PUBLICATIONS

MATHEMATIQUES

D'ORSAY

85 - 04

ÉTUDE DYNAMIQUE DES POLYNÔMES COMPLEXES

(Deuxième partie)

A. DOUADY & J.H. HUBBARD

avec la collaboration de P. Lavaurs, Tan Lei & P. Sentenac

Université de Paris-Sud Département de Mathématique

Bât. 425

91405 ORSAY France

<u>Code matière AMS</u> (1980) : 30 C 20 - C 60 - 39 B 10

<u>Mots-clefs</u>: Systèmes dynamiques, fonctions holomorphes ensembles de Julia, polynômes complexes, itération.

PUBLICATIONS

MATHEMATIQUES

D'ORSAY

85 - 04

ÉTUDE DYNAMIQUE DES POLYNÔMES COMPLEXES

(Deuxième partie)

A. DOUADY & J.H. HUBBARD

avec la collaboration de P. Lavaurs, Tan Lei & P. Sentenac

Université de Paris-Sud Département de Mathématique

Bât. 425

91405 ORSAY France

ETUDE DYNAMIQUE DES POLYNÔMES COMPLEXES

Rappel des exposés

de la

Première partie *

- [OC] Exposé nº I: OBJET DU COURS.
- [CC] Exposé nº II : COMPACTS DE C.
- [CLJ] <u>Exposé nº III</u> : CONNEXITE LOCALE DE CERTAINS ENSEMBLES DE JULIA .
- [AH] <u>Exposé nº IV</u>: ARBRES DE HUBBARD.
- [JMN] Exposé nº V: ENSEMBLES DE JULIA DE MESURE NULLE
- [P] <u>Exposé nº VI</u>: POSDRONASVILI.
- [AEJ] <u>Exposé nº VII</u>: ARGUMENTS EXTERNES DANS LES ENSEMBLES DE JULIA.
- [AEMM] Exposé nº VIII : ARGUMENTS EXTERNES DANS M DES POINTS DE MISUREWICZ.

^{*} Publications Mathématiques d'Orsay, nº 84-02 (1984).

ETUDE DYNAMIQUE DES POLYNÔMES COMPLEXES

Deuxieme PARTIE

		Page
[PPIR]	Exposé nº IX : POINTS FIXES MULTIPLES et POINTS	
	PERIODIQUES INDIFFERENTS RATIONNELS.	
	 I. Points fixes multiples 1. Ordre d'un point fixe	1 2 3
	II. Cas des polynômes	
	 Composante de K_f contenant un pétale Arguments externes de 0 	5 8
	III. Points périodiques indifférents rationnnels Nombre de pétales	9
[CLAJ]	Exposé nº X : CONNEXITE LOCALE de CERTAINS AUTRES ENSEMBLES de JULIA.	
	 Résultat. Constructions de Ω Construction de Ŭ Construction d'une métrique. Un module de continuité. La convergence. 	12 13 14 15 17 18
[TV]	Exposé nº XI : UN TOUR de VALSE A. DOUADY & P. SENTENAC	
	 Introduction. Résultats. Un changement de variables. Valse des compacts. Etude de la famille (H_U) Perturbation. Démonstration du théorème 1 Compléments. 	19 21 23 24 26 28 30 31
[ABP]	Exposé nº XII : ARRIVER AU BON PORT	
	1. Introduction 2. Définition de $\omega(c,\gamma)$ 3. Le cylindre de Fatou-Ecalle 4. Définition de $\check{\omega}(c)$ 5. Cas de c_t	33 35 36 38 39
	6. Définition de $\check{\omega}(c_0)$	40
	7. Identification de $\check{\omega}(c_0)$	42
	8 Démonstration du théorème 1	43

LADEMA	Exposé nº XIII : ABOUTISSEMENT des RAYONS EXTERNES de M d'ARGUMENT RATIONNEL	
[AREMA	1. Résultats	44 45 46
[CH]	Exposé nº XIV : COMPOSANTES HYPERBOLIQUES	
	 Composantes hyperboliques	47 48 50 51 53 55
[OCCH]	Exposé nº XV : L'ORDRE du CONTACT des COMPOSANTES HYPERBOLIQUES de M par TAN LEI	
	 Résumé des résultats déjà obtenus qui sont utiles pour la démonstration	56 57
[IC]	Exposé nº XVI : IDENTIDICATIONS DE CYLINDRES : ETUDE A LA LIMITE par Pierre LAVAURS	
	 Notations et position du problème	61 67 72 73 74
[PC]	Exposé nº XVII : UNE PROPRIETE de CONTINUITE par P. LAVAURS	
	 Cassure des rayons d'argument rationnel Enoncé et premiers cas	76 77 78 80
[CA]	Exposé nº XVIII : COMPLEMENTS SUR LES ARBRES par P. LAVAURS	
	 Arbres aux centres et aux racines	99 102 104
[s]	Exposé nº XIX : SIMPLICITE des COMPOSANTES HYPERBOLIQUES	108

[N]	Exposé nº XX: NERVURES	
	2. Nervures de K3. Nervures combinatoires	110 111 114 116
[AON]	Exposé nº XXI : ARBRE de l'ORIGINE d'une NERVURE de M	
	3. Rang d'un point de K 4. L'arbre Z 5. Le point y 6. L'arbre H 7. Condition de Hubbard pour H 8. Arguments externes de y 1	119 120 120 121 122 123 124 125 127
[A]	Exposé nº XXII: ADRESSES	
	 Adresses finies Point de séparation 	128 135 136 137
[RMJ]	Exposé nº XXIII : RESSEMBLANCE ENTRE L'ENSEMBLE DE MANDELBROT ET L'ENSEMBLE DE JULIA par TA AU VOISINAGE D'UN POINT DE MISUREWICZ	AN LEI
	 Distance de Hausdorff Le problème de la linéarisation 	139 140 142 145
	5. Convergence de $\rho(c_0)^n \tau_{-c_0}(M)$	149
	BIBLIOGRAPHIE	153

POINTS FIXES MULTIPLES

et

POINTS PERIODIQUES INDIFFERENTS RATIONNELS

I. POINTS FIXES MULTIPLES

Si f est un polynôme ayant en α un point périodique de période k, avec $(f^k)'(\alpha)=e^{2i\pi p/q}$, le polynôme f^{kq} a en α un point fixe avec dérivée 1 . Pour cette raison, nous allons commencer par étudier les points fixes avec dérivée 1 .

On peut supposer que le point fixe est 0 . Une grande partie de l'étude peut se faire pour les applications holomorphes au voisinage de 0 .

1. ORDRE D'UN POINT FIXE.

Soit f une fonction holomorphe au voisinage de 0 , avec f(0) = 0. L'ordre de 0 comme point fixe de f est l'ordre r d'annulation en 0 de $z \mapsto f(z) - z$. On dit que 0 est un point fixe multiple si $r \ge 2$. On peut alors écrire $f(z) = z + bz^r + 0(z^{r+1})$ avec $b \ne 0$. Ceci peut aussi s'écrire $f(z) = z(1 + bz^{r-1} + 0(z^r))$. Les z tels que $bz^{r-1} \in \mathbb{R}_+$ (resp. \mathbb{R}_-) forment r-1 demi-droites, faisant entre elles des angles de 1/r-1 tour, qu'on appellera les axes de répulsion (resp. axes d'attraction) de 0 pour f.

Remarques. 1) Si φ est une fonction holomorphe au voisinage de 0 avec $\varphi(0)=0$, $\varphi'(0)\neq 0$, qui conjugue f à g (i.e. $g=\varphi\circ f\circ \varphi^{-1}$), l'application linéaire tangente $T_0\varphi\colon z\to \varphi'(0).z$ envoie les axes de répulsion (resp. d'attraction) de f sur ceux de g .

2) On peut, par une fonction holomorphe tangente à l'identité en 0 , conjuguer f à une fonction g de la forme $z\mapsto z+bz^r+O(z^{2r-1})$, ou même de la forme

 $z\mapsto z+bz^r+cz^{2r-1}+Q(z^{\nu})$ avec ν arbitraire Pour les obstructions à conjuguer à $z\mapsto z+bz^r+cz^{2r-1}$, voir le cours d'Ecalle.

2. UN CHANGEMENT DE VARIABLES.

Pour étudier f, on souhaite faire le changement de variable $z \mapsto \frac{1}{(r-1)b\,z^{r-1}} \,. \quad \text{Mais cette application n'est pas injective au voisinage de } 0 \,,$ et ceci nous amène à poser certaines conventions.

Soient Ω un ouvert de C, $\widetilde{\Omega}$ un revêtement de Ω et $\pi:\widetilde{\Omega}\to\Omega$ la projection. Pour $Z\in\widetilde{\Omega}$, on pose $|Z|=|\pi(Z)|$. Soient $Z\in\widetilde{\Omega}$ et $u\in C$ assez voisin de 0 pour que, pour tout $t\in[0,1]$, $\pi(Z)+tu\in\Omega$. Le chemin $\gamma:t\mapsto\pi(Z)+tu$ dans Ω admet dans $\widetilde{\Omega}$ un unique relèvement $\widetilde{\gamma}$ d'origine Z; on notera alors Z+u le point $\widetilde{\gamma}(1)\in\widetilde{\Omega}$. Pour λ voisin de 1, on définit λ Z par λ $Z=Z+(\lambda-1)\pi(Z)$.

Soit D_{ρ} un disque contenu dans le domaine de définition de f. L'application $z\mapsto \frac{1}{(r-1)b\,z^{r-1}}$ définit un isomorphisme $h:z\to Z$ de D_{ρ} - $\{0\}$ sur un revêtement \widetilde{L} de degré r-1 de $\Omega=\mathbb{C}-\overline{D}_R$, où $R=\frac{1}{(r-1)|b|\rho^{r-1}}$. Notons $\pi:\widetilde{L}\to\Omega$ la projection et F l'application $h\circ f\circ h^{-1}$, définie sur un ouvert \widetilde{L} de \widetilde{L} contenant $\pi^{-1}(\mathbb{C}-\overline{D}_R)$ pour R' assez grand.

PROPOSITION 1. L'application F est de la forme $Z \mapsto Z - 1 + O(|Z|^{-1/r-1})$.

<u>Démonstration</u>. Soient $Z \in \widetilde{\Omega}^1$, $z = h^{-1}(Z)$, $z_1 = f(z)$ et $Z_1 = h(z_1) = F(Z)$.

On a:

$$z_1 = z + bz^{\Gamma} + O(|z|^{\Gamma+1}) = z(1 + bz^{\Gamma-1} + O(|z|^{\Gamma}))$$

 $\pi(Z_1) = \frac{1}{(\Gamma-1)b} z_1^{-(\Gamma-1)} = \pi(Z)(1 + bz^{\Gamma-1} + O(|z|^{\Gamma}))^{-(\Gamma-1)}$
 $\pi(Z)(1 - \frac{1}{\pi(Z)} + O(|Z|^{-\Gamma/\Gamma-1})$

Comme z et z_1 sont voisins, Z et Z_1 sont sur le même feuillet et on a : $Z_1 = Z(1 - \frac{1}{\pi(Z)} + O(|Z|^{-r/r-1})) = Z - 1 + O(|Z|^{-1/r-1}).$ Cqfd.

Remarque 3. Les r-1 axes de répulsion (resp. d'attraction) correspondent aux relèvements dans $\widetilde{\Omega}$ de $\mathbb{R}_+ \cap \Omega$ (resp. $\mathbb{R}_- \cap \Omega$).

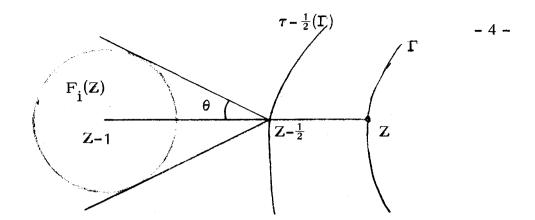
3. PETALES.

Soient R_1 et M tels que, pour $|Z| \ge R_1$, F(Z) soit défini et de la forme $F(Z) = Z - 1 + \eta(Z)$ avec $|\eta(Z)| \le \frac{M}{|Z|^{1/r-1}} \le \frac{1}{2}$. Soit $\Gamma \subset C$ une courbe de la forme $\{(x+iy) | x = H(y)\}$ où $H: \mathbb{R} \to \mathbb{R}$ est une fonction \mathbb{C}^{∞} ayant les propriétés suivantes :

- (i) H est convexe et paire ;
- (ii) $H(0) < -R_1$;
- (iii) $y \mapsto |H(y) + iy|$ est croissante sur \mathbb{R}_+ ;
- (iv) $|H'(y)| < \frac{1}{ty\theta}$, où $\sin \theta = \frac{2M}{|Z|^{1/r-1}}$, Z = H(y) + iy;
- (v) $H'(y) \rightarrow +\infty$ quand $y \rightarrow \infty$.

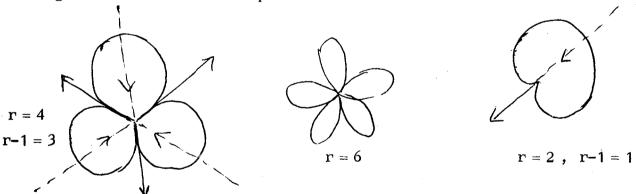
Les conditions (i) et (v) entraı̂nent que Γ a une branche parabolique dans la direction de \mathbb{R}_+ . Les conditions (ii) et (iii) entraı̂nent que $\Gamma \cap \overline{D}_{R_1} = \emptyset$.

Soient $\Gamma_1,\ldots,\Gamma_{r-1}$ les relèvements de Γ dans $\widetilde{\Omega}$ et posons $F_i(\Gamma)=\pi(F(\Gamma_i)) \ . \ \ \text{La condition (iv)} \ \ \text{assure que chacune des} \ \ F_i(\Gamma) \ \ \text{se trouve}$ strictement à gauche de $\tau_{-\frac{1}{2}}(\Gamma)$, où $\tau_{-\frac{1}{2}}$ est la translation $z\mapsto z-\frac{1}{2}$.



Soit G l'ensemble des $Z=x+i\,y\in C$ tels que $x\leq H(y)$ (région située à gauche de Γ). L'image réciproque G dans $\widetilde{\Omega}$ est formée de r-1 copies G_1,\ldots,G_{r-1} de G, et on a $F(G_i)\subset \tau_{-\frac{1}{2}}\overset{o}{G}_i$.

Pour chaque i, on pose $P_i = h^{-1}(G_i) \cup \{0\}$. Les P_i sont des compacts que l'on appelle les <u>pétales</u> de f en 0. Ils dépendent du choix de Γ . On a $f(P_i) \subseteq P_i \cup \{0\}$. Chaque P_i est limité par une courbe $\gamma_i = h^{-1}(\Gamma_i)$, image d'un chemin $[0,1] \to \Gamma$, injectif sur [0,1], qui part de $[0,1] \to \Gamma$, injectif sur [0,1], qui part de $[0,1] \to \Gamma$, injectif sur [0,1], qui part de $[0,1] \to \Gamma$, injectif sur [0,1], qui part de [0,1] et revient à [0,1] tangentiellement à l'axe de répulsion suivant.



La fleur \cup P_i est contenue dans le disque $D_{\rho_1} = \{0\} \cup h^{-1}(\mathbb{C} - \overline{D}_{R_1})$. Pour $\rho' < \frac{1}{|H(0)|^{r-1}}$, l'ouvert $D_{\rho'} - \cup P_i$ a r-1 composantes connexes, qu'on appelle les interpétales.

PROPOSITION 2. Soient P_i l'un des pétales de f en 0 et $z \in P_i$ - $\{0\}$.

- a) $f^{n}(z) \rightarrow 0$ tangentiellement à l'axe de P_{i} .
- b) $f^n \rightarrow 0$ <u>uniformément sur</u> P_i.

<u>Démonstration</u>. a) Posons $z_n = f^n(z)$, Z = h(z), $Z_n = h(z_n) = F^n(Z)$,

écrivons Ré Z pour Ré $(\pi(Z))$, etc... On a Ré $Z_{n+1} \le \text{Ré } Z_n - \frac{1}{2}$, donc Ré $Z_n \to -\infty$, d'où $|Z_n| \to \infty$ et $|z_n| \to 0$. On a $Z_{n+1} - Z_n \to -1$, d'où Arg $Z_n \to \frac{1}{2}$, et l'angle de z_n avec l'axe de P_i tend vers 0. Cqfd.

 $\label{eq:continuous_section} \begin{array}{ll} \text{b) On a } \operatorname{F}^n(G_i) \subseteq \tau_{-n/2}(G_i) \text{ , donc, pour tout } \operatorname{R''} > 0 \text{ , il existe un } \operatorname{n}_0 \text{ tel} \\ \\ \operatorname{que} \ \pi(\operatorname{F}^n(G_i)) \cap \operatorname{D}_{\operatorname{R''}} = \emptyset \text{ pour } \operatorname{n} \geq \operatorname{n}_0 \text{ . Par suite, } \forall \ \rho'' > 0 \text{ } (\exists \ \operatorname{n}_0) \text{ } (\forall \ \operatorname{n} \geq \operatorname{n}_0) \\ \\ \operatorname{f}^n(\operatorname{P}_i) \subseteq \operatorname{D}_{\rho''} \text{ . } \\ \end{array}$

II . CAS DES POLYNOMES

On suppose dans cette partie que f est un polynôme monique de degré d , ${\rm ayant\ en\ 0\ un\ point\ fixe\ d'ordre\ r=2\ .\ Soient\ P_1,\dots,P_{r-1}\ les\ pétales\ de\ f}$ en 0 .

1. COMPOSANTE de \mathring{K}_f CONTENANT UN PETALE.

Le point 0 appartient à $J_f = \partial K_f$. En effet, si $f(z) = z + bz^r + O(|z|^{r+1})$, on a : $f^n(z) = z + nbz^r + O(|z|^{r+1})$, et la suite $((f^n)^{(r)}(O))_{n \in \mathbb{N}}$ n'est pas bornée.

Pour chaque i, P_i - $\{0\} \subset \overset{\circ}{K}_f$. En effet $P_i \subset K_f$ et $f(P_i$ - $\{0\}) \in \overset{\circ}{P_i} \subset \overset{\circ}{K}_f$. Comme l'ensemble P_i - $\{0\}$ est connexe, il est contenu dans une composante connexe U_i de $\overset{\circ}{K}_f$.

PROPOSITION 3. Pour tout $x \in U_i$, il existe un n tel que $f^n(x) \in P_i - \{0\}$.

Si ρ' est assez petit, on a |f(z)|>|z| si $z\in D_{\rho'}-\cup P_j$. Les x_n ne peuvent donc pas être tous dans les interpétales, et $\exists n_0$, $\exists j$, $x_{n_0}\in P_j-\{0\}$. On a alors $x_n\in \stackrel{\circ}{P}_j-\{0\}$ pour $n>n_0$.

Notons V_j l'ensemble des $x \in U_i$ tels que $(\exists \ n)$ $x_n \in \stackrel{\textbf{o}}{P}_j - \{0\}$. Les V_j forment une partition de U_i en ouverts. Comme U_i est connexe, un seul n'est pas vide, et comme $P_i - \{0\} \subseteq V_i$, on a $U_i = V_i$. Cqfd.

COROLLAIRE. Les U_i sont deux à deux distincts.

PROPOSITION 4. a) U_i contient au moins un point critique de f.

- b) f induit une application holomorphe propre $f_i: U_i \rightarrow U_i$ de degré $d_i \ge 2$
- c) Soit $\varphi: U_i \xrightarrow{\approx} D$ un isomorphisme et posons $g = \varphi \circ f_i \circ \varphi^{-1}$. Alors, g est la restriction à D d'une fraction rationnelle $g: \overline{C} \to \overline{C}$ ayant sur S^1 un point fixe triple α . Pour tout $x \in \overline{C} S^1$, la suite $g^n(x) \to \alpha$.

LEMME. Soit
$$x_0 \in U_i$$
 et posons $x_n = f^n(x_0)$. Alors, $d_{U_i}(x_n, x_{n+1}) \rightarrow 0$.

Pour m' > |b| , on a $|x_{n+1} - x_n| \le m' |x_n|^r$ pour m assez grand. Par suite, $\frac{|x_{n+1} - x_n|}{d(x_n, \partial U_i)} \to 0$. Or,

$$\begin{aligned} \mathrm{d}_{U_{\underline{i}}}(x_{n},x_{n+1}) &\leq \mathrm{d}_{D(x_{n},d(x_{n},\partial U_{\underline{i}}))}(x_{n},x_{n+1}) &= \mathrm{d}_{\underline{D}}(0,\,\frac{x_{n+1}^{-x}x_{n}}{d(x_{n},\partial U_{\underline{i}})})\;,\\ \\ \mathrm{d}^{!}où & \mathrm{d}_{U_{\underline{i}}}(x_{n},x_{n+1}) &\longrightarrow 0\;. \end{aligned} \qquad \mathsf{Cqfd}\;.$$

Démonstration de la proposition. b) L'application f induit une application holomorphe propre $f^{-1}(U_i) \to U_i$. Or, U_i est une composante connexe de $f^{-1}(U_i)$, donc f induit $f_i: U_i \to U_i$ holomorphe propre. Soit d_i son degré. On a $d_i > 1$ car sinon f_i serait une isométrie pour la distance de Poincaré de U_i , ce qui est contredit par le lemme.

- a) résulte de b) et de la formule de Riemann-Hurewicz. Plus élémentairement, s'il n'y avait pas de point critique, $f_i:U_i\to U_i$ serait un revêtement nécessairement trivial puisque U_i est simplement connexe, donc de degré 1 .
- c) L'application g: D → D est holomorphe et propre. Par le principe de réflexion de Schwarz, elle se prolonge en une application $\overline{\mathbb{C}} \to \overline{\mathbb{C}}$, qui est une fraction rationnelle commutant avec $z\to \frac{1}{z}$. Montrons qu'il y a un point fixe triple sur S¹. Soit $x_0\in D$ et posons $x_n=g^n(x)$. Tout point d'accumulation α de la suite (x_n) appartient à S¹ et est un point fixe de g . En effet, si $x_{n_k}\to \alpha$, on a $|x_{n_k+1}-x_{n_k}|\le d_D(x_{n_k},x_{n_k+1})\to 0$, et $g(x_n)\to \alpha$ d'où $\alpha=y(\alpha)$. Soient $\alpha_1,\dots,\alpha_\nu$ les points fixes de g sur S¹, W_1,\dots,W_ν des voisinages de $\alpha_1,\dots,\alpha_\nu$ respectivements tels que $d_D(W_1\cap D,W_j\cap D)>d_D(x_0,x_1)$. A partir d'un certain rang, tous les x_n sont dans la réunion des W_i , mais comme on a $d_D(x_n,x_{n+1})\le d_D(x_0,x_1)$, ils sont tous dans le même, et la suite n'a qu'un point d'accumulation $\alpha\in S^1$. Comme \overline{D} est compact, $x_n\to \alpha$.

Comme $d_D(x_n, x_{n+1}) \to 0$, on a $\frac{x_{n+1} - x_n}{x_n - \alpha} \to 0$ et α est un point fixe multiple. Soit $y_0 \in D$ et posons $y_n = g^n(y_0)$. On a $d_D(x_n, y_n) < d_D(x_0, y_0)$; comme $|x_n - \alpha| \to 0$, on a $|y_n - x_n| \to 0$ et $y_n \to \alpha$.

Soit s l'ordre de α comme point fixe de g; montrons que s=z. Soient Q_1,\ldots,Q_{s-1} les pétales de g en α . Au moins la moitié d'entre eux rencontre D. Mais les $V_i=\{x\in D\mid g^n(x)\in Q_i-\{\alpha\}\}$ forment une partition de D en ouverts, donc il g en a au plus 1 non vide et $s-1\leq 2$, d'où g en g ou g .

Posons $z_n = \varphi^{-1}(x_n) \in U_i$. La suite $z_n \to 0$ tangentiellement à l'axe de P_i . Si $\eta: \overline{U}_i \to [0,1]$ est une fonction harmonique sur \overline{U}_i , continue sur $U_i \to \{0\}$, valant 0 sur ∂U_i dans un interpétale adjacent à P_i et 1 dans l'autre, $(\exists \ m > 0) \ (\forall \ n) \ m \le \eta(z_n) \le 1 - m$. Par suite, $x_n \to \alpha$ non tangentiellement à S^1 , ce qui exclut le cas s = 2. On a donc s = 3. Cqfd.

2. ARGUMENTS EXTERNES DE 0.

PROPOSITION 5. On suppose que K_f est connexe et localement connexe.

- a) Tout argument externe de 0 est de la forme p/d-1.
- b) Dans chaque interpétale arrive au moins un rayon externe qui aboutit en 0.
- c) Entre deux rayons externes aboutissant en $\,0\,$, il y a un point critique et une valeur critique de $\,f\,$.

LEMME. Soit $A \subseteq \mathbb{R}/\mathbb{Z}$ un ensemble contenant au moins un point α de la forme p/d-1, $p \in \mathbb{Z}$. On suppose que $t \mapsto dt$ induit une bijection de A sur A préservant l'ordre cyclique. Alors, tout point de A est de la forme p/d-1, $p \in \mathbb{Z}$.

Démonstration de la proposition. a) Notons A l'ensemble des arguments externes de 0 . Supposons $A \neq \emptyset$ et soit $t \in A$ et α le plus petit élément de A correspondant à un rayon \Re_{α} qui arrive dans le même interpétale que \Re_t . Le rayon \Re_{α} est stable par f, donc $\alpha = d\alpha$ et α est de la forme p/d-1 . L'application f induit une permutation des $(\Re_t)_{t \in A}$ préservant l'ordre cyclique. La partie a) résulte alors du lemme .

- b) Choisissons dans chaque pétale P_i un centre c_i pour U_i et soit H l'enveloppe réglementaire de $\{0,c_1,\ldots,c_{r-1}\}$. Les interpétales sont les accès à 0 relativement à H (cf. exposé "arguments externes dans les ensembles de Julia"). La partie b) résulte alors de la proposition 1 dudit exposé.
- c) Soient $R=\overline{\aleph}(f,\theta)$ et $R'=\overline{\aleph}(f,\theta')$ deux rayons externes de K_f aboutissant en 0, et V une composante connexe de $C-(R\cup R')$. D'après la partie a), on peut supposer que $\theta=0$, $\theta'=\frac{D}{d-1}$, $p\in\{1,\ldots,d-2\}$, et que V contient les points de $C-K_f$ d'argument externe $t\in]0,p/d-1[$. Posons $W=f^{-1}(V)$. Le bord ∂W est la réunion des $\Re(f,t)$ pour $t\in\{\frac{i}{d},\frac{D}{d-1}+\frac{i}{d}\}_{i=0,\ldots,d-1}$. Soit W_1 la composante connexe de W telle que $\partial W_1\supset R$. On a $W_1\subseteq V$ et $\partial W\supset R\cup \Re(f,t_1)$ où $t_1=\frac{D}{d-1}-\frac{D}{d}=\frac{D}{d\cdot(d-1)}$. Le rayon $R_1=\Re(f,t_1)$ aboutit en un point $c_1\not=0$ puisque $t_1\not\in ZZ$. $\frac{1}{d-1}$. L'application f induit une application holomorphe propre $f_1:W_1\to V$, notons d_1 son degré. Soit U un voisinage de 0, alors $f^{-1}(U\cap W)\supset (U^{\dagger}\cap W)\cup (U^{\dagger}\cap W)$ où U^{\dagger} est un voisinage de 0 et U^{\dagger} un voisinage de U^{\dagger} 0 put supposer disjoints. Par suite, U^{\dagger} 1 about U^{\dagger} 2 donc U^{\dagger} 3 U^{\dagger} 4 U^{\dagger} 5 U^{\dagger} 6 et U^{\dagger} 9 et U^{\dagger}

III. POINTS PERIODIQUES INDIFFERENTS RATIONNELS

NOMBRE DE PETALES.

Soit $f: \mathbb{C} \to \mathbb{C}$ un polynôme de degré d, α un point périodique de période k, tel que $\lambda = (f^k)^\intercal(\alpha) = e^{2i \pi p/q}$, p.g.c.d. (p,q) = 1.

PROPOSITION 6. La multiplicité r de α comme point fixe de f^{kq} est de la forme ν q+1, où $\nu \in \{1, \ldots, d-1\}$.

<u>Démonstration</u>. L'application $T_{\alpha}f^k$, qui est la multiplication par ρ , opère librement sur les axes de répulsion en α . Leur nombre, qui est r-1, est donc de la forme $q\nu$. Il y a ν orbites disjointes dans $\pi_0(\mathring{K}_f)$, et chacune contient au moins un point critique de f^{kq} , donc un point critique de f. Comme f a au plus d-1 points critiques, on a $\nu \leq d-1$. Cqfd.

On pourrait aussi déduire la proposition 5 du lemme suivant, que nous donnons car il nous servira par la suite.

LEMME 1. On peut trouver une coordonnée holomorphe centrée en α telle que l'expression de f^k dans cette coordonnée soit de la forme $\zeta \mapsto \lambda \left(\zeta + \zeta^r + O(\zeta^{r+1})\right)$, avec $r = \nu \, q + 1$, $\nu \in \mathbb{N}^+$.

Autrement dit, on peut trouver un difféomorphisme C-analytique, ψ d'un voisinage de α sur un voisinage de 0, avec $\psi(\alpha)=0$, tel que ψ o f^k o ψ^{-1} soit de la forme prescrite.

$$\zeta_{j+1} \longmapsto \zeta_{j} = \zeta_{j+1} - c \zeta_{j+1}^{j} + \dots + \underbrace{\xi_{j+1}^{g_{j}}}_{j+1} + (b_{j} - \lambda c) \zeta_{j+1}^{j} + \dots$$

$$\longmapsto g_{j+1}(\zeta_{j+1}) = \zeta_{j+1} + (b_{j} - \lambda c + c\lambda^{j}) \zeta_{j+1}^{j} + O(\zeta_{j+1}^{j+1}) .$$

Si j n'est pas de la forme ν q+1 , on a λ^j - $\lambda \neq 0$, et on peut choisir c de façon que b_j + $c(\lambda^j$ - $\lambda)$ = 0 .

On peut ainsi chasser de proche en proche le premier terme de $g_j(\zeta) - \lambda \zeta$ jusqu'a ce que l'on tombe sur un terme de la forme $b \zeta^{\nu q+1}$ avec $b \neq 0$. Si le processus ci-dessus se poursuivait indéfiniment, f^{kq} aurait un contact d'ordre ∞ avec l'identité, donc $f^{kq} = id$, ce qui est impossible si f est un polynôme de

degré d>1. On peut donc trouver une coordonnée ζ telle que l'expression de f^k soit $\zeta \longmapsto \lambda \zeta + b \zeta^{\nu \, q+1} + O(\zeta^{\nu \, q+2})$ avec $b \neq 0$, et par une homothétie on peut obtenir $b=\lambda$. Cqfd.

Soit ψ un difféomorphisme d'un voisinage de α sur un voisinage de 0. Une <u>fleur</u> F de f^{kq} relativement a ψ est $F = \psi^{-1}(F^{\dagger})$, où F^{\dagger} est une fleur (réunion des pétales) de ψ_0 f^{kq} \circ ψ^{-1} .

PROPOSITION 7. Soit ζ une coordonnée centrée en α satisfaisant aux conditions du lemme 1, et F la fleur de f^{kq} relativement à ζ définie a partir d'une courbe F comme dans F. Pour un choix convenable de F, on a $f^k(F) \subseteq {\mathfrak S} \cup \{\alpha\}$.

Remarque. La condition (iv) est plus forte que la condition normalement exigée pour définir la fleur de f^{kq} , car f^{kq} correspond à b=q et non b=1.

CONNEXITE LOCALE DE CERTAINS AUTRES ENSEMBLES DE JULIA

1. RESULTAT.

THEOREME. Soit $f: \mathbb{C} \to \mathbb{C}$ un polynôme de degré d > 1. On suppose que, pour tout point critique ω de f, l'une des 3 éventualités suivantes se produit :

- a) ω est attiré par un cycle attractif ;
- b) ω tombe en un temps fini sur un cycle répulsif.
- c) ω est attiré par un cycle indifférent rationnel.

Alors, K_f est connexe et localement connexe.

<u>COROLLAIRE</u>. <u>Soit</u> f <u>un polynôme de degré</u> 2 <u>admettant un cycle indifférent</u> rationnel. <u>Alors</u>, K_f <u>est connexe et localement connexe</u>.

Cet exposé est un complément à l'exposé [CLJ] "Connexité locale de certains ensembles de Julia". Nous utiliserons les résultats de l'exposé [PPIR] "Points fixes multiples et points périodiques indifférents rationnels".

D'après un théorème de Fatou et/ou Julia, comme tout point critique de f appartient à K_f , l'ensemble K_f est connexe ([CLJ], Proposition 1 étendue). Le cas où seules les éventualités (a) et (b) se présentent est couvert par la Proposition 4 de [CLJ] + Caractérisation des polynômes sous-hyperboliques. Dans le cas où (c) se présente effectivement, f n'est pas sous-hyperbolique. Pour montrer que K_f est localement connexe, nous montrerons que la suite (γ_n) de lacets définie dans la Proposition 3 de [CLJ] converge uniformément. Pour cela, nous allons construire, sur une partie Ω de C une métrique pour laquelle f est strictement (i.e. augmente strictement la longueur de toute

courbe rectifiable non triviale) mais non fortement dilatante en général. Le raisonnement que nous aurons à faire pour terminer la démonstration sera donc plus délicat que celui de la démonstration de la Proposition 4 de [CLJ]: nous serons amenés à faire quelque chose comme une partition de Markov.

Dans la suite, f sera un polynôme satisfaisant aux hypothèses du Théorème.

2. CONSTRUCTIONS de Ω .

Notons A_ l'ensemble des points périodiques attractifs de f , A_0 l'ensemble des points périodiques indifférents rationnels et C la réunion des orbites directes des points critiques. Ecrivons $C = C_- \cup C_0 \cup C_+$, où C_ (resp. C_0) correspond aux points critiques attirés par un cycle attractif (resp. indifférent rationnel) et C_+ aux points critiques tombant sur un cycle répulsif.

PROPOSITION 1. On peut trouver un ensemble compact Ω tel que:

- a) $\partial \Omega \supset A_0$, $\Omega \cap A_- = \emptyset$, $C_+ \subset \mathring{\Omega}$, $(C_0 \cup C_-) \cap \Omega = \emptyset$;
- b) $J_f \subset \Omega \cup A_0$, $\gamma_n \subset \Omega$ pour n assez grand ;
- c) $f^{-1}(\Omega) \in \Omega \cup A_0$;
- d) $\hat{\Omega}$ connexe ;
- e) $\hat{\Omega} \cap \Re(K_f, 0)$ connexe.

 $\underline{\text{D\'emonstration}}.\ \ \text{Soit}\ \ L\ \ \text{un disque topologique ferm\'e contenant}\ \ K_{f}\ ,\ \ \text{limit\'e}$ par une courbe de niveau du potentiel $\ G_{f}\ \ \text{de}\ \ K_{f}\ .$

Choisissons pour chaque $\alpha \in A_{_}$, un disque topologique Δ_{α} de façon que $f(\overline{\Delta}_{\alpha}) \subset \Delta_{f(\alpha)}$. Ceci entraîne $\overline{\Delta}_{\alpha} \subset \overset{\circ}{K}_{f}$. Soit n_ tel que B_= $f^{-n}(\bigcup_{\alpha \in A_{_}} \Delta_{\alpha}) \supset C_{_}$. On a encore $\overline{B}_{_} \subset \overset{\circ}{K}_{f}$.

Pour chaque $\alpha \in A_0$, construisons une fleur F_{α} (relativement à une coordonnée ζ_{α} centrée en α) de façon que $f(F_{\alpha} - \{\alpha\}) \subset \overset{\circ}{F}_{f(\alpha)}$. Soit n_0 tel que $B_0 = f^{-n_0}(\bigcup_{\alpha \in A_0} \overset{\circ}{F}_{\alpha}) \supset C_0$. Ceci entraîne que $B_0 \subset \overset{\circ}{K}_f$ et $\overline{B}_0 \subset \overset{\circ}{K}_f \cup A_0$.

L'ensemble $\Omega = L - (B_U \cup B_0)$ répond à la question. Cqfd.

3. CONSTRUCTION de \widetilde{U} .

On pose r(x)=1 pour $x \notin C_+$. Soient U^* un revêtement ramifié de U, avec degré de ramification égal à $\nu(x)$ pour tout point au-dessus de x, et \widetilde{U} le revêtement universel de U^* . Alors, \widetilde{U} est un revêtement ramifié galoisien de U. Notons π la projection $\widetilde{U} \to U$. Soit \widetilde{R}_0 un relèvement de l'arc ouvert $U \cap \Re(K_f, 0)$ dans \widetilde{U} .

PROPOSITION 2. Il existe une application holomorphe $g: \widetilde{U} \to \widetilde{U}$ telle que $f \circ \pi \circ g = \pi$ et $g(\widetilde{\Re}_{\widetilde{U}}) \subset \widetilde{\Re}_{\widetilde{U}}$.

Remarque: La condition $f \circ \pi \circ g = \pi$ exprime en quelque sorte que g est un relèvement de f^{-1} .

 $\underline{\text{D\'emonstration}}. \text{ Soit } X \text{ 1'ensemble des couples } (x,y) \in \widetilde{U} \times \widetilde{U} \text{ tels que}$ $f(\pi(y)) = \pi(x) \text{ . } L^{\text{!ensemble }} X \text{ est une courbe C-analytique avec singularit\'es.}$ Soit $(x_0,y_0) \in X$. Si $\pi(x_0)$ n'appartient pas a C , $\pi(y_0)$ non plus, X est lisse en (x_0,y_0) et $\text{pr}_1: X \to \widetilde{U}$ est un isomorphisme local au voisinage de (x_0,y_0) . Supposons $\pi(x_0) \in C$, notons r le degré de ramification en $\pi(y_0)$ de f; posons $\nu_{X_0} = \nu(\pi(x_0))$ et $\nu_{y_0} = \nu(\pi(y_0))$, $\deg_{y_0}(f \circ \pi) = r\nu_{y_0}$, qui est par hypothèse un diviseur de $\nu_{X_0} = \deg_{X_0} \pi$. On peut prendre sur \widetilde{U} des coordonnées , ξ centrée en x_0 et η centrée en y_0 , telles que les expressions de π et for

soient $\xi \mapsto \xi^{\nu_{X_{\mathbb{C}}}}$ et $\eta \mapsto \eta^{r\nu_{y_{\mathbb{O}}}}$. Au voisinage de (x_0,y_0) , l'ensemble X devient $\{(\xi,\eta)\mid \xi^{\nu_{X_{\mathbb{O}}}}=\eta^{r\nu_{y_{\mathbb{O}}}}\}=\cup\{(\xi,\eta)\mid \eta=\lambda\,\xi^q\}$, où $q=\nu_{X_0}/r\,\nu_{y_0}$, la réunion étant prise sur les λ tels que $\lambda^{r\nu_{y_0}}=1$. La courbe X est au voisinage de (x_0,y_0) , réunion de $r\,\nu_{y_0}$ courbes lisses (branches), qui se coupent tranversalement, et pour chacune la projection $pr_1: X \to \widetilde{U}$ induit un isomorphisme local.

En remplaçant le point (x_0,y_0) par $r \nu_{y_0}$ points, un sur chaque branche, et en procédant de même pour les autres points (x,y) tels que $\pi(x) \in C$, on obtient un espace \widetilde{X} qui est un revêtement de \widetilde{U} . Mais \widetilde{U} est simplement connexe, ce revêtement est donc trivial. Soient x_1 et y_1 des points de $\Re(K_f,0) \cap U$ tels que $x_1 = f(y_1)$; notons \Re_1 et \widetilde{Y}_1 leur relèvement dans $\widetilde{\Re}_0$. Il existe une section unique $\sigma: \widetilde{U} \to \widetilde{X}$ telle que $\sigma(\widetilde{X}_1) = (\widetilde{X}_1,\widetilde{Y}_1)$. L'application $g = \operatorname{pr}_2 \circ \pi_{\widetilde{X}} \circ \sigma: \widetilde{U} \to \widetilde{U}$, où $\pi_{\widetilde{X}}: \widetilde{X} \to X$ est la projection canonique, répond à la question. Cqfd.

4. CONSTRUCTION d'une METRIQUE.

Notons $\mu_{\widetilde{U}}$ la métrique de Poincaré de \widetilde{U} et $\mu_{\widetilde{U}}$ la métrique riemannienne admissible sur U telle que la projection $\pi:\widetilde{U}\to U$ soit une isométrie locale. Remarques. 1) Si $A_0=\emptyset$, $\pi(g(\widetilde{U}))$ est relativement compact dans U, il en résulte que $g:\widetilde{U}\to\widetilde{U}$ est fortement contractante pour $\mu_{\widetilde{U}}$. Par suite, f est fortement dilatante pour μ_{U} sur J_f , autrement dit f est sous-hyperbolique. Le théorème, dans ce cas, résulte alors de [CLJ], Proposition 4.

2) Si $A_0 \neq \emptyset$, l'application $g: \widetilde{U} + \widetilde{U}$ est strictement mais non fortement contractante. Soient $\alpha \in A_0$ et θ un argument externe de α dans K_f . L'arc ouvert $U \cap \Re(K_f, \theta)$ a une longueur infinie du côté de α pour μ_U , et la suite $(\gamma_n(\theta)_{n \in \mathbb{N}})$ n'est pas une suite de Cauchy pour μ_U . C'est pour ces raisons que nous allons modifier la métrique μ_U .

On peut trouver pour chaque point $\alpha \in A_0$, un disque topologique Δ_{α} et un isomorphisme $\zeta_{\alpha} \colon \Delta_{\alpha} \to D_r$ de façon que l'expression de $f \colon \Delta_{\alpha} \to \Delta_{f(\alpha)}$

soit de la forme $\zeta \to \lambda \ (\zeta + b_{\alpha} \zeta^{q_{\alpha+1}} + \ldots)$, $b_{\alpha} > 0$, $q_{\alpha} = \text{nombre de pétales}$ de la fleur de α , $\lambda^{q_{\alpha}} = 1$.

Si les disques Δ_{α} ont été pris assez petits, $U \cap \Delta_{\alpha}$ est contenu dans la réunion des interpétales, et l'expression de f a une dérivée de module > 1. En outre, on a : $f(U \cap \Delta_{\alpha}) \supset U \cap \Delta_{f(\alpha)}$, $f(\overline{\Delta}_{\alpha}) \cap \overline{\Delta}_{\beta} = \emptyset$ pour $\beta \neq f(\alpha)$, et $\overline{\Delta}_{\alpha} \cap C_{+} = \emptyset$.

Notons μ_{α} la métrique $|\mathrm{d}\zeta_{\alpha}|$ sur Δ_{α} . Choisissons $\mathrm{M}\in\mathbb{R}_+$ grand et définissons sur $\mathrm{U}\cup \cup \Delta_{\alpha}$ une métrique riemannienne μ (à coefficient discontinu) par $\mu=\inf\left(\mu_{\mathrm{U}},\mathrm{M}\mu_{\alpha}\right)$, la borne inférieure étant prise en chaque point z sur les métriques définies en ce point.

Considérons le compact $\Omega^p = f^{-1}(\Omega) \subset U \cup A_{\Omega}$.

PROPOSITION 3. Si on a choisi M assez grand, f est strictement dilatante pour μ sur Ω^1 .

Par "strictement dilatante", nous voulons dire que, pour tout chemin $\text{rectifiable non trivial } \gamma: \ I \to \Omega^{1} \ , \ \text{on a } \log_{\mu}(\mathbf{f} \circ \gamma) > \log_{\mu}(\gamma) \ .$

Il y a 4 cas à considérer:

- a) $\mu_z = \mu_{U_z}$, $\mu_{f(z)} = \mu_{U,f(z)}$: 'L'application $f: f^{-1}(U) \to U$ est strictement dilatante pour μ_U puisque $g: \widetilde{U} \to \widetilde{U}$ est strictement contractante, d'où (1) dans ce cas.
- b) $\mu_z=M\mu_{\alpha,z}$, $\mu_{f(z)}=\mu_{U,f(z)}$: On a $\mu_z\leq\mu_{U,z}$, d'où (1) comme dans le cas a).

c) $\mu_z = M \mu_{\alpha,z}$, $\mu_{f(z)} = M \mu_{f(\alpha),f(z)}$: L'inégalité (1) résulte du fait que l'expression de M dans les coordonnées ζ_{α} , $\zeta_{f(\alpha)}$ a une dérivée > 1 en module.

d) $\mu_z = \mu_{U,z}$, $\mu_{f(z)} = \mu_{f(\alpha),f(z)}$: Si $z \in L_{\alpha}^{'}$, on a $\mu_z \le \mu_{\alpha,z}$, et on conclut comme dans le cas c). Si $z \in L_{\alpha}^{"}$, l'inégalité (1) résulte de la condition $M > \frac{1}{m_{\alpha}}$ imposée à M. Cqfd.

5. UN MODULE de CONTINUITE.

Posons $\Omega'^* = \Omega' \cap U = \Omega' - A_0$, et soit $\widetilde{\Omega}'^*$ l'image réciproque de $\widetilde{\Omega}'^*$ dans \widetilde{U} . Soit $\widetilde{\mu}$ la métrique sur $\widetilde{\Omega}'^*$ relevant la métrique μ sur Ω'^* . Notons $\widetilde{\Omega}'$ le complété de $\widetilde{\Omega}'^*$ pour $\widetilde{\mu}$: il s'obtient en rajoutant un point au bout de chaque relèvement dans $\widetilde{\Omega}'^*$ d'un interpétale en un point de A_0 .

L'application $g: \widetilde{U} \to \widetilde{U}$ de la Proposition 2 induit une application $\widetilde{\Omega}'^* \to \widetilde{\Omega}'^*$ qui se prolonge en une application $\hat{g}: \widetilde{\Omega}' \to \widetilde{\Omega}'$, strictement contractante.

PROPOSITION 4. Il existe une application croissante $h: \mathbb{R}_+ \to \mathbb{R}_+$, vérifiant h(s) < s pour s > 0 et $s - h(s) \to +\infty$, telle que : $(\forall \, x, \, y \in \widetilde{\Omega}^{\, t}) \quad d_{\widetilde{\mu}} \left(g(x), g(y) \right) \leq h(d(x,y)) \ .$

$$h(s) = \begin{cases} s u p \\ (x,y) \in F_1 \times B(F_1,s), d_{u}(x,y) \le s \end{cases} d_{\mu}^{\sim}(g(x),g(y)) < s.$$

Il est clair que la fonction h est croissante. Choisissons $s_0>0$. On a $h(k\,s_0) \leq k\,h(s_0)$, il en résulte que $s-h(s) \to +\infty$ quand $s \to +\infty$. Cqfd.

