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A MARTINGALE THAT OCCURS IN HARMONIC ANALYSIS

R. F Gundy'!) and N, Th. Varopoulos

kgy , k=o,1,2,...}

It has been recognised for a long time that the__ sequence {exp(ir*
with 1 an integer greater than one and 0< 6 <27, is quite similar to a sequence of
independent random variables. That is) many statements that are valid for sums of indepen-
dent variables are also true for sums of exponentials of the above type. This coincidence
méy be explained by the observation that the sequence, while not independent, is a
martingale difference sequence.

Our purpose in this note is to discuss this type of martingale in the context of the
theory of - Hp—spaces. In fact ,we show that for any positive integerr r > 1 one can find
a sequence of o -fields with respect to which the above lacunary exponentials become
maftingale differences. Using this)we define HP -spaces in a manner analogous to what
has been done in the classical case (cf. [2_1 ). These uP -spaces are translation invariant
Subspaces of L1(T) that coincide with LP(T) for p> 1.

The most interesting case is when p =1 ; here the spaces which we denote by H;
are translation invariant subspaces of L1(T), distinct from the classical Hardy space

1

H'. The space Hg‘ may be characterised as follows : feH; ifandonly if f and

its "conjugate" 'f; belong to L1(T), Here ;r is, of course, not the harmonic

(1) This research was sponsored, in part, by N.S.F. Grant 42478 and the Research Council
of Rutgers University.
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conjugate function ; nevertheless, it is obtained from f by a Fourier multiplier takirig
the‘ values +1,

The spaces H; and their associated conjugate functions are closely telated to some
results of Taibleson and Chao B :l ; we indicate this in some detail in § 3.

We also use these ideas to obtain some recent results on lacunary series. We discuss
these applications in § 2.

For background on martingale theory and Hp—spaces, we cite D] and the excellent

exposition by Garsia Dlj .

§ 1. Statement of results.

A

Let £(8)= 2 f(n) exp(inf) be a trigonometric polynomial. For any positive integer

r>1, we define two auxillary functions
k

.*(e) PE-1 © ; 'ki
f = f =
P70 §=0 +rk)r

A | o . 2.1/2
s (1)) = { [0) 1% + z! Z (3" exp(ijr“e)] }
. k:o j:—oo

THEOREM 1, Let { be atrigonometric polynomial. If 0 < p < «, we have

clls @l <lEll<c lls @l .
p I °p r p 1 °p
*
II 1< p<4c0, then we'may replace fr by f in the above inequalities.
et r>0 be anoddinteger with r we can associate the following partition of

the integer <%

A=AP='{rn+1s+rnq ;€€ ,q=1, 2, ... F-'z'—], nZO}

B=BP={rn+1s+rnq ; S€Z , q=%—1-,... r-1, n= 0}.



" THEOREM 2. Let { be a trigonometric pcivnomial then

ol = 1)+l = 1)< [l < cll o)™l + ]| z 1))
VEA veB VEA veB

where c,‘C > 0 are two constants that depend only on .
Fcir r even ,an analogue of Theorem 2 holds, but the integers have to be partioned

into more sets., For details cf. § 3

THEOREM 3. Let f bean L '-function ; inen

[o.0] "~ 1/2
<kfolf(rk)]2> < cC, ”f:H1
for 1<p <+,

An elaboration of the method of proof of Theorem 1 leads to the following corollary.

COROLIARY 1. Let f bean LP-function on the circle and A1y Byyeen, B
be integers with a; > 1, i=1,2, ... m. Then
A N1 n 1/2
I B m, |2
(o et a ™D scp”f”p
EPRETS

for 1< p'< +o0,

Theorem 1 is a consequence of general martingale inequalilies proved in [1] . This
is made explicit in § 2. Using these inequalities we can obtain a class of 1.P_Fourier
multipliers due originally to Peyriere and Spector [5] '.

Theorem 2 is a well known result of R.E.A.C. Paley when p> 1 (cf. [:7] ).
Corollary 1 is an extension of Paley's inequality and provides an answer to a problem
proposed by Neuwirth, (Neuwirth had already proved the special case m = 2).

This inequality was first proved by Bonami and Peyriere using the results of E5 :] .



