scheme
over S, 1 + G —> G*', and denote by I the Ideal of i . Then, by (1.2) we have

d

L “_i(o-el/xz———;i"Qé,/s-—?O)

G/S

hence, by (2.5.1) :

) & (0 —> &™(1/1%) —> @

Gy —>0)

Ea s 3
where e : S —> G is the unit section, Moreover, as i is a homomorphism of
groups, G acts naturally on the right hand side, and the complex .of

G-Og-Modules thue defined represents Y. in D(BG).
4,3, Suppose now we have an exact sequence of group schemes over S
(4.3.1) 1 —>G —3 G! —> G" ~>» 1

(Mexact" being taken with respect to the fpgc topology). Then, as Mazur-

Roberts observed in [iél there is defined a canonical exact triangle in D(S) :

.ZG
(4.3.2) / AN

IG" zGl
where the horizontal map is induced by G' — G" by functoriality of the

co-Lie complex, It is indeed an immediate consequence of (1.3.3) and (1.4.2).

Particularly interesting is (4.3.2) when G', G" are smooth., We then obtain :

(4e3.3) Yo = (0 = 0, —0., — 0)

Examples 4.3.4, a) Take G = ( ). + We have the exact séquence :
Lxamp_.es n’s

N n
0 — (f}Ln)S (Gm)s (Gm)s —> 0

Hence (4.3.3) yields :

~ n
Fpms = © > 05 —E>0g =0

S

In particular, we have X = 0, i,e. 5# is étale, if and only if n is
th n§

invertible on S, which is of course well known,

b) Suppose plS = 0, where p is a prime number, The group scheme Cxp

on 8 is defined by the exact sequence
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r
0 s O<P —> (6 ) g > (G ) —> 0
where F is the Frobenius map x > xF , Hence (4.3.3) gives

__9_4>,gsb-;bo) -

I = (0—0

a? )
¢) Suppose G is a finite, locally free, commutative group scheme over S.
Let Arbe the bi-algebra defining G, and AV= ggg(A,gs) denote the dual of A,
which is also the bi-glgebra éf the Cartier dual G « It is well known (see‘
for instance Q}é] II 3.2.4)) that there is & canonical, functorial, closed
embedding §f ¢ into W(AY)" = @ (1) N : hence we have & canonical,
functorial exact sequence 0 = G —= G¥ > G" ~—> 0 with G* and G smooth,

which by (ﬁ.E.S) provides a canonical, functorial way of calculating IG .

We shall now discuss some general properties of the Lie and co-Lie
éomplexes in the commutative case., First of all, we have the following
result, which generalizes the fact that the adjoint action of a commutative

group on its Lie algebra is trivial :

Proposition 4o, Let G be @ commutative group scheme over S and p :»BG ~3> §

denote the canonical projection., There is a canonical, functorial isomorphism

in D(BG) :
~ 3
| L Ly (IG) .
Proof. See{@fﬂ. The basic observation is that the multiplication
m: G x G—>G, being a group homomorphism, induces & map B(G x G) -—> Ba,
for which the inverse image of G as a G-object by left multiplication is

G as a (G x G)-object by left and right multiplicatien,

4,5, . Let Y be a scheme over S, and j : Y ~> ¥' be an S-extension of I by
a quasi-coherent Module J . Let G be a commutative group scheme over S.
Using the result mentioned at the end of {2.9), it can be shown that there

is & canonical, functorisl isomorphism of D(Z%,) 3

4 .
ijY T* 0)

. L
(4.5.1) 3};(1&; 2 J) =X (0> 6y,

——

(l) i.es the group of invertible elements in AR
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where Gy, is placed in degree O and d is the adjunction map ( D{zgY')
means the derived category of Z-Modules on the large fpgc site of Y').
This formula was conjectured by Grothendieck after his readingl?g], and
proven by Deligme., It ylelds in particular a canonical, functorial description
of the Lie complex Z;-as an object of D(Z%), since we can take for j the
inclusion of S into the scheme of dual numbers on O