Notons E l'espace des lacets $\gamma: T \to \Omega' - (C_+ \cup A_0)$ tels que $\gamma(0) \in \Re(K_f, 0)$, homotopes à γ_0 . On définit $G: E \to E$ en associant à chaque γ l'unique lacet $\gamma' \in E$ tel que $\gamma'(t) \in f^{-1}(\gamma(dt))$, $\gamma'(0) \in \Re(K_f, 0)$. En particulier, $\gamma_{n+1} = G(\gamma_n)$. En associant à chaque lacet $\gamma \in E$ le chemin $\widetilde{\gamma}: [0,1] \to \widetilde{\Omega}'$ relevant γ , on identifie E à une partie \widetilde{E} de $\mathbb{C}(I;\widetilde{\Omega}')$, où I = [0,1]. A l'application G correspond une application $\widetilde{G}: \widetilde{E} \to \widetilde{E}$, définie par $\widetilde{G}(\widetilde{\gamma}) = \widetilde{\gamma}'$, avec :

$$\widetilde{\gamma}^{-1}(t) = g(\mathfrak{g}^{i}\widetilde{\gamma}(s)) \quad \text{si} \quad t = \frac{i+s}{d}, \quad s \in [0,1].$$

On munit \widetilde{E} de la distance $d(\gamma, \eta) = \sup_{t \in \Gamma} d_{\mu}^{\infty}(\gamma(t), \eta(t))$.

COROLLAIRE. L'application G admet comme module de continuité la même fonction h.

6. LA CONVERGENCE.

PROPOSITION 5. La suite $(\widetilde{\gamma}_n)$ est une suite de Cauchy dans $C(I,\widetilde{\Omega}')$.

Pour $p \in \mathbb{N}$ et q = p + n, on a : $d(\widetilde{\gamma}_p, \widetilde{\gamma}_q) = d(G^p(\widetilde{\gamma}_0), G^p(\widetilde{\gamma}_n)) \le h^p(L)$. La suite $(h^p(L)_{p \in \mathbb{N}})$ est une suite strictement décroissante. Elle a une limite qui est un point fixe de h, donc = 0. Par suite, $(\widetilde{\gamma}_n)$ est une suite de Cauchy. Cqfd.

Démonstration du Théorème. La suite (γ_n) est une suite de Cauchy dans $^{\mathbb{C}}(\mathbb{T};\Omega')$, muni de la distance de la convergence uniforme, pour la distance d_{μ} sur Ω' . Elle converge donc uniformément pour $d\mu$, et aussi pour la distance euclidienne d_0 , qui définit la même topologie, puisque Ω' est compact. Le théorème résulte alors de la Proposition 3 de [CLJ]. Cqfd.

UN TOUR DE VALSE

[C'est quand même mieux qu'un coup de fouet]

Adrien Douady et Pierrette Sentenac

1. INTRODUCTION.

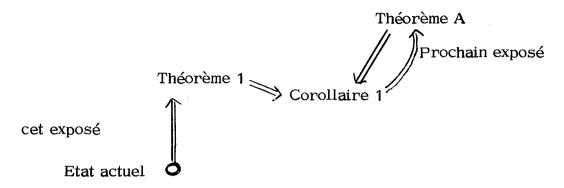
Soit $c_0 \in M$ tel que le polynôme $f_{c_0} : z \mapsto z^2 + c_0$ admette un cycle indifférent rationnel $\{\alpha_1, \dots, \alpha_k\}$, de valeur propre $\rho = e^{2i\pi p/q}$, (p,q) = 1. D'après l'exposé précédent <code>[CLAJ]</code> (Connexité locate de certains autres ensembles de Julia), K_{c_0} est localement connexe, et, d'après <code>[PPIR]</code> (points fixes multiples et points périodiques indifférents rationnels), chacun des α_i a une fleur à q pétales, et dans chaque interpétale arrive un nombre fini non nul de rayons externes de K_c , qui sont fixes par f^{kq} , donc ont des arguments de la forme $p/2^{kq}-1$ (on verra plus tard que ce nombre est 2 si q=1 et 1 sinon).

Le point c_0 , valeur critique, est attiré pour f^{kq} par un des points du cycle $\{\alpha_1,\dots,\alpha_k\}$. On peut supposer que c'est α_1 . La composante connexe u_1 de $\overset{\circ}{K}_{c_0}$ qui contient c_0 contient aussi un pétale P_1 de α_1 . Nous avons en vue le résultat suivant, qui sera démontré dans l'exposé suivant.

THEOREME A. Soit θ l'argument d'un rayon externe de K_{C_0} qui aboutit en α_1 par un interpétale adjacent à P_1 . Alors, le rayon externe $\Re(M,\theta)$ aboutit en en C_0 .

Remarque: Ce théorème fait pendant au Théorème 2 de [AEM] (Arguments externes dans M des points de Misurewicz). Cependant ce dernier est obtenu en passant à la limite à partir du Corollaire 2 (b) du théorème 1 de [AEM]. Au contraire, le théorème A ci-dessus repose sur une discontinuité du comportement de $\Re(K_C,\theta)$ en $c=c_0$.

Nous démontrons dans cet exposé le théorème 1, dont un cas particulier (corollaire 1) est une conséquence du théorème A. Dans le prochain exposé, nous remonterons du corollaire 1 du théorème 1 au Théorème A.



Supposons $q \neq 1$. Alors, α_1 est un point périodique simple de f_{C_0} . Pour tout c voisin de c_o, on peut trouver un $\alpha(x)$ tel que $f_c^k(\alpha(c) = \alpha(c)$, avec $c \mapsto \alpha(x)$ analytique et $\alpha(c_0) = \alpha_1$.

Soit Δ un disque centré en $\alpha(c_0)$, fixé assez petit (nous préciserons au § 6 ou 7). Soient n_o assez grand et $r^* > 1$ assez voisin de 1 pour que $x(c_o) = f_c \binom{n_o kq}{c_o} (c_o)$ et $y(c_o) = \varphi_c^{-1} (r^* e^{2i\pi \theta})$ appartiennent à Δ (où

L'énoncé intermédiaire est le suivant :

COROLLAIRE 1 DU THEOREME 1. Pour tout voisinage W de C dans C, <u>il existe un</u> $N_0 \ge 0$ <u>tel que</u>, <u>pour tout</u> $N \ge N_0$, <u>il existe un</u> $c \in W$ <u>tel que</u> $f^{Nkq}(x(c)) = y(c) .$

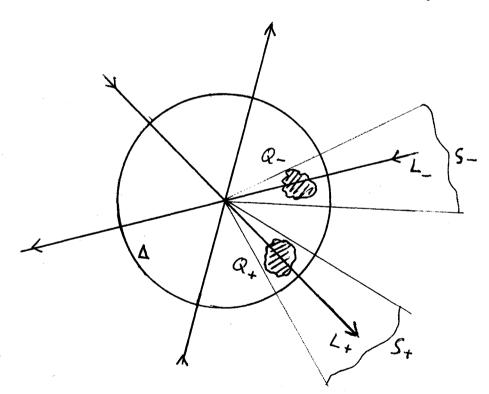
<u>Démonstration de l'implication</u>: Théorème A ⇒ Corolaire 1 du Théorème 1.

Soit
$$r_N$$
 tel que $r_N^{2(n_0+N)kq} = r^*$ et $c = \varphi_M^{-1}(re^{2i\pi\theta})$. On a $\varphi_C(c) = \varphi_M(c) = r_N e^{2i\pi\theta}$, et comme $2^{kq}\theta = \theta$, $\varphi_C(x(c)) = r_N e^{2i\pi\theta}$, $\varphi_C(f^{Nkq}(x(c))) = r^*e^{2i\pi\theta}$, d'où $f^{Nkq}(x(c)) = y(c)$. Quand $N \to \infty$, $r_N \to 1$, donc $c \to c_0$ si on admet le théorème A, et $(\forall W) (\exists N_0) (\forall N \ge N_0) c \in W$. Cqfd.

2. RESULTATS.

Voici maintenant l'énoncé du théorème dont la démonstration occupe cet exposé :

Soient Λ et V des voisinages de 0 dans $\mathbb C$, et $(\lambda\,,z)\mapsto g_\lambda(z)$ une application $\mathbb C$ -analytique de $\Lambda\times V$ dans $\mathbb C$. On suppose que $g_\lambda(0)=0$ pour tout $\lambda\in\Lambda$, $g_0'(0)=\rho_0=e^{2i\pi\,p/q}$, $p/q\in\mathbb Q$, et que $\lambda\mapsto\rho(\lambda)=g_\lambda'(0)$ n'est pas constante. On suppose que g_0^q est de la forme $z\mapsto z+b_0z^{q+1}+0(z^{q+2})$ avec $b_0\neq 0$. Soient L_+ et L_- un axe de répulsion et un axe d'attraction de g^q en 0, consécutifs (+). Notons S_+ et S_- les secteurs angulaires ouverts, de bissectrices L_+ et L_- respectivement d'ouverture $\frac{1}{8\,q}$ tour.



THEOREME 1. Dans cette situation,

⁽⁺⁾ i.e. faisant un angle de $\pm \frac{1}{2a}$ tour .

$$(\begin{tabular}{ll} $\forall \ \$_: \ W \to Q \\ $\text{continue} \end{tabular}) & (\begin{tabular}{ll} $\forall \ N \\ $\geq \ N_0 \end{tabular}) & (\ \exists \ \lambda \in \ W) \\ $g_{\lambda}^{Nq}(\$_(\lambda)) & = \ \$_+(\lambda) \end{tabular} .$$

Démonstration du Corollaire 1 à partir du Théorème 1 . Si $q \neq 1$, α_1 est un point fixe simple de $f_{C_O}^k$. Posons $c(\lambda) = c_O + \lambda$. On peut trouver une fonction analytique $\lambda \mapsto \alpha(\lambda)$ au voisinage de 0 telle que $\alpha(0) = \alpha_1$, $f_{c(\lambda)}^k(\alpha(\lambda)) = \alpha(\lambda)$, en vertu du théorème des fonctions implicites.

Si q = 1 , c'est-à-dire ρ = 1 , le point α_1 est un point fixe double de $f_{C_0}^k$, car il y a un seul pétale. Si on pose $c(\lambda) = c_0 + \lambda^2$, on peut encore trouver une application $\lambda \to \alpha(\lambda)$ analytique au voisinage de 0 , telle que $\alpha(0) = 1$ et $f_{C(\lambda)}^k(\alpha(\lambda)) = \alpha(\lambda)$. Cela résulte maintenant du lemme de Morse (ou du théorème de préparation de Weierstrein). Dans les deux cas, on définit g_{λ} par $\alpha(\lambda) + g_{\lambda}(z) = f_{C(\lambda)}^k(\alpha(\lambda) + z)$. On pose $\$_{-}(\lambda) = x(c(\lambda)) - \alpha(\lambda)$, $\$_{+}(\lambda) = y(c(\lambda)) - \alpha(\lambda)$. Si on a pris Δ assez petit, n_0 est assez grand et r_0 assez voisin de 1 pour que $\$_{-}(0) \in \$_{-}$ et $\$_{+}(0) \in \$_{+}$, puisque $f_{C_0}^{nkq}$ et $\varphi_{C_0}^{-1}$ (re $^{2i\pi\,\theta}$) tendent vers α_1 tangentiellement à L_- et L_+ respectivement.

Soient Q_- et Q_+ des voisinages compacts de $\$_-(0)$ et $\$_+(0)$ dans $\$_-$ et $\$_+$, on a encore $\$_-(\lambda) \in Q_-$ et $\$_+(\lambda) \in Q_+$ quand λ varie dans un voisinage Λ de 0. On peut donc appliquer le théorème 1, et on obtient le corollaire 1.

Cafd.

La démonstration ci-dessus donne au Corollaire 1 le Complément suivant qui nous servira au prochain exposé :

COMPLEMENT 1 du Corollaire 1 du Théorème 1. On peut prendre N_0 indépendant de r^* quand r^* varie dans un compact $J \subset \]0,+\infty[$ tel que $\varphi_{C}^{-1}(J.e^{2i\pi\,\theta}) \subset \Delta - \{0\} \ .$

D'autre part, nous verrons que, dans la situation du Théorème 1, si $\lambda \mapsto \rho(\lambda) - \mathrm{e}^{2\mathrm{i}\pi p/q} \quad \text{a en 0 un zéro d'ordre ν, il y a au moins ν valeurs}$

distinctes de λ telles que $g_{\lambda}^{Nq}(S_{-}(\lambda)) = S_{+}(\lambda)$ dans les conditions du théorème.

Nous utiliserons ce fait au prochain exposé pour voir que, dans la situation du Théorème A, on a nécessairement $\nu=1$.

3. UN CHANGEMENT DE VARIABLES.

Nous nous plaçons dans la situation du Théorème 1.

PROPOSITION 1. On peut trouver un difféomorphisme \mathbb{C} -analytique $(\lambda, z) \mapsto (\lambda, \zeta_{\lambda}(z))$ d'un voisinage $\Lambda' \times V'$ de (0, 0) dans $\Lambda \times V$ sur un ouvert de $\Lambda' \times C$, tel que $\zeta_{\lambda}(0) = 0$, et que pour $\lambda \in \Lambda'$, l'expression de g_{λ} dans la coordonnée ζ_{λ} soit de la forme : $\zeta \mapsto \rho(\lambda)\zeta + \beta(\lambda)\zeta^{q+1} + \Theta(\zeta^{q+2})$, avec $\beta(0) \neq 0$.

COROLLAIRE. L'expression de g_{λ}^{q} dans la coordonnée ζ_{λ} est de la forme : $\zeta \mapsto \rho(\lambda)^{q} \zeta + b(\lambda) \zeta^{q+1} + \Theta(\zeta^{q+2})$ avec $b(0) \neq 0$.

En fait,
$$b = \beta (\rho^{q} + \rho^{2q} + ... + \rho^{q^{2}})$$
, $b(0) = q\beta(0)$.

Nous allons maintenant faire le changement de variables défini par l'application : $(\lambda\,,z)\longmapsto (\lambda\,,\frac{\rho(\lambda)^{q(q+1)}}{q\,b(\lambda)\zeta^q})$, en reprenant les conventions de [PPIR], I.2.

Si Δ est un disque, centré en 0, cette application définit un isomorphisme $h: \Lambda \times \Delta - \{0\} \to \widetilde{\Omega}$, où $\widetilde{\Omega}$ est un revêtement de degré q d'un ouvert Ω de $\Lambda \times C$ de la forme $\Omega = \{(\lambda\,,z) \mid |z| > R(\lambda)\}$. Nous écrirons $h: (\lambda\,,z) \mapsto (\lambda\,,Z)$.

$$\begin{aligned} \zeta_1 &= \rho(\lambda)^q \zeta + b(\lambda) \zeta^{q+1} + \dots \\ &= \rho(\lambda)^q \zeta (1 + b(\lambda) \rho(\lambda)^{-q} \zeta^q + \dots) \end{aligned} ;$$

d'où

$$Z_{1} = \rho(\lambda)^{-q^{2}} Z(1 - q b(\lambda) \rho(\lambda)^{-q} \zeta^{q} + \dots)$$

$$= \rho(\lambda)^{-q^{2}} Z(1 - \frac{\rho(\lambda)q^{2}}{Z} + \dots)$$

$$= \rho(\lambda)^{-q^{2}} Z - 1 + \dots \qquad Cqfd.$$

4. VALSE DES COMPACTS.

Soient K et K' deux compacts de $\mathbb{R}^2=\mathbb{C}$, T un espace homéomorphe à S¹ orienté (i.e. muni d'une classe d'homotopie d'homéomorphismes S¹ → T), $(\varphi_t)_{t\in T}$ et $(\varphi_t^i)_{t\in T}$ deux familles continues de plongements de K et K' respectivement dans \mathbb{R}^2 . On pose $K(t)=\varphi_t(K)$ et $K^i(t)=\varphi_t^i(K^i)$.

<u>DEFINITION</u>. On dit que K(t) et K'(t) valsent d tours (+) quand t parcourt T si : a) $\forall t \in T$, $K(t) \cap K'(t) = \emptyset$.

b) Quelles que soient les applications continues $t\mapsto z(t)\in K(t)$ et $t\mapsto z'(t)\in K'(t)$, l'application $t\mapsto {\rm Arg}\;(z'(t)-z(t))$, de T dans $T=\mathbb{R}/\mathbb{Z}$, est de degré d .

Remarques. 1) Si K et K' sont simplement connexes et si la condition (a) est vérifiée, il suffit de vérifier (b) pour un couple d'applications continues $t \mapsto (z(t), z'(t))$. En particulier, il existe toujours un d tel que K(t) et K'(t) valsent d tours.

2) Supposons $T=\partial\Sigma$, où Σ est une pièce dans \mathbb{R}^2 , et prolongeons $t\mapsto z(t)$ et $t\mapsto z'(t)$ en des applications continues $\Sigma\to\mathbb{R}^2$. Si $d\neq 0$, il existe au moins un $t\in \overset{\circ}{\Sigma}$ tel que z'(t)=z(t). En effet, sinon, l'application $t\mapsto \operatorname{Arg}(z'(t)-z(t))$ pourrait se prolonger en une application continue $\Sigma\to T$.

En identifiant \mathbb{R}^2 à \mathbb{C} , si les prolongements $t\mapsto z(t)$ et $t\mapsto z'(t)$ sont holomorphes sur $\overset{\circ}{\Sigma}$, le nombre d est le nombre de zéros de $t\mapsto z'(t)-z(t)$ dans $\overset{\circ}{\Sigma}$, comptés avec leur pultiplicité.

3) Soient Ω et Ω' deux ouverts simplement connexes de \mathbb{R}^2 et $\Phi: \Omega \to \Omega'$ un homéomorphisme préservant l'orientation.

Supposons que $K(t) \subset \Omega$ et $K'(t) \subset \Omega$ pour tout t, et que K(t) et K'(t) valsent d tours quand t parcourt T. Alors, $\Phi(K(t))$ et $\Phi(K'(t))$ valsent d tours aussi. En effet, on peut supposer $T = \partial \Sigma$, où Σ est un disque dans \mathbb{R}^2 ; si $t \mapsto z(t) \in K(t)$ et $t \mapsto z'(t) \in K'(t)$ sont continues, on peut les prolonger en des applications continues $\Sigma \to \Omega$. Le nombre d est alors le nombre d'intersection dans $\Sigma \times \Omega$ des graphes de $t \mapsto z(t)$ et $t \mapsto z'(t)$. Il est préservé par $\mathrm{Id} \times \Phi \colon \Sigma \times \Omega \to \Sigma \times \Omega'$.

^(†) Le lecteur notera que les conventions habituelles d'orientation de \mathbb{R}^2 ne s'accordent pas avec les usages de la valse. Pour une fois, on dansera la valse à gauche.

Identifiant \mathbb{R}^2 à \mathbb{C} , nous dirons que K(t) est à gauche (resp. à droite, au-dessus, au-dessous) de K'(t) si, pour $z \in K(t)$ et $z' \in K'(t)$, on a $R\acute{e}(z'-z) > 0$ (resp. < 0, resp. Im(z'-z) < 0, resp. > 0).

PROPOSITION 3. On suppose que $T = \partial \Sigma$, où $\Sigma = [-1,1]^2$, et que, pour $t \in \{-1\} \times [-1,1]$, K(t) est à gauche de K'(t), $t \in [-1,+1] \times \{-1\}$, K(t) est au-dessous de K'(t), $t \in \{1\} \times [-1,+1]$, K(t) est à droite de K'(t), $t \in [-1,1] \times \{1\}$, K(t) est au-dessus de K'(t).

Alors, K(t) et K'(t) valsent 1 tour.

 $\underline{\text{D\'emonstration}}. \text{ Les applications } t \mapsto \frac{t}{|t|} \text{ et } t \mapsto \frac{z^{\, t}(t) - z(t)}{|z^{\, t}(t) - z(t)|} \text{ de } T$ dans S¹ ne prennent jamais des valeurs opposées. Elles sont donc homotopes. Cqfd.

Pour démontrer le Théorème 1, on pose N=N'+N'', où $N'=\left[\frac{N}{2}\right]$ et N''=N' ou N'+1; puis on construit dans Λ des pièces $\sigma_1,\ldots,\sigma_{\nu}$, où ν est l'ordre de 0 comme zéro de $\lambda\longmapsto\rho(\lambda)-e^{2i\pi p/q}$, telles que, quand λ parcourt $\delta\sigma_i$, $g_{\lambda}^{N'q}(Q_{\underline{\ }})$ et $g_{\lambda}^{-N''q}(Q_{\underline{\ }})$ valsent 1 tour.

Pour vérifier cette propriété, grâce à la remarque 3), on peut passer dans le plan des $\, {f Z} \,$.

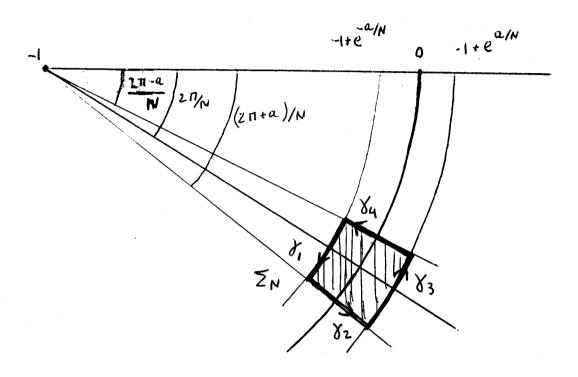
Dans l'espoir de faciliter la compréhension, nous ferons d'abord le calcul en négligeant le terme η de la Proposition 2 , c'est-à-dire en remplaçant G_{λ} par $H_U: Z \mapsto (1+U)Z-1$.

5. ETUDE DE LA FAMILLE (H_U) .

On pose $H_U(z)=(1+U)\,Z-1$. L'application H_U est la similitude de centre $A=\frac{1}{U}$ qui transforme 0 en -1 .

On se fixe $a \in \left]0, \frac{1}{2}\right]$; on note P_a le carré $\left[-a, +a\right]^2$, i.e.

 $\begin{array}{l} P_a = \{z \mid |\text{R\'e}\ z| \leq a,\ |\text{Im}\ z| \leq a\} \quad \text{et}\ \ \Sigma_N = \{U \mid N\ \text{Log}(\text{1+U}) + 2\pi i \in P_a\} \ . \ \text{Le bord} \\ \text{de}\ \Sigma_N \quad \text{est de la forme}\ \ \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4 \ \ \text{(voir la figure ci-dessous).} \end{array}$



Pour N ≥ 8 , on a : $\Sigma_N \subseteq D_{8/N}$ – $\overline{D}_{4/N}$ et $|\text{Arg(iU)}| < \frac{1}{12}$ tour = 30° si U $\in \Sigma_N$.

PROPOSITION 4. Soient Q₊ et Q_ deux compacts de C , et notons δ le diamètre de Q₊ UQ_ U $\{0\}$. Soient N > sup $\{8,12\,\delta/a\}$, N' et N" tels que N' + N" = N . Alors, Q_(U) = $H_U^{N'}(Q_-)$ et Q₊(U) = $H_U^{-N''}(Q_+)$ valsent 1 tour quand U parcourt $\delta\Sigma_N$.

 $\begin{array}{ll} \underline{\text{D\'emonstration}}. & \text{Pour } A \subset \Sigma_N \text{ , } z \in Q_- \text{ et } z_+ \in Q_+ \text{ , on a} \\ \\ Log \frac{z_- - A}{z_+ - A} \mid \ = \ \mid \int_Z^{z_+} \frac{\mathrm{d}z}{z - A} \mid \ \leq \ \frac{\delta}{A - \delta} \ \leq \ \frac{\delta}{N/8 - \delta} \ < \ a \ . \end{array}$

Notons τ_{-A} la translation $Z \mapsto Z - A$, et Φ l'application $Z \mapsto \text{Log } Z$ sur $C - e^{+2i\pi(-N'/N + 1/4)} \mathbb{R}_+$. On pose $\Phi_A = \Phi_{\tau - A}$. Dire que $Q_-(U)$ et $Q_+(U)$ valsent d tours, ou que $\tau_{-A}(Q_-(U))$ et $\tau_{-A}(Q_+(U))$ valsent d tours est équivalent d'après la définition, et d'après la remarque 3 du $\S 4$, il est aussi équivalent

de dire que $\Phi_A(Q_-(U))$ et $\Phi_A(Q_+(U))$ valsent d tours. Mais, pour U dans γ_1 , $\Phi_A(Q_-(U))$ est à gauche de $\Phi_A(Q_+(U))$, il est au-dessous pour $U \in \gamma_2$, à droite dans γ_3 et au-dessus dans γ_4 . D'après la Proposition 3, $\Phi_A(Q_-(U))$ et $\Phi_A(Q_+(U))$ valsent 1 tour. Cqfd.

6. PERTURBATION.

Dans ce paragraphe, on se donne un voisinage Λ de 0 dans $\mathbb C$, un ouvert Ω de $\mathbb C$ de la forme $\mathbb C$ – $(\overline{D}_R \cup -i\,\mathbb R_+)$, un a \in $]0,\frac{1}{2}]$ et une famille $(G_\lambda)_{\lambda\in\Lambda}$ d'applications holomorphes $\Omega\to\mathbb C$, telle que :

 $G_{\lambda}\left(z\right)=\left(1+U_{\lambda}\right)Z-1+\eta\left(\lambda\;,Z\right)\;\;\mathrm{avec}\;\;\left|\eta\left(\lambda\;,Z\right)\right|<\frac{a}{100}\;\;\text{, pour }(\lambda,Z)\in\Lambda\times\Omega\;.$ On suppose que $\lambda\longmapsto U_{\lambda}\;\;\mathrm{est}\;\mathrm{une}\;\mathrm{application}\;\mathrm{holomorphe}\;\mathrm{de}\;\Lambda\;\;\mathrm{dans}\;\;\mathbb{C}\;\;\text{, avec}$ $U_{0}=0\;\;\text{, et que}\;\;G_{\lambda}\;\;\mathrm{est}\;\mathrm{injective}\;\mathrm{sur}\;\mathrm{tout}\;\mathrm{demi-plan}\;\mathrm{ne}\;\mathrm{rencontrant}\;\mathrm{pas}\;\;-\mathrm{i}\;\mathbb{R}_{+}\;.$

On note S_+ et S_- les secteurs angulaires d'ouverture $\frac{1}{6}$ tour, centrés sur \mathbb{R}_+ et \mathbb{R}_- respectivement. Soient $Q_+ \subseteq S_+ \cap (\mathbb{C} - \overline{D}_{2R})$ et $Q_- \subseteq S_- \cap (\mathbb{C} - \overline{D}_{2R})$ des compacts. On note δ le diamètre de $Q_+ \cup Q_- \cup \{0\}$. Pour $\lambda \in \Lambda$, on pose $A_{\lambda} = \frac{1}{U_{\lambda}}$ et $H_{\lambda}(Z) = (1 + U_{\lambda}) Z - 1$. On définit Σ_N comme au \S précédent.

 $\begin{array}{ll} \underline{PROPOSITION \, 5}. \ \underline{Soient} \ N^{\geq} \ sup \, (8,24\,\delta/a) \ , \ N' = \left[\frac{N}{2}\right] \ \underline{et} \ N'' = N-N' \ . \\ \underline{Soit} \ \sigma \subseteq \Lambda \ \underline{un \ compact \ tel \ que} \ \lambda \longmapsto U_{\lambda} \ \underline{induise \ un \ hom\'{e}omorphisme \ de} \ \sigma \ \underline{sur} \\ \Sigma_{N} \ . \ \underline{Alors} \ : \end{array}$

- a) Pour $\lambda \in \sigma$, $Q_{\lambda}(\lambda) = G_{\lambda}^{N'}(Q_{\lambda}) = G_{\lambda}^{-N''}(Q_{\lambda}) = G_{\lambda}^{-N''}(Q_{\lambda})$ sont définis.
- b) Quand λ parcourt $\partial \sigma$, les compacts $Q_{+}(\lambda)$ et $Q_{+}(\lambda)$ valsent 1 tour.

Pour faciliter l'exposition de la démonstration de cette Proposition, on prolonge G_{λ} en posant $G_{\lambda}(\mathbf{Z})=H_{\lambda}(\mathbf{Z})$ pour $\mathbf{Z}\in\mathbb{C}-\Omega$. Ceci introduit des discontinuités, mais elles ne nous gèneront pas.

Fixons $\lambda \in \sigma$, posons $A = A_{\lambda}$, $U = U_{\lambda}$, $G = G_{\lambda}$, $H = H_{\lambda}$. Soient $Z_0^+ \in Q_+$ et $Z_0^- \in Q_-$, posons $Z_1^- = G^1(Z_0^-)$ et soit $Z_1^+ \in G^{-1}(Z_0^+)$.

<u>LEMME 1. Pour $j \le N''$, on a $|Z_j^+ - A| > \frac{1}{2} |A|$ et $|Z_j^- - A| > \frac{1}{2} |A|$.</u>

Si $|Z_j - A| > \frac{1}{2} |A|$, on a $\frac{a}{100} < 0.16 \frac{a}{N} |Z_i - A|$, $\text{d'où} \qquad |Z_{j+1} - A| > (e^{-a/N} - 0.16 \frac{a}{N}) |Z_i - A| > e^{-(1.02)a/N} |Z_j - A| \ .$ On a donc $\frac{|Z_j - A|}{|A|} \ge e^{-(k/2 + 1.02j/N)a}$ tant que cette quantité est

 $> \frac{1}{2} \text{ . Mais } \frac{N!}{N} < 0.5625 \text{ pour } N \ge 8 \text{ , et pour } a = \frac{1}{2} \text{ , on obtient } 1.71 \dots < 2 \text{ .}$ On a donc $\frac{|\mathbf{Z}_j - \mathbf{A}|}{|\mathbf{A}|} < 2 \text{ pour tout } j < N'' \text{ . }$ Cqfd.

LEMME 2. Pour $j \le N''$, on a:

a)
$$\left| \text{Log} \frac{Z_j^- - A}{Z_0^- - A} - j \text{ Log } U \right| \le j \frac{a}{3N}$$

b)
$$|\text{Log} \frac{Z_{j}^{+} - A}{Z_{0}^{+} - A} + j \text{ Log } U| \le j \frac{a}{3N}$$

c)
$$\left| \text{Log} \frac{Z_{N^{1}}^{-} - A}{Z_{N^{11}}^{+} + A} - N \text{ Log } U \right| < \frac{3}{4} a$$
.

L'inégalité c) résulte de a) avec j = N', b) avec j = N'' et

$$\begin{split} |\operatorname{Log} \frac{Z_0^+ - A}{Z_0^- - A}| & \leq \frac{\delta}{A - \delta} < \frac{\operatorname{Na}/24}{\operatorname{N}/8 - \operatorname{Na}/24} < \frac{a/24}{1/8 - 1/48} = \frac{2}{5} \, a \;\; , \\ \text{en remarquant que } \frac{1}{3} + \frac{2}{5} < \frac{3}{4} \;\; . \end{split}$$

Démonstration de la Proposition 5.

- a) Soit ℓ_0 le demi-angle sous lequel on voit D_R du point A (les angles sont comptés en tours). Posons $\ell_+ = \operatorname{Arg} A \frac{1}{2} + \ell_0$, $\ell_- = \operatorname{Arg} A + \frac{1}{2} \ell_0$, $E_+ = \{Z \mid \operatorname{Arg}(Z A) \in [\ell_+, \ell_+ + \frac{3}{4}]\}$ et $E_- = \{Z \mid \operatorname{Arg}(Z A) \in [\ell_- \frac{3}{4}, \ell_-]\}$. On a $E_- \subset \Omega$ et $G^j(Q_-) \subset E_-$ pour tout $j \leq N^i$, donc G^{N^i} est défini et continu sur Q_- . On a $E_+ \subset G(\Omega)$ et G^{-1} admet une détermination holomorphe sur E_+ . Il résulte du lemme 2 que $G^{-j}(Q_+) \subset E_+$ pour $j \leq N^{ii}$, donc $G^{-N^{ii}}$ admet une détermination continue sur un voisinage de Q_+ .
- b) Le complexe $L(\lambda) = Log \frac{Z_{N''}^{-}(\lambda) A_{\lambda}}{Z_{N''}^{+}(\lambda) A_{\lambda}}$ reste à une distance $\leq \frac{3}{4}a$ de $-N \ Log \ U_{\lambda}$, ou, en changeant de détermination, de $-N \ Log \ U_{\lambda} + 2i\pi$, qui fait 1 tour autour de 0 quand λ parcourt $\delta \sigma$, en restant à distance $\geq a$ de 0. Par suite, $L(\lambda)$ fait 1 tour autour de 0. Cqfd.

7. DEMONSTRATION DU THEOREME 1.

Plaçons-nous dans la situation du théorème 1 , avec g_{λ}^q de la forme $\zeta \mapsto \rho(\lambda)^q \zeta + b(\lambda) \zeta^{q+1} + \Theta(\zeta^{q+2})$, ce qu'on peut supposer vu le corollaire de la Proposition 1. On suppose g_{λ}^q défini pour tout $\lambda \in \Lambda$ sur un disque Δ . On a $\text{Arg } L_{\perp} = \text{Arg } L_{+} \pm \frac{1}{2q}$; supposons que $\text{Arg } L_{\perp} = \text{Arg } L_{+} + \frac{1}{2q}$ (l'autre cas s'en déduit en transformant toute la situation par $z \mapsto \overline{z}$). Soit

 $\mathfrak{S} = \{z \in \Delta - \{0\} \mid \text{Arg } z \in (\text{Arg L}_+ - \frac{1}{4q}, \text{Arg L}_+ + \frac{3}{4q})\}$. Le changement de variables $z \mapsto Z$ induit un isomorphisme de Θ sur un ouvert Ω comme dans le $\S 6$, et g_λ^q devient une fonction $G_\lambda: \Omega \to \mathbb{C}$ qui satisfait aux conditions de ce paragraphe, si on rétrécit Δ suffisamment, avec $U_\lambda = \frac{1}{Q(\lambda)^{2q}}$.

Si $\lambda \mapsto \rho(\lambda)$ - $e^{2i\pi p/q}$ a en 0 un zéro de multiplicité ν , il en est de même de $\lambda \mapsto U_{\lambda}$, et si N est assez grand, on peut trouver ν compacts disjoints $\sigma_1, \ldots, \sigma_{\nu}$ tels que $\lambda \mapsto U_{\lambda}$ induise pour chaque $i \in \{1, \ldots, \nu\}$ un homéomorphisme de σ_i sur Σ_N .

Aux compacts Q_ et Q_ de l'énoncé du théorème correspondent des compacts 2_ et 2_ dans le plan des Z . Fixons i $\in \{1,\ldots,\nu\}$. Si N est assez grand, quand λ parcourt $\delta\sigma_i$, $G_\lambda^{N'}(2_-)$ et $G_\lambda^{-N''}(2_+)$ valsebt 1 tour, d'après la Proposition 5 ; donc $g_\lambda^{N'}(Q_-)$ et $g_\lambda^{N''}(Q_+)$ valsent 1 tour d'après la remarque 3 du §4, et il existe un $\lambda \in \sigma_i$ tel que :

$$g_{\lambda}^{N'q}(S_{\underline{\hspace{1pt}}}(\lambda)) = g_{\lambda}^{-N''q}(S_{\underline{\hspace{1pt}}}(\lambda))$$
. Cqfd.

8. COMPLEMENTS.

La démonstration du §7 donne les compléments suivants :

COMPLEMENT 1 au Théorème 1. Soit ν la multiplicité de 0 comme solution $\underline{de} \ \rho(\lambda) = e^{2i\pi p/q} \ . \ \underline{Dans} \ \underline{les} \ \underline{conditions} \ \underline{du} \ \underline{théorème 1}, \ \underline{il} \ \underline{existe} \ \underline{au \ moins} \ \underline{\nu} \ \underline{valeurs}$ $\underline{distinctes} \ \underline{de} \ \lambda \ \underline{telles} \ \underline{que} \ : \ \underline{g}_{\lambda}^{Nq}(\underline{s}_{-}(\lambda)) = \underline{s}_{+}(\lambda) \ .$

Cela résulte de l'inégalité $|U_{\lambda_{N,i}}| < 8/N$ que l'on a puisque $U_{\lambda_{N,i}} \in \Sigma_N$. $\underline{\text{COMPLEMENT 3. On a }} |\operatorname{Arg} U_{\lambda_{N,i}} - \varepsilon |\frac{1}{4}| < \underline{\frac{1}{12}} |\underline{\text{si}}| \operatorname{Arg} L_{\perp} = \operatorname{Arg} L_{+} + \frac{\varepsilon}{2q} , \ \varepsilon = \pm 1.$ (les arguments sont comptés en tours). Cela résulte de $\mbox{ U}_{\lambda_N,i} \in \Sigma_N$. En fait, on voit facilement que $|\mbox{Arg U}_{\lambda_N,i} - \varepsilon \, \frac{1}{4}| \, o \, \mbox{ quand } N o \infty$.

Nous avons donné dans l'introduction un premier complément au Corollaire 1 du Théorème 1. En voici un autre, qui se déduit du Complément 1 au Théorème 1 :

Si $q \neq 1$, α_1 est un point périodique simple de période k, pour c voisin de c_0 , il y a un point périodique $\alpha(c)$ de f_c de période k, qui dépend analytiquement de c, on note $\rho(c)$ sa valeur propre et ν l'ordre de c_0 comme solution de $\rho(c) = e^{2i\pi p/q}$. Si q = 1, le point α_1 est double comme point périodique de période k, pour c voisin de c_0 , il y a 2 points $\alpha(c)$ et $\beta(c)$ périodiques de période k voisins de α_1 , et on définit ν par $(\alpha(c) - \beta(c))^2 \sim a(c-c_0)^{\nu}$, $a \neq 0$.

COMPLEMENT 2 au Corollaire 1 du Théorème 1. Dans les conditions du Corollaire 1 du Théorème 1, il y a au moins ν valeurs distinctes de c dans W telles que $f_c^{Nkq}(x(c)) = y(c)$.

<u>Démonstration</u>. Dans le cas $q \neq 1$, cela résulte immédiatement du Complément 1 au Théorème 1.

Dans le cas $\, q=1$, on fait le changement de paramètre $\, c_\lambda = c_0^{} + \lambda_2^{} \,$, ce qui permet de choisir une détermination analytique pour $\, \lambda \longmapsto \, \alpha(\lambda) \,$. L'application $\, \lambda \longmapsto \, \rho(\lambda) - 1 \,$ a en $\, 0 \,$ un zéro d'ordre $\, \nu \,$. Pour $\, N \,$ assez grand, on trouve au moins $\, \nu \,$ valeurs de $\, \lambda \,$ telles que $\, f_\lambda^{Nkq}(x(\lambda)) = y(\lambda) \,$ en considérant que $\, Arg \, L_- = Arg \, L_+^{} + \frac{1}{2} \,$, et $\, \nu \,$ autres valeurs en considérant que $\, Arg \, L_- = Arg \, L_+^{} - \frac{1}{2} \,$, soient $\, 2\nu \,$ en tout. A ces $\, 2\nu \,$ valeurs de $\, \lambda \,$ correspondent $\, \nu \,$ valeurs distinctes de $\, c \,$. Cqfd.

ARRIVER AU BON PORT

1. INTRODUCTION.

Cet exposé fait suite à [TV] "Un tour de valse".

Soit $c_0 \in M$ tel que le polynôme $f_{c_0} : z \mapsto z^2 + c_0$ admette un cycle indifférent rationnel $\{\alpha_1, \dots, \alpha_k\}$ de valeur propre $\rho = e^{2i\pi p/q}$. On suppose que la composante connexe u_1 de k_{c_0} qui contient c_0 est attirée par α_1 et on note P_1 le pétale de α_1 contenu dans u_1 . Soit θ l'argument d'un rayon externe de k_{c_0} qui aboutit en α_1 par un interpétale adjacent à P. On a nécessairement $2^{kq}\theta = \theta$ ([PPIR], II.2, Proposition 4bis, a)).

Pour $c \in \mathbb{C}$, notons \mathbb{Q}_C la fonction potentiel $\mathbb{C} - K_C \to \mathbb{R}_+$ (prolongée à \mathbb{C} par 0 sur K_C), et notons \mathbb{Q}_M la fonction potentiel de M, définie par $\mathbb{Q}_M(c) = \mathbb{Q}_C(c)$.

Choisissons Δ , n_O , r^* et définissons x(c) comme en [TV] § 2. Posons $I^* = [\frac{1}{2^{kq}} s^*, s^*]$, où $s^* = Log \, r^*$. Pour $s \in I^*$ et c tel que $s > {\tt C}_C(0)$, définissons y(c,s) par ${\tt Arg}_{K_C}(y(c,s)) = \theta$, ${\tt C}_C(y(c,s)) = s$. Soit W un disque centré en c_O tel que, pour $c \in W$, on ait $x(c) \in \Delta$, ${\tt C}_C(0) < \frac{1}{2^{kq}} s^*$ et $(\forall \, s \in I^*) \, y(c,s) \in \Delta$. Définissons ν comme pour le Complément 2 du Corollaire 1 du Théorème 1 de [TV], § 8.

Dans l'exposé pré**c**édent, nous avons défini un $N_0 \in \mathbb{N}$ et construit, pour tout $N \ge N_0$ et tout $s \in I^{\times}$, ν valeurs distinctes de c dans W telles que :

(1)
$$f_C^{Nkq}(x(c)) = y(c,s)$$
.

Plus précisément, la condition $|\text{Arg U} - \varepsilon| \frac{1}{4} | < \frac{1}{12}$ (cf. [TV], Complément 3 au Théorème 1) définit ν secteurs de S_1, \ldots, S_{ν} dans W. Dans chacun d'eux, on trouve une valeur de c vérifiant (1).

Ayant choisi un de ces secteurs S, notons c_t la valeur de c trouvée dans S vérifiant (1) pour N et s tels que $t=t_{N,s}=\frac{S}{2}(n_0+N)kq$. Ceci permet de définir c_t pour $0 < t \le t^* = \frac{s}{2}(n_0+N_0)kq$. (Remarquons que si $t=t_{N,\frac{S^*}{2}kq}=t_{N+1,s^*}$, la condition (1) pour $(N,\frac{S^*}{2}kq)$ entraîne (1) pour $(N+1,s^*)$.) D'après le Complément 2 au Théorème 1 de [TV], $c_t \to c_0$ quand $t \to 0$.

Pour tout polynôme $f:\mathbb{C}\to\mathbb{C}$, et pour x et $y\in\mathbb{C}$, nous écrirons $x\sim_f y$ si $(\exists\;n)$ $f^n(x)=f^n(y)$. Nous préciserons $x\sim_{f,n} y$ si $f^n(x)=f^n(y)$. Pour $c\in C-M$, définissons $\omega(c)\in C-K_c$ par :

$$\begin{cases} \mathcal{C}_{C}(\omega(c)) = \mathcal{C}_{C}(c) \\ \operatorname{Arg}_{K_{C}}(\omega(c)) = \theta . \end{cases}$$

Pour $c = c_t$, on a $c \sim_f \omega(c)$. En effet, les points f_c (c) et $(n_c + N)kq$ f_c ($\omega(c)$) ont même potentiel 2 C_c (c) et même argument externe θ par rapport à K_c , donc sont égaux.

Dans cet exposé, nous allons démontrer :

THEOREME 1. Pour
$$c = c_t$$
, avec $t \in [0,t]$ assez voisin de 0, on a:
$$\omega(c) = c.$$

Tirons tout de suite des conséquences :

COROLLAIRE 1. Pour
$$c = c_t$$
, avec $t > 0$ assez voisin de 0, on a : $c \in C-M$, $Arg_M(c) = \theta$ et $C_M(c) = t$.

COROLLAIRE 2. On a: $\nu = 1$.

Sinon, il y aurait plusieurs points de $\mathbb{C}-M$ ayant même potentiel et même argument externe par rapport à M .

COROLLAIRE 3. Le rayon externe $\Re(M,\theta)$ aboutit en c_0 . C'est le Théorème A annoncé dans [TV].

Donnons le plan de la démonstration du Théorème 1. Comme dans <code>[TV]</code> pour la démonstration du Corollaire A du Théorème 1 à partir du Théorème 1 , on pose $c(\lambda) = c_0^- + \lambda^-$ si $q \neq 1$ et $c(\lambda) = c_0^- + \lambda^2$ si q = 1 , ce qui permet de définir $\alpha(\lambda)$ dépendant analytiquement de λ^- quand λ^- parcourt un disque λ^- centré en 0 . On suppose que $\lambda \in \Lambda^- \Rightarrow c(\lambda) \in W$. Au secteur $S \subseteq W$ correspond un secteur $S \subseteq \Lambda$.

Nous allons construire pour chaque $c \in S$ un point $\check{\omega}(c)$ tel que $\check{\omega}(c) \sim_{\overset{\cdot}{f}_C} c$. Puis nous montrerons d'une part que $\omega(c_t) = \check{\omega}(c_t)$ pour t > 0 assez voisin de 0, d'autre part que $\check{\omega}(c) = c$ pour $c \in S$ assez voisin de c_o .

- <u>Aveux</u>. 1) Pour les besoins de la démonstration, nous utiliserons non seulement le Théorème 1 de [TV], son Corollaire et leurs compléments, mais aussi les inégalités de [TV] §§6-7, qui ont servi dans la construction de c_t .
- 2) On se permettra éventuellement d'augmenter n_0 et de diminuer r^* (et donc s^*), ce qui aura pour effet de rétrécir W, d'augmenter N_0 et de diminuer t^* .

2. DEFINITION DE $\omega(c,\gamma)$.

Soient W et n_O comme au §1. Pour $c \in W$, on pose $x_n(c) = f_C^{(n_O+n)kq}(c) = f_C^{nkq}(x(c))$, et on note C(c) l'ensemble des $f_C^i(c)$ pour $0 \le i < n_O kq$. Soit $\gamma: \mathbb{T} = [0,1] \to \mathbb{C}$ un chemin de $x_1(c)$ à $x_0(c)$ tel que $\gamma(\mathbb{T}) \cap C(c) = \emptyset$. Il existe alors un chemin unique $\widetilde{\gamma}: [0,n_O+1] \to \mathbb{C}$ prolongeant γ et tel que $\widetilde{\gamma}(t+1) \in f_C^{-kq}(\widetilde{\gamma}(t))$ pour $t \in [0,n_O]$. On peut en effet définir $\widetilde{\gamma}_{\lfloor [j,j+1]}$ par récurrence sur j, la condition $\gamma(\mathbb{T}) \cap C(c) = \emptyset$ assurant que $\widetilde{\gamma}(\lfloor j-1,j \rfloor)$ ne contient pas de valeur critique de f_C^{kq} pour $j \le n_O$. On pose alors $a_O(c,\gamma) = \widetilde{\gamma}(n_O+1)$. On a $a_O(c,\gamma) \cap f_C(c) = \emptyset$ assurant que $a_O(c,\gamma) \cap f_C(c) = \emptyset$ assurant que $a_O(c,\gamma) \cap f_C(c) = \emptyset$ assurant que $a_O(c,\gamma) \cap f_C(c,\gamma) \cap f_C(c,\gamma)$ and $a_O(c,\gamma) \cap f_C(c,\gamma)$ and $a_O(c,\gamma) \cap f_C(c,\gamma)$ and $a_O(c,\gamma) \cap f_C(c,\gamma)$ and $a_O(c,\gamma) \cap f_C(c,\gamma)$ are thomotope a $a_O(c,\gamma)$ parmi les chemins de $a_O(c,\gamma)$ and $a_O(c,\gamma)$

évitant C(c), on a $ω(c, \gamma) = ω(c, \gamma)$.