§ 2. A backwards martingale.
For r= 1 a positive integer, let ‘Fr denote the o-field of all 27 r’q—periodic
Borel sets of the circle T. Then the conditional expectation of a function f € L1(T)

with respect to 511 is given by

-1 .
E(fl!ﬁp)(@): = #(6 + 2Ty p T,

If we expand f in a Fourier series

£(6) ~ ofo.) £(n) exp(inf )

N=--2>

then

A

E(f H 3‘11)(8) ~ OEO f(nr) exp(in.r6 ).

N=-o00o

Fix r> 1 and consider the decreasing sequence of o-fields & e o= 0, 1,2,....;

the sequence

n
r_-1 2T\ .n
£ = E( Hgn)= = 10 +2)p
r j=0 r

is a backwards martingale in the sense that foreach N= 1,

T N
is a martingale. If we set f =limf = E(O) we may verify quite easily that the functions
Sr(f) and fi are the martingale square function and maximal function, respectively,

corresponding to the above sequence of ¢ -fields. Furthermore, this martingéle has the

following regularity property : If dn = fn - an , then
r-1
(1) d = 2 vﬁfn ple)
q=1
where vilq), q=1, ..., r-1 are measurable with respect to the o-field & N1
r
and where
(q) =0 .
r
| p(q) |- ,



E(pflk) B(g) ls =%

0 .
AT ik
for j,k=1,2, ..., r=1.
In fact, if we expand dn in its Fourier series, we see that, as a Zﬂr—n—periodic

function with E(dn H 2 n+1) =0, it can be written
r

r-1
dn(e Y= T gq(r‘n+16 ) expligr6)
g=1

where g are uniquely determined. The functions gq(r*nHG Y=v I(;I)(G ) and
expiqr’e ) = pEIQ)(@ ) fulfill our requifements. This regularity property allows us to
appiy the techniques of [1 :] . (n [1 ] , the regularity condition states that d_= v _p_
with somewhat more general conditions on pn. The extension of the results of [:1_1 to
the our case presents no problems. )

Thus, Theorem 1 is simply a special case of Theorem 5.1 of [1_] .

To prove Theorem 2, we have to introduce the space BMO relative to our

martingales. We know that the space BMO is the dual to H, with respect to our martingale,

1
by Fefferman's theorem. Here, of course,
*
He={teL'm):f eLm}.

A function g€ LY(T) belongs to BMO if

2
E(lg-g | Hfﬁrn)sc
for some constant and all n= 0. (This condition coihcides with the standard one in 1—4]
because of our regularity condition).

In terms of the Fourier series, the function g € BMO provided
——

r glv).gu)l <C forall n=1.
v, u '
rnlv—p



From this, we see that if

(2) C g8)2 % gln) explr)
n=0

then

(3) HgHBMO < ch;HZ

- 2,1/2
- c(zlam) 1212,
Theorem 2 is proved using a duality argument as foilows : if £ is a trigonometric polyno-

mial, then 1/2

<§30’f(rn)lz = sup Jf.w dt
n=0 o

where the sup is taken over all ¢ of the form (2) with “go”z = 1. On the other hand,

the duality of H, and BMO imply that

Jeoar=cligl ol

Finally, the inequality (3} shows that H(p”BMO < C, so that we obtain Theorem 2. We shall

finally outline the proof of Corollary. For this, we shall need some facts concerning
martingales with a several-dimensicnal time parameter. For simplicity we limit ourselves
‘to the case where the time parameter runs over the lattice (n,m), n>0, m> 0.

let & n and g’m be two monotone sequences of o -fields (for simplicity assume they‘

are increasing sequence) and let us suppose that the conditional expectations w. r. t.

sfn and n commute i. e,
t ,=EEE I &) H%) = E(E(fH%n)Hgn), n,m>0

is said to be a martingale with time parameter (n,m). The S-function associated with

the martingale is given by

2

2
S (f) = Zr}n dn,m

n s
where

dn,m = fn,m - fn,m-1 - fm-1,r1 - fr1—1,m—1 ‘
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LEMMA 1. For 1<p <, the following inequality holds :

7 N
. N
R

Istoll, < k.

Proof. Define the Qz—valued function

& Then the IP-rormof F satisfy

with dk=E(§1]$k)~E(f o)

1
el < kel
by Burkholder's inequalities, Observe that
dn,m = Bld, H%m) - Bl l%/mﬂ)

and that .
EF lg,) = B@,lig) , e, g, ...)

is a Ez—valued martingale. Therefore we may apply the Burkholder inequalities again to
obtain the desired result.