S
lex(GE) = 0, we derive from (4.5,1) an exact sequence

. Observing that

. g . . L
cee = Hl(Y’,G.I,) —> B (1,6 )'@ﬁl*l(f,xa & J) —> ...
Y

for i {1, which shows again (cf¢'(2.6)(l)) that the obstruction to deforming
N L
a Gy-torsor over Y' lies in Ha(Y'ZG @ J) {(moreover, the above sequence
Y
can be interpreted as an exact sequence of relative cohomology (3.3), hence

the other parts of {2.6)).

k.6, To conclude these genefalities, let us mention a very striking

formula for the Lie complex in the finite case, which is due to Grothenéiegk
(seel}i}). Let G be a finite, locally free, commutative group scheme over S,
and G denote its Cartier dual. Let I be a quasi-coherent QS~Module.‘Then,

there is a canonical, functorial isomorphism in D(S) :

L I
v ~r ® -~ £y
(4.6.1) zs g1 X ti] RHomZZ(G L, I) (= tl]RHom.:S(G &mgs,l) 3

where t@}L' for a complex L, means the truncated complex obtained by killing

2 n-l

H*(L) for i>»n, i.e. tal = (oo = 17 s 1Y 5 2% —> 0). In particu-

)

lar, with the notations of (4,1}, we deduce from (4.6.1) canonical, functorial

isomorphisms :

(5.6.2)  tg = Hom(a®, 1) . Vg = Extl(e",x) .

The above formulas are helpful in the study of the co-ILie and Lie complexes
of truncated Barsotti-Tate groups. For details the reader is referred to

[lﬂ s+ where he will also find intéresting developments concerning the

(1) Note that (3.1.2) amd (h.4) tmply Xy ,y 2, .
Y
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relationship between Lie complexes and Dieudonné modules.

5. Deformstions of commutative, flat group schemes,

As in § 4, all our group schemes will be assumed to be flat and

. locally of finite presentation, unless otherwise stated. We fix a scheme 8.

5.1 Let A be a ring scheme over S,not necessarily commutative, but associaw-
tive and unitary, We don't assume the underlying scheme to be flat or

loeally of finite presentation, By an A-module scheme over S we mean a

commutative group scheme G over S; endowed with an A-module structure, i.e.
a bi-linear map A x G —> G, (a,g) P> ag, such that agbg) = (ab)g; g = g,
for any T-valued points a;,b of 4, g of G . We have especially in mind the
case where A is the constant ring scheme Z%‘(reép. (zynzas>f in which case
an Aumédule scheme is simply a commutative group scheme {resp. a commutative
group scheme‘killed by n). But other cases may be of interest, e. g.
A= Z%{TI’] (I" being a discrete group or mon§id), A=0., Abc We o the
. universal Witt scheme over S ([127 p. 179). | A
Let G be an A»modulgbscheme over S , Thanks to tﬁe action of A, it is

possible to define a finer object than IG‘, namely an object
A , ‘ , ¥
(5.1.1) Y, € ovDlamyo) ( ‘}

whose image under the forgetful functor D{4 g, 0.) —> D(5) is canonically
isomorphic to XG + If G is smooth, we can téke for Ié the. sheaf of invariant
differential forms Q)G endowed with its natural A-linear structﬁre.

The definition of (5.1.1) in full generality is a little sephisticated (as

. G
were the definitions of LX/Y

v ’ .
in interpreting XG{il as the stack of equivariant deformations ef G over

{2.1.1) or %G (%,1.1)). One method consists

the dual numbers on 8 (4.,5) and observing that the latter stack

has & natural 4 8, O -linear structure,

* (ajouté en octobre 1972) Cette construction n'est vslsble
que si Torfa(é,gs) = 0 ; dans le cas général, on doit rem-
wlacer A QZZQS nar 1'anneau dérivé A B QS s Voir ([13]

VII 4.1), meis dette modification

T AR aAd Apa +°
Lenones ces ot
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hence defines, by the dictionary of (SGA & XVIII), a complex of A 8, 05

. . £ A - .
Modules of 1ength 1, whlchils RHom;s(Zg,QS){x]. Another method, in the style
of (2.8 ¢)), uses a large diagram describing the structure of A-module of G
(see [13] and (5.8) below).

We shallksometimes write Zé instead of Ié . The not&tion Xg will

r
mean RHQmES(ZG,QS) ( € ob D(4 Qzags)).