3. LE CYLINDRE DE FATOU-ECALLE.

On se place dans les conditions du §7 de [TV]: le changement de variable $z\mapsto Z$ définit un isomorphisme d'un secteur Θ_λ de Δ sur $\Omega=C-(D_R\cup -i\,R_+)$, et, à g_λ déduit de $f_{C(\lambda)}^{kq}$ par le changement de variable $z\mapsto \zeta$, correspond pour la variable Z une application $G_\lambda:\Omega\to C$ de la forme $G_\lambda=H_\lambda+\eta_\lambda$, où $H_\lambda(Z)=(1+U_\lambda)\cdot Z-1$ et $(\forall\,Z\in\Omega)\mid \eta_\lambda(Z)\mid\leq \frac{a}{100}$. On note A_λ le point fixe de H_λ , soit $A_\lambda=\frac{1}{U_\lambda}$. On suppose que R>1, et on note Λ un disque tel que, pour $\lambda\in\Lambda$, on ait $c(\lambda)\in W$ et $|A_\lambda|>4R$. L'application G_λ possède un point fixe A_λ' tel que $|A_\lambda'-A_\lambda|\leq \frac{2a}{100}$, $|A_\lambda|\leq \frac{|A_\lambda|}{100}$. Parfois nous écrirons A pour A_λ , etc...

LEMME 1. Pour $Z \in \Omega$, on a:

$$\left|\operatorname{Log} \frac{G(Z) - A'}{(1+U)(Z-A')}\right| \leq \frac{1}{10|A|}.$$

Démonstration.

a) Cas où
$$|Z-A| \ge \frac{|A|}{2}$$
. On a:

$$\begin{split} \log \frac{H(Z) - A^{!}}{(1 + U)(Z - A^{!})} &= \log \frac{H(Z) - A^{!}}{Z - A^{!}} - \log \frac{H(Z) - A}{Z - A} &= \\ &= \int_{A}^{A^{!}} \frac{dt}{t - H(Z)} - \frac{dt}{t - Z} &= \int_{A}^{A^{!}} \frac{U(Z - A)}{(t - H(Z))(t - Z)} \; dt \; . \end{split}$$

$$d'où \left| \operatorname{Log} \frac{H(Z) - A'}{(1+U)(Z-A')} \right| \leq |A' - A| |U| \left| \frac{Z - A}{t - Z} \right| \frac{1}{|t - H(Z)|}$$

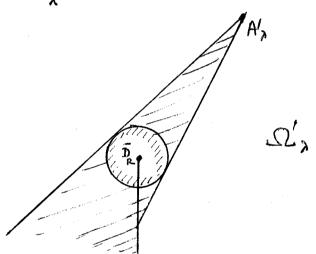
$$\leq \frac{|A|}{100} \cdot \frac{1}{|A|} \cdot 1,03 \cdot \frac{1}{0.24 |A|} \leq \frac{1}{20 |A|}$$

D'autre part, $\text{Log } |\frac{G(Z)-A!}{H(Z)-A!}| \leq \frac{|\eta(Z)|}{|H(Z)-A!|-|\eta(Z)|} \leq \frac{0.01}{0.24 |A|} \leq \frac{1}{20 |A|}$, d'où l'inégalité dans ce cas.

b) Cas où $|Z-A| \leq \frac{|A|}{2}$. Sur le disque $\mathfrak{D} = D_{A, |A|/2}$, on a $|\eta^{\textbf{!}}| \leq \frac{2}{100} \cdot \frac{1}{|A|}$, car tout point de ce disque est centre d'un disque de rayon $\frac{|A|}{4}$ contenu dans Ω , sur lequel η est majorée par $\frac{a}{100} \leq \frac{1}{200}$. Pour $Z \in \mathfrak{D}$, on a : $|(G(Z)-A^{\textbf{!}})-(1+U)(Z-A^{\textbf{!}})| = \left|\int_{A^{\textbf{!}}}^{Z} \eta^{\textbf{!}}(t)dt\right| \leq \frac{1}{50\,|A|} |Z-A^{\textbf{!}}|$,

d'où l'inégalité dans ce cas aussi. Cqfd.

On suppose maintenant λ tel que $|\operatorname{Arg} A_{\lambda} - \frac{1}{4}| \leq \frac{1}{12}$, ce qui entraîne $\operatorname{Arg}(1 + U_{\lambda}) \leq \frac{-1}{2A_{\lambda}}$. On définit un ouvert $\Omega_{\lambda}' \subset \Omega$ de la façon suivante : Si V désigne le plus grand secteur angulaire ouvert de sommet A_{λ}' ne rencontrant pas \overline{D}_R , l'ouvert Ω_{λ}' est l'ensemble des $Z \in V$ tels que $[A_{\lambda}^1, Z] \cap -i \mathbb{R}_+ = \emptyset$.



Notons E_{λ} le quotient de $\Omega_{\lambda}^{\prime}$ par la relation d'équivalence identifiant $Z \ a \ G_{\lambda}(Z)$ si le segment $[Z,G_{\lambda}(Z)]$ est contenu dans $\Omega_{\lambda}^{\prime}$.

PROPOSITION 2 et DEFINITION. L'espace E_{λ} est une surface de Riemann isomorphe à \mathbb{C}/\mathbb{Z} , qu'on appellera le cylindre de Fatou-Ecalle de G_{λ} .

<u>Démonstration</u>. Par le changement de variable $Z \mapsto Log (Z - A_{\lambda}^{!})$ (on choisit une détermination sur $\Omega_{\lambda}^{!}$), l'ouvert $\Omega_{\lambda}^{!}$ devient une bande $\widetilde{\Omega}_{\lambda}^{!}$ limitée

par des courbes faisant avec l'horizontale un angle borné par $\frac{1}{12}$ tour = 30° (†). L'application G_{λ} donne une application $\widetilde{G}_{\lambda}:\widetilde{\Omega}_{\lambda}^{'}\to \mathbb{C}$ telle que $\widetilde{G}_{\lambda}(x+iy)=x_1+iy_1$ avec $y_1-y<-0.45$ |U| et $|x_1-x|<|y_1-y|<\frac{1}{2}$. Comme la bande $\widetilde{\Omega}_{\lambda}^{'}$ a partout une largeur $>\pi$, $E_{\lambda}=\Omega_{\lambda}^{'}/G_{\lambda}\approx\widetilde{\Omega}_{\lambda}^{'}/\widetilde{G}_{\lambda}$ est isomorphe à un cylindre. Cqfd.

Remarque. Soit $\mathbf{e}_{\lambda}^{'}$ l'ouvert \mathbf{e}_{λ} correspondant à $\Omega_{\lambda}^{'}$ par $\mathbf{z} \mapsto \mathbf{Z}$. Le quotient $\mathbf{e}_{\lambda}^{'}/\mathbf{f}_{\mathbf{c}}^{kq}$, où $\mathbf{c} = \mathbf{c}(\lambda)$, s'identifie à $\mathbf{E}_{\lambda} = \Omega_{\lambda}^{'}/\mathbf{G}_{\lambda}$, nous dirons que c'est le <u>cylindre de Fatou-Ecalle</u> de $\mathbf{f}_{\mathbf{c}}^{kq}$ dans le secteur \mathbf{e}_{λ} . L'application $\mathbf{f}_{\mathbf{c}}^{kq}$ a donc q cylindres de Fatou-Ecalle relatifs au point $\mathbf{e}(\lambda)$. Celui qui nous intéresse est celui du secteur contenant l'axe de \mathbf{e}_{λ} 0 et le bout de $\mathbf{e}(\mathbf{c}_{\mathbf{c}},\mathbf{e})$.

4. DEFINITION de ω (c).

Soient $\lambda \in \widetilde{S}$ et $c = c(\lambda) \in S$. Notons $E_{\lambda} = \Theta_{\lambda}^{\dagger}/f_{c}^{kq}$ le cylindre de Fatou-Ecalle de f_{c}^{kq} , $\chi : \Theta_{\lambda}^{\dagger} \to E_{\lambda}$ l'application canonique et $\xi = \chi(x_{o}(\lambda))$. Un chemin γ de $x_{1}(\lambda)$ à $x_{0}(\lambda)$ dans $\Theta_{\lambda}^{\dagger}$ donne un lacet $\chi \circ \gamma$ dans E_{λ} , basé en ξ . Par abus, nous dirons que c'est un <u>lacet injectif</u> s'il définit une application injective $T = I / 0 \sim 1 \to E_{\lambda}$.

PROPOSITION 3 et DEFINITION. a) Il existe un chemin γ de $x_1(\lambda)$ à $x_0(\lambda)$ dans $\Theta_{\lambda}^{\prime}$ donnant un lacet injectif dans E_{λ} .

b) Deux tels chemins $(\gamma \text{ et } \gamma^{\dagger})$ sont homotopes parmi les chemins évitant $\mathbb{C}(c)$, et on a $\omega(c,\gamma)=\omega(c,\gamma^{\dagger})$.

On note $\check{\omega}(c)$ le point $\omega(c,\gamma)$ pour γ un chemin quelconque de $x_1(\lambda)$ à $x_0(\lambda)$ donnant un lacet injectif dans E_{λ} .

⁽⁺⁾ En fait, l'une de ces deux courbes est une horizontale.

Passons dans la coordonnée $\text{Log}(Z-A_\lambda^\dagger)$ de sorte que Θ^\dagger devient $\widetilde{\Omega}^\dagger$.

- a) Le chemin affine répond à la question.
- b) Les lacets $\eta = \chi(\gamma)$ et $\eta' = \chi(\gamma')$ sont homotopes parmi les lacets injectifs basés en ξ , puisque E_{λ} est un cylindre. L'ouvert $\widetilde{\Omega}'$ se plonge dans le revêtement universel \widetilde{E} de E; notons π la projection $\widetilde{E} \to E$. On obtient en relevant une homotopie de γ à γ' parmi les chemins de x_1 à x_0 dans \widetilde{E} évitant $\pi^{-1}(\xi) \{x_1, x_0\}$, et en particulier l'image \widetilde{C} de $C \cap \Theta'$ par l'identification $\Theta' \xrightarrow{\widetilde{\Omega}} \widetilde{\Omega}' \hookrightarrow \widetilde{E}$. Mais on peut rétracter $\widetilde{E} \widetilde{C}$ sur un compact de $\widetilde{\Omega}' \widetilde{C}$ contenant les images de γ et γ' . On obtient donc une homotopie de γ à γ' dans $\widetilde{\Omega}' \widetilde{C}$ c'est-à-dire dans E' C. Ceci établit la première assertion de b). La seconde en résulte (cf. 2). Cgfd.

5. CAS DE c_t .

Pour tout $t \in \left]0,t^{*}\right]$, considérons le point c_{t} défini au §1.

PROPOSITION 4. Pour t > 0, on a $\omega(c_t) = \check{\omega}(c_t)$.

Posons ${}^{\mathbb{C}}_{\mathbf{j}}(\mathbf{c}) = \{\mathbf{f}^{\mathbf{m}}_{\mathbf{c}}(\mathbf{c})\}_{0 \leq \mathbf{m} < (\mathbf{n}_{0} + \mathbf{j}) \mathrm{kq}}$. Si γ est un chemin de $\mathbf{x}_{\mathbf{j}}(\mathbf{c})$ à $\mathbf{x}_{\mathbf{j}-1}$ (c) évitant ${}^{\mathbb{C}}_{\mathbf{j}-1}$, il existe un chemin $\overset{\sim}{\gamma}: [0, \mathbf{n}_{0} + \mathbf{j}] \to \mathbb{C}$ unique prolongeant γ et tel que $\overset{\sim}{\gamma}(\mathbf{t}+1) \in \mathbf{f}^{-\mathbf{kq}}(\overset{\sim}{\gamma}(\mathbf{t}+1))$ pour $\mathbf{t} \in [0, \mathbf{n}_{0} + \mathbf{j} - 1]$. On pose alors $\overset{\sim}{\omega}(\mathbf{c}, \gamma) = \gamma(\mathbf{n}_{0} + \mathbf{j})$, et on a $\omega(\mathbf{c}, \gamma) \overset{\sim}{\gamma}_{\mathbf{f}}(\mathbf{c})$.

 $\underline{\text{D\'emonstration}}. \ a) \ \text{On a} \ {}^{\mathbb{C}}_{n-1} \cap \Theta' = {}^{\mathbb{C}} \cap \Theta' \cup \{x_0, \dots, x_{n-2}\} \ , \ \text{ et } \ a) \ \text{en}$ résulte.

b) Pour $j=1,\ldots,n$, notons γ'_j le chemin de x_j à x_{j-1} qui devient affine dans la coordonnée Log(Z-A'). Le chemin γ'_j donne un chemin injectif dans E, ainsi que $f^{kq}(\gamma'_{j-1})$ si $j\geq 2$. La même démonstration que pour la partie b) de la Proposition 3 montre que :

$$\omega(c,\gamma) = \omega(c,\gamma_n^!) = \omega(c,f^{kq}(\gamma_{n-1})) = \dots = \omega(c,\gamma_1^!) = \widecheck{\omega}(c). \quad \text{Cqfd}$$

Soient $c = c(\lambda)$, $c \in S$ et $s \in I^{\times}$ (cf. §1). Définissons le chemin $\gamma_{c,R,s}$ par $\text{Arg}_{K_{C}} \gamma_{c,R,s}(f) = \theta$ et $\mathbb{Q}_{c}(\gamma_{c,R,s}(t)) = 2^{-tkq}s$. Ce chemin paramètre $\mathbb{Q}_{c,R,s}(c,\theta)$ de y(c,s) à un point $y_{1}(c,s) = y(c,\frac{s}{2^{kq}}) \in f^{-k}(y(c,s))$.

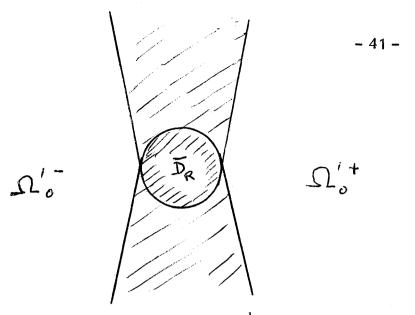
Si on a choisi r^* assez voisin de 1 et W , donc S et Λ assez petits, l'image de $\gamma_{C,\mathcal{R},S}$ est contenue dans $\Theta_{\lambda}^{'}$ pour tout $s\in I^*$ et tout $\lambda\in\Lambda$.

<u>LEMME 3. Si</u> $\gamma_{c,R,s}$ <u>est un chemin dans</u> Θ'_{λ} , <u>il définit un lacet injectif dans</u> E_{λ} .

 $\begin{array}{l} \underline{\text{D\'emonstration}}. \quad \text{Sinon on pourrait trouver un couple } (t,t') \in \text{I}^2 \text{ , autre} \\ \\ \text{que } (1,0) \text{ , et un } i \geq 1 \text{ tel que } \gamma_{\text{C},\mathcal{R},\text{S}}(t') = f_{\text{C}}^{i \text{ kq}}(\gamma_{\text{C},\mathcal{R},\text{S}}(t)) \text{ , d'où} \\ \\ \text{$\mathbb{Q}(\gamma_{\text{C},\mathcal{R},\text{S}}(t')) = 2\,\mathbb{Q}^{i \text{ kq}}(\gamma_{\text{C},\mathcal{R},\text{S}}(t)) \text{ , ce qui est en contradiction avec la d\'efinition} \\ \\ \text{de } \gamma_{\text{C},\mathcal{R},\text{S}} \text{ . } \quad \text{$\text{Cqfd}.$} \end{array}$

6. <u>DEFINITION</u> de $\check{\omega}(c_0)$.

Notons Ω_0^1 le plus grand ouvert qui soit contenu dans Ω_{λ}^1 pour tout $\lambda \in \widetilde{S}$. L'ouvert Ω_0^1 est limité par 4 demi-droites, et a 2 composantes connexes Ω_0^{1+} et Ω_0^{1-} :



Un secteur $\mathfrak E$ ayant été choisi, à $f_{c_0}^{kq}$ correspond une application $G_0: \Omega \to \mathbb C$ de la forme $Z \mapsto Z - 1 + \eta$, $\|\eta\| \leq \frac{a}{100}$. Les quotients $E_0^+ = \Omega_0^{1+}/G_0$ et $E_0^- = \Omega_0^{1-}/G_0$ sont isomorphes à ces cylindres. Ce sont les deux <u>cylindres</u> de Fatou-Ecalle de G_0 . En changeant le choix du secteur $\mathfrak E$, on obtient ainsi 2q cylindres attachés au point α_1 . Celui qui nous intéresse est le cylindre E_0^- correspondant au secteur $\mathfrak E$ contenant l'axe du pétale F_1 au voisinage de α_1 . Nous supposons que c'est ce choix qu'on a fait pour $\mathfrak E$. Notons $\mathfrak E_0^{1-}$ l'image réciproque de Ω_0^{1-} dans $\mathfrak E$ par $z\mapsto Z$. Si on a choisi n_0 assez grand, on a $x_n(c_0)\in\mathfrak E_0^{1-}$ pour tout $n\geq 0$, et il existe un chemin γ de $x_1(c_0)$ à $x_0(c_0)$ dans $\mathfrak E_0^{1-}$ donnant un lacet injectif dans E_0^- . Ceci permet de définir $\check{\omega}(c_0)$ (on voit comme dans la Proposition 3 que le résultat ne dépend pas du choix de γ). On a bien sûr $\check{\omega}(c_0) \curvearrowright_{C_0, n_0 kq} c_0$. Cqfd.

PROPOSITION 5. Le point $\check{\omega}(c)$ tend vers $\check{\omega}(c_0)$ quand $c \to c_0$ dans S.

Démonstration. Soit γ_0 un chemin de $x_1(c_0)$ à $x_0(c_0)$ donnant un lacet injectif -par exemple le chemin affine dans la coordonnée Z. Pour λ voisin de 0, on a un chemin γ_λ voisin de γ_0 de $x_1(c(\lambda))$ à $x_0(c(\lambda))$ donnant un lacet injectif -par exemple encore le chemin affine, dans la coordonnée Z, ou dans la coordonnée $Log(Z-A^i)$. En relevant n_0 fois, on obtient $\check{\omega}(c)$ voisin de $\check{\omega}(c_0)$. Cqfd.

7. IDENTIFICATION de $\check{\omega}(c_0)$.

PROPOSITION 6. On a $\omega(c_0) = c_0$.

L'application $f^{kq}: U_1 \to U_1$ est holomorphe propre de degré 2. Elle a un point critique u, l'unique point de $f_{C_0}^{-(kq-1)}(0) \cap U_1$, et pour valeur critique c_0 . Soit $\varphi: U_1 \to D$ l'isomorphisme tel que $\varphi(u) = 0$ et $\varphi(c_0) \in \]0,1[$; on on a : $\varphi \circ f^{kq} \circ \varphi^{-1} = h: z \mapsto \frac{3z^2+1}{z^2+3}$ ([PPIR], Corollaire 1 de la Prop.4).

Notons E_h^- le cylindre de Fatou-Ecalle de h au point 1 , relatif à un secteur centré sur l'axe dirigé vers \mathbb{R}_- . On a de même $E_h^- = D/h$, et φ donne par passage au quotient un isomorphisme $\Phi: E_{C_0}^- \to E_h$. Posons $x_n(h) = h^{n_0+n}(\frac{1}{3}) = \varphi(x_n(c_0))$. On peut définir $\check{\omega}(h)$ de la façon suivante : On prend un chemin γ de $x_1(h)$ à $x_0(h)$ qui donne un lacet injectif dans $E^-(h)$, on le prolonge à $\begin{bmatrix} 0, n_0+1 \end{bmatrix}$ en un lacet $\check{\gamma}$ tel que $\check{\gamma}(t+1) \in h^{-1}(\gamma(t))$ pour $t \in \begin{bmatrix} 0, n_0 \end{bmatrix}$, et on pose $\omega(h) = \check{\gamma}(n_0+1)$. On a clairement $\check{\omega}(h) \sim_{h, n_0} 1/3$ et $\varphi(\check{\omega}(c_0)) = \check{\omega}(h)$. La proposition 6 résulte maintenant du lemme suivant :

LEMME. On a $\check{\omega}$ (h) = 1/3.

<u>Démonstration</u>. On a $h^n(1/3) \in]0,1[$ pour tout n>0; on peut prendre pour γ le chemin affine de $x_1(h)$ à $x_0(h)$. Alors, $\widetilde{\gamma}$ est un chemin injectif d'image contenue dans]0,1[et $\widetilde{\gamma}(n_0+1)=1/3$ / Cqfd.

Ceci achève la démonstration de la Proposition 6.

8. DEMONSTRATION du THEOREME 1.

La Proposition 6 admet le corollaire suivant :

COROLLAIRE. Pour $c \in S$ assez voisin de c_0 , on a $\omega'(c) = c$.

Le Théorème 1 résulte de ce corollaire et de la Proposition 4.

ABOUTISSEMENT DES RAYONS EXTERNES DE M D'ARGUMENT RATIONNEL

1. RESULTATS.

THEOREME 1. Soit $\theta \in Q/\mathbb{Z}$. Alors, le rayon externe $\Re(M,\theta)$ aboutit en un point $c \in M$ qui est soit une racine de composante hyperbolique, soit un point de Misurewicz.

Commentaire. Les racines des composantes hyperboliques de $\overset{\circ}{M}$ sont les c tels que $f_c:z\to z^2+c$ admette un cycle indifférent rationnel. Les points de Misurewicz sont les c tels que 0 soit strictement prépériodique pour f_c ;

Compléments. 1) Si θ est à dénominateur impair, c est une racine d'une composante hyperbolique. Le point c appartient à une composante U_1 de $\overset{\circ}{K}_C$ qui est attirée par un point α_1 . Il y a 2 rayons externes de K_C aboutissant en α_1 dans un interpétale adjacent à U_1 (sauf si $\theta=0$, d'où c=1/4, 1 seul rayon), et θ est l'argument de l'un d'eux.

2) Si θ est à dénominateur pair, c est un point de Misurewicz, et θ est l'un des arguments externes de c dans K_C .

Dans cet exposé, nous démontrerons le théorème 1. (Le complément 1 sera démontré à l'exposé suivant). Nous montrerons que, si c est un point de Misurewicz, alors θ est un argument externe de c dans $K_{_{\hbox{\scriptsize C}}}$, ce qui est une partie du complément 2. Le complément 2 sera démontré dans l'exposé "Une propriété de continuité". Le théorème 1 avec ses compléments est une réciproque au théorème A de [TV] et au théorème 2 de [AEMM].

2. POINTS D'ACCUMULATIONS DE $\Re(M,\theta)$.

LEMME 1. Soit $\theta \in Q/\mathbb{Z}$ et soit c_0 un point d'accumulation de $\Re(M,\theta)$. Alors, ou bien f_{c_0} a un cycle indifférent rationnel, ou bien c_0 est un point de Misurewicz.

Soit c_n une suite de points de $\Re(M,\theta)$ tendant vers c_0 , et posons $s_n = \mathbb{Q}_M(c_n) \text{ (potentiel). On a } s_n \to 0 \text{ , et } \psi_{c_n,\theta}(2^\ell s_n) = f_{c_n}^\ell(c_n) \text{ , d'où } f_{c_0}^\ell(c_0) = \psi_{c_0,\theta}(0) = \alpha_0^{\text{l}} \text{ . Comme } \alpha_0^{\text{l}} \text{ est périodique et appartient à } \partial K_{c_0} \text{ , le point } c_0 \text{ est un point de Misurewicz.}$ Cqfd.

 $f_{c_0}^{-1}(c_0)$, on en déduit que $f_{c_0}^{i+1}(0)$ = 0 , ce qui est en contradiction avec le fait que c_0 est un point de Misurewicz .

On peut maintenant appliquer [AEMM,II, proposition3] à $\alpha_0 = \psi_{c_0,6}(0)$. On a $\psi_{c_n,\theta}(s_n) = c_n$, d'où en passant à la limite $\psi_{c_0,\theta}(0) = c_0$ et $c_0 = \alpha_0$. Cqfd.

COMPLEMENT 2. Si c_0 n'est pas un point de Misurewicz, $f_{c_0}^{\ell}(\alpha_0)$ est un point périodique indifférent rationnel.

3. DEMONSTRATION DU THEOREME 1.

L'ensemble des points d'accumulation de $\Re(M,\theta)$ est un compact connexe. D'après le lemme 1, il est contenu dans la réunion de l'ensemble des points de Misurewicz, qui est dénombrable, et de l'ensemble des c tels que f_C admette un cycle indifférent rationnel, qui l'est aussi.

Mais, tout compact connexe dénombrable est réduit à un point. Il y a donc un seul point d'accumulation c , et comme tout se passe dans un compact, $\Re\left(M,\theta\right) \text{ aboutit en c .} \qquad \text{Cqfd.}$

Nous avons démontré le théorème 1 et la partie annoncée de son complément 2.

EXPOSE n° XIV

COMPOSANTES HYPERBOLIQUES

1. COMPOSANTES HYPERBOLIQUES.

Notons X_k l'ensemble des couples (c,z) tels que $f_C^k(z) = z$, π la projection $(c,z) \mapsto c$ de X_k sur \mathbb{C} , et ρ_k ou simplement ρ la fonction $(c,z) \mapsto (f_C^k)'(z)$ sur X_k . L'ensemble X_k est une courbe algébrique sur \mathbb{C} et $\pi: X_k \to \mathbb{C}$ est propre de degré 2^k . En vertu du théorème des fonctions implicites, en tout point de X_k où $\rho_k \neq 1$, la courbe X_k est lisse et π est un isomorphisme local.

Notons A_k l'ensemble des $(c,z) \in X_k$ tels que $|\rho(c,z)| < 1$. Comme $\rho: X_k \longrightarrow \mathbb{C}$ est analytique, elle est ouverte (même si X_k a des points singuliers). Par suite $\bar{A}_k = \rho_k^{-1}(\bar{D})$, $\partial A_k = \rho_k^{-1}(S')$ et l'ensemble des (c,z) tels que z soit un point périodique indifférent rationnel de f_c est dense dans ∂A_k . L'ensemble ∂A_k est un ensemble \mathbb{R} -algébrique, de dimension 1 sur \mathbb{R} , et ses seules singularités, en dehors des points singuliers de X_k , sont de la forme

(intersection de $\ \nu$ branches lisses), aux points indiqués de $\dot{\ \rho}_k$.

Posons $M_k' = \pi(A_k)$. C'est un ouvert de $\mathbb C$, et l'ensemble des $c \in \partial M_k'$ tels que f_c ait un cycle indifférent rationnel d'ordre divisant k est dense dans $\partial M_k'$. Or ces points appartiennent à ∂M (on sait même qu'ils sont le point d'aboutissement d'un rayon externe de M). Par suite $\partial M_k' \subset \partial M$, et toute composante connexe de M_k' est une composante connexe de M.

L'ensemble $M' = \bigcup_k M'_k$ est l'ensemble des c tels que f_c ait un cycle attractif. Chaque composante connexe de M' est une composante connexe de M'. Les composantes connexes de M' ainsi obtenues sont les composantes hyperboliques. La question de savoir s'il y a des composantes non-hyperboliques (composantes farfelues) est ouverte. Pour $c \in M'$, il y a un seul cycle attractif, et l'ordre de ce cycle reste constant sur chaque composante connexe de M'.

Si W est une composante connexe de M', W est simplement connexe, puisque c'est une composante connexe de $\overset{\circ}{M}$, $\eth W$ est une réunion d'arcs de courbes algébriques, donc est localement connexe, donc \overline{W} est homéomorphe à \overline{D} . Soit k la période de W , et soit W' une composante connexe de A_k au-dessus de W , on définit $\rho_W \colon W \longrightarrow D$ par $\rho_W(c) = \rho_k(c,z)$ pour $(c,z) \in W'$ (indépendant du choix de W'). L'application π induit un homéomorphisme de \overline{W} sur \overline{W} , donc ρ_W se prolonge en une application continue (encore notée ρ_W) de \overline{W} dans \overline{D} avec $\rho_W(W) \subset S'$. L'application holomorphe $\rho_W \colon W \longrightarrow D$ est propre. Tout point $c \in W$ (resp. $c \in \partial W$) tel que $\rho_W(c) = 0$ (resp. $\rho_W(c) = 1$) est appelé un centre (resp. une racine) de W. Nous verrons que $\rho_W \colon \overline{W} \longrightarrow \overline{D}$ est un homéomorphisme. Il en résultera que W a 1 centre et 1 racine.

2. DÉFORMATION D'UN CYCLE INDIFFÉRENT RATIONNEL, CAS $\ q \neq 1$.

Soit $c_0 \in M$ tel que f_{c_0} admette un point périodique $\alpha(c_0)$ de période k, de valeur propre $\rho_0 = e^{2i\pi p/q}$ avec pgcd(p,q) = 1, $q \neq 1$, donc $\rho_0 \neq 1$. Posons K = kq. La courbe algébrique X_k est au voisinage de $(c_0,\alpha(c_0))$ le graphe d'une application holomorphe $c \mapsto \alpha(c)$. La fonction holomorphe $c \mapsto \rho_k(c,\alpha(c))$ a en c_0 une dérivée $\neq 0$: cela résulte de [ABP], Corollaire 2 du Théorème 1.

PROPOSITION 1. Au voisinage de c_0 , l'ouvert $\frac{M_k}{k}$ est limité par un arc de courbe IR-analytique.

PROPOSITION 2. Au voisinage de (c₀ , α (c₀)), on a $X_K = X_k \cup X_K^{\bullet}$, où

- a) $X_k \cap X_K^1 = \{c_0\}$,
- b) X_K^1 est lisse en (c_0, α_0) à tangente verticale,
- c) $\pi_K : X_K^{\bullet} \longrightarrow \mathbb{C}$ a pour degré local q en ce point.
- d) $\rho_K: X_K' \longrightarrow \mathbb{C}$ a aussi pour degré local q en (c_0, α_0) .
- e) Au voisinage de c_0 , $M_K^! = M_K^! \cup M_K^!$, où $M_K^!$ est l'ensemble des c tels que f_C a un cycle attractif d'ordre exactement K. Ces deux ouverts sont limités chacun par un arc de courbe R-analytique.
- f) Ces deux arcs se rencontrent en c_0 seul.

Démonstration : Soit ζ une coordonnée satisfaisant aux conditions de [TV], Prop. 1 : l'expression g_c de f_c^k dans cette coordonnée est de la forme

$$g_c: \zeta \longrightarrow \rho(c,\alpha(c))\zeta + \beta(c) \zeta^{q+1} + \dots,$$

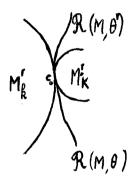
et f_c^{kq} devient $g_c^q: \zeta \longmapsto (1+u(c))\zeta - b(c)\zeta^{q+1} + \dots$ avec $u(c_0) = 0$ et $b(c_0) \neq 0$. L'équation de X_K est

$$g_c^q(\zeta) - \zeta = \zeta(u(c) - b(c)\zeta^q + \dots) = 0$$
.

Cet ensemble est réunion de X_k d'équation $\zeta=0$ et de X_K^{\bullet} d'équation $u(c)=b(c)\zeta^Q+\dots$ Comme $c\longmapsto u(c)$ a un zéro simple en c_0 ([ABP, Cor. 2 du Th. 1]), X_K^{\bullet} est lisse.

Comme $b(c_0) \neq 0$, on a la partie (c). Pour $(c,z) \in X_K^r$, on a $\rho_K(c,z) = (g_c^q) \cdot (\zeta) = 1 + u(c) - (q+1) \ b(c) \zeta^q + \dots 1 - q \ b(c) \zeta^q + \dots , \ d'où la partie (d). La fonction <math>\rho_K$ prend la même valeur aux q points de X_K^r au-dessus d'un point c voisin de c_0 . Par suite $\rho_K \colon X_K^r \longrightarrow \mathbb{C}$ se factorise en $\rho^! \circ \pi$ où $\rho^!$ est holomorphe sur un voisinage W de c_0 . Pour $c \in W$, on a $c \in M_K^r \longleftrightarrow |\rho_k(c,\alpha(c))| < 1$ ou $|\rho^!(c)| < 1$, $2^K - (q+1)k$ autres feuillets donnant de toute façon des points périodiques répulsifs, du moins si on a pris W assez petit. Puisque π et ρ ont même degré local, $\rho^!$ a une dérivée non nulle en c_0 . Ceci donne (e). La partie (f) vient du Cor. 3 du Th. 1 de [ABP], qui donne 2 rayons externes de M aboutissant en c_0 , 1'un dans le secteur des Im u > 0, 1'autre dans celui des Im u < 0, cqfd.

Remarques: 1) On verra dans l'exposé XV que



2) On peut également déduire (e) de [PPIR] III Prop. 6.

3. CAS q = 1.

Soit $c_0 \in M$ tel que f_{c_0} admette un point périodique α_0 de période k, de valeur propre ρ_0 =1. Alors α_0 est un point fixe double de $f_{c_0}^k$ ([PPIR], III, Prop. 6).

PROPOSITION 3. a) X_k est lisse en (c_0, α_0) , à tangente verticale.

- b) $\pi: X_k \longrightarrow \mathbb{C}$ est de degré 2 en ce point.
- c) $\rho_k: X_k \to \mathbb{C}$ a une dérivée $\neq 0$ en ce point.
- d) Au voisinage de c_0 , l'ouvert k est limité par un arc IR-analytique ayant en c_0 un point de rebroussement.

4. ARBRE DE HUBBARD EN UNE RACINE.

Soit $c_0\in M$ tel que f_{c_0} admette un point périodique $\alpha(c_0)$ de période k, de valeur propre $\rho_0=e^{2i\pi~p/q}$ avec pgcd(p,q) = 1; on notera K=kq.

On va définir comme on l'avait fait dans l'exposé [AH] (première partie de ce cours) un arbre associé à ${\bf c}_0$.

Choisissons tout d'abord un système de centres pour les composantes de $^{\circ}_{C_{0}}$; si $^{\circ}_{U_{0}}...U_{K-1}$ est le cycle périodique de composantes de $^{\circ}_{C_{0}}$, indexées par $\{0,1,\ldots,K-1\}$, avec $0\in U_{0}$, on prendra $f_{C_{0}}^{i}(0)$ pour centre de U_{i} $(0\leq i < K)$; pour les autres composantes V, on prend un système de centres de sorte que le centre de $f_{C_{0}}(V)$ soit l'image par $f_{C_{0}}$ du centre de V. On posera $U_{K}=U_{0}$. DEFINITION. Avec ces conventions, l'arbre de Hubbard $H_{C_{0}}$ est l'enveloppe réglementaire des $f_{C_{0}}^{i}(0)$ $(0\leq i < K)$.

Remarque: Si on ignore le théorème de non-errance de Sullivan, le système de centres choisi ci-dessus n'est a priori pas unique. Cependant la structure

combinatoire (classe d'isotopie de plongement d'un arbre dans C) est définie sans ambiguïté.

PROPOSITION 4. Si K \neq 1 , H c contient le cycle indifférent rationnel, et est stable par f c .

<u>Démonstration</u>: L'image par f_{C_0} de l'arc réglementaire Γ de $f_{C_0}^{i}$ (0) à $f_{C_n}^j(0)$ (avec $0 \le i < K$ et $0 \le j < K$) est, lorsque $0 \notin \Gamma$, l'arc réglementaire de $f_{C_0}^{i+1}(0)$ à $f_{C_0}^{j+1}(0)$ et, lorsque $0 \in \Gamma$, la réunion de l'arc réglementaire de $f_{C_0}^{i+1}(0)$ à c_0 et de l'arc réglementaire de $f_{C_0}^{j+1}(0)$ à c_0 . Si Γ' est l'arc réglementaire de 0 à $f_{C_{\cap}}^{K}(0)$ et $G=H\cup\Gamma'$, on a donc $f_{C_{\cap}}(H)\subset G$. On peut alors réappliquer le raisonnement de la proposition 4 de [AH] pour voir que (si $K \neq 1$) ν (1) $\leq \dots \leq \nu$ (K-1) (ν (i) est le nombre de brins de H en $f_{c_0}^{i}(0)$, $0 \le i \le K$) (on n'obtient par contre pas pour l'instant $v(K-1) \le v(K)$); un arbre à plus d'un sommet ayant au moins deux sommets pendants, v(1) = 1 , donc H n ∂U_1 est un singleton $\{\alpha_1\}$. G ne rencontre aucun des ∂U_i (0 \leq i < K) donc $f_{c_0}(H) \subset G$ implique $f_{c_0}(H \cap \partial U_i) \subset H \cap \partial U_{i+1}$ $(0 \le i < K)$, et donc $f_{c_0}^K(\alpha_1) = \alpha_1$. $\alpha_1^{}$ est donc un point du cycle indifférent rationnel de $\,f_{_{\hbox{\scriptsize C}}_{_{\hbox{\scriptsize O}}}}^{}$, qui est inclus dans H . En particulier l'arc de 0 à α_{O} , point du cycle indifférent rationnel situé sur ∂U_0 , est dans H . Mais on sait (cf. [PPIR], II, corollaire de la proposition 4) que la dynamique de $f_{c_0}^K$ sur \mathbf{U}_0 est analytiquement conjuguée à celle de $z \mapsto \frac{3z^2+1}{z^2-1}$ sur D , donc $f_c^K(0)$ est sur l'arc de 0 à α_0 , d'où $\Gamma' \subset H$ et $f_{C_{\cap}}(H) \subset H$. cqfd.

On pourra dès lors appliquer les résultats des exposés [AH] et [AEJ] à c_{Ω} .

5. RACINES DES COMPOSANTES HYPERBOLIQUES ; MULTIPLICITÉ.

Soit $c_0 \in M$ tel que f_{c_0} ait un cycle indifférent d'ordre k , de valeur propre $e^{2i\pi \ p/q}$ avec pgcd(p,q) = 1 , et posons K=kq .

PROPOSITION 5. a) Il existe une unique composante hyperbolique W de M tel que c_0 soit une racine de W . C'est une composante de période K . b) Si $c_0 \neq 1/4$, le point c_0 a au moins 2 arguments externes dans M , de la forme $P/2^K-1$.

Démonstration : La partie (a) résulte des propositions 2 et 3.
(b) Cas $q \neq 1$: soient U_1 la composante connexe de K_{C_0} contenant C_0 , α_1 le point du cycle indifférent de f_{C_0} attirant U_1 . Il y a q pétales, donc q interpétales en α_1 , et 2 de ces interpétales sont adjacents à U_1 . Dans chacun d'eux arrive au moins un rayon externe de K_{C_0} d'argument de la forme $P/2^K-1$, et les rayons externes de M de même argument aboutissent en C_0 ([ABP, Cor. 2 du Th. 1]).

b) Cas q=1: il n'y a qu'un pétale en α_1 , donc 1 seul interpétale. Cependant il y a au moins 2 rayons externes de K_{C_0} aboutissant en α_1 : en effet α_1 est sur H_{C_0} sans en être un sommet pendant, donc il y a au moins deux accès à α_1 sur H_{C_0} et donc, par le corollaire 1 p. 64 de la première partie de ce cours, deux rayons externes de K_{C_0} aboutissant en α_1 .

Ces rayons externes ont des arguments de la forme $P/2^K-1$ ([PPIR] II Prop. 5). Les rayons externes de M de même argument aboutissent en c_0 , cqfd.

Soit W une composante hyperbolique de M , de période k . Pour c \in W , notons $\alpha(c)$ le point périodique attractif de $f_{_{\hbox{\scriptsize C}}}$ attirant 0 .

PROPOSITION 6. Les nombres suivants sont égaux :

- a) <u>le degré</u> μ <u>de l'application holomorphe propre</u> $\rho_W:W\longrightarrow D$.
- b) Le nombre de zéros dans W de c \mapsto $\alpha(c)$, comptés avec multiplicité.
- c) Le nombre de zéros dans W de $c \mapsto f_c^k(0)$, comptés avec multiplicité.
- d) Le nombre de racines de W dans W.

LEMME. Soit $c_0 \in W$ tel que $f_{c_0}^k(0) = 0$. Les fonctions $c \mapsto f_c^k(0)$, $c \mapsto \alpha(c)$ et $c \mapsto \rho_W(c) = \rho_k(c,\alpha(c))$ ont même ordre d'annulation en c_0 .

$$|f_{C}^{k}(0) - \alpha(c)| < \frac{1}{2}|0-\alpha(c)| = \frac{1}{2}|\alpha(c)|$$
,

donc c \mapsto $f_c^k(0)$ et c \mapsto $\alpha(c)$ s'annulent en c_0 avec même multiplicité. cqfd.

DÉMONSTRATION DE LA PROPOSITION. Les zéros des fonctions $c \mapsto \rho_W(c)$, $c \mapsto \alpha(c)$ et $c \mapsto f_C^k(0)$ sont les mêmes, et d'après le lemme ils ont même multiplicité. Le nombre de zéros de $c \mapsto \rho_W(c)$, compté avec multiplicités, est le degré μ de ρ_W . Le bord ∂W est homéomorphe à S' et $\rho_W: \rho W \to S'$ est de degré μ . Comme elle est croissante puisque ρ_W est holomorphe sur W, le nombre de points dans $\rho_W^{-1}(1)$ est aussi μ , cqfd.

Nous appellerons $\,\mu\,$ la multiplicité de $\,W\,$. Nous prouverons dans l'exposé "simplicité" que $\,\mu$ = 1 .

6. DÉCOMPTE. Nous allons démontrer le complément 1 du théorème 1 de [AREMAR].

Soit $k \in \mathbb{N}^*$. Notons

- $\mathbf{m_1}(\mathbf{k})$ le nombre de valeurs de c telles que $\mathbf{f}_{\mathbf{C}}^{\mathbf{k}}(\mathbf{0})=\mathbf{0}$, compté avec multiplicité.
- $\mathbf{m}_{2}(\mathbf{k})$ le nombre des composantes hyperboliques de $\overset{\text{o}}{\mathbf{M}}$ de période divisant \mathbf{k} , compté avec multiplicité.
- $m_3(k)$ le nombre des racines des composantes hyperboliques de période divisant k . $m_A(k)$ le nombre des $t \in \mathbb{T}$ tels que $2^k t = t$, i.e. de la forme $P/2^k 1$.

On a $m_1(k) = m_2(k) = m_3(k)$ d'après la Prop. 5, et $m_3(k) \ge 2m_4(k) - 1$ d'après la Prop. 4. Mais $f_C(0) = c$, $f_C^2(0) = c^2 + C$, $f_C^3(0) = (c^2 + c)^2 + c$ etc... $f_C^k(0) = P_k(c)$ où P_k est un polynôme de degré 2^{k-1} (on le voit par récurrence car $P_{k+1}(c) = (P_k(c))^2 + c$), donc $m_1(c) = 2^{k-1}$. D'autre part $m_4(k) = 2^k - 1$. Donc on a l'égalité $m_3(k) = 2m_4(k) - 1$. Il en résulte d'une part que chaque c_0 racine d'une composante hyperbolique (sauf 1/4) a exactement 2 arguments externes rationnels à dénominateur impair dans M, d'autre part qu'on obtient ainsi tous les éléments de $T = \mathbb{R}/\mathbb{Z}$ rationnels à dénominateur impair. Ceci démontre le complément 1 du théorème 1.

ORDRE DU CONTACT DES COMPOSANTES HYPERBOLIQUES DE M

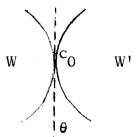
TAN-LEI

Soit c_0 l'intersection des deux composantes hyperboliques W , W' de M dont l'une est de période k , l'autre est de période kq ; alors f_{c_0} admet un cycle indifférent rationnel avec valeur propre $e^{2i\pi p/q}$, de période k .

PROPOSITION. Le contact de W et W' au point co est d'ordre 2.

1. Résumé des résultats déjà obtenus qui sont utiles pour la démonstration de cette proposition.

Soit $\{\alpha_1,\dots,\alpha_k\}$ le cycle indifférent rationnel de f_{c_0} dont α_1 est le point attirant c_0 . Soit P_1 le pétale de α_1 qui contient c_0 et $\Re(K_{c_0},\theta)$ un rayon externe qui aboutit en α_1 dans un interpétale adjacent à P_1 . D'après le théorème A de l'exposé [TV] le rayon externe $\Re(M,\theta)$ aboutit en c_0 .



Comme $q\neq 1$, pour tout c dans un voisinage de c_0 , on peut trouver un $\alpha(c)$ tel que $f_c^k(\alpha(c)=\alpha(c)$ avec c + $\alpha(c)$ analytique et $\alpha(c_0)=\alpha_1$.

Posons :
$$c(\lambda) = c_0 + \lambda$$

$$\rho(\lambda) = (f_{c(\lambda)}^k)(\alpha(c(\lambda))) : \rho(0) = e^{2i\pi p/q}$$
 et
$$\tau(\lambda) = \frac{1}{\rho(\lambda)^{q^2}} - 1 : \tau(0) = 0 ;$$

alors, $\tau(\lambda)$ a en 0 un zéro simple (de multiplicité 1) ([ABP]), donc $\lambda \to \tau(\lambda)$ est un homéomorphisme dans un voisinage de 0.

Pour Δ disque centré en $\alpha(c_0)$ fixé assez petit, on prend n_0 assez grand et $r^*>1$ assez voisin de 1 tels que $x(c_0)=f_{c_0}^{0}(c_0)$ et $y(c_0)=\varphi_{c_0}^{-1}(r^*e^{2i\pi\,\theta})$ appartiennent à Δ . Pour c voisin de c_0 , posons $x(c)=f_c^{0}(c) \text{ et } y(c)=\varphi_c^{-1}(r^*e^{2i\pi\,\theta}). \quad \text{Fixons} \quad a\in \left]0,\frac{1}{2}\right] \text{ et notons}$ $P_a=\left\{z\,|\, |\text{Re }z|\leq a,\, |\text{Im }z|\leq a\right\}. \quad \text{Si on prend } \Sigma_N=\left\{U\,|\, N \log(1+U)+2\pi i\in P_a\right\},$ on a $\Sigma_N\subset D_8/N$ quand $N\geq 8$.