As a special case, let {}*’n be the collection of all pn—periodic BOPel setsof T,
and %m the collection of all qm-—per‘iodic sets, where p and q are primes. By
a small calculation one can verify that the "double" S-function, corresponding to these

sequences, is given by

.y mn
s?t)= 2 | £ a _ nel"pq62
m,n pfA Ap .q
qsA

so that Corollary 1 follows from the lemma and a standard duality argument in the special
case of two primes., However, the process can be iterated finitely many times, so the
above argument leads to a proof of Corollary 1. If we replace the primes p and q by
by arbitrary integers a and b, then the expression for S(f) becomes more compli-

cated. However, we can simply decompose the numbers a; = 1,2,...,M into their



prime factors and use the inequality obtained for primes to conclude the proof.

Remarks. As we noted above, Theorem 2 is a well-known inquality due to Paley
when p> 1. However, there are some differences when p=1.

Paley's inequality differs from ours in two ways : (a) instead of the sequence r*n,
n=0, 1, ..., his result holds for any lacunary sequence of integers X n’ such that

igf { A /An)> 1; (b)for the case p =1, the correct result is obtained by using the

classical H1—norm of the function rather than its L1-nor‘m. On the other hand, our results
are restricted to geometric sequences in an essential way. In fact, it is quite easy to see
that one can find functions 1':€L1 such that ”f;“1 <o forsome r>1, but
Hf”H1 = o and vice versa.

The Lp—norm in Coroliary 1 cannot be replaced by the H,-norm. In fact, it is

1
known [6_J that if &= 0,1, k=0, 1, 2,... is a sequence of Fourier multipliers for

H1 to L2 if and only if & = 1 for a finite number of indices k. 2M< k< 2n+1

’
independent of n ; this condition is not satisfied for example, by the multipliers
corresponding to a "double" lacunary sequence pnqm, nm=0, 1, 2,

Paley's theorem and Corollary 1 suggest the following question : given two lacunary
sequences m_ and nj, is it true that

<k2 if(m n, lZ) < Cp”f”p

forall 1< p<w ? The answer is negative, however. In fact let m, = 27,

k=0, 1, ...,N. For nj, choose nj=2N(M-j)/23, j=0,1, ..., N. If we choose

the coefficients f(mk. nj) =1 or O provided k=j ornot, we obtain, essentially,

the Mth partial sum of the Fourier series of a unit mass at 6 =0,



§3. The "conjugate" functions.
We now prove the inequalities given in Theorem 2. The following variant of SF(.f)

is useful here :

i

[ A o : 1/2
dﬂzﬂﬁ) Jmnp+ ZEd¢J2H$ﬂHQ]

n=0

o s £ 75 2]
- n=0 g=1 "
(q)

v ' are those defined in (1).

where the functions

LEMMA 2, Forany r>1 and O<‘p<oo, we have

e ls .ol <lls ol < clls .ol

This lemma is a variant of a result from [1 _J(see Theorems 5.3).

To prove the left-hand inequality in Theorem 2, it is sufficient to observe that if

A

fA(9)= % f(n) exp(inf)
- n€A

then
s5(E,)(0) = s(E)X8),

so that for 0 < p < o,
eyt < il
< CPHS(fA)”p
< c llsoll]
< Cp”f*llp.
Here we have used Theorem 1, Lemma 2, and the pointwise inequality just mentioned.

The same argument may be applied to the function £ Therefore, we have, in fact,

B*

shown that the left-hand inequality of Theorem 2 holds for all 0 < p < .,
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The right-hiand side inequality of Theorem 2 depends on a theorem due to Taiblesoh

and Chao ( [:3] , Theorem 2),

LEMMA 3. Let f be a trigonometric polynomial such that f=1f

A (that is, the

spectrum of f is zero outside A). There exists an a = cxo(r‘) < 1 such that for all
a>«,, the sequence |t |°£, lf1 Ioc, ... oObtained from the (backwards) fnartingale
f, f1 R f2, ... 1is a submartingale. That is,

e(le 1%l )= le  [°

r,r1+1 n+1

forall n=0, 1, ...

Before giving the proof of Lemma 3, let us indicate the proof of the right-hand inequa-
lity of Theorem 2. In fact, Lemma 2 implies that
Il < c s lle ] s
1= T« ¥ Ul
n -1
since ‘fn l“ is a submartingale that is L% -bounded, with o _1 > 1. (Here we
have used the maximal inequalities for submartingales (see Garsia [4] ).