Some of the results of § 4 admit natural refinements, For instance,
an exact sequence‘(k.S.l) of A-module schemes gives rise to an exact triangle
{(4.3,2) in D(4 £, 0c), and the isomorphism (4,5.1), for an A-module scheme G,

comes from an isomorphism in D(A),

5.26 We suppose now S is over some Tixed scheéme T, and we are given a
T-extension 1 ¢ 8§ —» §' by 2 guasi~coherent QS-Module I . We Suppose, mores
over, that A is induced by a flat ring scheme A' over 3%, A = A! xS,S .

Concerning the deformations of A-module schemes, our main result is the

following @

Theorem 5.3, In the situation of (5.2), let G be an A-module scheme over S,

There is an obstruction

L
w(G,i) € Exti(G,z&’ e (H)

whose vanishing is necessary and sufficient for the existence of an A'-module

scheme G' over S8' deforming G, i.e. equipped with an iscomorphism of

A-module schemes G' x.,8 => G . When «w(G,i) = 0, the set of isomorphism

5

. N
c¢lasses of deformations G' is an affipe space under Exti(G,lG & I), and the

grovp of automorphisms of a piven deformation is canenically isomorphic

to Exto

L
to A(G,Zé & I). Moreover, if A, A' are induced by a fixed, flat ring

scheme B over T, there is defined a canonical class, depending only on B

and the composition G —» § ~» T,

y o,

L
1 v
c{B,6/s8/T) € Exty (6,1, ® thg /7

(l)‘Ext are taken with respect to the fpqc topology om the category of

schemes over S , For the notation tL below, see {2.7).

5/T
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such that w{(G,1) is given by the cup-product
t(G,1) = e(i)e(B,6/8/T)

where e(i) € Extl(L +I) is the class of 1

s/T

We alsc have two results concerning the deformations of morphisms of

A-module schemes ¢

Theorem 5.4, Let F', G' be A'-module schemes over S*, and let £ : F —> G

be a morphism of A-module schemes, where F = F! Xg 1Sy G = G s,s « There
is =& canonical'oﬁstruction, dependingffunctorially on F', G*y £ :

1, wv&
W(F1,6',1,1) € Ext (F,2y & 1)

whosé vanishing is necessary and sufficient for the existence of a morphism

of A'-module schemes f' : F' > o such that f' x.,8 = £ . When ‘

S'
60(F',G',f i) = 0, the set of solutions f' is an affiné space under

Ext® (F,ZG ﬁ I) .

Theorem 5.5. Let F! hé,qg A'“module scheme over S', G an A-médule scheme

B 6ver 8, and f:F—>0Ga morphism of A-module sche@es, where F = F* xS,S].‘

Denote by C(f) € ob D(A) the mapping-cylinder of f . There exists a canonical

obstruction, depénding'functorially on F*, £ 3

; vL
w(r',»f,i) e Ext (c::(r),;!fG P )

whose vanishlnz is necessary and surficlent for the simnltansous existence

of an A'-module scheme G‘ deforming G in the sense of (5,3) gnd a morghxsm

of A'-module schemes f* ¢ F' ~> G‘ such that f' Xg S-= £ o When

V&J(F' f i)y = 0, the set of 1somo:phxsm classes of solutions (G',f ) is an -

affine space under Ext (C(f).)fG Q I) and the group of automorphisms of a

L
given solution is canonically isomorphic to ExtA(C(f),IG 2 I,

5.6. As we said in the introduction, (5.3) and (5.4) were cdnjectnred '
by Grothendieck‘(letter to the author, 12/2/69) and form a basic tool in
‘the study of Barsotti-Tate groups on a general base q}i’ and ﬁﬁﬂ). As for

(5.5}, 1t came from an attempt to prove by means of our theﬁry an
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unpublished (1).resu1t of Oort, that was kindly brought to our attertion by
Mazur, snd saye the following % in the situation of (5.5), suppose St is
.éffine, At = Z%' s F? is finite over S*', G»is an abelian scheme over §,
f is a closed immersion, then the obstruction (A(F',f.i) §anishes, in other
words there exist an abelian scheme G' on §' 1ifting G and an embedding
£' : F' —> @' lifting f‘. Note that in this situation C(f) = G/F is An
abelian scheme, It should be the case, at least when 2 is invertidle on s,
that the Ext’ of an abelisn acheme with a locally free sheaf of finite rank
is éefo; If this is true, then Oort's result follows from (5.5).