2. DEMONSTRATION DE LA PROPOSITION.

 $\begin{array}{lll} \underline{\mathrm{Pas}\ 1} &. & \mathrm{Pour\ tout\ voisinage\ W}_{c_0} & \mathrm{de\ c}_0\ , \ \mathrm{d'après\ l'expos\'e}\ [\mathrm{TV}]\ , \ \mathrm{il\ existe} \\ \mathrm{un\ N}_0 \geq 0\ , & \mathrm{tel\ que\ pour\ tout\ N} \geq \mathrm{N}_0\ , \ \mathrm{il\ existe}\ \mathrm{un\ c}_N \in \mathrm{W\ tel\ que} \\ \mathrm{f}_{c_N}^{\mathrm{Nkq}}(\alpha(c_N)) = \mathrm{y}(c_N)\ c'\ \mathrm{est-\grave{a}-dire\ } \ \forall \ \mathrm{W\ voisinage\ de\ } 0\ , \ \exists\ \mathrm{N}_0 \geq 0\ , \ \forall\ \mathrm{N} \geq \mathrm{N}_0\ , \\ \mathrm{il\ existe\ } \lambda_N \in \mathrm{W\ tel\ que\ } f_{c(\lambda_N)}^{\mathrm{Nkq}}(\mathrm{x}(\mathrm{c}(\lambda_N))) = \mathrm{y}(\mathrm{c}(\lambda_N))\ \mathrm{et\ } \lambda_N \ \mathrm{est\ dans\ la\ pièce\ } \sigma_N \\ \mathrm{de\ W\ où\ } \tau: \ \sigma_N \to \Sigma_N \ \mathrm{induit\ un\ hom\'eomorphisme\ (on\ peut\ prendre\ W\ assez} \\ \mathrm{petit\ pour\ que\ } \tau(\lambda) \ \mathrm{soit\ un\ hom\'eomorphisme\ sur\ W)}. \end{array}$

Au voisinage de 0 , on peut écrire : $\tau(\lambda)=a\lambda+o(\lambda^2)$ avec $|a|\neq 0$, puisque $\tau(\lambda)$ a en 0 un zéro simple. Il existe donc un voisinage W de 0 tel que : $|\tau(\lambda)-a\lambda|=|o(\lambda^2)|<\varepsilon\,|\lambda|$, $\lambda\in W$, avec $0<\varepsilon<|a|$. Pour ce W , il existe $N_1\geq 0$, tel que $\forall\,N\geq N_1$, $\sigma_N=\tau^{-1}(\Sigma_N)\subset W$.

 $\forall \, \lambda \in \sigma_N^- \subset W$, on a :

 $\begin{array}{lll} (\mid a \mid -\varepsilon) \mid \lambda \mid &=& \mid a \mid \mid \lambda \mid -\varepsilon \mid \lambda \mid \leq \mid \tau(\lambda) \mid \leq \mid a \mid \mid \lambda \mid +\varepsilon \mid \lambda \mid &=& (\mid a \mid +\varepsilon) \mid \lambda \mid \end{array} .$ Comme $\frac{4}{N} \leq \mid \tau(\lambda) \mid \leq \frac{8}{N}$, on a :

$$\frac{4}{(|a|+\varepsilon)N} \leq |\lambda| \leq \frac{8}{(|a|-\varepsilon)N} , \qquad \forall \lambda \in \sigma_{N} .$$

Pas 2. Soit U un ouvert simplement connexe dans C . $\forall x, y \in U$, $a \in U$, on a l'inégalité : $|y-x| \leq |x-a| (e^{4d_U(x,y)} - 1)$ où $d_U(x,y)$ désigne la distance de Poincaré sur U . Si φ : U \rightarrow V est un isomorphisme entre deux

ouverts simplement connexes, alors : $d_{U}(x,y) = d_{V}(\varphi(x),\varphi(y))$.

Si φ : U \rightarrow V est une fonction analytique, alors φ (z) est lipschitzien de rapport 1 , i.e. $d_V(\varphi(x), \varphi(y)) \leq d_U(x,y)$ pour tous x , $y \in U$.

L'ouvert \mathbb{C} - M n'est pas simplement connexe, mais si on enlève le rayon externe $\Re\left(M,\theta^{\dagger}\right)$, où $\theta^{\dagger}=\left\{ egin{array}{ll} \theta+\frac{1}{2} \ , & \theta<\frac{1}{2} \\ \theta-\frac{1}{2} \ , & \theta>\frac{1}{2} \end{array} \right.$, \mathbb{C} - M - $\Re\left(M,\theta^{\dagger}\right)=U$

est ouvert et simplement connexe. Comme $\Re(M,\theta')$ aboutit et ne rencontre pas $\Re(M,\theta)$, U contient $\Re(M,\theta)$. Si on prend $V=C-D-\Re(D,\theta')$, alors $\varphi_M:U\to V$ est un isomorphisme.

Pour N₂ = max {N₁, N₀} et U₂ = {z | Re z > 0, $2\pi\theta - \pi \le \text{Im } z \le 2\pi\theta + \pi$ } \forall N \ge N₂, en posant $c_N = c(\lambda_N)$, on a :

$$\begin{split} \mathbf{d_{U}}(\mathbf{c_{N}}, \mathbf{c_{N+1}}) &= \mathbf{d_{V}}(\varphi_{M}(\mathbf{c_{N}}), \varphi_{M}(\mathbf{c_{N+1}})) \\ &= \mathbf{d_{U}}_{2}(\mathrm{Log}\,\varphi_{M}(\mathbf{c_{N}}), \mathrm{Log}\,\varphi_{M}(\mathbf{c_{N+1}})) \\ &= \mathbf{d_{U}}_{2}(\mathbf{z_{N}}, \mathbf{z_{N+1}}) \end{split}$$

On peut écrire $r = e^{s_0}$ avec $s_0 > 0$.

On a :
$$f_{C_N}^{Nkq}(x(c_N)) = \varphi_{C_N}^{-1}(e^{s_0+2i\pi\theta})$$
 ;

donc:
$$\varphi_{c_{N}}^{(N+n_{0})kq}(c_{N}^{(N+n_{0})}) = e^{s_{0}+2i\pi\theta};$$

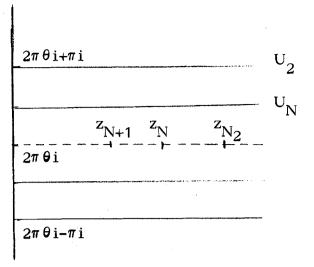
donc:
$$[\varphi_{c_N}(c_N)]^{2^{(N+n_0)kq}} = e^{s_0+2i\pi\theta}$$
,

et
$$\varphi_{M}(c_{N}) = \varphi_{C_{N}}(c_{N}) = e^{2\frac{s_{0}}{(N+n_{0})kq} + 2i^{\pi}\theta!} \text{ avec } 2^{(N+n_{0})kq}\theta! = \theta.$$

Dans K_{c_0} , $\alpha(c_0) = \alpha_1$ a q pétales et est fixé par $f_{c_0}^k$, donc $2^{kq}\theta = \theta$, et on a vu dans [ABP] que, en fait, $\theta' = \theta$. Par suite,

$$\varphi_{M}(c_{N}) = e^{s_{N}+2i\pi\theta}$$
 où $s_{N} = \frac{s_{0}}{2^{(N+n_{0})kq}}$,

donc c_N est dans le rayon externe $\Re(M,\theta)$ et $c_N \to c_0$ quand $N \to +\infty$. On en déduit : $d_U(c_N,c_{N+1}) = d_{U_2}(s_N + 2i\pi\theta,s_{N+1} + 2i\pi\theta)$.



Pour chaque $N \ge N_2$, on prend $\varphi_N(z) = 2i\pi\,\theta + \frac{1}{2(N-N_2)kq}\,(z-2i\pi\,\theta)$, c'est un isomorphisme qui envoie z_{N_2} à z_N et qui envoie U_2 à U_N avec U_N de la forme :

$$\begin{array}{lll} U_N &=& \{\,z\,|\, \text{Re}\,\,z \geq 0\,,\,\,\,\big|\text{Im}\,\,z - 2\pi\,\theta\,\,\big| < \varepsilon(N) \,\} &, & \varepsilon(N) = \frac{\pi}{2^{\left(N-N_2\right)}} &, \\ \varepsilon(N) &< \varepsilon(N-1) < \ldots < \varepsilon\left(N_2\right) = \pi &. \end{array}$$

L'injection $U_N \hookrightarrow U_{N+1}$ est une fonction analytique et donc est un lipschitzien de rapport 1 ; on a :

 $\mathbf{d}_{U_2}(z_N,z_{N+1}) \leq \mathbf{d}_{U_N}(z_N,z_{N+1}) = \mathbf{d}_{U_2}(z_{N_2},z_{N_2+1}) = \text{constante A .}$ Enfin,

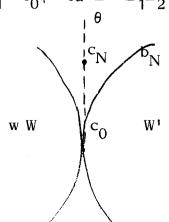
$$\mathrm{d}_{U}(c_{N},c_{N+1}) \ = \ \mathrm{d}_{\mathbb{C}-M-\Re\,(M,\,\theta^{\,\prime})}(c_{N},c_{N+1}) \ = \ \mathrm{d}_{U_{2}}(z_{N},z_{N+1}) \ \leq \ A \quad .$$

Pour $b_N \in \partial W \cup \partial W'$,

$$|c_N - c_{N+1}| \le |c_N - b_N| (e^{4d_U(c_N, c_{N+1})} + 1) \le B_1 |c_N - b_N|$$

B₁ est une constante.

Pas 3. Supposons que le contact de W et W' au point c_0 est de degré supérieur ou égal à 4 , alors pour N_3 assez grand et $N \ge N_3$, il existe $b_N \in \partial W \cup \partial W'$ tel que $|c_N - b_N| \le B_2 |c_N - c_0|^4$; donc, quand $N \ge N_3$, on a $|c_N - c_{N+1}| \le B |c_N - c_0|^4$ où $B = B_1 B_2$.



Pour $k \ge N_3$, on a:

$$|c_k - c_0| \le \sum_{N=k}^{\infty} |c_k - c_{k+1}| \le B \sum_{N=k}^{\infty} |c_N - c_0|^4$$
.

Comme c_N - c_0 = λ_N \in σ_N , d'après le pas 1 , il existe deux constantes positives a_1 et a_2 telles que : $\frac{a_1}{N} \le |\lambda_N| \le \frac{a_2}{N}$, donc :

$$\frac{a_{1}}{k} \leq |\lambda_{k}| = |c_{k} - c_{0}| \leq B \sum_{N=k}^{\infty} |\lambda_{N}|^{4} = B a_{2}^{4} \sum_{N=k}^{\infty} \frac{1}{N^{4}}, \quad \forall \ k \geq N_{3}.$$

Ceci veut dire:

$$0 < \frac{a_1}{Ba_2^4} \stackrel{\sim}{:=} \frac{\Sigma}{N=k} \frac{k}{N^4} < \frac{\Sigma}{N=k} \frac{N}{N^4} = \frac{\Sigma}{N=k} \frac{1}{N^3} \quad , \quad \forall \ k \geq N \quad .$$

Contradiction, car $\Sigma \frac{1}{N^3}$ converge. Cqfd.

EXPOSE Nº XVI

IDENTIFICATIONS DE CYLINDRES : ETUDE A LA LIMITE

P. LAVAURS

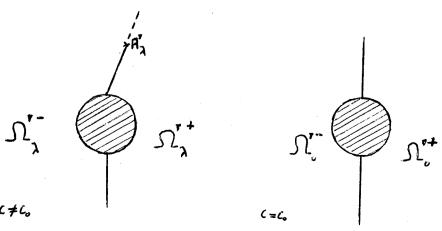
1. NOTATIONS ET POSITION DU PROBLEME.

On se place dans le même cadre que dans "Arriver au bon port" : $f_{c_0}:\ z\mapsto z^2+c_0\ \ \text{a un cycle indifférent rationnel de valeur propre}\ \ e^{2i\pi p/q}$ et de période k , α_1 est un point du cycle indifférent.

Dans "Arriver au bon port", on a construit, pour c proche de c_0 , q cylindres de Fatou-Ecalle (2q pour $c=c_0$) sous réserve que c tende vers c_0 en étant astreint à rester dans un certain secteur.

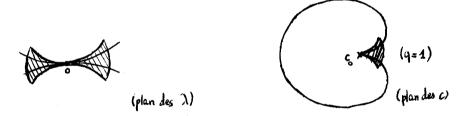
On va modifier légèrement, pour des raisons techniques, la définition des cylindres (sans que cela ne change les cylindres eux-mêmes !) et la zone dans laquelle évolue c voisin de \mathbf{c}_0 .

Au lieu de définir $\Omega_{\lambda}^{'}$ comme on l'a fait dans [ABP.3], on le définit en retirant à ${\bf C}$ seulement $\overline{{\bf D}}_{R}$, le segment de ${\bf A}_{\lambda}^{'}$ à iR (si Im ${\bf A}_{\lambda}^{'}>0$; le segment de ${\bf A}_{\lambda}^{'}$ à -iR sinon) et la demi-droite Re ${\bf Z}=0$, Im ${\bf Z} \le -{\bf R}$ (si Im ${\bf A}_{\lambda}^{'}>0$; Im ${\bf Z}>{\bf R}$ sinon). En prolongeant le segment de iR (ou - iR) à ${\bf A}_{\lambda}^{'}$ jusqu'à l'infini, on partitionne $\Omega_{\lambda}^{'}$ en $\Omega_{\lambda}^{'+}$ et $\Omega_{\lambda}^{'-}$. Enfin, pour c = c $_{0}$, on coupe par les demi-droites Re Z = 0 , Im Z $\le -{\bf R}$ et Im Z $\ge {\bf R}$.



Les inégalités de [ABP] montrent que les points rajoutés à Ω_{λ}^{1} ($\Omega_{0}^{1+},\Omega_{0}^{1-}$) sont équivalents à des points des "anciens" ouverts : ce changement des zones quotientées ne modifie donc pas les cylindres-quotients.

Dans [ABP], on s'était astreint à faire tendre λ vers 0 avec $|\text{Arg A}_{\lambda} \pm 1/4| \leq \frac{1}{12} \text{ , ce qui revient, puisque } \frac{1}{A_{\lambda}^{\dagger}} \text{ est analytique en } \lambda \text{ ,}$ à restreindre à des secteurs angulaires privilégiés autour des 2 directions de demi-droites dans le plan des λ correspondant dans le plan des c aux demi-tangentes, droites aux deux composantes hyperboliques de d0 tangentes en d1 de la demi-droite pour d2 le faire tendre d3 vers 0 dans un secteur angulaire, on le fera tendre entre deux cercles tangents en 0 à la demi-droite privilégiée :

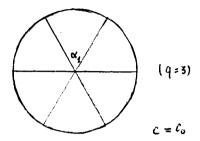


Cette restriction est suffisante pour les applications, car elle laisse c parcourir tout l'extérieur de M tendant vers c_0 . Elle a l'avantage suivant : puisque $\frac{1}{A_\lambda}$ et $\frac{1}{A_\lambda^!}$ sont analytiques en λ , elle impose à A_λ comme à $A_\lambda^!$ de rester entre deux droites $\operatorname{Re} Z = -K$, $\operatorname{Re} Z = +K$. De ce fait, $\{(\lambda,Z) \mid Z \in \Omega_\lambda^{!-}\}$ et $\{(\lambda,Z) \mid Z \in \Omega_\lambda^{!+}\}$ sont des ouverts de $V \times C$ (V désignant la zone où évolue λ): si un point est dans $\Omega_0^{!-}$ (resp. $\Omega_0^{!+}$), il est dans $\Omega_\lambda^{!-}$ (resp. $\Omega_\lambda^{!+}$) pour λ assez proche de 0.

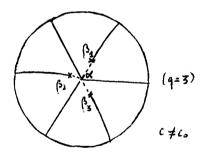
Pour fixer les notations, nous supposerons que nous avons choisi dans le plan des λ de rester autour d'une demi-droite correspondant à Im $A_{\lambda}>0$ (et donc aussi Im $A_{\lambda}^{'}>0$).

Regardons ce que ces motifs fournissent dans le plan des z:

Pour c = c $_0$, les 2q cylindres sont les quotients de 2q secteurs angulaires égaux dans un disque centré en $\,\alpha_1^{}$.



Pour c voisin de c_0 , ∂D_R correspond à un cercle "proche" du précédent ; α_1 se "scinde" en un $\alpha(c)$ fixe par f_c^k et un cycle $\beta_1(c),\ldots,\beta_q(c)$ pour $f_{c'}^k$, α et les β_i étant continues en c (dans la zone désormais notée ε à laquelle on a restreint c). α correspond à ∞ dans le plan des Z, β_1 (par exemple) à A_λ^I . On a q cylindres seulement. Cependant, si on représente aussi (en pointillés sur le schéma ci-dessous) les courbes limitant, quand on les transforme dans le plan des Z, les Ω_λ^{I+} des Ω_λ^{I-} , on voit qu'on peut considérer aussi qu'on q0, comme pour q1, q2, cylindres q2, q3 cylindres q3 cylindres q4 cylindres q5 cylindres q6 cylindres q6 cylindres q7.



Nous allons étudier le cylindre autour de $\beta_1(c)$, qui devient donc deux quand c devient c_0 .

Les zones correspondant à $\Omega_{\lambda}^{1}(\Omega_{\lambda}^{1+},\Omega_{\lambda}^{1-})$ dans le plan des z seront notés $U(c)(U^{+}(c),U^{-}(c))$.

$$\label{eq:update} \begin{split} \textbf{u}^+ &= \{(c,z)/\ z \in \textbf{U}^+(c)\} \ (\text{resp. u}^-) \ \text{sont des ouverts de } \Theta \times \textbf{C} \; . \end{split}$$
 Le cylindre $U(c)/f_c^{\;\;kq} \;\; \text{sera not\'e } \; E(c) \;\; \text{comme dans [ABP]} \; . \end{split}$

Pour $c=c_0$, on a un $E^+(c_0)$ et un $E^-(c_0)$; la zone fournissant $E^-(c_0)$ est entièrement incluse dans une composante de $\overset{\circ}{K}_{c_0}$, celle fournissant $E^+(c_0)$ contient un interpétale.

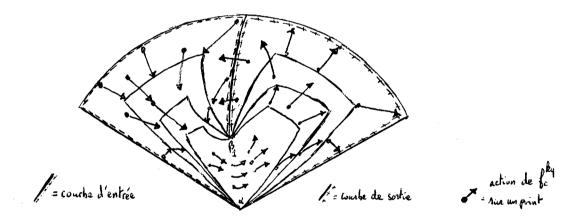
La "courbe de sortie" sera la courbe $\partial U \cap \partial U^{\dagger}$.

La "courbe d'entrée" sera la courbe ∂U ∩ ∂U .

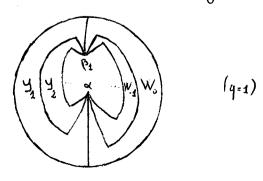
Elles joignent toutes deux α à β_1 .

Le "domaine fondamental de sortie" W_0 dans U^+ sera limité par la courbe de sortie et son image réciproque par $f_c^{\,kq}$ dans U^+ . De même, le "domaine fondamental d'entrée" Y_1 dans U^- sera limité par la courbe d'entrée et son image par $f_c^{\,kq}$.

Le schéma ci-dessous symbolise la dynamique de $\,f_{_{\scriptstyle C}}^{\ kq}\,$ dans $\,U\,$:



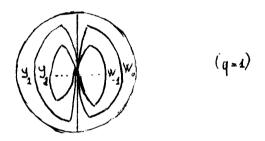
 W_0 et Y_1 sont des domaines fondamentaux des cylindres (identifiés pour $c \neq c_0$) de f_c au voisinage de α_1 (conventionnellement, nous considèrerons que ni W_0 ni Y_1 ne contiennent les points α et β_1 et contiennent la courbe d'entrée pour Y_1 et la courbe de sortie pour W_0).



Pour $i \ge 0$, la zone Y_{i+1} sera définie comme $(f_C^{kq})^i(Y_1)$.

Pour des i < 0 pas trop petits, on va définir par récurrence un W_i . Supposons W_{i+1} défini comme une partie de U limitée par deux courbes envoyées l'une sur l'autre par f_C^{kq} ; W_{i+1} ne contient alors pas de valeur critique de f_C^{kq} : on peut définir la détermination de $(f_C^{kq})^{-1}$ sur W_{i+1} qui envoie l'une des deux courbes qui le borne sur l'autre ; l'image de cette détermination sera W_i , sous réserve qu'elle soit incluse dans U.

Les inégalités de [ABP] prouvent que W_i est défini pour $|i| \leq \frac{0,8|A|}{\pi}$, donc sur une partie de Z qui tend vers Z quand $c \to c_0$.



Prenons un point marqué P⁺ dans U⁺(c₀) et un P⁻ dans U⁻(c₀): pour c proche de c₀, ils sont tous deux dans U(c); ils fournissent donc un point \widetilde{P} ⁻(c) et un point \widetilde{P} ⁺(c) dans E(c) (dans E⁻(c₀) et E⁺(c₀) pour c = c₀).

Tous les cylindres E^+ et E^- peuvent avoir leurs extrémités indexées de façon naturelle : l'une correspond au voisinage de $\,^\infty$ dans le plan des $\,^Z$, l'autre de $\,^I_\lambda$; sur le domaine fondamental $\,^W_0$ ou $\,^Y_1$, cela correspond d'un côté au voisinage de $\,^\alpha$, de l'autre au voisinage de $\,^\beta_1$. Quand c devient c_0 , $\,^\alpha$ et $\,^\beta_1$ se confondent, mais dans le domaine fondamental correspondant à $\,^W_0$ ou $\,^Y_1$ dans le plan des $\,^Z$, le bout qui correspondait au voisinage de $\,^\beta_1$ est représenté par Im $\,^Z>0$, l'autre par Im $\,^Z<0$. On peut donc parler, même pour $\,^C=c_0$, de "bout en $\,^\beta_1$ " et de "bout en $\,^\alpha$ " du cylindre.

Le point marqué et le marquage des bouts du cylindre fournissent alors une identification de E^+ à \mathbb{C}^+ en envoyant \widetilde{P}^+ sur 1 et le "bout en β_1 " sur le "bout en zéro". De même, on identifiera E^- à \mathbb{C}^+ .

Il peut être pratique de préférer modéliser les cylindres par \mathbb{C}/\mathbb{Z} plutôt que par \mathbb{C}^{*} . Dans ce modèle, \tilde{P} est identifié à 0, le "bout en β_1 " au bout en "Im z < 0". \mathbb{C}/\mathbb{Z} et \mathbb{C}^{*} étant identifiables par $z \mapsto \exp(-2i\pi z)$, il sera aisé de transcrire les résultats, que nous montrerons dans le "modèle \mathbb{C}^{*} ", dans le "modèle \mathbb{C}/\mathbb{Z} ".

Pour $c \neq c_0$, E^+ et E^- sont en fait le même cylindre qu'on a identifié par deux isomorphismes différents φ^+ et φ^- à \mathbb{C}^{\times} ; $\varphi^+ \circ (\varphi^-)^{-1}$ fournit alors un isomorphisme de \mathbb{C}^{\times} sur \mathbb{C}^{\times} qui respecte la position de 0 et donc de la forme $z \mapsto G(c).z$, pour un $G(c) \in \mathbb{C}^{\times}$.

G(c) recèle sous forme concise l'information sur la dynamique de f_C^{kq} entre la courbe d'entrée et la courbe de sortie : partant d'un point de Y_1 , en itérant un grand nombre de fois, on arrive en W_0 . Il risque dès lors d'être difficile de contrôler la stabilité de divers phénomènes au cours de tant d'itérations. Mais, si on regarde $E^-(c) = Y_1/f_c^{kq}$ et $E^+(c) = W_0/f_c^{kq}$, la connaissance de G(c) fournit le passage "direct" de l'un à l'autre.

Puisqu'il n'y a pas d'identification naturelle entre $E^-(c_0)$ et $E^+(c_0)$, on doit s'attendre à ce que G(c) n'ait pas de limite quand c tend vers c_0 . On va en donner un développement limité. L'objet de cet exposé est de prouver læ THEOREME 1. Quand c tend vers c_0 , assujetti à rester dans e, a étant la coordonnée définie dans e [TV] (i.e. $c = c_0 + \lambda$ si $q \neq 1$, $c = c_0 + \lambda^2$ si q = 1), on a :

$$G(c) = \exp (g_0 + \frac{k}{\lambda} + o(1))$$
.

COMPLEMENT. $\rho_1(\lambda)$ désignant la valeur propre du cycle de f_c^{kq} issu de $\beta_1(c)$, $k=\frac{4\pi^2}{\rho_1^1(0)}$; ainsi $\frac{k}{\lambda}$ évolue dans une bande autour de l'axe imaginaire pur positif.

Remarque. On a ici énoncé le théorème en prenant pour modèle \mathbb{C}^* . Si on préfère travailler en termes de \mathbb{C}/\mathbb{Z} , la multiplication par G est remplacée

par la translation identifiée à un élément G de \mathbb{C}/\mathbb{Z} , et le développement limité devient : $G(c) = G_0 + \frac{k}{\lambda} + o(1) \pmod{\mathbb{Z}}$, où ici $k = \frac{2i\pi}{\rho_1^!(0)}$ est tel que $\frac{k}{\lambda}$ évolue dans une bande autour de l'axe réel négatif.

Exemple. $c_0 = \frac{1}{4}$, les points fixes de f_c pour c proche de c_0 sont $\frac{1 \pm \sqrt{1-4c}}{2}$. Prenons λ proche de l'axe réel positif. Pour avoir $\operatorname{Im} A_{\lambda}^{!} > 0$, on doit choisir $\alpha = \frac{1+i\lambda}{2}$ et $\beta = \frac{1-i\lambda}{2}$; donc $\rho_1^!(0) = -i$ et $G(c) = \exp[g_0 + \frac{4\pi^2}{\lambda}i + o(1)]$ ou, dans le modèle \mathbb{C}/\mathbb{Z} , $G(c) = G_0 - \frac{2\pi}{\lambda} + o(1)$.

2. CONTINUITE DE LA PROJECTION SUR E.

Le choix d'un point de base nous a permis d'identifier tous les E^- (resp. E^+) à \mathbb{C}^{\times} . On a alors la :

PROPOSITION 1. L'application π^+ : $u^+ \to \mathbb{C}^+$ (resp. π^- : $u^- \to \mathbb{C}^+$) qui \underline{a} (c,z) associe la projection de z sur \underline{E}^+ (c) (resp. \underline{E}^- (c)) identifié \underline{a} $\underline{\mathbb{C}}^+$ est continue.

Remarque. Ce que cette proposition exprime (et c'est en ces termes que nous la rappelerons quand nous l'utiliserons), c'est qu'un dessin-limite dans le plan fournit un dessin-limite sur les cylindres.

Démonstration.

LEMME. Soit C_R la couronne comprise entre les cercles $|s| = \frac{1}{R}$ et |z| = R, avec $R > e^{2\pi}$, et soit h univalente de C_R dans \mathbb{C}^{\times} de sorte que l'image de C_R enserre 0, du même côté que C_R , avec h(1) = 1.

<u>Preuve du lemme</u>. Soit d'abord $f: D \to \mathbb{C}$ univalente avec f(0) = 0 et f(a) = a (pour un $a \in]0,1[$). Alors, pour $|z| \le r$, on a une détermination de $\text{Log } \frac{f(z)}{z}$ qui vérifie :

 $|\log \frac{f(z)}{z}| \le 2 |Log (1-r)(1-a)|$.

En effet, pour $g: D \to \mathbb{C}$ univalente avec g(0) = 0 et g'(0) = 1, on a pour tout $z \in D$ (cf. [G], p. 117, inégalité (19)) :

(1)
$$\left| \log \frac{g(z)}{z} + \log (1 - |z|^2) \right| \le \log \frac{1 + |z|}{1 - |z|}$$
,

où Log $\frac{g(z)}{z}$ est la détermination continue sur D qui vaut 0 en 0 .

Prenons $g(z)=\frac{f(z)}{f^!(0)}$. - En appliquant (1) à z=a, on trouve $|\text{Log } f^!(0)| \leq 2 |\text{Log } (1-a)| \text{ pour une détermination bien choisie de } \text{Log } f^!(0) ;$

- En appliquant (1) en z , on trouve alors une

détermination de $\text{Log } \frac{f(z)}{z}$ telle que :

$$|\text{Log}\frac{f(z)}{z} - \text{Log} f'(0)| \le 2 |\text{Log} (1 - |z|)| \le 2 |\text{Log} (1 - r)|$$
;

donc que $\left| \text{Log} \frac{f(z)}{z} \right| \le 2 \left| \text{Log} (1-r)(1-a) \right|$.

On va prouver que, pour $\exp{(\sqrt{\log^2 R - \pi^2})^{-1}} \le |u| \le \exp{(\sqrt{\log^2 R - \pi^2})}$, il y a une détermination de $\log h(u)$ telle que, $\log u$ étant la détermination principale,

$$\left|\frac{\text{Log h(u)}}{\text{Log u}}\right| \le \left(1 - \frac{2\pi}{\text{Log R}}\right)^{-2} \left(1 - \frac{\sqrt{\text{Log}^2|u| + \pi^2}}{\text{Log R}}\right)^{-2}$$
,

ce qui fournit bien une inégalité de la forme cherchée. On pourrait sans aucun doute raffiner considérablement cette inégalité: la démonstration qui suit utilise en effet très peu d'informations par rapport à ce que peut nous apporter la situation. Cependant cette inégalité nous suffira ici.

h fournit par passage aux logarithmes une application univalente g de la bande -Log R \leq Im z \leq Log R dans $\mathbb C$; on peut supposer h(0) = 0: vu l'hypothèse sur la position relative de zéro et de h($\mathbb C_R$), on a g($2i\pi$) = $2i\pi$. Considérons alors l'application f: z $\mapsto \frac{g(zi\ Log\ R)}{Log\ R}$ univalente de D dans $\mathbb C$.

On a f(0) = 0 et f($\frac{2\pi}{\log R}$) = $\frac{2\pi}{\log R}$. Les bornes entre lesquelles on laisse varier u ont été choisies de telle sorte que la détermination principale de $\frac{\log u}{\log R}$ soit assez petite en module pour qu'on puisse majorer $\frac{|\log u|}{\log R}$ par $r = \frac{\sqrt{\log^2 |u| + \pi^2}}{\log R} \le 1$, donc que $\frac{\log u}{\log R} \in D$. Ce qui précède assure alors l'existence d'une détermination de

$$\operatorname{Log} \frac{f(\frac{\operatorname{Log} u}{\operatorname{i}\operatorname{Log} R})}{(\frac{\operatorname{Log} u}{\operatorname{i}\operatorname{Log} R})} = \operatorname{Log} \frac{g(\operatorname{Log} u)}{\operatorname{Log} u} = \operatorname{Log} (\frac{\operatorname{Log} h(u)}{\operatorname{Log} u})$$

pour une détermination de Log h(u), qui est telle que :

$$\operatorname{Log}\left(\frac{\operatorname{Log}\,h(u)}{\operatorname{Log}\,u}\right) \leq 2\left|\operatorname{Log}\left(1 - \frac{2\pi}{\operatorname{Log}\,R}\right)\left(1 - \frac{\sqrt{\operatorname{Log}^2|u| + \pi^2}}{\operatorname{Log}\,R}\right)\right| ;$$

d'où
$$\frac{\text{Log h(u)}}{\text{Log u}} \le (1 - \frac{2\pi}{\text{Log R}})^{-2} (1 - \frac{\sqrt{\text{Log}^2 |u| + \pi^2}}{\text{Log R}})^{-2}$$
. Cqfd.

Preuve de la proposition. On va montrer la continuité de π^- en un point (c_1,z_1) de \mathfrak{u}^- (pour π^+ , il faudrait simplement remplacer Y_i par W_i dans la démonstration ci-dessous ; pour alléger les notations, les indices - de π^- et $E(c)^-$ seront omis dans cette preuve).

On prend i tel que $z_1 \in Y_i(c_1)$.

Si z_1 n'est pas sur le bord de $Y_i(c_1)$, pour (c,z) assez proche de $(c_1,z_1) \ , \ z \in Y_i(c) \ .$

S'il est sur le bord de Y_i , cela ne pose pas de problème essentiel : en augmentant légèrement R dans la construction de [ABP], les cylindres ne sont pas modifiés, mais Y_i est légèrement décalée, ce qui ramène au cas $z_1 \in \mathring{Y}_i(c_1)$, ce qu'on supposera dorénavant.

Pour r>0, on va définir $Y_i^{(r)}(c) \subseteq Y_i(c)$: on prend sur celle des deux courbes limitant $Y_i(c)$ envoyée sur l'autre par f_c^{kq} les points sis à distance r de α et β_1 sur les morceaux de courbe aboutissant en ces points, et on tronque $Y_i(c)$ par les segments joignant ces points à leurs images :

 $Y_i^{(r)}(c)/f_c^{kq}$ est alors un cylindre $E^{(r)}(c)$ de module fini.

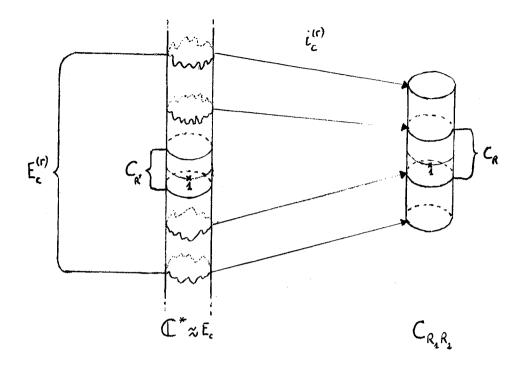
Sur chaque $Y_i(c)$, $\widetilde{P}^+(c)$ fournit un point marqué, qui est donc dans $Y_i^{(r)}(c)$ pour r assez petit (il varie continûment avec c puisqu'image par f_c^{kqi} d'un point fixe du plan des z). Il y a alors une manière unique d'identifier conformément $E^{(r)}(c)$ à un anneau $C_{R_1R_2}$ de la forme $R_1 < |z| < R_2$ dans \mathbb{C}^* en envoyant le point marqué en 1 , et respectant la position par rapport à zéro de $E^{(r)}(c)$ plongé dans E(c) identifié à \mathbb{C}^* . On notera $i_c^{(r)}$ l'isomorphisme entre $E^{(r)}(c)$, considéré comme une partie de \mathbb{C}^* et $C_{R_1R_2}$.

Il est évident que R_2/R_1 , module de $E^{(r)}(c)$, tend vers ∞ quand r tend vers zéro ; il l'est un peu moins que R_2 tend vers ∞ et que R_1 tend vers zéro.

C'est une conséquence du problème extrémal de Teichmüller (cf. [AHL], p. 35-37): pour r assez petit, $E^{(r)}(c)$ contient un anneau C_R symétrique par rapport au cercle unité de module 2M arbitrairement grand.

 $i_{C}^{(r)} \text{ transporte alors le cercle-unité en une courbe passant par 1}:$ l'anneau limité par cette courbe et le cercle $|z|=R_2$ est donc de module plus grand que M . Le problème extrémal de Teichmüller garantit (avec les notations de [AHL] que $M \leq \frac{1}{2\pi} \text{Log } \psi(R_2) \leq \frac{1}{2\pi} \text{Log } [16(R_2+1)]$ (cf. [AHL] , p. 47); donc R_2 peut être rendu arbitrairement grand. De même, R_1 tend vers zéro avec r.

On a donc obtenu la garantie que, pour r assez petit, $C_{R_1R_2}$ contient la couronne C_R pour un R fixé. Par le même raisonnement appliqué à $i_C^{(r)-1}(C_R)$, pour R assez grand, $i_C^{(r)-1}(C_R)$ contient C_R , pour un R' fixé.



On peut envoyer $Y_i^{(r)}(c)$ sur $Y_i^{(r)}(c_1)$ par un morphisme $\Phi_{(c,c_1)}^{(r)}$ de classe C^1 qui commute avec la dynamique de f_c^k sur les courbes qui limitent $\overline{Y_i^{(r)}(c)}$ et $\overline{Y_i^{(r)}(c_1)}$, envoie le point marqué sur le point marqué et tend vers Id en norme C^1 quand c tend vers c_1 .

 $\Phi^{(r)}_{(c,c_1)}$ induit une application $\widetilde{\Phi}^{(r)}_{(c,c_1)}$ de $E^{(r)}_c$ sur $E^{(r)}_{c_1}$ qui laisse 1 fixe et est quasi-conforme de rapport de dilatation tendant vers 1.

 $i^{(r)}_{(c_1)} \circ \widetilde{\Phi}^{(r)}_{(c,c_1)} \circ i^{(r)-1}_{(c)}$ est alors une application entre deux "vraies" couronnes, qui fixe 1, et qui est quasi-conforme de dilatation qui tend vers 1. Elle tend donc vers l'identité uniformément sur tout compact.

Dès lors, si $\pi^{(r)}(c,z)$ désigne $i_c^{(r)} \circ \pi(c,z)$ pour $z \in Y_i^{(r)}(c)$, $\pi^{(r)}(c,z)$ tend vers $\pi^{(r)}(c_1,z_1)$ quand (c,z) tend vers (c_1,z_1) .

Soit alors $\varepsilon > 0$ fixé. On prend un R' assez grand pour que $\pi(c_1, z_1) \in C_{R'}$. On prend alors R_1 assez grand pour que, si $C_{R_1} \subset i_c^{(r)}(E^{(r)}(c))$, on ait $C_{R'} \subset i_c^{(r)-1}(C_{R_1})$. Puis, on prend R_2 assez grand pour que, pour $v \in \overline{C_{R_1}}$, $f(v,R_2) < \varepsilon/3$. Enfin, on prend r assez petit pour que $i_{c_1}^{(r)}(E^{(r)}(c_1))$ (et donc aussi $i_c^{(r)}(E^{(r)}(c))$ pour c assez proche de c_1) contienne C_{R_2} .

Puisque
$$\pi(c_1, z_1) \in C_{R^1} \subset i_{c_1}^{(r)-1}(C_{R_1})$$
, $\pi^{(r)}(c_1, z_1) \in C_{R_1}$. Appliquons le lemme à $i_{c_1}^{(r)-1} \sup_{c_1} C_{R_2}$: on obtient $|\pi(c_1, z_1) - \pi^{(r)}(c_1, z_1)| < \varepsilon/3$.

Pour (c,z) assez proche de (c₁,z₁) , on a alors : $|\pi^{(r)}(c_1,z_1) - \pi^{(r)}(c,z)| < \varepsilon/3$ et $\pi^{(r)}(c,z)$ est toujours dans C_{R_1} .

et $\pi^{(r)}(c,z)$ est toujours dans C_{R_1} . En appliquant le lemme à $i_c^{(r)-1}$, on a : $|\pi(c,z)-\pi^{(r)}(c,z)|<\varepsilon/3$. D'où $|\pi(c,z)-\pi(c_1,z_1)|<\varepsilon$. Cqfd.

COROLLAIRE. G est continue (sur $\Theta - \{c_0\}$).

 $\begin{array}{lll} \underline{\text{D\'emonstration}}. & \text{Soit } c_1 \text{ le point où on veut v\'erifier la continuit\'e de } G \text{ . Il} \\ \\ \text{existe alors un } n \text{ tel que } f_{c_1}^n(\textbf{P}^-) \in \textbf{W}_{-1} \subseteq \textbf{U}^+(c_1) \text{ . Pour } c \text{ assez proche de } c_1 \\ \\ \text{pour que } f_{c}^n(\textbf{P}^-) \in \textbf{U}^+(c) \text{ , on a alors } G(c) = \pi^+(c, f_{c}^n(\textbf{P}^-)) \text{ . } \\ \end{array}$

3. LE GERME F.

Par construction des cylindres, un voisinage de β_1 dans W_0 est envoyé par $f_c^{\ kq}$ sur un voisinage de β_1 dans Y_1 ; ce phénomène reste vrai pour $c=c_0^{\ }(\beta_1^{\ }$ devenant $\alpha_1^{\ }$, et le voisinage étant restreint à une "pointe" de la zone $W_0^{\ }$.

Par passage aux quotients, on obtient une application F(c) holomorphe bijective d'un voisinage du "bout en zéro" de $E^+ = Y_0/f_c^{kq}$ identifié à \mathbb{C}^{\bigstar} et du "bout en zéro" de $E = Y_1/f_c^{kq}$ également identifié à \mathbb{C}^{\bigstar} .

Considérée d'un voisinage de zéro dans \mathbb{C}^* vers un voisinage de zéro dans \mathbb{C}^* , F(c) est prolongeable par continuité par [F(c)](0) = 0: ainsi prolongée, elle est alors holomorphe, sans point critique en zéro.

On notera L(c) l'application de
$$\mathbb{C}^{+} \approx E^{+} \longrightarrow \mathbb{C}^{+} \approx E^{-}$$

$$z \longmapsto [F(c)]^{\bullet}(0).z .$$

C' est le morphisme de cylindres tangent à F(c) .

Pour calculer un développement limité de G(c), on va étudier L(c) $_{0}$ G(c) (on identifie ici par abus de langage le nombre complexe G(c) à l'application $z \to G(c) \cdot z$). L'avantage est qu'on a ici un automorphisme d'un cylindre, qu'on peut étudier en regardant son comportement en un bout, et en oubliant l'information contenue au point marqué.

 $F(c) \ est \ d\'efini \ pour \ c_0 \ \'egalement: \ on \ peut \ esp\'erer \ avoir \ L(c) \to L(c_0)$ quand $c \to c_0$, ce qui permettra de repasser du développement limité de L(c) G(c) à un développement limité de G(c).

4. COMPORTEMENT LIMITE DE L(c).

PROPOSITION 2. Quand $c \rightarrow c_0$, $L(c) \rightarrow L(c_0)$.

Démonstration. Remarquons qu'on peut trouver un r fixe tel que, dans le plan des z, l'intersection du disque centré en β_1 et de rayon r et du "bout" de W_0 proche de β_1 (i.e. celui qui correspond dans le plan des Z à Im Z>0) soit envoyée par f_c^{kq} dans Y_1 ; "une position limite sur le plan fournissant une position limite sur le cylindre", il y a un voisinage fixe de 0 dans C^* où F(c) est définie.

Prenons une courbe fermée γ d'indice 1 autour de 0 incluse dans ce voisinage. On peut la développer dans U⁺(c₀) en un arc (non fermé) Γ_{c_0} ; par la proposition du §2, on peut la développer pour c proche de c₀ en un arc Γ_{c_0} proche de Γ_{c_0} (au sens de la convergence uniforme).

L(c) peut alors être calculé à l'aide de la formule de Cauchy sur γ par :

$$\frac{1}{2i\pi} \int_{\gamma} \frac{[F(c)](u)}{u^2} du = \frac{1}{2i\pi} \int_{\Gamma_c} \frac{\pi_c(f_c^{kqN}(z))}{[\pi_c^+(z)]^2} (\frac{d\pi_c^+}{dz}) dz$$

où π_C désigne la fonction $z\mapsto \pi(c,z)$ et N est choisi assez grand pour que $f_C^{kqN}(\Gamma_C)\subset U^-(c)$. Dans cette intégrale, le chemin d'intégration comme la fonction intégrée varient continûment en c, d'où le résultat. Cqfd.

5. ETUDE DE L(c) \circ G(c) $(c \neq c_0)$.

 $L(c) \circ G(c) \ \ est \ l'application tangente \ a \ F(c) \circ G(c) \ \ au \ voisinage \ de \ 0$ dans $E(c) \approx C^{\times}$. Elle est déterminée par la connaissance purement locale de la dynamique de $f_C^{\ kq}$ autour de β_1 .

Nous allons voir qu'elle peut être calculée fort simplement.

Comme annoncé au §1, $\rho_1(\lambda)$ désigne la valeur propre du cycle de f_C^{kq} issu de $\beta_1(c)$; lorsque $|\rho_1(\lambda)| \neq 1$, f_C^{kq} est linéarisable au voisinage de β_1 . Nous poserons $\rho_1 = \rho_1(\lambda) = re^{2i\pi\theta}$. Comme on est dans le cas $\operatorname{Im} A_\lambda^i > 0$, on a $\operatorname{Im} \rho_1 < 0$.

Considérons
$$g: \mathbb{C}^{\times} \to \mathbb{C}^{\times}$$
, et $p: \mathbb{C} \to \mathbb{C}^{\times}$ $u \mapsto \exp u$ revêtement universel.

g induit une application $\widetilde{g}: \mathbb{C} \to \mathbb{C}$; nous conviendrons qu'elle envoie 0 sur la détermination principale $\operatorname{Log} \rho_1$ du logarithme de ρ_1 , soit $\widetilde{g}: u \to u + \operatorname{Log} \rho_1$. $\widetilde{\tau}$ désignera l'application $u \mapsto u + 2i\pi$ de \mathbb{C} dans \mathbb{C} (changement de feuillet). On a $\widetilde{\tau} \circ \widetilde{g} = \widetilde{g} \circ \widetilde{\tau}$.

On peut identifier le cylindre \mathbb{C}/\widetilde{g} à \mathbb{C}^{\times} en envoyant le "bout en Re u < 0" sur 0 (ρ_1 n'est pas réel) ; $\widetilde{\tau}$, qui commute à \widetilde{g} , induit alors un isomorphisme $K(\rho_1): \mathbb{C}^{\times} \to \mathbb{C}^{\times}$.

LEMME. Si
$$|\rho_1(c)| \neq 1$$
, $L(c) \circ G(c) = K(\rho_1)$.

Démonstration. Prenons un voisinage de β_1 assez petit pour que f_C^{kq} y soit linéarisable ; on peut conjuguer analytiquement f_C^{kq} sur ce voisinage à g au voisinage de zéro . La "fente" Γ séparant Y_1 de W_0 devient une courbe Γ qui admet une tangente en zéro .

$$U\text{-}\Gamma/f_{C}^{\,\mathrm{kq}}$$
 s'identifie alors à \mathbb{C}/\widetilde{g} .

Examinons ce que devient $F(c) \circ G(c)$ (défini au voisinage de β_1) dans ce modèle : On part d'un point y dans le domaine fondamental pour g limité par Γ et $g(\Gamma)$; on prend les images successives de y par g jusqu'à se retrouver

dans ce domaine fondamental en n itérations. En termes du revêtement universel, partons de $Log\ y$ (détermination principale) et appliquons \widetilde{g} n fois : nous tombons sur $Log\ (g^n(y)) - 2i\pi$ ($Log\ désignant$ encore la détermination principale) qui est donc \widetilde{g} -équivalent à $Log\ y$; l'application déduite de F(c) \circ G(c) en identifiant $U - \Gamma/f_C^{kq}$ à \mathbb{C}/\widetilde{g} envoie, elle, la projection de $Log\ y$ sur celle de $Log(g^n(y))$ qui est justement \widetilde{g} -équivalente à $\widetilde{\tau}(Log\ y)$: c'est donc la restriction de K à un voisinage de 0 , donc L(c) \circ $G(c) = K(\rho_1)$. Cqfd.

Preuve du théorème (énoncé au §1).