Let us examine the proof of Lemma 3. The function f ~ written out in terms of its

martingale differences dn(e ), is of the form

r-1
2
dn(e )= qj {ugn)(rnﬂe ) cos(g r“}e) - vgn)(r‘nH) Sif](q g )]
r-1
+1i 3‘3 [ugn)(rnHB ) sin(qr'@ ) + vcgn)(rn“(?) cos(q 6 ):I
q=1

= Rn(e Y+ i In(Q ),
(n)

where the functions uq,

tation (1) and split the functions there into their real and imaginary parts.

v(cr;) are feal—valued. Here we have simply used the represen-

The important point in this decomposition is that



1.

(4) err e -0,
r
2 2
E(Rn H S:rn+1> = E(In H §Pn+1) t

a fact which can be verified rather easily. Furthermore, the conditional expectation

. n s . .
) acting on an 1 -periodic function, reduces to a simple average of 1

B( &

n+1
1
quantities, as the reader can easily verify. These circumstances allow us to apply

;  ithe

Theorem 2 of Taibleson and Chao L‘z’] to the martingale differences Rn’ In

conclusion of their theorem, stated in our terms, is precisely Lemma 3,

As we said in the introduction there is a version of Theorem 2 for the even integers.
It seems to be more complicated.

Let us define :

A1 = {m cm=4"4s+1); s€Z n= O}
Ay = {m cm=4"4s+3); s€Z n= O}

. — n »
A3={m.m—4(85+2), SEZ nzo}

. — n *
A4={m.m_4 (8s+6) ; SEZ nEO}.

It is easy to verify that A.,...,A, is a partition of the integers.

1 4

Let also 1 =2t be an even integer and let us define

B1={m:m=(rs+q)r‘n;s€Z n=0
= r_
q=1, ... 5 1}

BZ={m:m=(rs+q)r.n;s€Z n=0

a=5+1, ... r-1}
C={‘m:m=(r*s+g)r‘n; s€EZ nzo},

B1 y B2 and C is then a partition of Z that depends on 1 ; a general element
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of C can now be writen in the form

m = {r(ré + v) +§) ™
where €>0, n=>0 and v =1, 2, ... r-1. We canpartition C now into four

subsets C1, C2, C3, C4 by demanding that n and v stays in a fixed class mod 2

(i. e. takes only even or odd values).

B., B,, C C2 , Cy, C, 1isthen a partitionof Z that depends on r.

1? 25 1? 37 ~4

Let now f€L(T)

f~2 f(n) exp(ing)

and let us dénote in general

A

£, ~ L f(n)exp(inf)
neA

forany A < Z subset of the integers. We have then

THEOREM 4. L.et f be an L1—function and let r be some even integer then

. k . . 1 . .
a)if r=2" isapower of 2  then € H, if and only if fA1’fA2’fA3’fA4

e LY(t).

b) In general (when 1 . is not necessarily a power of 2 buteven) f€ H; if

. 1
andonlyif f. ,f, ,f. ,f. ,f.,f. €L (T).
B1 B2 C1 C2 C3 C4

¢) The spaces HH{
2

k=1, 2,... are all identical.
Part ¢) is of course an immediate consequence of a) but we shall need to obtain an

independent proof since the proof of a) is based on ¢). That independent proof follows

from the following two pointwise inequalities :

5,(000) = Gy 5 (1))
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and
fzk(e ) < f§(8 )

which are easy to verify, and Lemma 2 .(There is nothing special about 2 in(c), in general
H k=1, 2, ... are all identical spaces).
‘This point being settled we can now prove

. e g 1
if and only if IA1’ fAZ, fAB, fA4 € L(T). The proof

runs on strictly identical lines as the proof of Theorem 3 and will therefore be omitted.

(a) by proving that f € H;

The proof of the general cas(b) also follows the same lines.and will be omitted. The thing

to be observed here is that the two sets B1 R B? behave like the two sets A and B

of Theorem 3, and that the four sets C C behave, like the four

170 4

sets A,,..., Ay of part (a) of Theorem 4, The general case combines, in some

4
sense, Theorem 3 and the special case 1 = Zk.

From Theorem 2, it follows that if 7(n)=+1, according to whether n€A or not,
thén T 1s a Fourier multiplier thét characterizes H; for r odd : the function
fe H; if and only if 7(f) (= 7(n) g(n)) and f belongs to L1(T).

For the case r even, Theorem 4 says that at most five multipliers are needed. We

have not been able to decide whether fewer are sufficient, and we leave this as an open

problem.
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