Among (5.3), (5.%), (5.5) there are some compatibilities £hat’we
should like to discuss briefly.

a) In the situation of (5.4), suppose F = G.and f is the identity.,
 Thea 'm(F',G',f,:.) € Exti(G,Zé 2 I) is the difference, in the sense of (5.3),
betweén the classes of the deformétions‘F!, G* of G .

b) In the situation of (5.5), snppoée there exists an &'-modﬁle sche-

me G' deforming G . Then it follows from (5.3) that (F',f,i) lies in
Coker(r-:xti(e,n) N Exti(F,M)) C—-r Exti(c(f)‘,x)

where M = Z; @ I and " is the map induced by f . It may be observed that
the above cokernel corresponds to the obstruction %o lifting f into a map

£t 3 Ft* —>G* (5.4) modulo the indeterminacy (5.3) in the choice of G' .

5.7. 3Before we turn to the proof of the aﬁove;results,‘wé shall mention 2
reassuring coﬁéatibility‘between the obstrﬁction @(G,1) of (5.3) for

A, A% = the constant ring scheme Z (ohstructién to deforﬁiné G as a
commutative group scheme) and the obstruction (G,i) of (3.%) (Obstrﬁctionv
t&kdeforming G as a (possibly non-commutative) group scheme, Recallythaé,

for M € ob D+<Z%) s there is a canonical, functorial map
RHom (G ,M) —> RD’ (86/5,p™M)[1]

‘{where p : BG —> S is the projection), which is defined by identifying

‘RI’(SG/S,p!M) with RHomZ(Z (Fer{(G))/Z ,M) (where Z (~) denotes the free
(1) to ‘eur knoﬁledge
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abelian group functor) and using the canonicsal epimorphism % (G) —> G , which
defines a map Z (Ner(G))/Z -——> G[l] . In par’ciculyar‘ thanks to (4.4) we

have & map .
Y k e
RHom,{G,Y, & I) —> R (BG/S,2; ¢ D [1]

hencée a map

x, L » +1 V'L
(%) Extp{G,24 & I) —> i (Be/S, Ly & I) o
The compatibility says that the imege of the obstruction &{(G,i) of (5.3)
under (=) is the obstruction ®{G,1i) of (3.4). ‘

5.8. Sketch of proof. As in (2.8) and (3.6), the idea is to reduce the

froblem fo a problem of deformation of a suitable ringed tons or map of
ringed topoi. Thus (5.3) will be reduced to (1.?),~while v (5.4) and (5.5)
will be reduced to variants of (1.7), namely (}}?;) ITT 2.2.4) and (i3] T
2.3.2) respectively. Since the téchnique is thé same in the three cases;

we shall restrict ourselves to (5.3);'The proof is long and rather involved.
We shall~oh1y outline the main steps., For details, the reader is again
referred to [l:?] .

5,8.1, Diagrams; Let T be a category. By a diagram of T of‘type’I we mean
~a functor X : I ~:§ T . Let X, Y be disgrams of T of‘ﬁypes I, J respectively,
kBy definition amap £ : X —> ¥ is a pair (u,v) where v.: I > J is a.functor
and u 't X —> Yv is a functor morﬁhism. Thus-the disgrams of T forﬁ‘a categdry

denoted bykDiagrl(Tj; We define Diagr (T), for 230, by the formulas :
Diagrd(T) =T , Diagrn(T) = D1agr(Diagrn~1(T)} e

The category Diagrn(T) is called the category of h—diagramé of T . Observe

that if T possesses finite products, the same is true for Diagr(T), hence
 for Diagrn(T) $: if X 2 I ~>»T, Y : J > T are disgrams, then X x Y is the

disgram of type I x J defined by (i,3) > X, x T .