If ne reste donc plus qu'à calculer $K(\rho_1)$. \mathbb{C}/\widetilde{g} peut être identifié à \mathbb{C}^* par $u \mapsto \exp\left(\frac{-2i\pi u}{\log \rho_1}\right)$ (compte tenu de Im $(\log \rho_1) < 0$, le signe - permet bien d'envoyer le "bout" Re u < 0 sur le "bout" en zéro). $K(\rho_1)$ envoie la projection de 0 sur celle de $2i\pi$ soit 1 sur $\exp\left(\frac{4\pi^2}{\log \rho_1}\right)$, d'où $L(c) \circ G(c) = \exp\left(\frac{4\pi^2}{\log \rho_1(\lambda)}\right)$. $\rho_1(\lambda)$ est de degré 1 en zéro ; pour q=1 , $\rho_1(\lambda) = \rho(-\lambda)$ est de degré 1 d'après [ABP] corollaire 2 du théorème 1 ; pour q > 1 , cela découle de l'analyse de l'aspect des composantes hyperboliques de M tangentes en c_0 (et en fait de façon indirecte de ce corollaire 2) . On peut donc écrire $\log \rho_1(\lambda) = \rho_1(0).\lambda + o(\lambda)$ avec $\rho_1(0) \neq 0$; d'où $L(c) \circ G(c) = \exp\left[\frac{4\pi^2}{\rho_1'(0).\lambda} + K_0' + o(1)\right]$. Comme L(c) a une limite, $G(c) = \exp\left[\frac{4\pi^2}{\rho_1'(0).\lambda} + C_0 + o(1)\right]$.

Ce développement n'est a priori valable que lorsque $|\rho_1(\lambda)| \neq 1$, mais comme G(c) est continue, il l'est partout. Cqfd.

[[]AHL] L.V. AHLFORS, Lectures on quasi conformal mappings, Van Nostrand Company, 1966.

[[]G] G.M. GOLUSIN, Geometric theory of functions of a complex variable, Amer. Math. Soc. (Translations of mathematical monographs), 1969.

EXPOSE N° XVII

UNE PROPRIÉTÉ DE CONTINUITÉ

par P. Lavaurs

1) CASSURE DES RAYONS D'ARGUMENT RATIONNEL.

Pour un $\theta \in \mathbb{R}/\mathbb{Z}$ nous noterons $R_M(\theta)$ le rayon externe de M d'argument θ , et $R_K(\theta)$ le rayon externe de $K_C(\theta)$ (ensemble de Julia de $z \mapsto z^2 + c$) paramétré par le potentiel. Ce dernier peut se casser : dans ce cas, il n'est pas défini sur \mathbb{R}^* tout entier. Nous conviendrons que les rayons sont orientés dans le sens des potentiels décroissants : avancer sur un rayon, ce sera se déplacer de l'infini vers M ou $K_C(\theta)$. Enfin, il faut noter que même lorsque $R_M(\theta)$ ou $R_K(\theta)$ a un aboutissement, nous considérons que ce point ne fait pas partie du rayon.

Dans tout cet exposé, on s'intéressera à des $\theta \in \mathbb{Q}/\mathbb{Z}$.

PROPOSITION 1. L'ensemble des points c de C pour lesquels le rayon $R_{K_C}(\theta)$ se casse est U $R_{M}(2^{n}\theta)$ (et donc puisque $\theta \in \mathbb{Q}/\mathbb{Z}$ est prépériodique pour la multiplication par deux la réunion d'un nombre fini de rayons externes de M).

Démonstration:

- * Si $c \in R_M(2^n\theta)$ pour un $n \ge 1$, l'argument externe de c pour K_c est $2^n\theta$. De ce fait, le rayon $R_{K_c}(2^{n-1}\theta)$ arrive sur zéro, et se casse, donc aussi $R_{K_c}(\theta)$ qui en est une image réciproque $(n-1)^{\grave{e}me}$.
- * Réciproquement si c n'est sur aucun $R_M(2^n\theta)$ $(n\geq 1)$, soit $2^\ell\theta,\ldots,2^{\ell+d-1}\theta$ le cycle pour la multiplication par 2 sur lequel tombe θ . Les rayons $R_{K_C}(2^j\theta)$ $(\ell\leq j\leq \ell+d-1)$ sont définis au voisinage de l'infini, soit

prenant alors pour chaque j l'image réciproque par $z \mapsto z^2 + c$ de $R_{K_{\underline{C}}}(2^{J+1}\theta)$

restreint à [t,2t] ayant pour extrémité terminale $R_{K_C}(2^{j}\theta)$ (t), on prolonge tous les $R_{K_C}(2^{j}\theta)$ ($\ell \leq j \leq \ell + d - 1$) à $\ell \leq j \leq \ell + d - 1$ à $\ell \leq j \leq \ell + d - 1$ à $\ell \leq j \leq \ell + d - 1$ à $\ell \leq j \leq \ell + d - 1$ and the perfection pour $\ell \leq j \leq \ell + d - 1$. Il en est alors de même des $\ell \leq \ell \leq \ell + d - 1$ and the perfection pour $\ell \leq j \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pour $\ell \leq \ell + d - 1$ and the perfection pou

Dès lors pour c dans C-U $R_{M}(2^{i}\theta)$ (qui contient M), le rayon $R_{K}(\theta)$ existe.

Par la proposition 2 de [AEMM], il aboutit alors en un point que nous noterons $\gamma_{_{\mathbf{C}}}(\theta)\,.$

Si $K_{_{\mbox{\scriptsize C}}}$ est localement connexe, $\gamma_{_{\mbox{\scriptsize C}}}(\theta)$ est la valeur en c du lacet de Carathéodory $\gamma_{_{\mbox{\scriptsize C}}}$ défini sur IR/Z ; dans le cas contraire, $\gamma_{_{\mbox{\scriptsize C}}}(\theta)$ n'a de sens que sur Q/Z.

2) ÉNONCÉ ET PREMIERS CAS.

L'objet de cet exposé est de prouver le

THÉORÈME. Pour $\theta \in \Phi/\mathbb{Z}$, $\gamma_{\mathbf{C}}(\theta)$ est une fonction continue de c sur $\Phi = 0$ $\mathbb{R}_{\mathbf{M}}(2^n\theta)$.

La proposition 3 de [AEMM] nous en fournit la preuve dans la plupart des cas : elle affirme en effet que $\gamma_{_{\bf C}}(\theta)$ est défini dans un voisinage de $c_{_{\bf O}}\in {\bf C}$, et continu comme fonction de c dès lors que $\gamma_{_{\bf C}}(\theta)$ est prépériodique répulsif et n'est pas sur l'orbite inverse du point critique (si on note $f_{_{\bf C}}\colon z\longmapsto z^2+c$, avec les notations de cette proposition, $\gamma_{_{\bf C}}(\theta)=\psi_{f_{_{\bf C}},\theta}(0)$).

Il reste donc deux cas à régler :

- * celui d'un point de Mizurewicz c quand $\gamma_{\rm c}$ (0) est sur l'orbite inverse de zéro ;
- * celui d'une racine de composante hyperbolique c quand γ_{C} (0) est sur l'orbite inverse du cycle indifférent rationnel (qui contient aussi ce cycle).

Remarque. En utilisant les conclusions de [AEMM] et [ABP], on peut voir aisément que nous connaissons en fait ici déjà la continuité de c $\longmapsto \gamma_{\rm C}(\theta)$ sur ${\tt C-U} \ R_{\rm M}(2^{\rm n}\theta)$.

3) CAS DES POINTS DE MISUREWICZ.

Soit c un point de Misurewicz et $\theta \in \mathbb{Q}/\mathbb{Z}$.

On suppose donc qu'il existe $n \in \mathbb{N}$ tel que $f_{c_0}^n(\gamma_{c_0}(\theta)) = \gamma_{c_0}(2^n\theta) = 0$.

Dès lors, $R_{K_C}(2^{n+1}\theta)$ aboutit en c_O , et donc $R_M(2^{n+1}\theta)$ aussi d'après le théorème 2 p. 74 de la première partie de ce cours.

D'après le complément 1 du lemme 1 de [AREMAR], aucun des rayons $\mathcal{R}_{M}(2^{p}\theta)$ pour $p\neq n+1$ n'aboutit en c_{O} . Comme ceux-ci sont en nombre fini, il existe un voisinage Λ de c_{O} qui ne rencontre aucun d'entre eux.

On a alors l'énoncé suivant, analogue à la proposition 3 de [AEMM].

PROPOSITION 2. L'application (c,s) $\mapsto \psi_{f_C,\theta}(s)$ \underline{de} $[\Lambda - R_M(2^{n+1}\theta)] \times \mathbb{R}^+$ \underline{dans} \mathbb{C} est continue.

<u>Démonstration</u>: D'après la Proposition 3 de [AEMM], (c,s) $\mapsto \psi_{f_C}, 2^{n+1}\theta$ est continue sur $A \times \mathbb{R}_+$; on va alors prouver par récurrence descendante sur i

que (c,s) $\mapsto \psi_{f_c}(2^is)$ est continue sur $\Lambda - R(2^{n+1}\theta) \times \mathbb{R}^+$.

LEMME. Soient $f: E \longrightarrow F$ un revêtement, avec F localement connexe A un espace topologique

 $g: A \times [0,1] \longrightarrow F \quad (\underline{resp}. A \times]0,1] \longrightarrow F) \quad \underline{continue}.$

Soit h: $A \times [0,1] \longrightarrow E$ (resp. $A \times [0,1] \longrightarrow E$) relevant g (i.e. $f \circ h = g$)
qui est * continu en la variable t parcourant [0,1] (resp.]0,1]) en tout
point

* continu aux points (a,1) $a \in A$.

Alors h est continu sur $A \times [0,1]$ (resp. $A \times [0,1]$).

<u>Preuve du lemme</u>. Il suffit de montrer que pour tout $a \in A$, $T_a = \{t/h \text{ est continue au point } (a,t)\}$ est ouvert et fermé dans [0,1] (resp.]0,1]).

* Il est ouvert : soit (a,t) en lequel h est continue ; prenons V voisinage connexe de g(a,t) assez petit pour que f soit trivial au-dessus de V, et f' l'unique détermination continue de f^{-1} sur V qui vaille h(a,t) en g(a,t). Alors, par continuité de h au point (a,t), pour (b,s) assez proche de (a,t), h(b,s) = f'[g(b,s)] donc h est continue au point (a,s) pour s assez proche de t.

* Il est fermé : soit $t \in \overline{T}$, V comme ci-dessus et U voisinage de (a,t) de la forme $W \times I$ avec I intervalle, tel que $g(U) \subset V$. Par continuité de h en la seconde variable, pour s dans I, h(a,s) = f'[g(a,s)]; prenons un tel s dans T: par continuité de h au point (a,s), pour b assez proche de a, h(b,s) = f'[g(b,s)] donc, par continuité en la seconde variable, et comme $g(\{b\} \times I) \subset V$, h(b,u) = f'[g(b,u)] pour b assez proche de a et u dans I, d'où la continuité de h au point (a,b). cqfd.

Appliquons alors ce lemme : on prendra pour A l'ensemble $(\Lambda - R_M(2^{n+1}\theta)$, on remplacera [0,1] (ou]0,1]) par $[0,\infty]$ (ou $]0,\infty]$) afin de travailler sur le paramétrage par les potentiels, E et F seront tous deux \mathbb{C}^* auquel on rajoute un point à l'infini dans chaque direction de demi-droites, et f est l'application $z \mapsto z^2$ prolongée de façon évidente à l'infini.

L'application (c,s) $\longmapsto \psi_{f_C,2^{\dot{1}}\theta}(s)$ se prolonge à $s=\infty$ en associant à (c, ∞) le point à l'infini de F dans la direction $2^{\dot{1}}\theta$.

Passage de i = n+1 à i = n.

On peut considérer $g: A \times]0,\infty] \longrightarrow F$

$$(c,s) \rightarrow \psi_{f_{C},2^{n+1}\theta}(s) - c$$

puisque An $R_M(2^{n+1}\theta) = \emptyset$, cette application ne prend jamais la valeur zéro et est donc bien à valeurs dans F .

q vérifie alors les hypothèses du lemme.

$$h: A \times]0, \infty] \longrightarrow E$$

(c,s)
$$\rightarrow \psi_{f_{C},2^{n_{\theta}}}(s)$$

est alors un relèvement de $\,g\,$ qui vérifie les hypothèses du lemme : il est donc continu sur $\,A\times\,]0\,{}_{,}\infty]$.

De surcroît, si on étend g à $[0,\infty]$, ce qui est possible (elle n'est alors plus à valeurs dans F mais dans FU $\{0\}$), on la sait continue. Dès lors, pour tout $\epsilon > 0$, pour c assez proche de c et s assez petit, $|\psi_{f_C,2}^{n+1}|_{\theta} (s) - c| < \epsilon^2 \text{ donc } |\psi_{f_C,2}^{n}|_{\theta} (s) | < \epsilon .$

Si on prolonge $\,h\,$ en prenant pour $\,h(c,0)\,$ l'aboutissement du rayon $\,R_{\!K}^{}(2^{n}\theta)\,,$ la fonction obtenue est bien continue sur $\,A\times[\,0\,,^{\infty}]\,$.

Passage de i+1 à i pour i<n.

Pour i < n , le passage de la proposition pour i+1 à la proposition pour i est alors plus facile : en effet on peut directement appliquer le lemme sur $[0,\infty]$ à g : (c,s) $\longmapsto \psi$ (s) - c qui est bien à valeurs dans F , car Λ f_c,2ⁱ⁺¹ θ

a été choisi assez petit pour ne pas rencontrer de $R_M(2^D\theta)$ autre que $R_M(2^{n+1}\theta)$. cqfd.

4) CAS DES POINTS ADMETTANT UN CYCLE INDIFFÉRENT RATIONNEL.

On va se placer dans le même cadre et les mêmes notations que dans [IDC].

 θ est un rationnel à dénominateur impair tel que $R_{\begin{subarray}{c}K_{\begin{sub$

Afin de simplifier l'exposition, la démonstration sera explicitée dans le cas où q=1. On montrera à la fin de celle-ci comment la modifier pour q quelconque.

On se limite à faire tendre c vers c_0 dans une zone θ limitée par deux courbes tangentes à l'ordre 2 en c_0 , on supposera que θ contient entièrement la zone comprise entre les composantes hyperboliques de M tangentes en c_0 (pour q=1, la zone comprise hors de la composante hyperbolique dont le bord admet un point de rebroussement en c_0).

PROPOSITION 3. L'aboutissement de $R_{K}(\theta)$ est α ou β .

PROPOSITION 4. Pour n fixé et c assez proche de c , $R_{K_C}(\theta)$ ne passe pas sur $f_C^n(0)$.

PROPOSITION 5. Pour $\theta_1 \in \mathbb{Q}/\mathbb{Z}$ tel qu'il existe $d \in \mathbb{N}$ tel que $2^d\theta_1 = \theta$, l'aboutissement de $R_{K_C}(\theta_1)$ est continu au point c_0 comme fonction de c (et en particulier défini pour c assez proche de c_0).

La proposition 5 permettra de conclure le théorème annoncé en 2 : en effet pour un θ_C tel que $2^d\theta=\theta$, elle affirme que $\gamma_C(\theta_C)$ tend vers $\gamma_C(\theta_1)$ quand c tend vers c_0 dans $\theta=0$ $R_M(2^n\theta)$.

Si maintenant on fait tendre c vers c_o dans M , l'aboutissement de $R_{K_C}(\theta_1)$ est une fonction continue de c , puisque c'est un point prépériodique répulsif. Comme quand c tend vers c_o dans M \cap 0 , il tend vers $\gamma_{C_o}(\theta_1)$, il tend aussi vers $\gamma_{C_o}(\theta_1)$ quand c tend vers c_o dans M , d'où la continuité annoncée au point c_o .

La proposition 3 est un premier pas vers la proposition 5, la proposition 4 est la clef du complément 2 au théorème 1 de [AREMAR].

a) Limitation de la distorsion du rayon dans U.

Pour $c=c_{o}$, le rayon $R_{K_{co}}$ (θ) aboutit en α_{1} avec une tangente perpendiculaire au diamètre limitant U^{\dagger} . Quitte à augmenter R dans la construction de "Arriver au bon port", on peut dès lors supposer ce rayon transverse à la courbe de sortie (qui est la courbe par laquelle le rayon entre dans U^{\dagger} , avec notre convention d'orientation dans le sens des potentiels décroissants !) ; on prendra $s(c_{o})$ le plus petit paramètre où $R_{K_{co}}$ (θ) coupe la courbe de sortie ;

pour c proche de c_0 , $R_{K_C}(\theta)$ coupe alors la courbe de sortie en un point correspondant à un paramètre s(c) proche de s(c_0), puisque ce rayon restreint à $[\frac{s(c_0)}{2},\infty[$ est une fonction continue de c .

Sur $[\frac{s(c_0)}{2^k}, s(c_0)]$, le rayon $R_{K_{C_0}}(\theta)$ évolue alors sur un nombre fini de zones W_i ($i \le 0$), qu'on notera M_1 .

La restriction de $R_{K_C}(\theta)$ à $[\frac{s(c)}{2^k},s(c)]$ étant continue en fonction de c, et puisqu'une position limite sur le plan fournit une position limite sur le cylindre (cf. [IDC] Proposition 1), pour c assez proche de c_o , cette courbe est encore sur M_1+1 domaines W_i au plus.

Cet arc de rayon définit sur le cylindre un lacet injectif ; on peut alors reconstituer le rayon de proche en proche tant que l'on reste dans U : ainsi entre s(c) et $\frac{s(c)}{2^k}$, $R_K(\theta)$ parcourt un chemin sur W_{-M_1}, \ldots, W_0 ; sur $\left[\frac{s(c)}{(2^k)^2}, \frac{s(c)}{2^k}\right]$ il parcourra un chemin sur $W_{-M_1-1}, \ldots, W_{-1}$; si i_0 est le plus grand entier tel que W_{-i_0} soit défini, on pourra ainsi remonter jusqu'à un chemin sur $W_{-i_0}, \ldots, W_{-i_0+M_1}$.

Comme $i_0 \ge \frac{0.8|A|}{\pi}$, pour c assez proche de c_0 , on a au moins un arc de $R_{K_C}(\theta)$ défini sur un intervalle de la forme $[\frac{t}{2^k},t]$ évoluant entre W_{j_1} pour $j_1 = E(\frac{-0.3|A|}{\pi})$ et $j_2 = E(\frac{-0.7|A|}{\pi})$ (E désigne la partie entière).

Par les inégalités de [ABP], un W_j pour $j_2 \le j \le j_1$ est entièrement recouvert par des Y_i , en nombre fini. Dès lors, l'arc $R_{K_C}(\theta)$ évolue entre t et $\frac{t}{2^k}$ sur un nombre fini M(c) de domaines Y_i . De plus, t peut être choisi de telle sorte que $R_{K_C}(\theta)$ (t) soit sur un ∂Y_i et qu'entre t et $\frac{t}{2^k}$ $R_{K_C}(\theta)$ évolue dans des Y_i , avec $i' \le i$: il suffit de prendre t le plus petit possible pour que $R_{K_C}(\theta)$ (t) soit sur Y_i parmi les $t \ge \frac{s(c)}{(2^k)^i o^{-M_1}}$. En relevant l'arc un nombre suffisant de fois, on trouve alors un W_i tel que $R_{K_C}(\theta)$ évolue entre W_i et ait ses extrémités sur X_i X_i

A priori, M(c) dépend de c . Cependant on a le LEMME. On peut borner M(c) par une borne M(c) par une born

Développons alors Y_1/f_C^k et W_0/f_C^k sur $\mathbb C$ en envoyant les points marqués sur $\mathbb Z$. $R_{K_C}(\theta) \left| \left[\frac{s}{2^k}, s \right] \right|$ et $R_{K_C}(\theta) \left| \left[\frac{w}{2^k}, w \right] \right|$ se développent chacun en un arc de courbe (compact), Y_S et Y_W où l'on convient de relever $W_{-M_1} \cup \ldots \cup W_0$ et $Y_1 \cup \ldots \cup Y_{M(C)}$ en relevant en 0 le point marqué de W_0 ou Y_1 .

 $\mathcal{R}_{K_{\mathbf{C}}}(\theta) \left | \left [\frac{s}{2^k}, s \right] \right | \text{ admet une position limite dans le plan quand } c \text{ tend vers } c_0 \text{ , donc aussi sur le cylindre ; dès lors } \gamma_1 \text{ admet une position limite dans } c_0 \text{ , et reste donc pour } c_0 \text{ assez proche de } c_0 \text{ dans un rectangle autour de } 0 \text{ .}$

 $\gamma_W^{}$ s'obtient à partir de $\gamma_S^{}$ par une translation de -G', où G' est un relèvement de G(c).

Mais le développement limité ci-dessus prouve que la partie imaginaire de G , donc aussi de G' est bornée quand c tend vers $c_{_{\scriptsize O}}:\gamma_{_{\scriptsize W}}$ reste donc à hauteur bornée, donc dans une bande B limitée par deux horizontales.

Quand c tend vers c_0 , le bord de Y_1 admet une position limite sur le plan, donc aussi la courbe qu'elle définit sur le cylindre, uniformément sur tout compact ; le relèvement de Y_1 dans C restreint à la bande B admet donc une position limite ; comme γ_W le rencontre, il reste en fait à distance bornée de zéro, donc dans un rectangle de C.

A la limite, un nombre borné de relèvements de domaines Y $(i \ge 1)$ rencontre ce rectangle borné, donc M(c) est borné. cqfd.

Quitte à multiplier w par une puissance de 2^k pour certains c , on supposera que $R_{K_C}(\theta)$ (w) et $R_{K_C}(\theta)$ ($\frac{w}{2^k}$) sont sur ∂Y_M , et donc qu'entre ces deux valeurs du potentiel, $R_{K_C}(\theta)$ évolue dans $Y_1 \cup \ldots \cup Y_M$. Cet arc de rayon s'obtient par développement à extrémités sur ∂Y_M du lacet défini sur le cylindre par la première entrée du rayon, entre s et $\frac{s}{2^k}$.

On notera $\omega(c)$ le point critique de f_c^k variant continûment avec c et égal pour c_o au point critique de f_c^k situé dans la composante de f_c^k adjacente à α_1 : il existe i_o tel que $f_c^i(\omega) = 0$, avec $0 \le i_o < k$.

De plus il existe un n_O tel que $f_C^{n_O}(\omega)$ soit dans Y_i pour c suffisamment proche de c_O ; on peut enfin supposer, quitte à ne regarder que des c encore plus proches de c_O , que pour $j < k(n_O+1)$ et $j \neq kn_O$, $f_C^k(\omega) \not\in U$. On notera $\widetilde{\omega}$ le point sur le cylindre correspondant à $(f_C^k)(\omega)$.

PROPOSITION 6. c est sur $R_{M}(2^{O}\theta)$ si et seulement si le lacet injectif défini sur le cylindre par la "première entrée" de $R_{K_{C}}(\theta)$ dans U passe sur $\widetilde{\omega}$.

Démonstration:

* Si le lacet défini sur le cylindre par la "première entrée" de $R_{K_C}(\theta)$ passe sur $\widetilde{\omega}$, d'après ce qui précède, sur $[\frac{w}{2^n}, w]$, le lacet passe sur un point de U ayant pour projection sur le cylindre $\widetilde{\omega}$ et situé dans un Y_i $(1 \le i \le M)$ donc sur un $(f_c^k)^{n_0+i}(\omega)$ $(0 \le i \le M-1)$: le raisonnement de [ABP] montre qu'alors $R_{K_C}(\theta)$ passe aussi sur $f_C^k(\omega)$; dès lors $R_{K_C}(2^{i_0}\theta)$ passe sur c, donc c est sur $R_M(2^{i_0}\theta)$.

* Réciproquement si c est sur $M^{(2^{1}\circ\theta)}$, $K_{c}^{(\theta)}$ passe sur $f_{c}^{2k}(\omega) = f_{c}^{k-i}(\omega)$ donc aussi sur tous les $f_{c}^{ki}(\omega)$ $(i \geq 2)$ et le lacet défini sur le cylindre par la "première entrée" de $R_{K_{c}}^{(\theta)}(\theta)$ passe sur $\widetilde{\omega}$. cqfd.

Analysons alors ce qui se passe alors lorsqu'on n'est pas sur $R_M(2^{i_O}\theta)$: le lacet sur le cylindre est alors, puisqu'injectif, homotope dans le cylindre privé de $\widetilde{\omega}$ à un parallèle situé soit d'un côté soit de l'autre de $\widetilde{\omega}$; en revenant aux développements sur $Y_1 \cup \ldots \cup Y_M$, on voit que cela exprime que l'arc de lacet $R_{K_C(\theta)} \mid [\frac{w}{2^k}, w]$ peut être amené dans $Y_1 \ldots Y_M - \{(f_C^k)^{n_O+i}(\omega)\}$ $(0 \le i \le M-1)$ sur α ou β en astreignant ses extrémités à glisser sur ∂Y_M , de sorte que l'une reste l'image de l'autre par f_C^k tout au long de l'homotopie.

Vu le cadre $(\theta - U R_M(2^i\theta))$ où nous nous sommes placés pour énoncer les $n \ge 1$ propositions 3 à 5, nous sommes hors de $R_M(2^i\theta)$ donc dans le cas analysé ci-dessus.

b) Retour dans U .

PROPOSITION 7. Il existe un N > 1 (indépendant de c) tel que sur $\left[\frac{w}{(2^k)^{N+1}}, \frac{w}{(2^k)^N}\right]$, $R_K(\theta)$ soit dans $U^+(c)$.

Remarque. Cette proposition exprime que le rayon, qui après l'intervalle $[\frac{w}{2^k}, w]$ va bientôt franchir la courbe d'entrée et quitter la zone U garde un comportement contrôlable hors de U et revient sagement dans U au bout d'un temps borné.

Démonstration:

α) Premières limitations sur l'emplacement du rayon.

Pour un $n \ge 0$ fixé et tout i tel que $1 \le i \le M$, $(f_C^k)^{-n}(Y_i)$ a un nombre fini de composantes connexes, au plus 2^{kn} . Elles seront appelées "zones" par la suite.

Entre $\frac{w}{(2^k)^n}$ et $\frac{w}{(2^k)^{n+1}}$, R_K (0) évolue alors sur les 2^{kn} M (au plus) zones ainsi définies.

LEMME 1. Il évolue en réalité sur seulement $M.2^{M}$ telles zones au plus, pour cassez proche de c_{O} (N.B : la condition de proximité dépend de n , mais ce ne sera pas gênant pour utiliser ce lemme).

Démonstration:

Comme plus haut prenons n_o tel que $(f_c^k)^{n_o}(\omega) \in Y_1$, et supposons c assez proche de c_o pour qu'aucun $(f_c^k)^{\dot{1}}(\omega')$ pour $0 \le i \le n$ et ω' point critique de f_c^k hormis les $(f_c^k)^{\dot{j}}(\omega)$ $(n_o \le j \le n_o + M - 1)$ ne soit dans $Y_1 \cup \ldots \cup Y_M$.

Entre w et $\frac{w}{2^k}$, $R_{K_C}(\theta)$ évolue sur M zones.

Entre $\frac{w}{2^k}$ et $\frac{w}{(2^k)^2}$, il évolue a priori sur $2^k.M$ zones au plus : les composantes connexes des images réciproques de $Y_1 \cup \ldots \cup Y_M$ par f_C^k ; mais (si

 $n_O>1)$ $Y_1\cup\ldots\cup Y_M$ ne contient pas de valeur critique de f_C^k : les 2^k images réciproques de $Y_1\cup\ldots\cup Y_M$ sont donc disjointes deux à deux et puisque l'arc de rayon correspondant aux $t\in\left[\frac{w}{(2^k)^2},\frac{w}{2^k}\right]$ est connexe, il ne peut évoluer que dans une seule des déterminations de $(f_C^k)^{-1}$ $(Y_1\cup\ldots\cup Y_M)$, donc sur M zones au plus.

Ainsi, chaque fois qu'on prend une image réciproque, on restera sur le même nombre de zones, sauf lorsque la région dont on prend l'image réciproque par $f_{_{\rm C}}^k$ contient une valeur critique de $f_{_{\rm C}}^k$. Par les limitations imposées sur la position vis-à-vis de $\rm Y_1U\dots U\,Y_M$ de l'orbite des points critiques, cela n'arrive que M fois exactement ; ces fois là, la région dont on prend l'image réciproque par $f_{_{\rm C}}^k$ contient une valeur critique exactement, qui est $f_{_{\rm C}}^k(\omega)$. Ses images réciproques sont alors regroupées en 2^k-1 composantes connexes, formées en général de M zones, sauf celle de ω qui est formée de 2M-1 zones. En tout cas, cette opération fait au plus doubler le nombre de zones sur lesquelles évolue le rayon.

Finalement, pour les images réciproques $n^{\text{èmes}}$, on a bien la majoration annoncée (par $M.2^{M}$). cqfd.

Le rayon, qui ne passe pas par $\widetilde{\omega}$ quand on le regarde sur le cylindre, peut, comme nous l'avons remarqué, être ramené sur α ou β (en un sens précisé à la fin du a)). Nous allons voir que la seule connaissance de la position du rayon par rapport à $\widetilde{\omega}$ sur le cylindre permet de déterminer 2^M branches (au plus) de $(f_C^k)^{-n}$ (certaines étant divaluées) à appliquer à chacun des Y_i (1<i<M) pour obtenir les $M.2^M$ (au plus) zones définies plus haut.

Soit en effet V la région simplement connexe que couvre le rayon quand on le déforme en α (ou β) sur $Y_1 \cup \ldots \cup Y_M$ sans rencontrer les points $(f_C^k)^j(\omega)$ $(n_0 \le j \le n_0 + M - 1) \cdot (f_C^k)^{-n}(V)$ a alors effectivement 2^{kn} composantes connexes, d'adhérences disjointes ; une seule contient α (resp. β) dans son adhérence. Celle-ci est alors contenue dans la région où évolue effectivement le rayon entre $\frac{w}{(2^k)^n}$ et $\frac{w}{(2^k)^{n+1}}$, car l'homotopie faisant glisser le rayon sur α (resp. β) peut à chaque étape être relevée en une homotopie qui fait glisser le rayon sur α (resp. β) dans $(f_C^k)^{-1}(Y_1 \cup \ldots \cup Y_M)$ $(0 \le i \le n)$. Les 2^M branches (au plus) de $(f_C^k)^{-n}$ à considérer sont ainsi celles qui envoient

 $Y_1 \cup ... \cup Y_M$ sur la composante connexe de $(f_C^k)^{-n}(Y_1 \cup ... \cup Y_M)$ qui contient α (resp. β) dans son adhérence.

β) Observations sur la dynamique de
$$z \mapsto \frac{3z^2+1}{z^2+3}$$
.

Nous allons utiliser la conjugaison entre la dynamique de $f_{C_O}^k$ sur la composante connexe de $f_{C_O}^k$ adjacente à α_1 et $F:z\mapsto \frac{3z^2+1}{z^2+3}$ sur D .

On notera \hat{U}^- , \hat{Y}_i (pour $i \geq 0$) les transformés de $U^-(c_0)$, $Y_i(c_0)$ par cette conjugaison ; \hat{U}^+ sera le transformé de l'intersection de $U^+(c_0)$ avec la composante de \hat{K}_{c_0} adjacente à α_1 .

Nous serons amenés à introduire une courbe γ dans D : γ sera définie sur \mathbb{R}^* et vérifiera :

- (a) Im $\gamma > 0$
- (b) sur $[1,2[\gamma(t) = \frac{t}{3}]$
- (c) $\gamma(2t) = F[\gamma(t)]$.

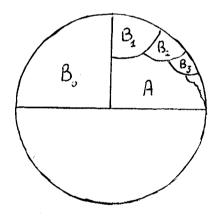
Cette courbe γ est bien définie et unique : en effet (c) permet de la définir sur $[1,+\infty[$ où elle couvre alors le segment [0,1[de l'axe réel ; entre $\frac{1}{2}$ et 1 , la condition (c) laisse deux choix pour chaque valeur de $\gamma(t)$, mais (a) fixe alors cette valeur : ainsi sur cet intervalle γ parcourt le segment joignant $\frac{1}{\sqrt{3}}$ à 0 ; de même (c) et (a) permettent de déterminer sans ambiguïté γ sur chaque $[\frac{1}{2^{n+1}},\frac{1}{2^n}[$. La courbe ainsi obtenue est continue : elle l'est en effet sur chaque intervalle $[2^p,2^{p+1}[$, $p\in \mathbb{Z}$ et par construction comme $\lim_{t\to 2^{-1}} \gamma(t) = \gamma(2)$, on a aussi continuité aux points de la forme 2^p .

LEMME 2. Quand t tend vers zéro, γ(t) tend vers 1 avec tangente verticale.

de F_1 , un point de Im z > 0 a pour antécédent dans Im z > 0 un point situé plus à gauche et plus haut ; dès lors pour $u \le 1$, $\text{Re } \eta'(u) \le 2$: la direction asymptotique sera assurée dès lors que $\text{Im } [\eta'(u)]$ tendra bien vers ∞ ; par ailleurs, on voit ainsi que si $\phi_n(u) = \text{Im} [\eta'(u-n)]$, la suite $\phi_n(u)$ est croissante pour chaque $u \in [0,1]$. Mais pour $u \in [0,1]$ fixé, la suite des $\eta'(u-n)$ a une limite (éventuellement infinie), puisque sa partie réelle décroît et sa partie imaginaire croît. Cette limite doit être un point fixe de F_1 , donc l'infini : dès lors la suite ϕ_n tend simplement vers l'infini, donc uniformément par le théorème de Dini, ce qui assure que $\eta'(u) \longrightarrow \infty$ quand $u \longrightarrow -\infty$. cqfd.

La courbe γ délimite donc une zone A dans D . On notera B le quart supérieur gauche de D

$$B_{i+1} = [F^{-1}(B_i)] \cap (Im z > 0)$$



LEMME 3. Les B_i tendent vers 1 quand i $\rightarrow \infty$ (en ce sens que $\forall \epsilon > 0$, $\exists i_0$ tel que $\forall i \geq i_0$, $\forall z \in B_i$, $|1-z| < \epsilon$).

a est donc dans D , et son orbite est "piégée" dans (Im z > 0) - (B U A).

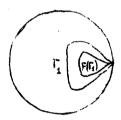
Mais le lemme 2 rend alors impossible que les $F^{n}(a)$ tendent vers 0 tangentiellement au rayon, d'où une contradiction, compte tenu de la proposition 2

de [PPIR] . cqfd.

γ) Choix de N .

Nous allons maintenant appliquer ces considérations sur la dynamique de F pour obtenir des informations sur $F^{-n}(\hat{Y}_1 \cup \ldots \cup \hat{Y}_M)$.

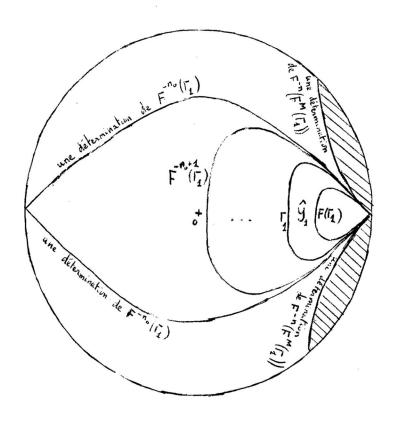
Regardons l'aspect de \hat{Y}_1 : il est limité par deux courbes Γ_1 et $F(\Gamma_1)$ admettant des tangentes en 1, qui font l'angle $\pm \frac{\pi}{4}$ avec l'axe réel.



Quitte à grossir R, on peut les supposer incluses dans la réunion de l'adhérence de A et celle de la région conjuguée de A (il vaut mieux ne pas essayer de noter cela avec les notations usuelles!), transverses à l'axe réel en un seul point.

Motivés en cela par l'étude faite en α , on va s'intéresser seulement aux branches de F⁻ⁿ qui envoient $\hat{Y}_1 \cup \ldots \cup \hat{Y}_M$ dans une région qui contient 1 dans son adhérence.

Ces composantes connexes de $F^{-n}(\hat{Y}_1 \cup \ldots \cup \hat{Y}_M)$ sont alors dans les régions limitées par le bord du disque et les deux déterminations de $F^{-n}(F^M(\Gamma_1))$ qui partent de 1 : (cf. zone hachurée dans le schéma ci-dessous).



LEMME 4. Il existe N_O tel que pour N \geqslant N_O, les deux composantes connexes de F⁻ⁿ($\hat{Y}_1 \cup \ldots \cup \hat{Y}_M$) qui contiennent 1 dans leur adhérence soient dans \hat{U}^+ .

 $\underline{\text{D\'emonstration}}: \text{Il suffit bien \'evidemment de le montrer pour la composante connexe de } F^{-n}(\hat{Y}_1 \cup \ldots \cup \hat{Y}_M) \text{ situ\'ee au-dessus de l'axe r\'eel.}$

Celle-ci est dans la région limitée par le bord de D et une courbe, détermination de $\mbox{ F}^{-N}[\mbox{ F}^{M}(\Gamma_1)\,]$.

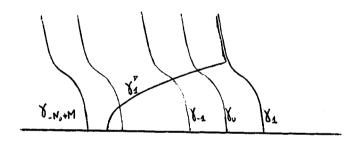
La courbe Γ_1^{\prime} qui limite \hat{U}^{\dagger} est, elle, formée d'un arc dans A , qui coïncide avec Γ_1^{\prime} au voisinage de 1 , puis la quitte pour rejoindre ∂D , délimitant ainsi une région (la "moitié" supérieure de \hat{U}^{\dagger}) dans D .

Il suffit donc de montrer que pour N assez grand, $F^{-N+M}(\Gamma_1)$ (où on prend la détermination de partie imaginaire positive issue de 1) est dans cette région.

On va distinguer $F^{-N+M}(\Gamma_1\cap A)$ et $F^{-N+M}(\Gamma_1\cap \overline{A})$ (ici \overline{A} désigne la conjuguée de A).

F restreint à A est bijectif : on peut donc conjuguer cette restriction de F à A à une transformation bijective g du demi-plan de Poincaré ; $F_{\mid A}$ a un point fixe indifférent sur ∂A : on peut donc choisir pour g la transformation parabolique g(Z) = Z+1.

La courbe $\Gamma_1 \cap A$ est alors représentée dans ce modèle comme une courbe γ_1 joignant un point de l'axe réel à ∞ , avec une direction asymptotique y'y (correspondant à la tangente à Γ_1 faisant un angle de $\frac{\pi}{4}$ avec l'axe réel), et $\Gamma_1' \cap A$ est représentée comme une courbe γ_1' coïncidant avec γ_1 au voisinage de l'infini et aboutissant en un point de l'axe réel plus à gauche que le bout de γ_1 ; la détermination de F^{-1} à appliquer à γ_1 pour trouver γ_{-N+M} (correspondant à $F^{-N+M}(\Gamma_1 \cap A)$) est $Z \longrightarrow Z-1$: il est clair que pour N assez grand, on est à gauche de γ_1' , et donc $F^{-N+M}(\Gamma_1 \cap A)$ est dans \hat{U}^+ .



Pour $F^{-N+M}(\Gamma_1 \cap \overline{A})$, on va utiliser le lemme 3 : par l'hypothèse faite au début de cette partie γ de la démonstration sur la position de Γ_1 , $F^{-N+M}(\Gamma_1 \cap \overline{A})$ évolue dans B_{N-n_0-M} (pour $N \geq n_0+M$), donc est proche de 1 pour $N \geq n_0+M$ 0, assez grand, et est donc aussi dans \hat{U}^+ . cqfd.

δ) Un tel N convient.

On va prendre un $N \ge N_O$ (avec en fait la condition supplémentaire 0,3 (N-M) \ge 2K , dont la nécessité apparaîtra dans les calculs qui suivent), et vérifier qu'il répond à l'énoncé de la proposition 7.

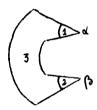
Les branches de $(f_C^k)^{-N}$ qui, appliquées à Y_1, \dots, Y_M fournissent des régions dans lesquelles peut évoluer R_K entre $\frac{w}{(2^k)^N}$ et $\frac{w}{(2^k)^{N+1}}$ sont en nombre fini indépendant de c; elles définissent ainsi un certain nombre de

"zones" images de Y par itération de branches de $(f_c^k)^{-1}$. Pour $c=c_0$, on a prouvé en γ que ces zones sont toutes dans U^+ .

La plupart de ces régions (toutes sauf 2M) ne contiennent pas α_1 dans leur adhérence (pour c=c_0) : elles sont alors relativement compactes dans $\text{U}^+(\text{c}_0)$ et restent incluses dans $\text{U}^+(\text{c})$ pour c proche de c_0 dans θ .

Pour les 2M autres, il faut étudier avec un peu plus d'attention le comportement de $\,f_{_{\rm C}}^{\,k}\,$ au voisinage de $\,\alpha\,$ ou $\,\beta$.

On va couper $\,Y_1^{}\,$ en trois morceaux : deux sont limités par de petits arcs de cercles autour de $\,\alpha\,$ et de $\,\beta\,$; le troisième est le reste de $\,Y_1^{}\,$.



Ce troisième morceau ne posera pas de problèmes : pour $\,c = c_{_{\hbox{\scriptsize O}}}^{}$, il ne contient pas $\,\alpha_1^{}$ dans son adhérence.

Regardons le morceau proche de α : dans le plan des Z, il correspond à un secteur proche de $-\infty$ du côté des $Im \ Z < 0$. Il est limité par une courbe qui reste à distance R' de zéro. Quitte à diminuer la taille des petits cercles divisant Y_1 en trois zones, on peut supposer R' aussi grand que nécessaire, et en particulier R' > R.

N étant choisi, pour R' choisi assez grand, la détermination de $(f_C^k)^{-1}$ à itérer i fois $(N-M+1 \le i \le N)$ et à appliquer à Y_1 pour fournir les M zones proches de α considérées s'écrit $Z = (1+\frac{1}{A_\lambda})^{-1}Z'+1$ à un terme d'erreur près, dont le module est majoré par $\frac{a}{100}$ (il suffit de prendre R' assez grand pour être sûr de rester hors de \overline{D}_R pendant N itérations de ce $(f_C^k)^{-1}$). Pour R' choisi assez grand et c assez proche de c_0 la partie réelle est augmentée alors d'au moins 0,9 à chaque application de $(f_C^k)^{-1}$ et on est sûr de se retrouver en fin de compte après i itérations $(N-M+1 \le i \le N)$ dans Re Z>0, Im Z<0: le petit secteur autour de α dans Y_1 est bien envoyé dans $U^+(c)$ par $(f_C^k)^{-N-M+1}...(f_C^k)^{-N}$ pour c assez proche de c_0 .

Le calcul est un peu plus délicat près de β . Ici on utilise le fait que A_λ^\bullet , donc aussi la coupure faite entre A_λ^\bullet et iR , varie entre deux verticales Im Z = -K et Im Z = K .

Pour $|\mathbf{Z}-\mathbf{A}| > \frac{\mathbf{A}}{2}$, $(\mathbf{f}_{\mathbf{C}}^{\mathbf{k}})^{-1}$ est approchée par la similitude $\mathbf{Z}: (1+\frac{1}{\mathbf{A}})^{-1}\mathbf{Z}'+1$ qui augmente la partie réelle d'au moins 0,4 dans la zone considérée, pour c assez proche de $\mathbf{c}_{\mathbf{O}}$; si on tient compte de l'erreur majorée par $\frac{\mathbf{a}}{100}$ on est sûr que la partie réelle sera augmentée d'au moins 0,3. Ici on va utiliser la condition supplémentaire 0,3.(N-M) < 2K . On choisit R' assez grand pour être sûr que les N itérations de $(\mathbf{f}_{\mathbf{C}}^{\mathbf{k}})^{-1}$ ne laissent pas dans le plan des Z entrer dans $\overline{\mathbf{D}}_{\mathbf{R}}$ et continuent à augmenter la partie réelle d'au moins 0,3; dès lors on est sûr (pour c assez proche de $\mathbf{c}_{\mathbf{O}}$) qu'en i itérations $(N-M+1 \le i \le N)$ on est à droite de Im Z=K.

Pour $|Z-A| \leq \frac{A}{2}$, les inégalités de "Arriver au bon port" montrent que, $(f_C^k)^{-1}$ ressemble à la simitude de centre A' et de rapport $(1+\frac{1}{A})^{-1}$ à $\frac{2a}{100\,|A|}\,|Z-A_\lambda^i|$ près ; son itération $i^{\text{ème}}(N-M+1 \leq i \leq N)$ décale donc comme cette similitude à $\frac{2a\,i}{100\,|A|}\,|Z-A_\lambda^i|$ près ; ce qui garantit qu'on a effectivement tourné et qu'on est "à droite" de la coupure entre A' et iR .

c) Construction d'un piège.

Pour c proche de c , on a un s(c) tel que $R_{K_{C}}(\theta)$ (s) soit sur la courbe de sortie et qu'entre s et $\frac{s}{2^{k}}$, $R_{K_{C}}(\theta)$ évolue dans $U^{+}(c)$.

 $\mathcal{R}_{K_{\mathbf{C}}}(\theta)$ finit par rencontrer la courbe d'entrée pour un potentiel w(c).

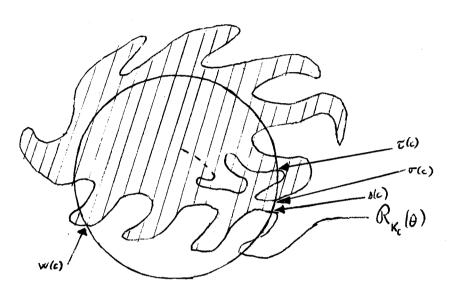
La proposition 8 montre alors que (pour c assez proche de c_0), il existe alors $t \le w(c)$ tel que sur $[\frac{t}{2^k}, t] R_{K_C}(\theta)$ évolue de nouveau dans $U^+(c)$.

Posons $\tau(c) = \sup\{t/t \le w \text{ et sur } [\frac{t}{2^k}, t] \text{ , } R_{K_C}(\theta) \text{ évolue dans } U^+(c)\}$. Dès lors $R_{K_C}(\theta)$ ($\tau(c)$) est sur la courbe de sortie Γ .

Entre $\tau(c)$ et w(c) il se peut que $R_{\begin{subarray}{c}K\begin{subarray}{c}(\theta)\end{subarray}$ rencontre Γ en un certain nombre de points ; j'appelle $\sigma(c)$ le paramètre compris entre $\tau(c)$ et w(c)

correspondant au point d'intersection de Γ et de $R_{K_C}(\theta) |_{[\tau(c),w(c)]}$ le plus proche de $R_{K_C}(\theta)[s(c)]$ (du même côté que $R_{K_C}(\theta)[\tau(c)]$).

La zone piège P est alors définie comme l'ouvert limité par $R_{K_{\mathbf{C}}}$ et Γ entre $R_{K_{\mathbf{C}}}$ (0)[σ (c)] et $R_{K_{\mathbf{C}}}$ (0)[σ (c)].



Remarquons que pour c assez proche de c_O , \overline{P} ne contient aucune des valeurs critiques de f_C^k : en effet en ce qui concerne les $f_C^k(\omega')$ pour des ω' distincts de $\omega(c)$, lorsque $c=c_O$, ils ne sont pas dans la région couverte par les images des 2.2^M .M branches de $(f_C^k)^{-i}$ (pour N-M+1 $\leq i \leq N$) dont l'application à Y_1 fournit la région où peut évoluer entre $\frac{1}{(2^k)^N}$ et $\frac{1}{(2^k)^{N+1}}$ une courbe continue γ vérifiant $\gamma(2t)=f_C^k(\gamma(t))$ et évoluant dans Y_1 ...U Y_M entre 1 et 2^k ; ils n'y sont donc toujours pas pour c voisin de c_O . Ils ne sont pas non plus dans U(c) pour c proche de c_O , donc ne sont pas dans \overline{P} .

Le même raisonnement montre que les $\ \omega''$ distincts de $\ \omega$ tels que $f^k_C(\omega'')=f^k_C(\omega)$ ne sont pas non plus dans $\ \overline{P}$.

De plus, on dispose d'une détermination continue de $(f_C^k)^{-1}$ sur ∂P (égale à R_K (θ) $(u) \mapsto R_K$ (θ) $(\frac{u}{2^k})$ sur la partie de P formée d'un arc du

rayon $R_{K_C}(\theta)$ et par la détermination de $(f_C^k)^{-1}$ qui envoie W_0 sur W_{-1} sur la partie de ∂P formée d'un arc de Γ), qui envoie ∂P sur une courbe fermée simple $\partial P'$ incluse dans \overline{P} .

Si $f_C^k(\omega)$ était dans \overline{P} , un de ses antécédents devrait être dans \overline{P}' . Puisqu'aucun des $\omega''\neq\omega$ tels que $f_C^k(\omega'')=f_C^k(\omega)$ n'y est, ce serait forcément ω . Mais on a alors une absurdité, car si $\omega\in P'$, f_C^k enverrait P', courbe fermée simple enserrant un seul point critique sur une courbe fermée simple, et si ω était sur $\partial P'$, il serait sur $\mathcal{R}_K(\theta)$ donc c serait sur $\mathcal{R}_M(2^{i_0}\theta)$, ce qu'on a exclu.

La détermination continue de $(f_c^k)^{-1}$ qui envoie ∂P sur $\partial P'$ se prolonge alors en une branche holomorphe univaluée de $(f_c^k)^{-1}$ qui envoie P dans lui-même.

Remarquons enfin, ce qui sera utile par la suite, que pour $m\geq 0$ fixé, si on prend c assez proche de c_O (la condition de proximité dépend de m), on est assuré par le même raisonnement qu'aucun des $(f_C^k)^i(\omega')$ pour ω' point critique de f_C^k distinct de ω et $1\leq i\leq m$, non plus que les $\omega''\neq \omega$ tels que $(f_C^k)^m(\omega'')=(f_C^k)^m(\omega)$ ne sont dans \overline{P} ; comme $f_C^k(\omega)$ n'est pas dans \overline{P} et que tout point de \overline{P} a un antécédent dans \overline{P} , on en déduit que les $(f_C^k)^i(\omega)$ $(1\leq i\leq m)$ n'y sont pas non plus. En termes de f_C , cela signifie que les $f_C^i(0)$ ne sont pas dans \overline{P} pour $1\leq i\leq km$.

Nous avons alors le matériel pour démontrer les trois propositions annoncées :

PREUVE DE LA PROPOSITION 3.

Pour $t \leq \sigma(c)$, $R_{K_C}(\theta)(t)$ évolue dans P: en effet, on voit par récurrence sur $n \geq -1$ que la branche de $(f_C^k)^{-1}$ à choisir pour passer de $R_{K_C}(\theta) \left| \left[\frac{\sigma(c)}{(2^k)^{n+1}}, \frac{\sigma(c)}{(2^k)^n} \right] \right| \stackrel{\text{a}}{=} R_{K_C}(\theta) \left| \left[\frac{\sigma(c)}{(2^k)^{n+2}}, \frac{\sigma(c)}{(2^k)^{n+1}} \right] \right| = \text{envoie} \quad R_{K_C}(\theta) \left[\frac{\sigma(c)}{(2^k)^n} \right] = \text{qui est aussi dans } P$ et est donc la branche qui envoie P dans lui-même.

 $(f_C^k)^{-1}$, de degré 1 d'un ouvert de C dans un ouvert strictement contenu dans le premier est strictement contractante pour la métrique de Poincaré de P; elle a un point fixe qui est α ou β (selon la position sur le cylindre du lacet correspondant à la première entrée du rayon) : la suite des $(f_C^k)^{-n}(u)$ converge donc vers α ou β . cqfd.

PREUVE DE LA PROPOSITION 4.

On a remarqué que \overline{P} ne contient aucun des $f_C^i(0)$ $(1 \le i \le km)$ pour c assez proche de c_O ; comme $R_{K_C}(\theta) \left| \left[\frac{s(c)}{2^k}, +\infty \right[$ est continu en c, il ne passe pour c proche de c_O sur aucun des $f_C^i(0)$ $(1 \le i \le km)$ et $R_{K_C}(\theta) \left| \left[0, \frac{s(c)}{2} \right] \right]$ non plus, puisqu'il est inclus dans \overline{P} . cqfd.

PREUVE DU COMPLÉMENT 2 AU THÉORÈME 1 DE [AREMAR].

Nous savons déjà ([AREMAR - Complément 1 au lemme 1]) que si le complément 2 n'était pas exact, ce serait qu'un rayon externe de M dont l'argument est à dénominateur pour θ_1 aboutit sur une racine c_0 de composante hyperbolique. Considérons n tel que $2^n\theta_1$ soit à dénominateur impair. Il existe alors des c arbitrairement proches de c_0 tels que $c \in \mathcal{R}_M(\theta_1)$ donc $c \in \mathcal{R}_K(\theta_1)$ et donc $f_C^n(c) = f_C^{n+1}(0) \in \mathcal{R}_K(2^n\theta_1)$.

* Si $R_{K_{C_0}}(2^n\theta_1)$ aboutit sur un point d'un cycle répulsif, $\overline{R_{K_C}(\theta_1)}$ varie continûment comme fonction de c au voisinage de c_0 , donc $\overline{R_{K_C}(\theta_1)}$ passe sur c_0 , ce qui est absurde puisque $c_0 \in K_{C_0}$.

* Si $R_{K_{C_0}}(2^n\theta_1)$ aboutit sur un point du cycle indifférent rationnel, on peut (quitte à modifier n) supposer que c'est sur α_1 . Mais alors le fait que l'on puisse trouver c arbitrairement proche de c_0 tel que $f_c^{n+1}(0) \in R_{K_C}(2^n\theta_1)$ contredit la proposition 4. cqfd.

PREUVE DE LA PROPOSITION 5.

La position du rayon par rapport aux $f_C^i(0)$ $(1 \le i \le km)$ ne change pas, à condition que c soit assez proche de c_O . Pour donner un sens précis à cette remarque, compactifions $\mathbb C$ par un point à l'infini dans chaque direction de demi-droites et prolongeons les $\mathcal R_K(\theta)$ en prenant pour $\mathcal R_K(\theta)$ (∞) le point à l'infini dans la direction θ : le rayon est alors continu sur $[0,\infty]$.

Dans l'espace $\hat{\mathbb{C}}$ ainsi construit, pour c assez proche de c_o et pas sur $R_{M}(2^{i_{O}}\theta)$, le rayon $R_{K_{C}}(\theta)$ est homotope à extrémités fixes à une courbe n_{C} égale à $R_{K_{C}}(\theta)$ sur $[s(c),+\infty]$ et à un segment de droite entre α ou β et $R_{K_{C}}(\theta)[s(c)]$, sans passer sur les $f_{C}^{i}(0)$ $(1 \le i \le km)$.

Ainsi $R_{K_C}(\theta)$ n'est pas continu en fonction de c, mais est homotope à $\eta_{C'}$ qui, elle, est continue en c. L'extrémité de $R_{K_C}(\theta_1)$ pour $2^n\theta_1 = \theta$ (avec $n \le km$) est alors égale à l'extrémité de la détermination de $(f_C)^{-n}(\eta_C)$ qui envoie le point à l'infini dans la direction θ sur le point à l'infini dans la direction θ_1 .

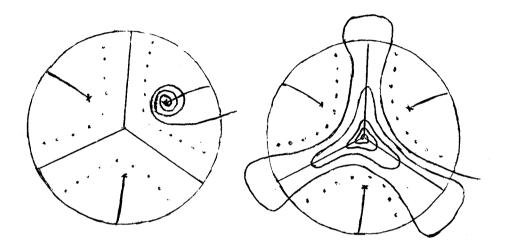
Le même raisonnement que dans le cas des points de Misurewicz, compte tenu du fait que l'homotopie se passe à chaque étape dans l'espace F défini alors, montre que cette extrémité est une fonction continue de c . cqfd.

Remarque. Lorsque $q \neq 1$, on a 2q cylindres et non plus deux. On peut cependant reprendre le même raisonnement à partir de l'entrée du rayon dans l'un des cylindres, et limiter sa distorsion. Si on est du côté de β_1 , alors le raisonnement fait dans le cas q=1 montre qu'en un temps borné, on revient dans la zone définissant le premier cylindre, et on peut construire le même piège autour de β_1 qu'on avait construit dans le cas q=1.

Si on est du côté du bout en α sur le cylindre, après avoir traversé la zone correspondant à un premier cylindre, on tombera en un temps fini sur un deuxième. Mais on sera là encore du côté du bout en α : pour c assez proche de c_0 , le rayon évolue en effet dans un pétale de K_{c_0} pendant son éventuel passage hors des zones fournissant les cylindres : on traverse ainsi un deuxième

cylindre, avec de nouveau des limitations sur la distorsion du rayon pendant

cette traversée. Après avoir traversé les 2q zones fournissant des cylindres, le rayon revient dans celle où il avait fait sa première entrée, et un piège se referme autour de $\,\alpha\,$.



EXPOSE N° XVIII

COMPLÉMENTS SUR LES ARBRES

par P. Lavaurs

1. ARBRES AUX CENTRES ET AUX RACINES.

Soit W une composante hyperbolique de $\overset{\text{O}}{\text{M}}$ de multiplicité μ , et $c_1 \dots c_n$ ses racines.

Pour tout point $c \in M$ et $\theta \in \mathbb{Q}/\mathbb{Z}$, le rayon $R_{K_{\mathbb{C}}}(\theta)$ aboutit en un point $\gamma_{\mathbb{C}}(\theta) \in K_{\mathbb{C}}$: on peut donc définir une relation d'équivalence $\sim_{\mathbb{C}}$ sur \mathbb{Q}/\mathbb{Z} par $\theta \sim_{\mathbb{C}} \theta' \iff \gamma_{\mathbb{C}}(\theta) = \gamma_{\mathbb{C}}(\theta')$.

PROPOSITION 1. \sim_{c} est constante sur WU $\{c_1, \ldots, c\}$.

Démonstration:

* Constance sur W:

Pour θ et θ ' fixés, l'ensemble des $c \in W$ tels que $\gamma_c(\theta) = \gamma_c(\theta)$ est fermé dans W puisque ces deux fonctions sont continues en c (cf. théorème de [PC] (en fait, sur W, on est dans le cas "facile" de ce théorème)).

Soit $c_0 \in W$ fixé; pour c proche de c_0 les fonctions $c \mapsto \gamma_C(\theta)$ et $c \mapsto \gamma_C(\theta')$ fournissent deux points prépériodiques, variant continûment en c, et envoyés par un nombre d'itérations n constant, sans passer par 0 sur un cycle de longueur divisant constamment un entier p fixe. Ces deux fonctions vérifient donc toutes deux l'équation fonctionnelle $f_c^{n+p}(\alpha(c)) = f_c^p(\alpha(c))$. Si on suppose $\theta \sim_C \theta'$, le théorème des fonctions implicites assure alors l'égalité de $\gamma_C(\theta)$ et $\gamma_C(\theta')$ pour c proche de c_0 : l'ensemble des c tels que $\theta \sim_C \theta'$ est donc aussi ouvert dans W.

Pour tout couple (θ,θ') , $\theta_C^*\theta'$ est donc vrai soit pour tout $c\in W$, soit pour aucun.

* Conservation aux racines :

Il est encore vrai, pour les mêmes raisons, que pour θ et θ ' fixés, l'ensemble des $c \in W \cup \{c_1, \ldots c_\mu\}$ tels que $\gamma_C(\theta) = \gamma_C(\theta')$ est formé dans $W \cup \{c_1, \ldots c_\mu\}$: la relation d'équivalence est donc plus grossière en une racine que dans W.

Prenons θ et θ ' équivalents en c_1 par exemple.

Si $\gamma_{c_1}(\theta) = \gamma_{c_1}(\theta')$ est prépériodique répulsif, le raisonnement fait sur W peut-être repris sans modification, et on voit que θ et θ' sont encore équivalents au voisinage de c_1 , donc dans W.

Si $\gamma_{C_1}(\theta) = \gamma_{C_1}(\theta')$ est prépériodique indifférent, il faut analyser plus précisément les cycles qui "fusionnent" en c_0 pour fournir le cycle indifférent. Cette analyse a été réalisée au début de [IDC] ; elle montre que si $\alpha(c_1)$ est sur le cycle indifférent rationnel de f_{C_1} , il y a q+1 façons de définir $\alpha(c)$ continue au voisinage de c_1 dans W qui soit un point périodique de f_{C} (l'une est de période kq , les q autres de période k). Parmi ces q+1 déterminations, q sont attractives dans W donc en fait une seule peut recevoir des rayons. Si $\gamma_{C_1}(\theta) = \gamma_{C_1}(\theta')$ est sur le cycle indifférent rationnel, la continuité de $\gamma_{C}(\theta)$ ou $\gamma_{C}(\theta')$ en c implique alors que pour c proche de c_0 , on ait encore $\theta \sim_C \theta'$; si $\gamma_{C_1}(\theta) = \gamma_{C_1}(\theta')$ est prépériodique indifférent rationnel, il existe n tel que $\gamma_{C_1}(2^n\theta)$ soit indifférent rationnel: comme $\gamma_{C}(\theta)$ et $\gamma_{C}(\theta')$ vérifient alors tous deux l'équation fonctionnelle $f_{C}^n(\gamma_{C}(\theta)) = f_{C}^n(\gamma_{C}(\theta))$ et ils sont donc égaux pour c assez proche de c_1 dans W . cqfd.

PROPOSITION 2. Soient c et c' centres ou racines de composantes hyperboliques ; $\frac{\sin}{c} \sim_{c} = \sim_{c'}$, $\frac{\cot}{c} = \frac{\cot}{c}$ sont isomorphes.

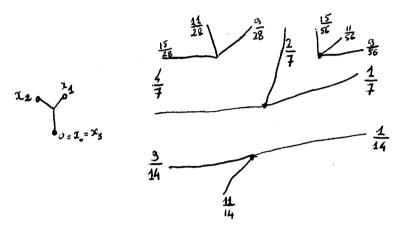
 $\underline{\text{D\'emonstration}}: \text{Nous associons à c} \quad \text{centre ou racine de composante hyperbolique un sous-ensemble (fini)} \quad \theta_{C} \quad \text{de} \quad \mathbb{Q}/\mathbb{Z} \quad \text{compos\'e}:$

- * des arguments externes des points de branchement de l'arbre de Hubbard de $\,\mathrm{f}_{_{\mathrm{C}}}$
- * des arguments externes des points de $\partial U_0,\dots,\partial U_{n-1}$ (où $U_0\dots U_{n-1}$ sont les composantes du cycle f_c périodique pour f_c) qui forment un cycle de longueur n

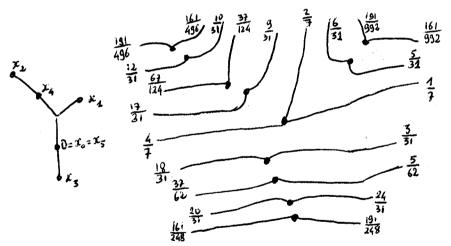
* des arguments externes des points d'argument interne opposé aux précédents de $\partial U_0 \dots \partial U_{n-1}$.

Considérons $\[\theta_{\text{C}} \] \]$: la restriction de $\[\sim \]$ à cet ensemble est la même pour c et c'. Les rayons externes ayant ces arguments dessinent donc le "même" motif dans le plan (au sens de l'existence d'un homéomorphisme du plan conservant les directions à l'infini) pour $\[K_{\text{C}} \]$ et $\[K_{\text{C}} \]$.

Exemples: * c aboutissement du rayon externe de M d'argument $\frac{1}{7}$



* c aboutissement de rayon externe de M d'argument $\frac{5}{31}$



Ce motif divise le plan en un certain nombre de zones.

LEMME. Pour tout $i \ge 0$, $f^{i}(0)$ est dans la même zone pour c et pour c' .

Pour i=0, c'est évident : K_{C} (ou K_{C}) étant symétrique par rapport à 0,0 est du côté qui laisse le plus grand arc entre θ et θ' sur le cercle \mathbb{R}/\mathbb{Z} .

On va ensuite faire une récurrence sur $i: R_{K_C}^{}\theta$ et $R_{K_C}^{}\theta'$ n'aboutissent pas en zéro, donc $\theta \neq \theta' + \frac{1}{2}: \theta$ et θ' ont au total quatre "moitiés", $\frac{\theta}{2}$, $\frac{\theta'}{2}$, $\frac{\theta'}{2}$, $\frac{\theta'}{2}$, en deux $\frac{\theta'}{2} + \frac{1}{2}$ et $\frac{\theta'}{2} + \frac{1}{2}$. Les rayons indexés par celles-ci se regroupent sur K_C en deux points envoyés par f_C sur l'aboutissement de $R_C^{}(\theta)$. Puisque $\sim_C = \sim_C$, les rayons pour $K_C^{}$, se regroupent deux à deux de la même manière, divisant ainsi le plan en trois zones ; par l'hypothèse de récurrence on sait placer $f^i(0)$ par par rapport à ces trois zones ; on en déduit alors le placement de $f^{i+1}(0)$ par rapport à $R_K^{}(\theta) \cup R_K^{}(\theta')$, qui est donc le même pour C et pour C', cqfd.

On va alors déduire du lemme que H est le même en c et c'.

Remarquons pour cela que : * il y a au plus un point marqué de H_{C} (ou de H_{C}) puisque le lemme a montré qu'ils sont placés de la même façon) par zone : c'est dans ce but que l'on a mis dans θ_{C} des rayons aboutissant en deux points de chacune des composantes du cycle de composantes de K_{C}

* les points de branchement de $\rm H_{C}$ ou $\rm H_{C}$, sont tous des points où se regroupent 3 zones au moins des motifs formés par celles-ci.

Dès lors, il n'y a qu'une manière, du point de vue de la topologie et de l'isotopie du plongement dans C de joindre les divers points marqués : sur la frontière de chaque zone, formée d'une ou deux courbes on met un point de sortie par courbe, et l'arbre doit passer par ces points de sortie pour joindre les points marqués. cqfd.

2. ARBRE EN UNE BIFURCATION.

Soit W une composante hyperbolique de M, $\rho(c)$ la valeur propre pour f_c du cycle qui est attractif dans W. Nous allons décrire comment obtenir $2i\pi \frac{D}{2}$ l'arbre H' d'un point c de ∂W où $\rho(c) = e^{-\frac{1}{2}}$ avec pgcd(p,q) = 1, $q \neq 1$ (le cas q = 1 a été traité au 1), en fonction de l'arbre de Hubbart H aux centres de W. Nous dirons que H' est obtenu à partir de H par $\frac{D}{2}$ d'argument $e^{-\frac{1}{2}}$. (Pour parler rigoureusement, c'est bien sûr la classe d'isomorphisme de l'arbre que nous construisons).

DESCRIPTION DE LA CONSTRUCTION :

Soient $(x_i)_{0 \le i \le k-1}$ les points marqués de H . Remplaçons chacun des x_i par une petite étoile à q branches, de centre x_i , d'extrémités $(y_j)_{j=i+kk}$ $0 \le \ell \le q-1$, numérotés de façon que la rotation de $\frac{p}{q}$ tour autour de x_i applique y_j sur y_{j+k} (mod kq). On a ainsi des points y_0, \dots, y_{kq-1} .

Quand un brin de H arrive en un point x_i , on le fait arriver en l'un des y_j avec $j\equiv i \mod k$. Il y a une manière unique de faire cela de façon que l'arbre H' obtenu, muni des y_i , satisfasse à la condition de Hubbard : $\exists F: H' \longrightarrow H' \text{, continue injective sur chacune des composantes de H' coupé en } y_o \text{, avec } F(y_i) = y_{i+1} \text{, } F(y_{kq-1}) = y_o \text{.}$

Exemple:

JUSTIFICATION DE LA CONSTRUCTION :

Soit c_1 un centre de U , et considérons θ_{c_1} défini comme au début de la preuve de la proposition 2. Le raisonnement de la proposition 1 montre immédiatement que le graphe de \sim_{c} contient celui de \sim_{c_1} ; de surcroît les points d'aboutissement des rayons indexés par θ_{c} aboutissement dans K_{c_1} sur des points périodiques répulsifs ou prépériodiques répulsifs sans être sur l'orbite inverse de zéro, donc qui ne "fusionnent" pas : comme en une racine, nous voyons donc que ces rayons dessinent le "même motif" dans le plan de K_{c_1} et celui de K_{c} (ici,

on n'a à utiliser que le cas "facile" de [PC]). Le lemme de la proposition 2 peut alors être appliqué : on sait placer les $(y_i)_{0 \le i \le kq-1}$ par rapport aux rayons de θ_c . L'arbre H' s'obtient donc en remplaçant dans l'arbre H le point $(x_i)_{0 \le i \le k-1}$ par le sous-arbre engendré par les $(y_j)_{j=i+\ell k}$ $0 \le \ell \le q-1$. Or ce sous-arbre est associé aux q composantes adjacentes à un point périodique de période k: c'est donc bien l'étoile à q branches décrite.

H', isomorphe à l'arbre de Hubbard pour un c racine de composante hyperbolique vérifie la condition de Hubbard.

Il reste à vérifier que cette construction n'est pas ambiguë, c'est-à-dire qu'il y a bien une manière unique de placer les étoiles sur H . Mais, δ désignant le degré, la condition de Hubbard entraîne aisément (cf. [AH Prop. 4]), $\delta(y_0) = 2 \ , \ \delta(y_1) = 1 \le \delta(y_2) \ldots \le \delta(y_{kq-1}) \le 2 = \delta(y_{kq}) \quad \text{(en posant } y_{kq} = y_0) \text{ ; en } x_1 \ , \text{ il sera donc nécessaire d'attacher l'étoile à H par son sommet ayant le plus grand indice.}$

Enfin l'injectivité de F sur les deux composantes de H' coupé en y_O permet de déterminer comment les étoiles sont envoyées les unes vers les autres (le chemin partant vers l'étoile contenant y_O étant envoyé sur le chemin partant vers l'étoile contenant y_1), donc de compléter la numérotation des points $(y_i)_{0 \le i \le kq-1}$ sur les étoiles. cqfd.

3. CALCUL DES ARGUMENTS EXTERNES DANS M .

Soient c_1 une racine d'une composante hyperbolique W de $\overset{\circ}{M}$ et H son arbre de Hubbard. Nous allons montrer comment on obtient ses arguments externes dans M au vu de l'arbre H . Soient $x_0=0$, $x_1=c\dots x_k=x_0$ les points marqués de H (où k est la période de x_0). Choisissons une application $F\colon H_C \longrightarrow H_C$ continue, telle que $F(x_1)=x_{1+1}$, injective sur chaque composante de H_C coupé en 0. On suppose qu'on a choisi F de façon qu'elle ait un point périodique α_1 à l'intérieur de l'arête qui mène à x_1 (rappelons que x_1 est une extrémité de H_C). La période de α_1 est alors k. Les arguments $\theta_1=Arg_1$ (c) et $\theta_1=Arg_1$ (c) sont alors les deux arguments de α_1 , calculés suivant l'algorithme décrit en [AEJ, §4] (qui n'utilise que les données combinatoires).

Variante. On peut (comme dans la note CRAS de janvier 82) mettre α_1 en x_1 , mais on met seulement 1 bourgeon aux points extrémaux de H_C (au lieu d'une infinité), et on choisit la dynamique sur les accès aux x_1 (qui n'est pas déterminée pour $x_0 \mapsto x_1$) de façon que ces accès soient périodiques de période k.

Montrons que cet algorithme convient : il est bien évident que le résultat ne dépend pas de la position du point α_1 sur l'arête qui mène à x_1 ni du F choisi ; le point périodique indifférent rationnel est dans l'arbre H_C justement sur l'arête en question, éventuellement en son origine a (cf. [CH Prop. 4]) ; s'il est strictement sur l'arête le calcul fait ci-dessus donne tous ses arguments externes dans K_C qui sont donc deux : on est dans le cas q=1 (racine primitive) et on a bien trouvé les arguments externes de c dans M ; s'il est en a , le calcul donne le même résultat que celui qu'on aurait en considérant les accès en a limitrophes à l'arête $[a,x_1]$, c'est-à-dire encore précisément les arguments externes de c dans M .

De cet algorithme et celui décrit au 2 on peut déduire un algorithme arithmétique pour donner les arguments externes θ_p^- et θ_p^+ dans M d'un point c q q

de ∂W obtenu par bifurcation d'argument e externes dans M θ^- et θ^+ du point c_1 .

Si $c_1 = \frac{1}{4}$, l'arbre de Hubbard de f_C est une étoile à q branches indexées de sorte qu'on passe du point y_i au point $y_{i+\ell}$ par rotation de $\frac{p}{q}$ pour : on peut à l'aide de l'algorithme ci-dessus calculer les arguments externes de c dans M; on notera leurs représentants dans $0,1[f^{-1}(\frac{p}{q})]$ et $f^{+1}(\frac{p}{q})$ avec $f^{-1}(\frac{p}{q}) < f^{+1}(\frac{p}{q})$: ainsi $f^{-1}(\frac{1}{2}) = \frac{1}{3}$, $f^{-1}(\frac{1}{2}) = \frac{1}{3}$, $f^{-1}(\frac{1}{3}) = \frac{1}{7}$, $f^{-1}(\frac{1}{3}) = \frac{1}{7}$, θ^{-1} désignent les représentants de θ^{-1} et θ^{+1} dans θ^{-1} 0, θ^{-1} 0.

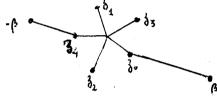
PROPOSITION 3. Les représentants de θ_{q}^{-} et θ_{q}^{+} dans]0,1[s'obtiennent de la manière suivante : on écrit θ^{-} = $\underbrace{u_{1}^{+} ... u_{k}^{+}}_{\theta}$ en base 2

puis, dans le développement dyadique de f(p) (resp. f(p)) en base 2, on remplace les zéros par des $u_1 ldot ldot u_k$ et les 1 par des $u_1^+ ldot ldot u_k^+$.

<u>Démonstration</u>: Il suffit d'expliciter ce qui se produit lorsqu'on applique l'algorithme de 3. pour trouver l'arbre associé à c puis celui de la première partie de ce paragraphe pour calculer les arguments associés.

En effet on peut vérifier que dans l'étoile complétée au sens de [AEJ] , l'arc $[-\beta,\beta]$ passe par z_{q-1} et z_0 :

(on note z_0 le point critique pour cet arbre, z_{i+1} est l'image de z_i pour sa dynamique)



Dans l'arbre en c , les images réciproques de $[-\beta,\beta]$ passent dans les étoiles en $y_{(k-2)q+\ell}$ et $y_{(k-1)q+\ell}$ $(1 \le \ell \le k)$

Dès lors, si on prend un point α_1 sur l'arête menant en y_1 , un accès à α_1 évoluera pendant les k premières itérations comme un accès à x_1 "à droite" quand on va vers x_1 sur H_{C_1} si y_1 est "à droite" de l'arc de y_{kq-1} à y_{kq-q-1} , c'est-à-dire si z est "à droite" du chemin de z_0 à z_{q-1} , c'est-à-dire si $f(\frac{p}{q})$ (ou $f^+(\frac{p}{q})$ selon le bourgeon en α_1 considéré) commence par un 0 , comme un accès à x_1 "à gauche" si $f^-(\frac{p}{q})$ commence par un 1 : on remplace bien le premier chiffre de $f^-(\frac{p}{q})$ par $u_1^+ \dots u_k^+$ si c'est un 1 .

On voit aisément que c'est de nouveau ce qu'il faut faire pour chaque série de k itérations. cqfd.

PROPOSITION 4. Si $c_1 \neq \frac{1}{4}$, 0 et W sont de part et d'autre de la courbe $L = R(M, \theta_+) \cup R(M, \theta_-) \cup \{c_1\}$.

EXPOSE N° XIX

SIMPLICITÉ DES COMPOSANTES HYPERBOLIQUES

THEORÈME 1. Pour toute composante hyperbolique W de M, l'application $\rho_W: W \longrightarrow D$ est un isomorphisme.

On peut donner de ce théorème plusieurs démonstration. En voici les plans : 1ère démonstration.

LEMME 2 (Gleason). Toute racine de P_k est simple. (ρ_k est défini en [CH-6]).

DÉMONSTRATION 1 DU THÉORÈME 1 : Une composante W a un seul centre d'après [CA-Proposition 1] et Posdronasvili. Ce centre est simple d'après le lemme 2.

2ème démonstration.

A partir de la proposition 4 de [CA], on démontre :

PROPOSITION 6. Soient W_1 et W_2 deux composantes hyperboliques, c_1 une racine de W_1 et c_2 une racine de W_2 . Si $c_1 \neq c_2$, on a $\overline{W}_1 \cap \overline{W}_2 = \emptyset$, $\{c_1\}$ ou $\{c_2\}$.

COROLLAIRE. Le Théorème 1.

Car on ne peut avoir $W_1 = W_2$ et $c_1 \neq c_2$.

3ème démonstration.

LEMME 3 (Sullivan). Soit $c \in W$ tel que $\rho(c) \neq 0$. Alors $\rho'(c) \neq 0$.

La démonstration utilise le théorème d'intégrabilité de Morrey-Ahlfors-Bers.

 $\begin{array}{c} \underline{\text{D\'emonstration}}: \text{Soit} \quad \{\alpha_1,\dots,\alpha_k\} \quad \text{le cycle attractif de} \quad f_c \quad \text{Le bassin de} \\ \text{ce cycle est} \quad \overline{K} \text{ , posons} \quad V = \overline{K} - \{z \mid \exists n \text{ } f^n(z) = \alpha_1\} \quad \text{Soit} \quad E \text{ le quotient de} \quad V \\ \text{par la relation} \quad Z_1 \sim Z_2 \iff \exists (n_1,n_2) \quad f^{n_1}(z_1) = f^{n_2}(z_2). \text{ Alors} \quad E \text{ est de façon} \\ \text{naturelle une surface de Riemann compacte de genre 1. Si} \quad \sigma \text{ est une forme de} \\ \text{Beltrami continue de norme} < 1 \text{ sur} \quad E \text{ , en notant} \quad \chi: V \longrightarrow E \text{ } l'\text{application} \\ \text{canonique, } \widetilde{\sigma} = \chi^*(\sigma) \text{ prolongée par } 0 \text{ est une forme de Beltrami invariante par} \\ f_c \text{ , mesurable bornée de norme} < 1 \text{ donc intégrable. Si} \quad \phi: \mathbb{C} \longrightarrow \mathbb{C} \text{ est tel que} \\ \overline{\delta \varphi} = \widetilde{\sigma} \text{ , } l'\text{application} \quad \phi \circ f_c \circ \varphi^{-1} : \mathbb{C} \longrightarrow \mathbb{C} \text{ est holomorphe (parce que } \widetilde{\sigma} \text{ est} \\ \text{invariante par } f) \text{ et propre de degré 2, c'est donc un polynôme de degré 2,} \\ \text{affinement conjugué à un } z \longmapsto z^2 + c(\sigma). \text{ On a } c(0) = c \text{ , et Log } \rho_w(c(\sigma))/2i\pi = rapport \text{ des périodes de } (E,\sigma). \text{ On peut choisir une application continue} \\ \rho \longmapsto \sigma(\rho) \text{ de façon que } \rho \longmapsto c(\sigma(\rho)) \text{ soit une section continue de} \\ c \longmapsto \rho_w(c). \text{ cqfd.} \end{aligned}$

DÉMONSTRATION 3 DU THÉORÈME 2 : Le lemme 4 et le lemme 2 montrent que $\rho_W: W \longrightarrow D$ est un revêtement. Comme D est simplement connexe il est trivial. cqfd.

Pour une 4e démonstration, variante de la précédente évitant le lemme de Gleason, voir l'exposé du Séminaire Bourbaki de Novembre 82.

NERVURES

Nous donnons d'abord une méthode pour étudier un compact plein connexe localement connexe de C. Le compact M est connexe et plein, mais on ne sait pas montrer qu'il est localement connexe. Nous verrons cependant que, par son aspect combinatoire, la méthode que nous proposons peut lui être appliquée.

1. POINTS EXTREMAUX.

Soit $K \subseteq \mathbb{C}$ un compact connexe plein localement connexe, et choisissons un centre pour chaque composante connexe de K. Pour x et $y \in K$, on note $[x,y]_K$ l'arc réglementaire de x à y, et si x_1,\ldots,x_n sont des éléments de K, on note $[x_1,\ldots,x_n]_K$ l'enveloppe réglementaire de $\{x_1,\ldots,x_n\}$ (cf. [CC]).

Notons γ_K le lacet de Carathéodory $\mathbb{T} \to \eth K$. Pour $x \in K$, les points de $\gamma_K^{-1}(x)$ sont les <u>arguments externes</u> de x.

<u>PROPOSITION 1 et DEFINITIONS</u>. Soit $x \in K$. Les conditions suivantes sont équivalentes :

- (i) $x \in \partial K$ et $K \{x\}$ est connexe.
- (ii) x a un argument externe et un seul.
- (iii) On ne peut pas trouver deux points $y, z \in K \{x\}$ tels que $x \in [y,z]_K$. Si x satisfait à ces conditions, on dit que x est un point extrémal de K.

 $\underline{\text{D\'emonstration}}. \ a) \ (\text{non (i)}) \Rightarrow (\text{non (iii)}): \ Si \ x \ appartient \`a \ une \ composante connexe U de <math>\overset{\circ}{K}$, on peut trouver y et $z \in \partial U$ tels que $x \in [y,z]$. Si $K - \{x\}$ n'est pas connexe, on prend y et z dans deux composantes connexes différentes de $K - \{x\}$; alors $x \in [y,z]$.

- b) $(\text{non(iii)}) \Rightarrow (\text{non (ii)})$: Si $x \in \overset{\textbf{o}}{K}$, il n'a pas d'argument externe. Si $x \in \partial K$ et $x \in \]y,z[_K$, il y a 2 accès à x relativement à l'arbre $[y,z]_K$ (cf. [AEJ]), donc x a au moins 2 arguments externes.
- c) (non (ii)) \Rightarrow (non (i)) : Soient t et t' deux arguments externes de x et $L = \Re(K,t) \cup \Re(K,t') \cup \{x\}$. On peut trouver $s \in [t,t']$ et $s' \in [t',t]$ tels que $y = \gamma(s) \neq x$ et $z = \gamma(s') \neq x$ (un lacet de Carathéodory n'est jamais constant sur un intervalle). Alors, y et z sont de part et d'autre de L et $x \in [y,z]_K$. Cqfd.

2. NERVURES DE K.

Mêmes hypothèses sur K. Soit $(a_n)_{n\in \mathbb{N}}$ une suite de points extrémaux de K. On note t_n l'argument externe de a_n , et on suppose que $t_0=0$. On pose $H_n=\left[a_0,\dots,a_n\right]_K^{\ \ \ \ \ }_K$. Pour chaque n, H_n est un arbre topologique fini, et pour $n\geq 1$ on peut écrire $H_n=H_{n-1}\cup \left[d_n,a_n\right]_K$, avec $H_{n-1}\cap \left[d_n,a_n\right]=\{d_n\}$. Ceci détermine $d_n\in K$.

On note $h(t_n)$ et on appelle <u>nervure</u> d'argument externe extrémal t_n , ou nervure d'extrémité a_n , l'arc réglementaire $[d_n,a_n]_K$. Le point d_n s'appelle l'<u>origine</u> de $h(t_n)$, et $h^{\star}(t_n) = [d_n,a_n]_K = [d_n,a_n]_K - \{d_n\}$ est appelé la <u>nervure stricte</u> d'extrémité a_n . Pour x et $y \in K$, nous dirons que y est <u>après</u> x et nous écrirons $x \le y$ si $x \in [a_0,y]_K$.

Nous allons définir, pour tout $x \in K$, deux nombres $\arg_{+}(x)$ et $\arg_{+}(x)$ de [0,1]. Pour $t \in T$, notons t le représentant de t dans [0,1[.

^(†) Si $a_0 \in \partial U_0$, où U_0 est une composante de K (nécessairement unique puisque a_0 est extrémal), on prend pour H_0 le rayon interne de U_0 d'extrémité a_0 et non l'ensemble $\{a_0\}$.

$$\text{Si } x \in \operatorname{\partial} K - \{a_0\} \text{ , on pose } \arg_(x) = \inf_{t \in \gamma_K^{-1}(x)} \overset{\text{ if }}{t} \text{ et } \arg_+(x) = \sup_{t \in \gamma_K^{-1}(x)} t \text{ .}$$

Si
$$x = a_0$$
, on pose $arg_(x) = 0$ et $arg_(x) = 1$.

Si x est le centre d'une composante U de \mathring{K} , l'arc $[a_0,x]_K$ coupe ∂U en un point unique $y = \pi_U(a_0)$ (projection de a_0 sur \overline{U}), et arg_y et $\text{arg}_{+}(\mathbf{y})$ correspondent à 2 accès à \mathbf{y} relativement à $\left[\mathbf{a}_{0},\mathbf{x}\right]_{K}$. On prend pour arg_{x} le plus grand des t pour t argument externe de y dans le même accès que $arg_(y)$, et on définit $arg_(x)$ symétriquement. On a donc :

$$0 \le \arg_{x}(y) \le \arg_{x}(x) \le \arg_{x}(x) \le \arg_{x}(y) \le 1$$
.

Si x appartient à U sans en être le centre, notons x_0 le centre de Uet soit $\left[\mathbf{x}_{0},\mathbf{x}_{1}\right]_{K}$ le rayon interne de $\overline{\mathbf{U}}$ passant par \mathbf{x} . On pose :

$$\begin{aligned} \arg_{\pm}(\mathbf{x}) &= \arg_{\pm}(\mathbf{x}_1) & \text{ si } \mathbf{x}_1 \neq \pi_{\mathbf{U}}(\mathbf{a}_0) \text{ ,} \\ &= \arg_{\pm}(\mathbf{x}_0) & \text{ si } \mathbf{x}_1 = \pi_{\mathbf{U}}(\mathbf{a}_0) \text{ .} \end{aligned}$$

Dans tous les cas, on note I(x) l'intervalle $[arg_(x), arg_(x)]$.

On définit également les arguments associés à x.

si $x \in \partial K - \{a_0\}$, les arguments associés à x sont les \dot{t} , où t est un argument externe de x.

Si
$$x = a_0$$
, ce sont 0 et 1.

Si x est le centre d'une composante U de K, ce sont les $arg_{y}(y)$ et les $\arg_+(y)$ pour $y \in \partial U - \{\pi_U(a_0)\}$, ainsi que $\arg_-(x)$ et $\arg_+(x)$.

Si x appartient à U sans en être le centre, les arguments associés à s sont $arg_(x)$ et $arg_(x)$.

Pour tout intervalle $\, {\rm I} \subset [\, 0\,, 1\,]\,$ contenant l'un des $\, {\overset{{}_{}}{t}}_{n} \,$, on appelle <u>chef-lieu</u> de I le nombre $t_{n(I)}$, où n(I) est le plus petit n tel que $t_n \in I$ (je n'ose pas dire "centre" de peur qu'on croie que c'est le milieu).

PROPOSITION 2. Soient $n \in \mathbb{N}$ et $x \in K$. On suppose que $x \in \partial K$ ou que x est le centre d'une composante de K.

- a) On a $x \in n^*(t_n)$ si et seulement si t_n est le chef-lieu de I(x) .
- b) On a $x \in h(t_n)$ si et seulement si t_n est le chef-lieu d'un intervalle de la forme $[\theta', \theta'']$, où θ' et θ'' sont des arguments associés à x.

- (a) $\underline{\text{Cas}} \ x_1 = a_0$. Avec les conventions prises, on a $x \in n^{\times}(t_0) = n(t_0)$. Or I(x) = [0,1], et le chef-lieu de [0,1] est $0 = t_0$.
- (a) $x_1 \neq a_0$, \Leftarrow . L est homéomorphe à $\mathbb R$, et C-L a 2 composantes connexes V_0 et V_1 , $V_0 \supset \Re(K,0)$. Par définition du chef-lieu, on a : $a_i \in V_0 \text{ pour } i=0,\dots,n-1 \text{ , et } a_n \in V_1 \cup \{x_1\} \text{ . Comme } d_n \in H_{n-1} \text{ , on a } d_n \in V_0 \cup \{x_1\} \text{ .}$

Si $d_n=x_1$, soit t_i tel que i < n et $a_i \ge x_1$; on a $t_i \in I(x_1)$, donc $I(x_1) \ne I(x)$, ceci n'est possible que si $x=x_0$ centre d'une composante U , et dans ce cas $x \in [x_1,a_n]$.

Si $d_n\neq x_1$, on a $d_n\in V_0$, et $x_1\in \]d_n,a_n\]$, et dans chaque cas on en déduit que $x\in \]d_n,a_n\]$.

- (a) $x_1 \neq a_0$, \Rightarrow . Gardons les définitions de L, V_0 et V_1 . On a $a_n \geq x$. On en déduit que $a_n \in V_1 \cup \{x_1\}$, d'où $t_n \in I(x)$. Pour i < n, on a $a_i \not \geq x$. On en déduit que $a_i \in V_0 \cup \{x_1\}$. On ne pourrait avoir $a_i = x_1$ que si $x_0 > x_1$, mais dans ce cas x_1 n'est pas extrémal, donc nécessairement $a_i \neq x_1$, $a_i \in V_0$ et $t_i \not \in I(x)$. Par suite, t_n est le chef-lieu de I(x).
- $(b) \ensuremath{\ensuremath{\checkmark}} = \ensuremath{\ensuremath{\ensuremath{\lozenge}}} (\theta') \ensuremath{\ensuremath{\ensuremath{\lozenge}}} (\theta'') \ensuremath{\ensuremath$

$$\begin{split} a_n \in V_1^{'} \cup \{x_1^{'}, x_1^{''}\} \text{ . Pour } i < n \text{ , on a } t_i \not\in [\theta^{_1}, \theta^{_{11}}] \text{ , d'où } a_i \in V_0^{'} \text{ . Par } \\ \text{suite, } d_n \in V_0^{'} \cup \{x_0^{_1}\} \text{ , et dans chaque cas on en déduit } x \in [d_n, a_n^{_1}] = \text{h}(t_n^{_1}) \text{ .} \end{split}$$

(b) \Longrightarrow . Si $x \in \partial K$, soient θ^{\dagger} et $\theta^{\dagger \dagger}$ des arguments externes de x dans des accès à H_n tels que parmi les points a_0, \ldots, a_n , seul a_n soit entre $\Re(\theta^{\dagger})$ et $\Re(\theta^{\dagger})$. Alors, $t_n \in [\theta^{\dagger}, \theta^{\dagger \dagger}]$, $t_i \notin [\theta^{\dagger}, \theta^{\dagger \dagger}]$ pour i < n et t_n est le chef-lieu de $[\theta^{\dagger}, \theta^{\dagger \dagger}]$.

Supposons que x appartient à une composante U de K, de centre x_0 . Notons y le point où $[x,a_n]$ coupe ∂U . Si $x \notin [x_0,\pi_U(a_0)]$, on prend $\theta' = \arg_{+}(y)$ et $\theta'' = \arg_{+}(y)$. Si $x \in [x_0,\pi_U(a_0)]$, on prend $\theta' = \arg_{+}(x_0)$ et $\theta'' = \arg_{+}(x_0)$. Dans chaque cas, on a $t_i \notin [\theta',\theta'']$ pour i < n, et on a $t_n \in [\theta',\theta'']$ car $t_n \ge y$ dans un cas et $t_n \ge \pi_U(a_0)$ dans l'autre. Donc, t_n est le chef-lieu de $[\theta',\theta'']$. Cqfd.

3. NERVURES COMBINATOIRES.

Dans l'ensemble de Mandelbrot \mathbb{M} , définissons une partie dénombrable : on note \mathfrak{D}_0 (resp. \mathfrak{D}_1) l'ensemble des centres (resp. des racines) des composantes hyperboliques de \mathbb{M} . Notons \mathfrak{D}_2 l'ensemble des points de Misurevicz , et posons $\mathbb{D}_1 = \mathbb{D}_0 \cup \mathbb{D}_1 \cup \mathbb{D}_2$.

Nous allons définir pour chaque $\,c\in \mathfrak{D}\,\,$ les arguments(combinatoirement) associés à $\,c\,$.

Si $c \in \mathbb{S}_2$, le point c a dans K_c un nombre fini d'arguments externes (qui sont des rationnels à dénominateur pair). Ce sont les arguments associés à c. Le plus petit et le plus grand sont notés $arg_{\downarrow}(c)$ et $arg_{\downarrow}(c)$.

Si $c \in \mathfrak{D}_1$, soit α_1 le point périodique indifférent attirant la composante U_1 de $\overset{\circ}{K}_{c}$ contenant c. Les arguments associés à c sont les 2 arguments externes de α_1 correspondant aux interpétales adjacents à U_1 . Le plus petit (resp. grand) est noté $Arg_{c}(c)$ (resp. $Arg_{c}(c)$).

Si c est le centre d'une composante hyperbolique W de M, les arguments associés à c sont les arguments associés aux points de ∂W d'argument interne rationnel (qui sont des points de D_1). Le plus petit et le plus grand sont respectivement $\mathrm{Arg}_{-}(c_1)$ et $\mathrm{Arg}_{+}(c_1)$, où c_1 est la racine de W. Nous poserons $\mathrm{Arg}_{-}(c) = \mathrm{Arg}_{-}(c_1)$ et $\mathrm{Arg}_{+}(c) = \mathrm{Arg}_{+}(c_1)$.

Si $c\in \mathfrak{D}_1\cup \mathfrak{D}_2$, pour tout argument θ associé à c , le rayon externe $\mathfrak{R}(M,\theta)$ aboutit en c .