5.8.2. Spectra. Let T be a topos. 4s we have seen above, the nerve functor

gives an embedding of the category of groups of T into the category of
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simplicial objects of T :
Ner Group(T)C———€> Simpl(T) ’

whose essential image consists exactly of those simplicial objects which
satisfy the exactness properties (i), (4i), (iii) of (3.6 a)) (Y replaced
by the final sobject of T)., Now, if G is a commutative group of T, the
multiplication G x G ~» G is a gfoup homomorphism, hence Ner(G) is actually
a simplicial object in the category of commutative groups of T, or equiva-
lently a commutative group of the topos Simpl(T), therefore we can iterate
the nerve construction and define Ner(Ner(G)), Ner{(Ner(Ner(G))), etc. Denote
by Z-Mod(T) the category of commutative groups of T, and by n-Simpl(T), for
n € N , the category of n-simplicial objects of T (i.e. the category of
functors from A° x ... x A° (n times) to T where N is the category of
finite, non void, totally ordered sets), For G € ob Z ~Mod(T), we define

inductively G¢n) € ob n-Simpl(T) by

(5.8.2.1) 'é(o) =6 , G{n)=Ter(6{(n-1)) for apl .
The functor

(5.8.2.2) Z-'Mod(T) -—> n-Simpl(T) , GI— G<n> .

is faithful for n = O, fully faithful for n}1, and, for n>,2, its essenfial
image consists exactly of those n~simplicial objects Y possessing the
following property : the simplicial objects deduced from Y by fixing all
variables ﬁut one satisfy the conditions (1), (ii), (1ii) recalled above
(this last assertion is an easy consequence of the well known fact that

a group in the category of groups is a commutative group).

Let G be a .commutative group of T . Observe that G(q) corresponds, by
the normalization functor [8] s to the n-complex concentrated in degree
(-14000y=1) with value G, In particular, we can identify G{rywith each
of the “"faces" G(n+1>(x,..., ﬁl,x,...,x), and we get an augmented, ‘strictly
cosimplicial object in Diagr(T) :

= @ =6 T ... G('n>‘ o G el )
n+l arrows

(5.8.2.3)

H@
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which we shall call the spectral diagram (or, simply, spectrum) of G, by

analogy with the Eilenberg-Mac-Lane spectra,

Let us return to (5.8.1) for a moment, To any n~diagram X of T is
associated an (n-l)-diagram of (Cat) (the category of categories), called
the type of X , and denoted by Typ(X). It depends functorially on X and
is defined inductively by : Typ(X) = I if X s I —> T is a diagram of T,
and, if X : I —> Diagrn_l(T) is an n-diagram with n 32, Typ(X) is the
diagram i k> Typ(Xi). If t i's a type of n-diagram (i.e. an (n-1)-diagrem
of (Cat)), we define the category of diagrams of type t, Diagrt('l'), as the
category whose objects are the diagrams of type t and maps are the maps

of diagrams inducing the identitj on t , Denote by

—_—
(5.8.2.8) D = (pt »A° T2 ... @O - @M L)
(xl,...,xn) - (xl....,flj,...,xn)

the type of any spectral diagram G . We have an embedding
(5.8.2.5) Z <Mod(T) C—s Diagrg{T) , GFH>G

whose essential image consists exactly of the diagrams Y of type P such
that, for each n€ N, Yn is in the essential image of (5.8.,2.2) and the
maps of n-simplicial objects induced by the n+l maps Yn —> Yn+l are

isomorphisms,

As the normalization functor commutes with external tensor products,

we get, for X, Y € ob Z ~iod(T), p, g € N, a canonical map

(5.8,2.6) Xp x 1{q> —> (X @ Y)(p+a> ,

which is associative in the obvious sense, Let A be a ring object in T
(associative and unitary), and let G be a left A-Module. Then, thanks to

the maps (5.8.2.6), A becomes a monoid object in Diang(T) (associative and
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unitary), and G becomes a (left) A-object, In particular, we can consider

the nerves

Ner(é) = (oao gx ‘33

it

3 e) (e = the final object of T) ,

x

»Ner(ﬁ-;@ = (-'-- é X x

1t
nw
i)
Hiew

Hea

30
which are certain objects of DiagrB(T). There is a natural projection
(5.8.2.7) Ner(4,8) —> Ner(a) ,

and, as above, it is again possible to characterize A=Mod(T), the category
of A-Modules of T, as a certain category of &iagra&s over Ner{A) satisfying

- ¢ertain exactness conditions.