On note (t_n) la suite des nombres de [0,1[de la forme $p/2^k$, ordonnés par k croissants et pour chaque k par p xroissants, de sorte que :

$$p/2^k = t_n$$
 avec $2n+1 = 2^k + p$.

Remarques. 1) Le fait de choisir pour chaque k l'ordre des p croissants n'a aucune importance pour ce que nous voulons faire, car l'ordre sert à définir les chef-lieux des intervalles de [0,1[. Mais chaque intervalle $I \subset [0,1[$ qui contient un point de la forme $p/2^k$ (en particulier tout intervalle non réduit à un point) en contient un seul avec k minimum. En effet, si $p/2^k \in I$ et $p^{r}/2^k \in I$, avec p et p' impairs et p' > p , $\frac{p+1}{2^k} \in I$, mais cette fraction se simplifie.

2) Pour tout n>0, notons a_n le point d'aboutissement de $\Re(M,t_n)$. Le polynôme f_{a_n} est tel que 0 tombe en un temps fini sur le point fixe $\beta(a_n)$ d'argument externe 0. En particulier, $a_n\in \mathfrak{D}_2$, et il y a un seul argument associé à a_n , à savoir t_n . On obtient ainsi une bijection de $\{t_n\}_{n>0}$ sur $\{c\mid (\exists\ k), f_c^{k+1}(0) = \beta(c)\}$. [Cela résulte de [AREMAR].

On a
$$a_0 = 1/4 \in \mathfrak{D}_1$$
.

On pose
$$I(c) = [\theta_{-}(c), \theta_{+}(c)]$$
.

 $\begin{aligned} &\operatorname{N}^{\star}(t_n) &= \{c \in \mathfrak{D} \mid t_n \text{ est le chef-lieu de } \operatorname{I}(c)\} \\ &\operatorname{N}(t_n) &= \{c \in \mathfrak{D} \mid (\exists \; \theta', \theta'' \text{ associ\'es \`a } c) \; t_n \text{ est le chef-lieu de } [\; \theta', \theta'' \;]\} \; . \end{aligned}$

Remarque: Si, comme on l'imagine, M est localement connexe et tout point $c \in \mathfrak{D}_1 \cup \mathfrak{D}_2$ n'a pas d'autre argument externe dans M que ses arguments combinatoirement associés, on a : $N(t_n) = h(t_n) \cap \mathfrak{D}$ et $N^{\times}(t_n) = h^{\times}(t_n) \cap \mathfrak{D}$ en vertu de la proposition 2.

4. ORDRE SUR D.

Pour $c \in \mathbb{D}$, posons $I(c) = [Arg_(c), Arg_(c)]$. Nous écrirons c < c' si $I(c) \not\supseteq I(c')$ ou si c est la racine et c' le centre d'une même composante hyperbolique de M. Nous écrirons $c \le c'$ si c < c' ou c = c'. On définit ainsi un ordre sur \mathbb{D} .

PROPOSITION 3. Soient c et c' dans \emptyset . On a $I(c) \supset I(c')$ ou $I(c') \subset I(c)$ ou $I(c) \cap I(c') = \emptyset$.

COROLLAIRE 1. Dans l'ensemble ordonné &, toute partie majorée est totalement ordonnée.

⁽⁺⁾ Si c est extrémal ou c=0, I(c) est réduit à un point ou $c=\left[0,1\right]$.

Démonstration. Soit X une partie majorée par un point \hat{c} . Pour c et c' dans X, on a $I(c)\supset I(\hat{c})$, $I(c')\supset I(\hat{c})$, donc $I(c)\cap I(c')\neq \emptyset$, d'où $c\leq c'$ ou $c'\leq c$.

COROLLAIRE 2. Pour tout $n \neq 0$, l'ensemble $N^*(t_n)$ est un ensemble totalement ordonnée, dont a_n est le plus grand élément.

Remarque: $N(a) = N^{*}(0) = \{1/4, 0\}$ avec $a_0 = 1/4$, 0 > 1/4.

PROPOSITION 4. Soient c et \widetilde{c} deux éléments de $N(t_n)$ avec $\widetilde{c} \in N(t_n) - N^*(t_n)$; alors $\widetilde{c} \leq c$.

<u>Démonstration</u>. Si c est extrémal, $c=t_n$ et $\widetilde{c} \leq c$. On suppose c non extrémal. Soient θ' et θ'' des arguments associés à c tels que t_n soit le chef-lieu de $\left[\theta',\theta''\right]$. On définit $\mathfrak{L}(\theta',\theta'')$ de la façon suivante :

Si $c \in \mathfrak{D}_1 \cup \mathfrak{D}_2$, on pose $\mathfrak{L}(\theta', \theta'') = \Re(M, \theta') \cup \Re(M, \theta'') \cup \{c\}$.

Si $c \in \mathfrak{D}_{0}$, notons $c_{1}^{'}$ et $c_{1}^{''}$ les points d'aboutissement de $\mathfrak{R}(M,\theta')$ et $\mathfrak{R}(M,\theta'')$. On a $c_{1}^{'}$ et $c_{1}^{''} \in \mathfrak{d}W$, où W est la composante de centre c. Si $c_{1}^{'} = c_{1}^{''}$, on pose $\mathfrak{L}(\theta',\theta'') = \mathfrak{R}(M,\theta') \cup \mathfrak{R}(M,\theta'') \cup c_{1}^{'}$. Sinon, on pose $\mathfrak{L}(\theta',\theta'') = \mathfrak{R}(M,\theta') \cup \mathfrak{R}(M,\theta'') \cup [c,c_{1}^{'}]_{\overline{W}} \cup [c,c_{1}^{''}]_{\overline{W}}$. Dans tous les cas, $\mathfrak{L}(\theta',\theta'')$ est homéomorphe à \mathbb{R} , et $\mathbb{C} - \mathfrak{L}(\theta,\theta')$ a deux composantes connexes $V_{0}(\theta,\theta')$ et $V_{1}(\theta,\theta')$, avec $\mathfrak{R}(M,0) \subset V_{0}(\theta,\theta')$.

On a $V_1(\theta,\theta^*)\cap V_1(\widetilde{c})\neq\emptyset$, car ces deux ensembles contiennent $\Re(M,t_n)$, et $V_1(\theta^*,\theta^*)\not\supseteq V_1(\widetilde{c})$ car $I(\widetilde{c})$ contient un t_n , avec $n^*< n$ et $\left[\theta^*,\theta^*\right]$ non . Si $\widetilde{c}_1\neq c_1',c_1''$, on a $\pounds(\theta^*,\theta^*)\cap \pounds(\widetilde{c})=\emptyset$, d'où $V_1(\theta^*,\theta^*)\subset V_1(\widetilde{c})$ et $\widetilde{c}\leq c$. Si on avait $\widetilde{c}_1=c_1'\neq c_1$, on aurait $V_1(\widetilde{c})\subset V_1(\theta^*,\theta^*)$ ce qui n'est pas le cas. Si on avait $\widetilde{c}_1=c_1'=c_1''=c_1$, on aurait $V_1(\theta^*,\theta^*)=V_1(\widetilde{c})$, ce qui est impossible. On est donc dans le cas $\widetilde{c}_1\neq c_1',c_1''$, et on a $\widetilde{c}\leq c$. Cqfd.

COROLLAIRE et DEFINITION. L'ensemble $N(t_n) - N^*(t_n)$ a au plus un point. S'il a un point, c'est le plus petit élément de $N(t_n)$, on dit que c'est l'origine de la nervure $N(t_n)$.

Nous montrerons -c'est le théorème principal de la théorie des nervures- que toute nervure $\mathrm{N}(t_n)$ a une origine.

ARBRE DE L'ORIGINE D'UNE NERVURE DE M

1. ARBRES DE HUBBARD ABSTRAITS.

Nous appelons <u>arbre de Hubbard abstrait</u> un arbre topologique fini H, muni d'une suite finie prépériodique (x_n) de points, et d'une classe d'isotopie de plongements $H \to C$ (ou ce qui revient au même d'un ordre cyclique sur les brins aux points de branchement), satisfaisant aux conditions suivantes :

- (i) Toute extrémités est l'un des (x_i) ;
- (ii) H coupé en x_0 a au plus 2 composantes ;
- (iii) Il existe une application continue $F: H \to H$ injective et préservant l'ordre cyclique aux points de branchement sur chacune des composantes de H coupé en x_0 , et telle que $F(x_i) = x_{i+1}$ pour tout i.

L'application F est déteminée de façon unique, à isotopie laissant fixe les points remarquables près.

Un arbre de Hubbard abstrait est dit périodique ou strictement prépériodique suivant que $\, x_0^{} \,$ est périodique ou strictement prépériodique pour $\, F \,$.

L'arbre de Hubbard d'un polynôme $f: z \to z^2 + c$ tel que 0 soit prépériodique a un arbre abstrait sous jacent.

Etant donné un arbre de Hubbard abstrait H, on peut définir Arg_{H} et Arg_{H} , ainsi que les arguments associés à H, par les algorithmes décrits en [AEJ], en [N] et en [CA].

2. RESULTATS ET NOTATIONS.

Soit $\tau\in \mathbb{Q}/\mathbb{Z}$ un élément de la forme $p/2^k$. Nous avons l'intention de montrer que la nervure combinatoire $N(\tau)$ de M a une origine dans $\mathfrak{D}_0\cup\mathfrak{D}_2$.

Dans cet exposé, nous allons construire un arbre abstrait $\check{\mathsf{H}}$ ayant des propriétés telles que, s'il est l'arbre d'un point $\check{\mathsf{c}} \in \mathfrak{D}_0 \cup \mathfrak{D}_2$, le point $\check{\mathsf{c}}$ est l'origine de la nervure $\mathsf{N}(\tau)$.

THEOREME. Il existe un arbre de Hubbard abstrait H ayant les propriétés suivantes :

- a) τ appartient à $I(\check{H}) = [Arg_{\check{H}}, Arg_{\check{H}}, Arg_{\check{H}}]$ sans en être le chef-lieu.
- b) Il existe deux arguments θ' et θ'' associés à H tels que τ soit le chef-lieu de $\left[\theta',\theta''\right]$.

Dans la suite, on fixe $\tau=p/2^k$ (avec $k\geq 1$, p impair, $0< p< 2^k$). Soit $c=a_\tau$ le point d'aboutissement de $\Re(M,\tau)$. On pose $f=f_c:z\mapsto z^2+c$, $K=K_c$, $H=H_c$ (arbre de Hubbard de f), $\beta=\beta_c$ (point fixe de f d'argument externe 0). On a $f^k(c)=f^{k+1}(0)=\beta$, $f^{k-1}(c)=-\beta$, le compact K est plein, connexe, localement connexe et d'intérieur vide. Pour x et y dans K, on note [x,y] l'arc de x à y dans K; plus généralement, pour toute partie finie A de K, on note [A] l'enveloppe connexe de A dans K. On pose $x_n=f^n(0)$. Si X est un arbre et $z\in X$, on note $\nu_X(z)$ le nombre de brins de X en z.

3. RANG D'UN POINT DE K.

Pour $z \in K$, on pose $\operatorname{rg}(z) = \inf \left\{ r \middle| f^{\Gamma}(z) \in \left[\beta, -\beta\right] \right\}$. On a donc $\operatorname{rg}(z) = \infty \quad \operatorname{si} \quad (\forall \ r) \quad f^{\Gamma}(z) \notin \left[\beta, -\beta\right], \quad \operatorname{et} \quad \operatorname{rg}(z) = 0 \quad \operatorname{si} \quad z \in \left[\beta, -\beta\right]. \quad \operatorname{Si} \quad \operatorname{rg}(z) > 0 \; ,$ on a $\operatorname{rg}(f(z)) = \operatorname{rg}(z) - 1$. On a $\operatorname{rg}(c) = k - 1$. En effet, $f^{k-1}(c) = -\beta \in \left[\beta, -\beta\right]$, et si $k \ge 2$, $f^{k-2}(c) \in f^{-1}(\beta)$; c'est un point extrémal de K distinct de K definition on appartenant pas à $\left[\beta, -\beta\right]$.

Remarques. 1) Si $\operatorname{rg}(z) = r > 0$, on a $\operatorname{f}^{r}(z) \in [0, -\beta]$. En effet, $f([\beta, 0]) = [\beta, x] \supset [\beta, 0] \text{ . Par suite, } f^{-1}([\beta, 0]) \subset [0, \beta] \cup [0, -\beta] = [\beta, -\beta],$ et si $\operatorname{f}^{S}(z) \in [0, \beta]$ avec s > 0, on a $\operatorname{f}^{S-1}(z) \in [\beta, -\beta]$ et $s > \operatorname{rg}(z)$.

2) Si $\operatorname{rg}(z) = r$, le point z a deux arguments externes t et t' dans K, admettant en base 2 des développements $t = \cdot \varepsilon_1 \varepsilon_2 \cdots \varepsilon_n \cdots$, $t' = \varepsilon_1' \varepsilon_2' \cdots$ tels que $\varepsilon_i = \varepsilon_i'$ pour $i \leq r$, $\varepsilon_{n+1}' \neq \varepsilon_{r+1}$ (éventuellement t = t', mais avec 2 développements différents). En effet, un point de $[\beta, -\beta]$ a deux arguments externes $t = \cdot 0 \cdots$ et $t' = \cdot 1 \cdots$, et cela caractérise les points de $[\beta, -\beta]$, et les arguments externes de $f^i(z)$ s'obtiennent à partir des arguments externes de z par multiplication par z , ce qui se traduit sur l'écriture en base 2 par la suppression des z premiers chiffres.

4. <u>L'ARBRE</u> Z_r.

Pour tout $r\in\mathbb{N}$, on note Z_r l'ensemble des $z\in K$ tels que $rg(z)\leq r$. On a : $Z_{r+1}=f^{-1}(Z_r)\cup [+\beta,-\beta]$.

PROPOSITION 1. L'ensemble Z_r est l'enveloppe connexe dans K de $f^{-(r+1)}(\beta)$.

 $\begin{array}{c} \underline{\text{D\'emonstration par r\'ecurrence sur}} \ r \ . \ \text{On a} \ Z_0 = [\beta, -\beta] = [f^{-1}(\beta)] \ . \\ \text{Mettons K sous la forme } K_+ \cup K_- \ , \ \text{avec } K_+ \cap K_- = \{0\} \ , \ K_- = -K_+ \ , \ \text{et pour toute partie A de K posons } A_+ = A \cap K_+ \ , \ A_- = A \cap K_- \ . \ L'application \ f \ induit un homéomorphisme de \ (f^{-1}(Z_r))_+ \ sur \ Z_r \ et \ de \ m\ eme \ pour \ (f^{-1}(Z_r))_- \ . \ Si \\ Z_r = [f^{-(r+1)}(\beta)] \ , \ \text{on a} \ (f^{-1}(Z_r))_+ = [(f^{-(r+2)}(\beta))_+] \ , \ \text{et de m\ eme avec } - \ . \\ \end{array}$

Pour toute partie finie A de K contenant β et $-\beta$, on a $[A] = [A_+] \cup [A_-] \cup [\beta, -\beta] \text{ . Par suite,}$ $[f^{-(r+2)}(\beta)] = [f^{-1}(Z_r)]_+ \cup (f^{-1}(Z_r))_- \cup [\beta, -\beta] = f^{-1}(Z_r) \cup [\beta, -\beta] = Z_{r+1} \text{ .}$

Cqfd.

PROPOSITION 2. Pour $r \in \mathbb{N}$, l'ensemble Z_{r+1} - Z_r ne contient aucun point de branchement de Z_{r+1} .

PROPOSITION 3. Pour $r \ge k-1$, on a $f(Z_r) \subseteq Z_r$.

 $\begin{array}{lll} & \text{D\'emonstration. Pour tout } r\in \mathbb{N} \text{ , on a } f(Z_r) \subseteq Z_{r-1} \cup f([\beta,-\beta]) = \\ & = Z_{r-1} \cup [\beta,x_1] \text{ , et } Z_{r-1} \subseteq Z_r \text{ . Mais si } r \geq k-1 \text{ , on a } [\beta,x_1] \subseteq Z_r \text{ ,} \\ & \text{d'où } f(Z_r) \subseteq Z_r \text{ . } & \text{Cqfd.} \end{array}$

5. LE POINT y_1 .

On a $x_1 \in Z_{k-1} - Z_{k-2}$ puisque $\operatorname{rg}(x_1) = k-1$. Notons y_1 la projection de x_1 sur Z_{k-2} , c'est-à-dire le premier point (en partant de x_1) où l'arc $[x_1,0]$ rencontre Z_{k-2} .

On pose $y_n = f^{n-1}(y_1)$.

PROPOSITION 4. Le point y_1 est un point de branchement de Z_{k-1} .

Or y_1 n'est pas un point extrémal de Z_{k-1} puisque $y_1 \in x_1$ [\subset] β , x_1 [. Donc $f^k(y_1) \neq \beta$, et y_1 n'est pas non plus un point extrémal de Z_{k-2} . Il y a donc au moins deux brins de Z_{k-2} en y_1 , et $[y_1,x_1]$ est un brin de Z_{k-1} en y_1 , distincts des précédents puisque $[y_1,x_1] \cap Z_{k-2} = \{y_1\}$ par définition de y_1 . Cela fait donc au moins 3 brins de Z_{k-1} en y_1 . Cqfd.

COROLLAIRE. Le point y est prépériodique pour f .

Puisque $f^{-1}(x_1) = \{0\}$, l'ensemble $f^{-1}([y_1,x_1])$ est un arc $[\delta,-\delta]$. Les points δ et $-\delta$ sont les points de $f^{-1}(y_1)$. L'arc ouvert $]\delta,-\delta[$ ne contient aucun point de branchement Z_{k-1} , puisque $f(]-\delta,\delta[)=]y_1,x_1]$, et que cet arc, contenu dans $Z_{k-1}-Z_{k-2}$, ne contient aucun point de branchement de Z_{k-1} (proposition 2).

En particulier, (\forall n), $y_n \notin \] \delta, -\delta[$.

Nous allons maintenant définir un point y_0 : Si y_1 est périodique de période k, on a y_k = δ ou - δ . On pose alors y_0 = y_k . Si y_1 est strictement prépériodique, on a $y_n \notin \{\delta, -\delta\}$ pour tout n, on prend pour y_1 l'un quelconque des points δ ou - δ .

6. L'ARBRE H.

On note $\overset{\checkmark}{H}$ l'enveloppe connexe des $(y_n)_{n\geq 0}$ dans Z_{k-1} (ou dans K ce qui revient au même).

PROPOSITION 6. On a $f(H) \subseteq H \cup [y_1, x_1]$ et $H \cap [y_1, x_1] = \{y_1\}$.

$$\begin{split} f(\breve{\mathbf{H}}_{+}) &\subset \left[\{ \mathbf{y}_{n+1} \}_{n \in \Lambda_{+}}, \mathbf{x}_{1} \right] , \quad f(\breve{\mathbf{H}}_{-}) &\subset \left[\{ \mathbf{y}_{n+1} \}_{n \in \Lambda_{-}}, \mathbf{x}_{1} \right] , \\ \text{et} \quad f(\breve{\mathbf{H}}) &\subset \left[\{ \mathbf{y}_{n} \}, \mathbf{x}_{1} \right] &= \breve{\mathbf{H}} \cup \left[\mathbf{y}_{1}, \mathbf{x}_{1} \right] . \end{split}$$

La deuxième assertion résulte du fait que $[y_1,x_1]$ ne contient aucun point de branchement de $[z_{k-1}]$, donc aucun des $[y_n]$. Cqfd.

Remarque. On peut montrer, en utilisant le fait que f est sous-hyperbolique, que $f(H) = H \cup [y_1, x_1]$, sauf si $H = \{y_1\}$, ce qui se produit si y_1 est un point fixe de f (exemple: $H = \{y_1\}$).

PROPOSITION 7. Le point y_1 est un point extrémal de H.

Démonstration. On écrira $\check{\nu}(z)$ pour $\nu_{\check{H}}(z)$.

Si y_1 est périodique de période K , on a :

 $\check{\nu}(y_1) \leq \check{\nu}(y_2) \leq \ldots \leq \check{\nu}(y_k) \leq \check{\nu}(y_1) + 1 \ \text{en vertu de la proposition 6}$ et du fait qu'aucun des y_i n'est 0. Or \check{H} a au moins une extrémité. On a donc : $\check{\nu}(y_1) \leq 1$.

Si y_1 est strictement prépériodique, on a :

 $\overset{\mathbf{v}}{\nu}(\mathbf{y}_0) - \mathbf{1} \leq \overset{\mathbf{v}}{\nu}(\mathbf{y}_1) \leq \overset{\mathbf{v}}{\nu}(\mathbf{y}_2) \leq \ldots \quad . \quad \text{Or } \overset{\mathbf{v}}{\mathbf{H}} \text{ n'est pas réduit à un point,}$ il a au moins 2 extrémités, d'où $\overset{\mathbf{v}}{\nu}(\mathbf{y}_1) = 1$. Cqfd.

7. CONDITION DE HUBBARD POUR H.

L'arbre \check{H} est muni de la topologie et du plongement dans ${\bf C}$ induits par ceux de K (ou de ${\bf Z}_{k-1}$, ou de H) , et des points $({\bf y}_n)$.

PROPOSITION 8. L'arbre H est un arbre de Hubbard abstrait.

<u>Démonstration</u>. La condition (i) de la définition du §2 résulte du fait que H est l'enveloppe connexe des y_i . On a $V(y_0) \leq V(y_1) + 1 \leq 2$, d'où (ii). Nous allons montrer qu'on a la condition (iii).

Posons $f = \rho \circ f$, où $\rho : Z_{k-1} \to Z_{k-1}$ coincide avec l'identité sur $Z_{k-1} - [y_1, x_1]$, et applique $[y_1, x_1]$ sur y_1 . On a $f(H) \subset H$ en vertu de la proposition 6, et $f(y_n) = y_{n+1}$ pour tout n. Malheureusement f est constante sur $[\delta, -\delta] = [y_0, -y_0]$.

Si $\mbox{\it H} \cap \mbox{\it]} y_0, -y_0 \mbox{\it]} = \emptyset$ (ce qui en fait ne se produit que si $\mbox{\it H} = y_1$), $\mbox{\it f}$ est injective sur $\mbox{\it H}$ et $\mbox{\it H}$ est un arbre de Hubbard abstrait. On suppose maintenant que cette intersection est $\neq \emptyset$, $\mbox{\it d}$ 'où $\mbox{\it [} y_0, -y_0 \mbox{\it]} \subset \mbox{\it H}$. Dans le cas périodique comme dans le cas prépériodique, le point $\mbox{\it -} y_0$ n'est pas un point marqué de $\mbox{\it H}$. On a $\mbox{\it v}(-y_0) \leq \mbox{\it v}(y_1) + 1 \leq 2$, donc c'est un point ordinaire ou une extrémité. Mais, si c'était une extrémité, ce serait un point marqué. C'est donc un point ordinaire $\mbox{\it (} \mbox{\it v} = 2\mbox{\it)}$, i.e. un point non remarquable. Soit $\mbox{\it \alpha}$ le premier point remarquable après $\mbox{\it -} y_0$ en venant de $\mbox{\it y}_0$. L'application $\mbox{\it f}' = (\mbox{\it a}, -y_0)$ est injective sur $\mbox{\it [} \mbox{\it a}, -y_0$ et constante sur $\mbox{\it [} \mbox{\it -} y_0, y_0$].

On peut trouver une application continue $F: \check{H} \to \check{H}$ qui coîncide avec \check{f} (donc avec f) sur $\check{H} -]\alpha$, $y_0[$, et au voisinage de α , et qui est injective sur $[\alpha,y_0]$ avec $F([\alpha,y_0])=\check{f}([\alpha,+y_0])=\check{f}([\alpha,-y_0])$. Comme \check{f} est injective sur chacune des 2 composantes de $\check{H} -]-y_0,y_0[$, l'application F est injective sur chacune des composantes de \check{H} coupé en y_0 . On a bien sûr $F(y_n)=y_{n+1}$ pour tout f0. Par suite, f1 est un arbre de Hubbard abstrait. Cqfd.

8. ARGUMENTS EXTERNES DE y₁.

PROPOSITION 9. a) Si y_1 est strictement prépériodique, les arguments externes de y_1 sont les mêmes dans H et dans H.

b) Si y est périodique, tout argument externe de y dans H appartient à $I(H) = [Arg_{(H)}, Arg_{(H)}]$.

<u>Démonstration</u>. Posons $\widetilde{H} = \widecheck{H} \cup [\beta, -\beta]$. L'application $\widehat{F} : \widetilde{H} \to \widetilde{H}$ qui coincide avec F sur \widecheck{H} et avec f (et \widecheck{f}) sur $[\beta, -\beta] - \widecheck{H}$ est injective sur chacune des composantes de \widetilde{H} coupé en y_0 , prolonge F et applique β et $-\beta$ sur β . Par suite, \widetilde{H} n'est autre que l'arbre obtenu en complétant \widecheck{H} (cf. [AEJ]).

- a) L'orbite directe de y_1 ne rencontre pas $\left[\delta,-\delta\right]$, donc au voisinage de chacun de ses points, F coincide avec f. L'arbre H qu'on obtient en faisant bourgeonner \widetilde{H} , comme indiqué en $\left[AEJ\right]$ (paragraphe 4) s'identifie à un voisinage de \widetilde{H} dans H. Si ξ est un accès à y, relativement à H, ou à \widetilde{H} ce qui revient au même, les $f^n(\xi)$ et $F^n(\xi)$ coincident, donc les chiffres du développement en base 2 sont les mêmes pour les arguments de ξ relativement à H et \widetilde{H} .
- b) Notons Θ l'ensemble des arguments externes de y_1 dans H (i.e. dans K). Notons θ_- et θ_+ le plus petit et le plus grand élément de Θ , et soit $\theta \in \Theta$. Soit \varkappa la période de y_1 , et pour tout $t \in [0,1[$ muni d'un développement en base 2 soit $\varepsilon_i(t)$ le i-ème chiffre après la virgule de ce developpement.

Les arguments $\check{\theta}_{-} = \mathrm{Arg}_{-}(\check{H})$ et $\check{\theta}_{+} = \mathrm{Arg}_{+}(\check{H})$ sont caractérisés par le fait qu'ils ont un développement périodique de période \varkappa , avec $\varepsilon_{i}(\check{\theta}_{-}) = \varepsilon_{i}(\theta_{-})$ et $\varepsilon_{i}(\check{\theta}_{+}) = \varepsilon_{i}(\theta_{+})$ pour $1 \leq i \leq \varkappa$. Pour chaque $s \in \mathbb{N}$, on a $2^{S^{\aleph}}\theta \in \Theta$, donc $(\cdot, \varepsilon_{S^{\aleph}+1}(\theta_{+}), \ldots, \varepsilon_{S^{\aleph}+\varkappa}(\theta_{-}))$ est compris entre $(\cdot, \varepsilon_{S^{\aleph}+1}(\theta_{-}), \ldots, \varepsilon_{S^{\aleph}+\varkappa}(\theta_{-}))$ et $(\cdot, \varepsilon_{S^{\aleph}+1}(\theta_{+}), \ldots, \varepsilon_{S^{\aleph}+\varkappa}(\theta_{+}))$. Par suite $\check{\theta}_{-} \leq \theta \leq \check{\theta}_{+}$.

c) Soit \varkappa la période de y_1 . Posons $q=\nu_{Z_{k-1}}(y_1)$ et définissons p_1 par la condition que le brin $[y_1,x_1]$ est le p_1 -ème après $[y_1,\beta]$ en tournant dans le sens direct. Soit z_1 un point sur $]y_1,x_1[$ voisin de y_1 , posons $z_n=f^{n-1}(z_1)$ pour $n\le \varkappa q+1$. Le point $z_{\varkappa q+1}$ est aussi sur $]y_1,x_1[$.

Notons H_1 l'enveloppe connexe de $\{z_1,\ldots,z_{\varkappa\,q}\}$ dans Z_{k-1} . Définissons α comme dans la démonstration de la proposition 8. On peut construire F_1 : $F_1\colon Z_{k-1}\to Z_{k-1}$ coincidant avec f sur $Z_{k-1}-\rfloor y_0,\alpha[$, ainsi que sur chacun des $[y_i,z_{i+sq}]$ pour $0\le i\le \varkappa-1$ et q tel que $1\le i+sq\le kq-1$, avec $F(z_{\varkappa\,q})=z_1$, et F injective sur chacune des composantes de H_1 coupé en $z_0=z_{\varkappa\,q}$.

L'arbre $\check{\mathbf{H}}_1$ est un arbre de Hubbard abstrait, qui s'identifie à l'arbre obtenu à partir de $\check{\mathbf{H}}$ par bifurcation d'argument p/q_1 . Comme en (a), les arguments de \mathbf{x}_1 sont les mêmes dans \mathbf{H} et dans $\check{\mathbf{H}}_1$. Les arguments des accès adjacents à $\begin{bmatrix} \mathbf{x}_1,\mathbf{z}_1 \end{bmatrix}$ (i.e. à $\begin{bmatrix} \mathbf{x}_1,\mathbf{y}_1 \end{bmatrix}$) sont donc $\mathrm{Arg}_{\underline{\mathbf{H}}}(\check{\mathbf{H}}_1)$ et $\mathrm{Arg}_{\underline{\mathbf{H}}}(\check{\mathbf{H}}_1)$, ils sont associés à $\check{\mathbf{H}}$. Cqfd.

9. DEMONSTRATION DU THEOREME.

Notons θ_- et θ_+ le plus petit et le plus grand argument externe de y_1 dans K (ou dans Z_{k-1} , c'est pareil). Notons θ' et θ'' les arguments externes des accès à y_1 relativement à Z_{k-1} adjacents à $\begin{bmatrix} y_1, x_1 \end{bmatrix}$, avec $\theta' < \theta''$. On a donc $\theta_- \le \theta' < \theta'' \le \theta_+$. Les arguments θ' et θ'' sont associés à \check{H} .

L'argument externe de x_1 dans K est τ et on a $\theta' < \tau < \theta''$. Pour tout $\tau' = p'/2^{K'}$ avec k' < k, le point $\gamma(\tau')$ de K, d'argument externe τ' , est une extrémité de Z_{k-2} , donc $\tau' \notin [\theta', \theta'']$. L'argument τ est donc le chef-lieu de $[\theta', \theta'']$.

Le point y_1 n'est pas un point extrémal de Z_{k-2} , donc il existe un point extrémal $\zeta \in Z_{k-2}$ tel que $y_1 \in]\beta,\zeta[$. On a $\mathrm{Arg}_K(\zeta) \in [\theta_-,\theta_+]$, et $\mathrm{Arg}_K(\zeta)$ est de la forme p'.2^{k'} avec k' < k (proposition 1). Par suite, τ n'est pas le chef-lieu de $[\theta_-,\theta_+]$.

On a $I(H)\supset [\theta_-,\theta_+]\supset [\theta_-,\theta_+]$, donc τ appartient à I(H) sans en être le chef-lieu. Cqfd.

ADRESSES

1. ORIGINE D'UNE NERVURE.

Nous gardons les notations des deux exposés précédents. \sharp est l'ensemble des classes d'isomorphisme d'arbres de Hubbard abstraits. Pour chaque $H \in \sharp$, on a défini les arguments associés et l'intervalle $I(H) = [arg_(H), arg_(H)]$.

Ceci permet de définir des nervures en termes d'arbres : pour $\tau = \frac{p}{2^k}$ avec $k \ge 0$, $N_{\sharp}(\tau) = \{H \in \; \sharp \; | \; (\exists \; \theta^{\dag}, \theta^{\dag} \; \text{associés à H}) \; \tau \; \text{est le chef-lieu de } [\theta^{\dag}, \theta^{\dag}] \}$ $N_{\sharp}^{\star}(\tau) = \{H \in \; \sharp \; | \; \tau \; \text{est le chef-lieu de } \; I(H) \}$.

Nous avons montré dans [AON] le théorème suivant :

THEOREME $1_{\mathbb{H}}$. Pour tout τ de la forme $\frac{D}{2^k}$ avec k > 0, il existe un arbre $H \in N_{\mathbb{H}}(\tau) - N_{\mathbb{H}}^{\times}(\tau)$.

Mais nous ne savons pas si le $\overset{\text{V}}{\text{H}}$ ainsi construit est bien l'arbre d'un point c de $\textbf{M}_0 \cup \textbf{M}_2$.

Cependant, nous allons montrer le

THEOREME 2. Il existe $c \in \mathcal{D}_0 \cup \mathcal{D}_2$ tel que tout argument associé à b soit associé à c.

Nous en déduisons aussitôt le

THEOREME 1_{\emptyset} . Pour tout $\tau = \frac{D}{2^k}$, k > 0, la nervure $N_{\mathfrak{L}}(\tau)$ a une origine. La nervure $N_{\mathfrak{L}}(0)$ se compose des points 0 et $\frac{1}{4}$. Nous conviendrons que $\frac{1}{4}$ est l'origine de $N_{\mathfrak{L}}(0)$, bien qu'il appartienne à $N_{\mathfrak{L}}^{\star}(0)$. Dans la suite, nous écrirons N pour $N_{\mathfrak{L}}$.

Nous appellerons arguments propres d'un arbre abstrait H ses arguments associés s'il est prépériodique, mais seulement les arguments $\operatorname{Arg}_+(H)$ et $\operatorname{Arg}_+(H)$ s'il est périodique; pour $c \in \mathcal{D}_1 \cup \mathcal{D}_2$, les arguments propres de l'arbre f_c sont les arguments associés à c, c'est-à-dire les arguments externes de c dans M.

Nous fixerons un $\tau=\frac{p}{2^k}$, k>0 ; nous noterons c_τ le point de M d'argument externe τ , H l'arbre de Hubbard de f_{C_τ} .

Construction du point annoncé au théorème 2.

On prend les arguments propres $\theta_1 \dots \theta_n$ de \check{H} ; on regarde les points de $\mathfrak{D}_0 \cup \mathfrak{D}_2$ plus petits que c_{τ} (au sens de la relation \prec de ([N],4)) dont l'arbre admet un $2^i\theta_j$ ($i \geq 0$, $1 \leq j \leq n$) pour argument propre. Ceux-ci sont en nombre fini ; comme l'ensemble des points de $\mathfrak{D}_0 \cup \mathfrak{D}_2$ plus petits que c_{τ} est totalement ordonné ([N], prop. 3, cor. 1), il y a un plus grand élément c_{τ} points avant c_{τ} dont l'arbre admet un $2^i\theta_j$ pour argument propre : nous montrerons que c_{τ} répond à l'énoncé du théorème 2 .

Pour $c_1 \in M$, \sim_{c_1} désigne la relation d'équivalence sur \mathbb{Q}/\mathbb{Z} définie par $\theta \sim_{c_1} \theta' \iff \theta$ et θ' sont arguments externes du même point de K_{c_1} .

Nous allons maintenant montrer comment \check{H} permet de définir une relation $^{\sim}_{\check{H}} \text{ sur } A = \{2^{\dot{i}}\,\theta_{\dot{j}}\,|\,i\geq 0,\; 1\leq j\leq n\} \,\cup\, \{\frac{1}{2}+2^{\dot{i}}\,\theta_{\dot{j}}\,|\,i\geq 0,\; 1\leq j\leq n\} \text{ . La construction de l'arbre complété de }\check{H} \text{ au début de la démonstration de la proposition 9}$ de [AON] et l'algorithme décrit dans [CA.3] permettent, pour tout point prépériodique de \check{H} de définir des "arguments combinatoires associés" rationnels.

Contrairement à ce qui se produit dans les ensembles de Julia, il se peut que deux points distincts de H aient des arguments combinatoires égaux.

Pour θ , $\theta' \in A$, on posera $\theta \sim_{\check{H}} \theta'$ lorsqu'il existe un point de \check{H} de la forme y_i ou $-y_i$ admettant α et α' pour arguments combinatoires. (Nous ne prétendrons pas pour l'instant que $\sim_{\check{H}}$ est une relation d'équivalence.)

On a défini y_i pour tout $i \ge 0$ avec $y_{i+1} = f(y_i)$, f étant la dynamique sur H; pour $i \ge 1$ dans le cas prépériodique, $i \ge 0$ dans le cas périodique, y_i est aussi un point bien défini de H.

La proposition suivante complète la proposition 9 de [AON] :

PROPOSITION 1. a) Tous les éléments de A sont arguments externes de points y_i ou $-y_i$ ($i \ge 1$) de H .

b) Pour tout i>0, les arguments combinatoires de y_i dans H sont des arguments externes de y_i dans H.

b) Dans le cas prépériodique comme dans le cas périodique, avec les notations de [AON], $y_i \notin [-\delta, \delta]$ et on peut recopier la preuve de [AON], proposition 9 a). Cqfd.

$$\frac{\text{COROLLAIRE}}{\text{H}} = \frac{\text{C}}{\text{C}_{\tau}|A}.$$

On notera $\gamma_M(\alpha)$ le point de M d'argument externe α pour $\alpha \in \mathbb{Q}/\mathbb{Z}$.

<u>LEMME 1. Soit U la composante connexe de M - $\{\gamma_{M}(2^{i}\theta_{j}) | i \geq 0, 1 \leq j \leq n\}$ </u> <u>contenant c_t. Sur U, c_{lA} est constante.</u>

Il est <u>fermé</u> car $\theta \sim_{C_1} \theta' \iff \gamma_{C_1}(\theta) = \gamma_{C_1}(\theta')$ où $\gamma_{C_1}(\theta)$ (resp. $\gamma_{C_1}(\theta')$) désigne l'aboutissement du rayon d'argument θ (resp. θ') dans K_{C_1} , et $\gamma_{C_1}(\theta)$ comme $\gamma_{C_1}(\theta')$ est une fonction continue de C_1 (cf. [PC]; on n'utilise ici en fait que le cas "facile" du théorème).

Il est ouvert car par le choix des points retirés à M , $\gamma_{\rm C_1}(2^{\rm i}\,\theta_{\rm j})$ ou

 $\begin{array}{l} {}^{\gamma}c_{1}(\frac{1}{2}+\,2^{i}\,\theta_{j}) \ \ (\text{pour } i \geq 0 \ , \ 1 \leq j \leq n) \ \ \text{est prépériodique répulsif et pas dans} \\ 1' \text{ orbite inverse de zéro pour } f_{c_{1}} \ , \ \ \text{donc il } n' \text{ existe au voisinage de } c_{1} \ \ \text{qu'une dé détermination prépériodique du même type possible pour la fonction continue} \\ {}^{\gamma}c_{1}(2^{i}\,\theta_{j}) \ \ \text{ou} \ \ {}^{\gamma}c_{1}(\frac{1}{2}+2^{i}\,\theta_{j}) \ . \end{array}$ Cqfd.

LEMME 2. Si c est périodique,
$$\sim_{c_{\tau_{|A}}} = \sim_{c_{|A}}$$

Si c est strictement prépériodique, le graphe de $^{\sim}_{c_{|A}}$ contient celui de $^{\sim}_{c_{|A}}$.

 $\begin{array}{c} \underline{\text{D\'emonstration}}. \quad \text{Dans le cas p\'eriodique, } U \text{ d\'efinie au lemme 1 contient} \\ c \text{ , car sans cela l'un des points } \gamma_M(2^{\dot{1}}\,\pmb{\theta}_{\dot{j}}) \text{ } (i \geq 0 \text{ , } 1 \leq j \leq n) \text{ serait compris} \\ \text{entre } c \text{ et } c_{\tau} \text{ au sens de la relation d'ordre sur } \mathfrak{D} \text{ , ce qui contredirait la} \\ \text{construction de } c \text{ . D\`es lors, le lemme 1 entraîne } \sim_{c_{\tau}} = \sim_{c_{\tau}}. \end{array}$

. Dans le cas strictement prépériodique, on peut seulement dire que $c \in \overline{U}$ par le même raisonnement ; les relations $\alpha \sim \alpha'$ ouvertes en c (i.e. $\alpha \not\sim_{C} \alpha'$) le restent au voisinage de c donc dans U, d'om l'inclusion annoncée. Cqfd.

Remarque. Ce qui peut se produire dans ce cas, c'est, si c est de la forme $\gamma_M(2^{\underline{i}_0}\theta_{\,\underline{j}}) \ \text{avec} \ \underline{i}_0 > 0 \ \text{et} \ 1 \leq \underline{j} \leq n \ , \ \text{que les} \ 2^{\underline{i}_0}\theta_{\,\underline{j}} \ \text{et les} \ \frac{1}{2} + 2^{\underline{i}_0}\theta_{\,\underline{j}} \ , \ \text{non liés}$ pour ${}^{\sim}_{C_0}$ se regroupent pour ${}^{\sim}_{C}$; pour $\underline{i} < \underline{i}_0$, les $2^{\underline{i}}\theta_{\,\underline{j}}$ et les $\frac{1}{2} + 2^{\underline{i}}\theta_{\,\underline{j}}$ aboutissent dans K_{C} en des points opposés, donc ne se lient pas mutuellement.

On en déduit donc, compte tenu du corollaire de la proposition 1 :

COROLLAIRE. Si c est dans
$$\mathfrak{D}_0$$
, $\sim_{\mathbf{H}} = \sim_{c_{|A}}$.

Preuve du théorème 2.

Cas où H est périodique. Il y a ici seulement deux θ_j : θ_1 et θ_2 , qui sont à dénominateur impair. Par définition de c , un argument propre au moins de

l'arbre associé à c est de la forme $2^i\theta_j$ ($i\geq 0$, j=1,2); quitte à renuméroter θ_1 et θ_2 , nous supposerons que c'est $2^i\theta_1$ qui est dénominateur impair : c est donc dans θ_0 .

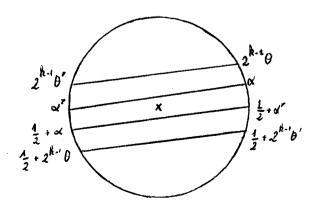
Vu la construction purement arithmétique des arguments associés à un arbre périodique en fonction des arguments propres faite en <code>[CA.3]</code>, il suffit de montrer que l'arbre associé à <code>c</code> et H ont mêmes arguments propres. Puisqu'il est égal à l'arbre associé à <code>c</code> (cf. <code>[CA]</code> prop. 1 et 2), on pourra regarder l'arbre à la racine <code>c</code>_1 de la composante hyperbolique de M dont <code>c</code> est le centre.

- . Cas où c₁ est racine d'une composante primitive (i.e. la valeur propre du cycle indifférent rationnel est 1). Dès lors, tout rayon aboutissant au point du cycle indifférent rationnel qui attire c₁ dans K_{c1} fournit un argument propre de c₁; puisqu'il arrive deux rayons externes de M en c₁, il y a exactement deux tels rayons. On a $2^{10}\theta_1 \sim_H^2 2^{10}\theta_2$, donc $2^{10}\theta_1 \sim_{c_1}^2 2^{10}\theta_2$ et les arguments propres de l'arbre de c₁ sont donc $2^{10}\theta_1$ et $2^{10}\theta_2$ pour un $i_0 \ge 0$. Il reste à montrer que $i_0 = 1$: sur un cercle, joignons par un segment le point d'argument $2^{10}\theta_1$ et le point d'argument $2^{10}\theta_2$ d'une part, le point d'argument $\frac{1}{2} + 2^{10}\theta_1$ et le point d'argument $\frac{1}{2} + 2^{10}\theta_2$ d'autre part, pour chaque i . Si k est la période de θ_1 ou θ_2 pour la multiplication par 2 , i_0 se reconnaît à ce que les segments de $2^{10} + k 1\theta_1$ à $2^{10} + k 1\theta_2$ et de $2^{10} + k 1\theta_1$ à $2^{10} + k 1\theta_2$ délimitent une région qui contient le centre du cercle ; or c'est précisément le cas pour $i_0 = 1$ (les rayons d'arguments $2^k\theta_1$, $2^k\theta_2$, $\frac{1}{2} + 2^k\theta_1$ et $\frac{1}{2} + 2^k\theta_2$ aboutissant dans H en δ et $-\delta$ avec les notations de [AON]).
 - $\boldsymbol{\theta}_1$ et $\boldsymbol{\theta}_2$ sont bien les arguments propres de \boldsymbol{c}_1 .
- . Cas où c₁ n'est pas primitive. Ici f_{c1} agit transitivement sur les rayons aboutissant aux points du cycle indifférent rationnel ; comme $\theta_1 \sim H \theta_2$, on a aussi $\theta_1 \sim_{c_1} \theta_2$, donc θ_2 est de la forme $2^a \theta_1$ pour un $a \ge 0$. Comme dans le cas où c₁ est primitive, joignons par un segment les $2^i \theta_1$ aux $2^i \theta_2$ et

les $\frac{1}{2} + 2^i \theta_1$ aux $\frac{1}{2} + 2^i \theta_2$. Là encore les segments de $2^k \theta_1$ à $2^k \theta_2$ et $\frac{1}{2} + 2^k \theta_1$ à $\frac{1}{2} + 2^k \theta_2$ délimitent une région qui contient le centre du cercle, ce qui montre que ce sont bien θ_1 et θ_2 qui sont dans K_{c_1} les rayons adjacents au pétale contenant c_1 , et ce sont bien les arguments propres de c_1 .

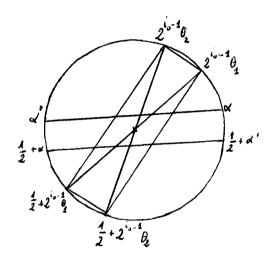
Cas où H est strictement prépériodique. Comme dans le cas précédemment traité, joignons sur un cercle les points d'arguments α et α' pour tout couple α , α' de points de A équivalents par \sim_H , et qui sont donc aussi équivalents pour \sim_C (cf. lemme 2).

. Cas où $c \in \mathcal{D}_0$. On va montrer que ce cas ne peut se produire. Il ne suffit pas ici de regarder \sim_H^{\sim} , mais il faut revenir à $\sim_{C_T}^{\sim}$, égale à \sim_{c}^{\sim} sur A d'après le lemme 2. On peut alors, dans le schéma auxiliaire, ajouter des segments entre les arguments externes de δ (resp. -5). Comme δ et - δ sont de part et d'autre de zéro sur H (cf. [AON.5]: il n'y a pas de point de branchement de Z_{k-1} sur]- δ , δ [), on peut donc trouver α et α' tels que 2α et $2\alpha'$ soient un θ_j et un θ_j ! (1 \leq $j \leq$ n , 1 \leq $j' \leq$ n), dont les rayons associés aboutissent dans K_{c_T} en δ , et tels que sur le schéma auxiliaire, les segments de α à α' et de $\frac{1}{2} + \alpha$ à $\frac{1}{2} + \alpha'$ séparent le centre du cercle de tous les segments correspondant à $\sim_{H_{|A|}}^{\bullet}$. On a alors la situation suivante :



Si θ et θ ' sont les arguments propres de l'arbre de c, et k l'ordre du cycle de f_c , on a alors une absurdité, car le raisonnement du lemme 1 montre que $\Re_{K_C}(\alpha)$ et $\Re_{K_C}(\alpha')$ aboutissent encore en un même point, qui devra être sur l'arc réglementaire dans K_c joignant les aboutissements de $\Re_{K_C}(2^{k-1}\theta)$ et $\Re_{K_C}(\frac{1}{2}+2^{k-1}\theta)$; mais cet arc est dans \Re_c , d'où une contradiction.