5.8.3. Reduction to (1.7). Applying the above to the situation of (5.3}, we
get a diagram '
Ner(4,G)
h-~uip 1

‘D

Ner(ﬁ)(——*“~—>'ﬂer(é')

k]

which in turn can be interpreted as a diagram of ringed topoi (like in (2.8)),
in which the horizontal map is a Twextension of Ner(é) by the inverse image
of I, still denotéd by I . From the generalities of {5.8.2) and the flatness
| eriterion it follows that an Atsmodule scheme G!' deforming G is‘essentially’
the same as a deformation of f over Ner(é') as a ma§ of ringed topoi. There~
fore we canAapply (1.7), and it remains té calculate the groups
EXti(Lﬁer(é,g)/Ner(é)'fxl) (or, more genera;ly, the analogous groups witﬁ I
replaced b; ; complgx of gShModules with bounded, quasi-coherent cohomology,.
ee ge 2 truncation °f~Ls/T)? This. is, howgver? férufrqm being easy., We shall

briefly indicate the main jpt:‘»i'iwl:s;~

5.8,4. A duality formula, Fix a topos T . To a diagram X : I —> T there
are associated two topoi : Top{(X), Topo(x). The first one is the total
topos of (SGA 4 VI) defined by the fibered topos i!'*"*"l‘/x 3 its objects

are families E consisting of a sheaf Ei on Xi’for each object i of I together
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with & map X;Ej — Ei for each map £ ¢ 1 —> j of I, these maps satisfying
certain transitivity rélaticns.~The other one, Topo(X}, is defined in the
same way, except that we reversebthe sense of the transition arrows, namely
give oﬁrae;ves a map Ei ~>-X§E3 for each £ ¢ 1 ~€*3‘; in other words, Topo(X)
is the topos of diagrams of type I over X, ?he constrﬁction of Top(X},
Top®(X) easily extends to n-&iagrams.
Fix & Ring Q of T ., If X is an nediagram of T, we equip Top(X),

Top® (X) with the Rings induced by 0 . Now, if L is a Module on Top(X) and
M a Module on T, we can define a Module ggg!(L,M) on Top®(X) with the
properties that it depends functorially on L, M and induces the ordinary
Hom on each piece of the disgram. For e;ample, if X is a l~diagram I —> T ,
we define,gggz(L,M) as the famil& i ggg(Li,Mx.) with the obvious
~transition maps, and this generalizes trivially io nediagrams, Mofeover,

we can derive the construction of Homt , namely define
RHom!(L,M) € ob D(Top®(X))

as a bi-functor of L € ob D(Top(X)), Meob D'(T). It is not hard to prove

the following "duality formula" :

Proposition 5.8.%,1. With the above notations, there exists a canonical,

functorial isomorphism

REom(Top(X) 3L,My) 2 RI? (Top®(X) jRHom' (L,4))
for L € ob D™ (Top(X)), M € ob DH(T),

5.8.5. Passing to the tangent complex, Our goal is to calculate

() RHom(LNer(é‘g}/Ner(ﬁ),fo)

'where Mis a comblex of gs-Modules with béunded, quasi—coherent‘¢chomélogy.
By definition (5.8.3), (x)'is an RHom of complexes of guModuiés on the
total topos of Ner(g,g) obtained by associéting to each scheme of the’
diagram its small Zariski topos. But, as both arguments inside the RHom

have gquasi-coherent cohomology, they can, in a natural way, be extended
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into objects of D{Top(Ner{(A,G))) where now Ner(4,G) is viewed as a 3-diagram
in the (large) fpgc topos of S, and by descent the RHom does not change

under this extension, Now we can apply (5.8.4.1) and we get an isomorphism
k K\ o k . L
() RH°m§LNér(§,g)/Ner(é)’f M) RT (Top (Ner(4,G)),RHom (LNer(é,g)/Rer(é)’M))

which brings () nearer to calculation, because Rth’(L M)

Ner(4,G)/Ner(4)
. has a very simple interpretation. In effect, denote by Lie(G) = I; (5.1)

the Lie complex of G, and by p : Ner{(4,G) —> Ner(4,0) the canonical map
defined by projecting G to zéro.‘The construction G > Ner(é,g) extends
trivially to complexes of A-Moduleg, and it is easily deduced from the
Mazur-Roberts exact triangle (4.3.2) that there is a canonical isomorphism

of D°(Top®(Ner(4,8))) t

. ) L
o) Rion' (i (4, e (g 10 =5 2 Rer (BiE2e(0)) 8 £

(the tensor product on the right being of' course taken over the ring induced
by QS). In view of (5.8.3), (5.3) will follow from the combination of (=),

(msx), and the following canonical isomorphism

L . L
RT" (Top® (Ner(4,8)),p™Ner(4,Lie(6)) & £™4) == RHom,(a,Lie(G) @ M)

which is itself a consequence of the more general

Theorem 5.8,6. Fix a topos T, an associative and unitary ring Aof T, a

‘commutétive (and unitary) ring R of T, G € ob A-Mod(T), E € ob D{A &zzk) N

M € od Db(R).’Assume E is of finite flat amplitude as a complex of R-Modules.

Dencte by p :'Ner(é,g) —» Ner{4,0), £ : Ner{4,8) —> T the canonical projec=-

tions. Then there exists a canonical, functorial isomorphism

L ~ L
RT" (Top® (Ner(4,G)),p™Ner(4,E) &, £™4) 2 RHom, (G,E 8 M) .

Proof, We shall just sketch .the idea, For simplicity, we shall‘assume‘nbz R Q
Denote By ZZ'rs{:(-l)'t:he functor deduced by stabilization from the functor.

X Z:(X? on tﬁe category of abelian groups of T, where ZX) means the

free abelian group on the underlying sheaf of sets, For X € ob Z -Mod(T),

th(x);is a simplicial abelian group of T, defined by
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2500 = 1 Zx[6]) (-]

where the shifts of degrees are performed simplicially thanks to the Dold-
Puppe equivalence, and the direct limit is taken with respect to the
"sﬁspension maps™, ~ Using  the pairings (5.8.2.6), it is possible to
turn th(A) into an associative and unitary simplicial ring of T, and th(G)
into a th(A)-Module. Moreover, we have a canonical map of rings -
Z(a) — A, énd a ZE(A)-1linear map Z¥e) —>a . Now, the proof of (5.8.6)
breaks down into two ﬁérts :

a) First, ﬁsing staﬁdard resolnﬁions, we show there is a canonical

_ isomorphism

. S L
RI"(Top"(Ner(é,g)),p"Ner(g,g})« = RHcmA(ZFt(G) ﬁzz?t( )A‘ , E)
== == A)

{(This is the hard part of the‘proof).

‘b) Second, we show that the canonical map

L
(5.8.6.1) 7t o A —>6
2t )

is an isomorphism, This last result is essentially due to Mac-Lane[i%E, as was
explained to us by L. Breen. It is easy to prove by dévissage and reduction
to the case G = A ,

This concludes the (sketchy) proof of (5.8.6), and therefore
demonstrates (5.3).
Remark 5.9. It is easy to deduce from (5.8.6.1) ﬁ canonical, functorial

resolution of G of the form desired by Grothendieck in (sGA 7 VII 3.5.4).

Remark 5.10, Deligne has indicated a method based on the theory of Picard

stacks that should yield another proof of the results of this section.

(ajouté en octobre 1972) Le calcul esguissé & partir de
(5.8.5) ayant buté sur des difficultés technigues, nous
avons dfi substituer au diagramme envisagé en (5.8,.3) un
- diagramme voisin, obtenu en remplagant § par l'objet
sim@licial C.(X) tel cue cn(g) soit la somme disjointe
des X<i0+1> suivant les chaines strictement croissantes
[ioj~* ese ~+{in]d'ensembles finis totalément orsonnés.
~Le principe du calcul reste néammoins le méme, nous

renvoyons le lecteur & ([13]VII 4.1.6) pour les ditails.
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