. Cas où $c \in \mathcal{D}_2$. On peut définir α et α' comme ci-dessus. Si un $2^i\theta_j$ $(1 \le j \le n, \ i \ge 0)$ est argument propre de l'arbre de c, tous les autres $2^i\theta_j$, $(1 \le j' \le n)$ le sont aussi, puisqu'ils sont \sim_c équivalents à $2^i\theta_j$. Supposont que ce soit le cas pour un $i_0 > 0$. D'après la remarque qui suit le lemme 2, tous les $2^{i_0-1}\theta_j$ et les $\frac{1}{2} + 2^{i_0-1}\theta_j$ $(1 \le j \le n)$ sont alors \sim_c équivalents. On a donc une situation :



Comme la relation \sim_C est non croisée, cela impoqe que $\Re_{K_C}(\alpha)$ aboutisse aussi en zéro, ce qui est impossible puisque $2^{i_0-1}\theta_j$ est de la forme $2^p\alpha$ avec $p \neq 0$ et 0 n'est pas périodique pour f_C .

Comme un $2^{\hat{i}}\theta_{\hat{j}}$ $(i \ge 0 \ , \ 1 \le j \le n)$ au moins est argument associé à c par choix de c , les $\theta_{\hat{j}}$ $(1 \le j \le n)$ sont bien des arguments propres de l'arbre de c . Cqfd.

2. ADRESSES FINIES.

Soit c un point de $\mathbb D$. Une <u>adresse finie</u> pour c est une suite finie $(c_0,\tau_0,c_1,\tau_1,\dots,c_{r-1},\tau_{r-1},c_r) \ \text{telle que} \ :$

- (a) $c_0 = 1/4$; $\tau_0 = 0$ et $c_1 = 0$ si $r \ge 1$.
- (b) $c_{n} = c$.
- (c) c_i est l^{\dagger} origine de $N(\tau_i)$ pour i = 0, ..., r-1.
- (d) $c_{i+1} \in N^{\times}(\tau_i)$ pour $i = 0, \dots, r-1$.

PROPOSITION 2. Soit $c \in \mathbb{A}$ tel que I(c) ne soit pas réduit à un point, ou soit de la forme $\{p/2^k\}$. Alors, c admet une adresse finie unique.

2) On peut définir des adresses infinies, en remplaçant la condition (b) $par \ (b^{\dag}): \ \cap \ I(c_{_{{\bf r}}})=I(c) \ . \ On peut alors démontrer que tout point de \ \emptyset \ admet$ une adresse finie ou infinie .

3. POINT DE SEPARATION.

PROPOSITION 3. Soient c et c¹ deux points de \mathcal{D} satisfaisant aux conditions de la proposition 2. Alors, c et c¹ admettent dans \mathcal{D} une borne inférieure $c^{11} = c \wedge c^{1}$.

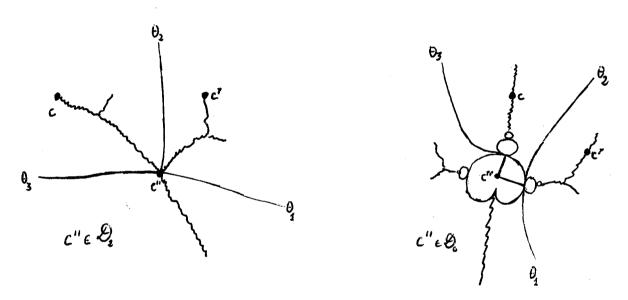
Remarque. L'hypothèse que c et c' satisfont aux conditions de la proposition 1 n'est pas essentielle : on peut s'en passer en considérant éventuellement des adresses infinies.

PROPOSITION 4. Soient c et c' deux points de \emptyset satisfaisant aux conditions de la proposition 1, et posons c'' = c \(\lambda c''\). On suppose c et c' non comparables (i.e. $c \nleq c'$ et c' \(\perp c\) on et c'' \(\leq c'\) et c'' \(\leq c'\) de sorte que c'' \(< c'\) et c'' \(< c'\). Il existe alors trois arguments θ_1 , θ_2 , θ_3 associés à c'' tels que, quitte à échanger c et c'', on ait $0 < \theta_1 < \arg(c) \le \arg(c) < \theta_2 < \arg(c') \le \arg(c') < \theta_3 < 1$.

Pour $c \in \mathfrak{D}$ et θ un argument associé à c, on définit $\widehat{\mathbb{R}}(c,\theta)$ de la façon suivante : si $c \in \mathfrak{D}_1 \cup \mathfrak{D}_2$, $\mathbb{R}(M,\theta)$ aboutit en c et on pose $\widehat{\mathbb{R}}(c,\theta) = \overline{\mathbb{R}(M,\theta)} = \mathbb{R}(M,\theta) \cup \{c\} \text{ . Si } c \in \mathfrak{D}_0 \text{ , } c \text{ est le centre d'une composante}$ hyperbolique W et $\mathbb{R}(M,\theta)$ aboutit en un point $c^\dagger \in \partial W$; on pose alors $\widehat{\mathbb{R}}(c,\theta) = \mathbb{R}(M,\theta) \cup [c,c^\dagger]_{\overline{W}} \text{ .}$

La proposition 3 admet comme complément:

COROLLAIRE. Soient c, c¹, c", θ_1 , θ_2 , θ_3 comme dans la proposition 3. Alors, c, c¹ et $\Re(M,0)$ sont contenus dans trois composantes connexes différentes de $C - \bigcup_{i=1}^{3} \hat{\Re}(c",\theta_i)$.



4. LIMPLICATION (MLC) ⇒ (HG2).

THEOREME. Si M est localement connexe, toute composante connexe de M est hyperbolique.

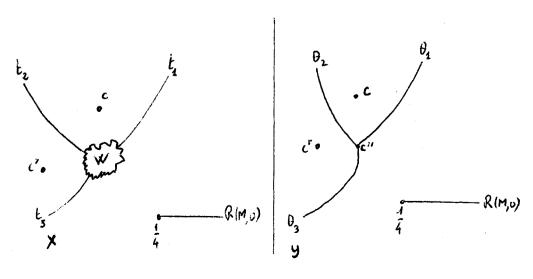
<u>Démonstration</u>. Supposons M localement connexe et soit W une composante connexe non hyperbolique de $^\circ$ M. L¹ ensemble $^\circ$ W est infini non dénombrable, et comme $^\circ$ B est dénombrable, on peut trouver trois points x_1 , x_2 et x_3 distincts dans $^\circ$ W $^\circ$ B. Le lacet de Carathéodory $^\circ$ T $^\circ$ BM est surjectif; on a $^\circ$ W $^\circ$ BW, donc on peut trouver t_1 , t_2 , t_3 tels que $^\circ$ R(M, t_i) aboutisse

en x_i . Quitte à permuter les x_i et les t_i , on peut supposer que $0 < t_1 < t_2 < t_3 < 1$. Soient $\tau = p/2^k$ et $\tau^i = p^i/2^{k^i}$ tels que : $(1) \quad 0 < t_1 < \tau < t_2 < \tau^i < t_3 < 1 ;$

notons c et c' les points d'aboutissement de $\Re(M,\tau)$ et $\Re(M,\tau)$, et posons c'' = c \wedge c' (les points c et c' satisfont aux hypothèses de la proposition 1). Comme c et c' sont maximaux dans \emptyset , ils sont non comparables. D'après la proposition 3 et son corollaire, on peut trouver trois arguments θ_1 , θ_2 , θ_3 associés à c'' tels que c, c' et $\Re(M,0)$ soient dans trois composantes distinctes de \mathbb{C} - Y, où Y = $\bigcup_{i=1}^{3} \hat{\Re}(c'',\theta_i)$. Posons $X = W \cup \bigcup_{i=1}^{3} \Re(M,t_i) \cup \{x_i\}$. L'ensemble

X est connexe. On a $X \cap Y = \emptyset$: en effet, les points de X dans \mathbb{C} - M ont des arguments externes irrationnels tandis que ceux des points de $Y \cap (\mathbb{C} - M)$ sont rationnels, $X \cap \partial M \subset \partial W - \emptyset$ et $Y \cap \partial M \subset \emptyset$, $X \cap M \subset W$ non hyperbolique tandis que $Y \cap M$ est vide ou contenu dans une composante hyperbolique de centre $\mathbb{C}^{\mathbb{C}}$. La relation \mathbb{C} montre que \mathbb{C} , $\mathbb{C}^{\mathbb{C}}$ et $\mathbb{R}(M,0)$ sont dans trois composantes connexes distinctes de $\mathbb{C} - X$.

Soient U la composante connexe de \mathbb{C} - X contenant Y et V la composante connexe de \mathbb{C} -Y contenant X . Toute composante connexe de \mathbb{C} -X autre que U est contenue dans V , donc V contient au moins deux des trois ensembles $\{c\}$, $\{c^{\dagger}\}$ et $\Re(M,0)$. Contradiction. Cqfd.



Impossible à réaliser avec Xny= &

EXPOSE N° XXIII

RESSEMBLANCE ENTRE L'ENSEMBLE DE MANDELBROT

ET L'ENSEMBLE DE JULIA

AU VOISINAGE D'UN POINT DE MISUREWICZ

par Tan-Lei

§1. NOTATION ET ÉNONCÉ. INTRODUCTION.

Soit K_C l'ensemble de Julia rempli de f_C: z \rightarrow z²+c . Soit M l'ensemble de Mandelbrot, i.e. M est l'ensemble de c tels que $0 \in K_C$. On rappelle que $c_O \in M$ est un point de Misurewicz si le point 0 est strictement prépériodique par f_C , c'est-à-dire s'il existe deux entiers l>0 et k>0 tels que $f_C^l(0) = f_C^{l+k}(0)$ mais $f_C^{l-1}(0) \neq f_C^{l+k-1}(0)$, et que $\rho_O = (f_C^k)'(x)$ est la valeur propre du cycle $\{f_C^l(0), f_C^{l+1}(0), \dots, f_C^{l+k-1}(0)\}$. En vertu du théorème 1 de [AREMAR] et de ses compléments, on sait que les arguments externes de codans M sont ceux de c_O dans K_C. Dans ce mémoire, on va chercher une relation géométrique entre M et K_C au voisinage de c_O . Plus précisément, on aura :

THÉORÈME. Soient $c_0 \in M$ un point de Misurewicz et ρ_0 la valeur propre du cycle sur lequel tombe 0, alors il existe un sous-ensemble fermé Z de C avec $\rho_0 Z = Z \quad \underline{et} \quad \lambda \in C - \{0\} \quad \underline{tels \ que} \quad \rho_0^n \tau_{-c_0}(K_c) \longrightarrow Z \quad \underline{et}$

$$\rho_{O}^{n} \tau_{-C_{O}}(M) \longrightarrow \lambda Z$$

lorsque n tend vers ∞ .

Ici, τ_{-c_0} est la translation de $-c_0$; le sens de la convergence sera précisé au §2.

Comme hypothèse générale de ce mémoire, on suppose toujours que $c_0 \in M$ est un point de Misurewicz et α_0 le premier point du cycle sur lequel tombe 0. On notera ℓ le plus petit entier positif tel que $f_{c_0}^{\ell}(0) = \alpha_0$ et k la

période du cycle. On rappelle que K_{C_0} est d'intérieur vide et que le point périodique α_0 est répulsif (i.e. $|\rho_0| > 1$). Le théorème ci-dessus est la conjonction du théorème 1 du §3 et du théorème 2 du §5.

§2. DISTANCE DE HAUSDORFF.

Soit E un espace métrique localement compact à boules fermées compactes (i.e. pour $a \in E$, $R \in \mathbb{R}^+$, la boule fermée B(a,R) est compacte) avec une métrique d. Notons F l'ensemble des sous-ensembles fermés de E et F_1 l'ensemble des voisinages fermés de ∞ de E.

DÉFINITION 1. Pour A.BCE fermés "voisinages de ∞ " i.e. E-A et E-B sont relativement compacts, on définit $\delta(A,B) = \sup_{x \in A} d(x,B) = \sup_{x \in A} \inf_{x \in A} d(x,y)$ et une distance $D(A,B) = \sup_{x \in A} \{\delta(A,B), \delta(B,A)\}$.

Comme il existe $x \in E$ et $R \in \mathbb{R}^+$ tel que $E-B(x_0,R) \subset A \cap B$, les deux fonctions $x \longrightarrow d(x,A)$ et $y \longrightarrow d(y,B)$ sont continues à support compact. Donc $\delta(A,B)$ et $\delta(B,A)$ sont bien définies. Si C est un autre voisinage fermé de ∞ , pour tout $z \in C$, on a $\delta(A,B)$ = sup inf $d(x,y) \leq \sup \inf (d(x,y) + d(z,y)) = \sup d(x,z) + \sup x \in A$

inf $d(z,y) \le \sup_{x \in A} d(x,z) + \delta(C,B)$. Comme E-C est relativement compact, il existe

 $z_{X} \in C$ tel que $d(x,z_{X}) = d(x,C)$ pour tout $x \in A$ donc $\delta(A,B) \leq \delta(A,C) + \delta(C,B) \leq D(A,C) + D(C,B)$. Idem pour $\delta(B,A)$. Tout cela implique

$$D(A,B) \leq D(A,C) + D(C,B)$$
.

De plus, $\delta(A,B)=0$ implique $A\subset B$, et $\delta(B,A)=0$ implique $B\subset A$, donc une condition nécessaire et suffisante pour D(A,B)=0 est A=B. Cela nous dit que D est une distance bien définie sur F_1 .

Fixons un point $x \in E$.

DÉFINITION 2. Pour A,BCE fermés quelconques, et un réel positif R, on définit $A_R = A \cup (E - B(x_O, R))$ et $B_R = B \cup (E - B(x_O, R))$. Comme $A_R = B_R$ sont dans $A_R = B_R$ on peut définir aussi

$$d_{R}(A,B) = D(A_{R},B_{R}) .$$

une application de S dans F. On dit que X est semi continue supérieurement (s.c.s.) au point s_0 si pour tout R>0 et pour toutes les suites $\{s_n\}$ dont $s_n \to s_0$ on a $\delta(X_R(s_n), X_R(s_0)) \to 0$. Par contre, on dit que X est semi continue inférieurement (s.c.i.) au point s_0 si $\delta(X_R(s_0), X_R(s_n)) \to 0$ pour tout R>0 et pour toutes les suites $\{s_n\}$ telles que $s_n \to s_0$. On dit que X est continue au point s_0 si elle est en même temps s.c.s. et s.c.i. à ce point

C'est le sens à donner à la convergence dans l'énoncé du théorème du §1.

PROPOSITION 2.1. Soient E un espace métrique localement compact à boules fermées compactes, S un espace métrique et $X \subset S \times E$. On note X(s) pour $s \in S$ l'ensemble des $x \in E$ tels que $(s,x) \in X$. Alors les deux conditions suivantes sont équivalentes :

1) X est fermé dans S×E

est la multiplication par ρ).

2) pour tout $s \in S$, X(s) est fermé dans E et l'application $s \rightarrow X(s)$ est s.c.s. à ce point.

1) \Longrightarrow 2). De E compact et X fermé, on déduit directement que X(s) est fermé pour s \in S . Si X n'est pas s.c.s. au point s_o, alors $\exists \ x_n \in X(s_n)$ avec $s_n \longrightarrow s_o$ et $x_n \longrightarrow x_o$ tels que $d(x_n, X(s_o)) \ge \varepsilon_o$, où ε_o est un constant (pour tout n), donc $f(x_o, X(s_o)) \ge \frac{\varepsilon_o}{2}$, contradiction avec $(s_o, x_o) \in X$.

2) \Longrightarrow 1). Supposons qu'il existe $\{(x_n,s_n)\}\subset X$ avec $(x_n,s_n)\longrightarrow (x_o,s_o)$ et que $(x_o,s_o)\ \overline{\in}\ X$. Comme $X(s_o)$ est fermé, il existe $\varepsilon>0$ tel que $d(x_o,X(s_o))\ge 2\varepsilon_o$. Donc quand n est assez grand on a $d(x_n,X(s_o))>\varepsilon_o$ cela induit $\delta(X(s_n),X(s_o))>\varepsilon_o$, contradiction avec la semi-continuité supérieure de X au point s_o . cqfd.

PROPOSITION 2.2. Soient U,V deux voisinages de 0 dans \mathbb{C}^n et $\varphi: U \longrightarrow V$ un isomorphisme de classe C_1 avec $\varphi(0) = 0$ et $T_0 \varphi = T$ non singulier. Si $A \subset U$ est un sous-ensemble fermé et $B = \varphi(A)$, alors pour $\rho \in \mathbb{C}$ variable et pour tout R > 0 fixé, on a $d_R(\rho(TA), \rho B) \longrightarrow 0$ quand $|\rho| \longrightarrow \infty$. $(T: z \longrightarrow Tz)$ est une application linéaire et $\rho: (z_1, \ldots, z_n) \longrightarrow (\rho z_1, \ldots, \rho z_n)$

Supposons $0 \in A$. Pour $\varepsilon > 0$, et $y \in (\rho(TA) \cap D_R \cup \partial D_R$, si $d(y,\partial D_R) < \varepsilon$, alors $d(y,(\rho B)_R) < \varepsilon$. Sinon, prenons le point $z \in A$ tel que $y = \rho.Tz$. Alors $\phi(z) \in B$ et $d(y,\rho\phi(z)) = \|y-\rho\phi(z)\| = \|\rho\|.\|z\|.\|\frac{\rho(z)-Tz}{\|z\|} = \|\rho z\|.\|\frac{\phi(z)-Tz}{\|z\|}$ $< R\|T^1\|\frac{\phi(z)-Tz}{\|z\|}$. L'hypothèse $T \circ \phi = T$ nous dit qu'il existe N > 0 et $\tau > 0$ tels que $|\rho| > N$ entraîne $|z| = |T^{-1}(Tz)| < C\frac{R}{|\rho|} < \tau$ et puis $R\frac{|\phi(z)-Tz|}{|z|} < \frac{\varepsilon}{2}$ où $C = \|T\|^{-1}$. Cette valeur de N ne dépend pas du choix de y. De $d(y,\rho\phi(z)) < \frac{\varepsilon}{2}$; on a $\rho\phi(z) \in D_R$. Donc $|\rho| > N$ nous donne $\delta((\rho(TA))_R,(\rho B)_R) < \varepsilon$. Idem pour $\delta((\rho B)_R,(\rho(TA)_R)$. cqfd.

§3. LE PROBLÈME DE LA LINEARISATION.

Pour $c \in M$ point de Misurewicz, on a

PROPOSITION 3.1. Il existe un voisinage W de c dans C tel que il y ait une fonction holomorphe $\alpha: \mathbb{W} \longrightarrow \mathbb{C}$ avec $\alpha(c_0) = \alpha_0$ et $f_c^k(\alpha(c)) = \alpha(c)$ pour tout $c \in \mathbb{W}$. De plus, pour $\rho(c) = (f_c^k)'(\alpha(c))$

$$\mu = \inf_{c \in W} |\rho(c)| > 1$$
.

LEMME 1. Soient U,V deux voisinages de 0 dans C et f:U $\xrightarrow{\sim}$ V une fonction holomorphe avec f(0) = 0 et |f'(0)| < 1 . Alors il existe U₁ \subset U tel que $f(U_1) \subset U_1$ et que $f(U_1) \subset U_1$ et que $f(U_1) \subset U_1$ converge uniformément sur tout compact de U_1 .

 $\begin{array}{c} \underline{\text{D\'emonstration}} : \text{ On a d'abord } f(z) = f'(0)z + \frac{1}{2}f''(0)z^2 + O(|z|^2) = f'(0)z + \\ f'(0)\omega(z) \quad \text{où } |\omega(z)| < B|z|^2 \quad \text{avec } B > \frac{1}{|f'(0)|} \cdot \frac{1}{2}|f''(0)| \cdot \text{ Pour } z_0 \in U \text{ , notons} \\ z_n = f^n(z_0) = f(z_{n-1}) \text{ , alors } \frac{f^{n+1}(z_0)}{(f'(0))^{n+1}} = z_0 \frac{f(z_0)}{f'(0)z_0} \cdot \frac{f(z_1)}{f'(0)z_1} \cdot \cdot \cdot \frac{f(z_n)}{f'(0)z_n} = \\ z_0 \stackrel{n}{\underset{i=0}{\longleftarrow}} (1 + \frac{\omega(z_i)}{z_i}) \text{ . Si } z_0 \in D_R \subset U \text{ , alors } |z_1| < (|f'(0)| + BR|f'(0)|)|z_0| = a|z_0| \end{array}$

où a = |f'(0)|+BR|f'(0) . Pour que a<1 , il suffit R< $\frac{1-|f'(0)|}{B|f'(0)|}$ = R₁ . Fixons R₀ \in]0,R₁[, on a $f(D_R) \subset D_R$. Si $z_0 \in D_R$, alors $|z_n| < a^n |z_0|$. Il en résulte que $\sum_{n=0}^{\infty} |z_n|$ converge uniformément sur tout compact de D_R , ainsi que $\sum_{n=0}^{\infty} \frac{\omega(z_n)}{z_n}$ car $\left|\frac{\omega(z_n)}{z_n}\right| < B|z_n|$. Cela induit que $\sum_{n=0}^{\infty} \log(1+\frac{\omega(z_n)}{z_n})$ et puis $\pi(1+\frac{\omega(z_n)}{z_n})$ convergent uniformément sur tout compact de D_R . cqfd.

LEMME 2. Cas de grande dimension. Soit U un voisinage de (c_0, α_0) dans $\mathbb{C}^{n+1} = \mathbb{C}^n \times \mathbb{C} = \{(\lambda, z)\}$. Soit $f: U \longrightarrow \mathbb{C}^{n+1}$ une fonction holomorphe avec $f(\lambda, z) = (\lambda, f_{\lambda}(z))$ et $f(c_0, \alpha_0) = (0, 0)$. Supposons $|f'_0(0)| < 1$. Alors la suite des fonctions $\phi_n: (\lambda, z) \longrightarrow (\lambda, (f'_{\lambda}(\alpha(\lambda)))^{-n}(f^n_{\lambda}(z) - \alpha(\lambda)))$ converge sur une fonction holomorphe ϕ de $U_1 \subset U$ dans \mathbb{C}^{n+1} , où $\alpha(\lambda)$ est la solution implicite de l'équation $f_{\lambda}(z) - z = 0$. ϕ est de la forme $\phi(\lambda, z) = (\lambda, \phi_{\lambda}(z))$ avec $\phi'_{\lambda}(\alpha(\lambda)) = 1$ et $\phi_{\lambda}(f_{\lambda}(z)) = f'_{\lambda}(\alpha(\lambda))\phi_{\lambda}(z)$.

lemme précédent. En vertu d'un théorème de Weierstrass ([1]), la fonction $\phi_{\lambda} : \overset{O}{B}(\alpha(\lambda),R_{1}(\lambda)) \longrightarrow \mathfrak{C} \quad (z \longrightarrow \lim_{n \to \infty} \frac{f_{\lambda}^{n}(z) - \alpha(\lambda)}{\left(f_{\lambda}^{'}(\alpha(\lambda))\right)^{n}}) \quad \text{est holomorphe et}$ $\phi_{\lambda}^{'}(z) = \lim_{n \to \infty} \frac{f_{\lambda}^{n'}(z)}{\left(f_{\lambda}^{'}(\alpha(\lambda))\right)^{n}} \quad \text{Dans notre cas, } \phi_{\lambda}^{'}(\alpha(\lambda)) = 1 \quad \text{La relation}$

 $\varphi_{\lambda}(f_{\lambda}(z)) = f_{\lambda}(\alpha(\lambda))\varphi_{\lambda}(z)$ est évidente. cqfd.

PROPOSITION 3.2 (Proposition de la linéarisation). Pour c_0 , W, f_c , $\alpha(c)$ et $\rho(c)$ de la proposition 3.1, il existe un voisinage Ω de $\{(c,\alpha(c))\}_{C\in W}$ dans $\mathbb{C}\times\mathbb{C}$, un réel R>0 et un isomorphisme $\phi\colon\Omega\to W\times D_R$ (D_R est le disque ouvert) avec une famille de fonctions holomorphes $\phi_c\colon\Omega_c\to D_R$ (où Ω_c est l'ensemble des $y\in\mathbb{C}$ tels que $(c,y)\in\Omega$) tels que pour $c\in W$

a)
$$\varphi(c,z) = (c,\varphi_c(z))$$

b)
$$\varphi_{C}(\alpha(c)) = 0$$

c)
$$\underline{\text{si}}$$
 (c,z) $\in \Omega$ $\underline{\text{et}}$ (c, $f_{C}^{k}(z)$) $\in \Omega$, on ait

$$\varphi_{C}(f_{C}^{k}(z)) = \rho(c)\varphi_{C}(z)$$

d) si (c,z) $\in \Omega$ et ρ (c) ϕ_{c} (z) $\in D_{\text{R}}$, on ait

$$f_C^k(z) \in \Omega_C \quad \underline{\text{et}} \quad \rho(c)\phi_C(z) = \phi_C(f_C^k(z))$$

e) $\phi_{C}^{1}(\alpha(c)) = 1$.

On dit que ϕ_{λ} est la coordonnée linéarisante.

Donnons-nous maintenant quelques notations utiles :

- a) K est l'ensemble des (c,z) $\in \mathbb{W} \times \mathbb{C}$ tels que $z \in \mathbb{K}_{_{\mathbf{C}}}$, donc K = U $\{\mathbf{c}\} \times \mathbb{K}_{_{\mathbf{C}}}$
 - b) $Y_R = \varphi(\Omega \cap K) \subset W \times D_R$
- c) Y_R(c) est l'ensemble des y \in D_R tels que (c,y) \in Y_R, i.e. Y_R(c) = $\phi_{\rm C}(\Omega_{\rm C}\cap K_{\rm C})$

d)
$$Y(c) = \bigcup_{n=0}^{\infty} \rho(c)^n Y_R(c)$$

e)
$$Y = \bigcup_{C \in W} \{c\} \times Y(C)$$
.

PROPOSITION 3.3. Pour tout cew, on a

a)
$$\rho$$
 (c) $Y_R(c) \cap D_R = Y_R(c)$

b)
$$\rho(c) \ Y(c) = Y(c) \ \underline{et} \ \frac{1}{\rho(c)} \ Y(c) = Y(c) ;$$

Démonstration:

- a) Si $\rho(c)$ $y \in (\rho(c)Y_R(c)) \cap D_R$, ill existe $z \in \Omega_C \cap K_C$ tell que $y = \phi_C(z)$, donc $\rho(c)y = \phi_C(f_C^k(z)) \in Y_R(c)$ (d), proposition 3.2). Si $y \in Y_R(c)$, alors $y = \phi_C(z)$ et $\frac{y}{\rho(c)} = \phi_C(f_C^{-k}(z)) \in Y_R(c)$.
 - b) Evidemment. cqfd.

PROPOSITION 3.4 Pour tout entier $i \ge 0$, $(f_{c_0}^i)'(c_0) \ne 0$.

THÉORÈME 1. Pour $c_0 \in M$ un point de Misurewicz, on a $\rho(c_0)^n \tau_{-c_0}(K_{c_0}) \longrightarrow \frac{1}{(f_{c_0}^{\ell-1})'(c_0)} Y(c_0) .$

§4. UNE PROPOSITION TECHNIQUE.

Supposons que $\Lambda \subset \mathbb{C}$ est un voisinage de 0 et que $\rho:\Lambda \longrightarrow \mathbb{C}$ est une fonction holomorphe avec $|\rho(\lambda)| > 1$ pour tout $\lambda \in \Lambda$. Soit $X \subset \Lambda \times \mathbb{C}$ un ensemble invariant par $(\lambda, x) \longrightarrow (\lambda, \rho(\lambda) x)$ et $(\lambda, x) \longrightarrow (\lambda, \frac{1}{\rho(\lambda)} x)$, on note $X(\lambda)$ l'ensemble des $x \in \mathbb{C}$ tels que $(\lambda, x) \in X$. Supposons en plus que X est fermé et qu'il existe un sous-ensemble $A \subset X(0)$ dense dans X(0) tel que A soit invariant par $x \longrightarrow \frac{1}{\rho(0)} x$ et $x \longrightarrow \rho(0) x$, et que pour tout $x \in A$, il existe un ouvert U_x voisinage de 0 dans Λ avec une fonction holomorphe $\xi_x: U_x \longrightarrow \mathbb{C}$ $(\lambda \longrightarrow \xi_x(\lambda))$ tel que $\xi(0) = x$ et $\xi(\lambda) \in X(\lambda)$. Soit $u: \Lambda \longrightarrow \mathbb{C}$ une fonction holomorphe avec u(0) = 0 et $u'(0) \neq 0$, notons M_u l'ensemble des $\lambda \in \Lambda$ tels que $(\lambda, u(\lambda)) \in X$.

Sous toutes ces hypothèses-là, on affirme

PROPOSITION 4.1. a)
$$X(\lambda) \longrightarrow X(0)$$
 quand $\lambda \longrightarrow 0$. b) $\rho(0)^n M_u \longrightarrow \frac{1}{u!(0)} X(0)$ quand $n \longrightarrow +\infty$.

démontrer

$$\delta \left(\mathsf{A} \cap \mathsf{D}_{\mathsf{R}} \cup \, \partial \mathsf{D}_{\mathsf{R}}, \mathsf{X} \left(\lambda \right) \cap \mathsf{D}_{\mathsf{R}} \cup \, \partial \mathsf{D}_{\mathsf{R}} \right) \, \longrightarrow \, 0 \ .$$

Supposons au contraire, qu'il existe un constant $\epsilon_{\text{O}} > 0$ et deux suites $\{x_n\} \subset A \cap D_R$ et $\{\lambda_n\} \subset A$ tels que $\lambda_n \longrightarrow 0$ et $d(x_n, X_R(\lambda_n)) \ge 2\epsilon_{\text{O}}$. Comme $X(0) \cap D_R \cup \partial D_R$ est compact, on peut supposer $x_n \longrightarrow x_{\text{O}}$ avec $x_{\text{O}} \in X(0) \cap D_R$. Pour n assez grand et $y \in X(\lambda_n) \cap D_R$, on a

$$2\varepsilon_{0} \le d(x_{n}, y) \le d(x_{n}, x_{0}) + d(x_{0}, y) < \varepsilon_{0} + d(x_{0}, y)$$
.

Par conséquent $d(x_0, X_R(\lambda_n)) \geq \varepsilon_0$, donc il existe $\widetilde{x} \in A \cap D_R$ tel que $d(\widetilde{x}, X_R(\lambda_n)) \geq \frac{1}{2}\varepsilon_0$ quand n estassez grand. D'autre part, comme il y a un voisinage $U_{\widetilde{X}}$ de 0 associé à \widetilde{x} par l'hypothèse, il existe $n_1 > 0$, tel que quand $n > n_1$, on ait $\lambda_n \in U_{\widetilde{X}}$ et puis $\xi_{\widetilde{X}}(\lambda_n) \in X(\lambda_n)$, de plus, il existe aussi $n_2 \geq n_1$ tel que quand $n > n_2$, $|\lambda_n|$ soit assez petit pour que $|\xi_{\widetilde{X}}(\lambda_n) - \widetilde{x}| < \frac{\varepsilon_0}{2}$, donc $n > n_2$ entraîne $d(\widetilde{x}, X(\lambda_n)) < \frac{\varepsilon_0}{2}$, i.e. $d(\widetilde{x}, X_R(\lambda_n)) < \frac{\varepsilon_0}{2}$. Absurde.

b) (1) Semi-continuité supérieure. Il faut démontrer

$$\forall R > 0 \ , \ \delta((\rho(0)^n \underline{M}_{\underline{u}}) \cap \underline{D}_R \cup \partial \underline{D}_R, (\frac{1}{\underline{u'(0)}} \ X(0)) \cap \underline{D}_R \cup \partial \underline{D}_R) \ \longrightarrow \ 0 \ .$$

Pour $\varepsilon > 0$ et n assez grand, si $y = \rho(0)^n \lambda \in (\rho(0)^n M_U) \cap D_R$, on a $\lambda \in M_U$ et $|\lambda| \le \frac{R}{|\rho(0)|^n}$, donc $u(\lambda) \in X(\lambda)$ et $\rho(\lambda)^n u(\lambda) \in X(\lambda)$. Mais $d(\rho(\lambda)^n u(\lambda), \rho(0)^n u'(0) \lambda) = d(\rho(\lambda)^n u(\lambda), u'(0) y) = |y| \cdot \left| \frac{\rho(\lambda)^n}{\rho(0)^n} \cdot \frac{u(\lambda)}{\lambda} - u'(0) \right| < R \left| \frac{\rho(\lambda)^n}{\rho(0)^n} \cdot \frac{u(\lambda)}{\lambda} - u'(0) \right| \cdot Comme \left| \log \frac{\rho(\lambda)^n}{\rho(0)^n} \right| = \left| n \cdot \lambda \frac{\log \rho(\lambda) - \log \rho(0)}{\lambda} \right| = |y| \cdot \left| \frac{n}{\rho(0)^n} \right| \cdot \left| \frac{\log \rho(\lambda) - \log \rho(0)}{\lambda} \right| < R \left| \frac{\rho'(0)}{\rho(0)} + o(\lambda) \right| \cdot \left| \frac{n}{\rho(0)^n} \right| \to 0 \text{ quand}$

 $n \rightarrow +\infty$, donc

 $n > N_2$ et $y \in (\rho(0)^n M_u) \cap D_R$, on ait $d(u'(0)y, \rho(\lambda)^n u(\lambda)) < \frac{\varepsilon}{2}$. Donc quand $n_1 > \max\{N_1, N_2\}$, pour tout $y \in (\rho(0)^n M_1) \cap D_R$, on a

$$\begin{split} d(u'(0)y, & X_{2|u'(0)|R}(0)) & \leq d(u'(0)y, \rho(\lambda)^n u(\lambda)) + \\ & + d(\rho(\lambda)^n u(\lambda), & X_{2|u'(0)|R}(0)) < \varepsilon \end{split}$$

(2) Semi-continuité inférieure : $\delta((\frac{1}{u'(0)}X(0))_R, (\rho(0)^nM_u)_R) \rightarrow 0$. On est obligé de démontrer un lemme préalable.

- LEMME. Soit $x \in A \cap D_R$, et soit $\xi_x : U_x \to \mathbb{C}$ l'application associée. a) Il existe Λ_x voisinage de 0 dans U_x et $n_x > 0$, tels que $\forall n \geq n_x$,
- $\exists ! \lambda_n \in \Lambda_x \quad \underline{\text{v\'erifiant}} \quad \rho(\lambda_n)^n u(\lambda_n) = \xi_x(\lambda_n).$
- b) $\lambda_n \in M_u$, $\lambda_n \longrightarrow 0$ et $\rho(0)^n u'(0) \lambda_n \longrightarrow x$.

<u>Démonstration</u>: a) Le fait que $\xi_{\mathbf{X}}(\lambda) \in \mathbf{X}(\lambda)$ induit $\frac{1}{\alpha(\lambda)^n} \xi_{\mathbf{X}}(\lambda) \in \mathbf{X}(\lambda)$. Choisissons a > 0 tel que $\Lambda_x = D_a \subset U_x$ et que $u'(\lambda) \neq 0$ pour $\lambda \in \overline{D}_a$, donc deg $u_{|\partial D_a} = 1$. Il existe n > 0 tel que quand $n \ge n$, $\left| \frac{\xi_{\mathbf{x}}(\lambda)}{\rho(\lambda)^n} \right|_{\lambda \in \overline{D}_2} < \inf_{\lambda \in \partial D_2} |u(\lambda)|$. Notons h_n l'application $\lambda \longrightarrow u(\lambda) - \frac{\xi_X(\lambda)}{o(\lambda)^n}$, alors elle est holomorphe dans U_X et

 $h_n \Big|_{\partial D_a} \neq 0$, de plus, $h_n \Big|_{\partial D_a}$ est de degré 1. Cela induit que h_n possède un seul zéro dans D_a ([3], 10.43), i.e. il existe $\lambda_n(x) \in D_a \subset U_x$ unique tel que

 $u(\lambda_n) = \frac{\varsigma_x(\lambda_n)}{\rho(\lambda_n)} \in X(\lambda_n)$, quand $n > n_x$.

b) $\lambda_n(x) \in M_u$ et $\lambda_n(x) \longrightarrow 0$ $(n \to \infty)$ sont évidents, donc $d(\rho(\lambda_n)^n u(\lambda_n), x) \longrightarrow 0$. Supposons $\mathbf{x} \in \mathsf{A} \cap \mathsf{D}_\mathsf{R}$, quitte à restreindre $\Lambda_\mathbf{x}$, on peut supposer $\boldsymbol{\xi_{x}(\lambda)} \in \mathbf{D}_{2R} \cap \mathbf{X(\lambda)} \quad \text{pour} \quad \boldsymbol{\lambda} \in \boldsymbol{\Lambda}_{x} \text{ , alors } \left| \boldsymbol{\rho(\lambda_{n})}^{n} \mathbf{u(\lambda_{n})} - \boldsymbol{\rho(0)}^{n} \mathbf{u'(0)} \boldsymbol{\lambda_{n}} \right| \approx$

$$\approx \left| \rho(\lambda_n)^n u(\lambda_n) \right| \cdot \left| 1 - \frac{\rho(0)^n}{\rho(\lambda_n)^n} \right| = \left| \xi_x(\lambda_n) \right| \cdot \left| 1 - \frac{\rho(0)^n}{\rho(\lambda_n)^n} \right| < 2R \left| 1 - \frac{\rho(0)^n}{\rho(\lambda_n)^n} \right| . \text{ Mais}$$

$$\left|\log \frac{\rho(\lambda_n)^n}{\rho(0)^n}\right| = \left|n \cdot \lambda_n \left(\frac{\rho'(0)}{\rho(0)} + o(\lambda_n)\right)\right| \quad \text{et} \quad n\lambda_n = n\left(\frac{u(\lambda_n)}{u'(0)} + o_1(\lambda_n)\right) =$$

$$= n \frac{\xi(\lambda_n)}{\rho(\lambda_n)^n} + n\lambda_n \frac{o(\lambda_n)}{\lambda_n} \quad \text{donc} \quad |n\lambda_n| < 2R \left| \frac{n}{\rho(\lambda_n)^n} \right| \left| \frac{1}{(1 - \frac{o(\lambda_n)}{\lambda_n})} \right| \to 0 \quad (n \to +\infty)$$

$$\left| \log \frac{\rho(\lambda_n)^n}{\rho(0)^n} \right| \to 0 \quad (n \to +\infty), \quad \text{d'où} \quad d(\rho(\lambda_n)^n u(\lambda_n), \rho(0)^n u'(0)\lambda_n) \to 0$$

$$(n \to +\infty), \quad \text{par conséquent,} \quad \rho(0)^n u'(0)\lambda_n \to x.$$
Then the Lemma

Fin du Lemme.

DEMONSTRATION DE (2) b PROPOSITION 4.1.

Pour R > 0 et $\epsilon > 0$, posons

$$V_{\varepsilon} = D_{R+\frac{\varepsilon}{2}} - \overline{D}_{R-\frac{\varepsilon}{2}}$$
.

Pour tout $x \in A$, posons $D(x,\frac{\varepsilon}{2})$ l'ensemble des $y \in \mathbb{C}$ telsque $|y-x| < \frac{\varepsilon}{2}$. Alors les $V_{\varepsilon} \cup U \cup D(x,\frac{\varepsilon}{2})$ forment un recouvrement ouvert de $X(0) \cap D_R \cup \partial D_R$, $x \in A \cap D_R$ donc il existe $x_1, \ldots, x_k \in A \cap D_R$ tels que $X(0) \cap D_R \cup \partial D_R \subset V_{\varepsilon} \cup \bigcup D(x_j,\frac{\varepsilon}{2})$. Pour ces $x_j \in A$, d'après le lemme qu'on vient de démontrer, il existe $\{\lambda_n(x_j)\} \subset M$ avec $\lambda_n(x_j) \longrightarrow 0$ $(n \longrightarrow +\infty)$ et $N_j > 0$ tel que $n > N_j$ entraîne $d(x_j, \rho(0)^n u'(0) \lambda_n(x_j)) < \frac{\varepsilon}{2}$, d'où $d(x_j, u'(0) \rho(0)^n M_U \cap D_R \cup \partial D_R) < \frac{\varepsilon}{2}$. Donc pour $n > N = \max\{N_1, N_2, \ldots, N_k\}$ et $x \in X(0) \cap D_R \cup \partial D_R$, si $x \in V_{\varepsilon}$, alors $d(x, (u'(0) \rho(0)^n M_U)_R) < \frac{\varepsilon}{2}$; si $x \in D(x_j, \frac{\varepsilon}{2})$ pour quelque j, alors

$$d(\mathbf{x}, \mathbf{u}'(0) \rho(0)^{n} \lambda_{n}(\mathbf{x}_{j})) \leq d(\mathbf{x}, \mathbf{x}_{j}) + d(\mathbf{x}_{j}, \mathbf{u}'(0) \rho(0)^{n} \lambda_{n}(\mathbf{x}_{j}))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon , \text{ donc}$$

$$d(x, (u'(0)\rho(0)^{n}M_{11})_{p}) < \varepsilon$$
.

Finalement on a démontré que pour R>0 et ϵ >0, il existe N>0 tel que n>N entraı̂ne $d(\frac{x}{u'(0)},(\rho(0)^nM_u)_R)<\epsilon$ pour $x\in(\frac{1}{u'(0)}X(0))_R$, d'où $\delta((\frac{1}{u'(0)}X(0))_R,(\rho(0)^nM_u)_R)<\epsilon$. cqfd.

§5. CONVERGENCE DE $\rho(c_0)^n \tau_{-c_0}(M)$.

Revenons à K_c et à M .

PROPOSITION 5.1. Soit $v(c) = \phi_C(f_C^{\ell}(0))$ où ϕ_C est la coordonnée linéarisante, alors $v'(c_0) \neq 0$.

$$\lim_{c \to c_{O}} \frac{\Phi(c,\alpha_{O}) - \Phi(c_{O},\alpha_{O})}{c - c_{O}} = \lim_{c \to c_{O}} \frac{\Phi(c,\alpha_{O}) - \Phi(c,\alpha(c))}{c - c_{O}} =$$

$$= -\Phi'_{z}(c_{O},\alpha_{O}) \cdot \alpha'(c_{O}) = -\alpha'(c_{O}).$$

Donc $v'(c_0) = u'(c_0) - \alpha'(c_0) = \omega'(c_0)$ où $\omega(c) = u(c) - \alpha(c)$. En vertu d'un lemme du chapitre V de [2], $\omega'(c_0) \neq 0$, d'où $v'(c_0) \neq 0$. cqfd.

THEORÈME 2.
$$\rho(c_0)^n \tau_{-c_0}(M) \rightarrow \frac{1}{v'(c_0)} Y(c_0) \quad (n \rightarrow \infty)$$
.

<u>Démonstration</u>: Le résultat est en fait une conséquence directe de la proposition 4.1. Il reste seulement à établir la correspondance entre les résultats obtenus de M et les conditions de cette proposition.

On peut dire que M est l'ensemble des $c \in \mathbb{C}$ tels que $u(c) = f_C^{\ell}(0) \in K_C$. Donc W \(M \) est l'ensemble des $c \in \mathbb{C}$ tels que $v(c) = \phi_C(u(c)) \in Y(c)$. Quitte à restreindre W , on peut supposer que \(\Lambda = \tau_{-C_C}(W) \) est un voisinage de 0 .

Soient X l'image de Y par $(c,z) \longrightarrow (c-c_0,z)$ et $X(c-c_0) = Y(c)$. Notons $\widetilde{M} = \tau_{-c_0}(W \cap M)$ l'ensemble des $c \in \mathbb{C}$ tels que $\widetilde{v}(\lambda) = v(\lambda + c_0) \in X(\lambda)$, alors

$$\begin{split} \widetilde{v}(0) &= v(c_0) \quad \text{et} \quad \widetilde{v}'(0) = v'(c_0) \neq 0. \text{ Notons en plus } \widetilde{\rho}(\lambda) = \rho(\lambda + c_0) \quad \text{pour } \lambda \in \Lambda \;. \\ \text{En vertu de la proposition 3.3, } X(\lambda) \quad \text{est invariant par } x \longrightarrow \widetilde{\rho}(\lambda) x \quad \text{et} \\ x \longrightarrow \frac{1}{\widetilde{\rho}(\lambda)} \; x \;. \; \text{B} \; \text{ désignera l'ensemble des } \; z \in \mathbb{C} \; \text{ tels que } \; z \; \text{ soit un point} \\ \text{prépériodique répulsif de } \; f_{C_0} \quad \text{et que l'orbite de } \; z \; \text{ par } \; f_{C_0} \; \text{ ne contienne pas} \end{split}$$

0 , alors B est dense dans K par le théorème de Fatou. Pour z \in B \cap Ω , o

il existe $z_1 \in K_C \cap \Omega_C$ tel que $z = f_C^k(z_1)$ (c), proposition 1.2), donc

 $z_1 \in B \cap \Omega_{C}$. D'autre part, $f_{C}^k(z) \in B$, donc

Pour un point $y_0 \in A$, il existe $z_0 \in B \cap \Omega_{C_0}$ tel que $y_0 = \rho(c_0)^n \phi_{C_0}(z_0)$. Posons

$$\eta(c) = \rho(c)^{n} \varphi_{C}(g(c)) \text{ pour } c \in V_{Z_{O}}$$

alors η est holomorphe avec $\eta(c_0) = \rho(c_0)^n \phi_{c_0}(z_0) = y_0$ et $\eta(c) \in Y(c)$. Posons en plus $U_{Y_0} = \tau_{-c_0}(V_{Z_0})$ et $\xi(\lambda) = \eta(\lambda + c_0)$, alors $\xi(0) = \eta(c_0) = y_0$ et $\xi(\lambda) \in Y(\lambda + c_0) = X(\lambda)$. C'est-à-dire pour tout $x \in A \subset X(0)$, il existe un voisinage U_X de 0 avec $U_X \subset A$ et une fonction holomorphe $\xi_X : U_X \longrightarrow \mathbb{C}$ telle que $\xi_X(0) = x$ et que $\xi_X(\lambda) \in X(\lambda)$, donc toutes les conditions de la proposition 4.1 sont parfaitement remplies, on peut affirmer finalement

$$\widetilde{\rho}(0)^{n}\widetilde{M} \longrightarrow \frac{1}{\widetilde{\nabla}'(0)} X(0)$$

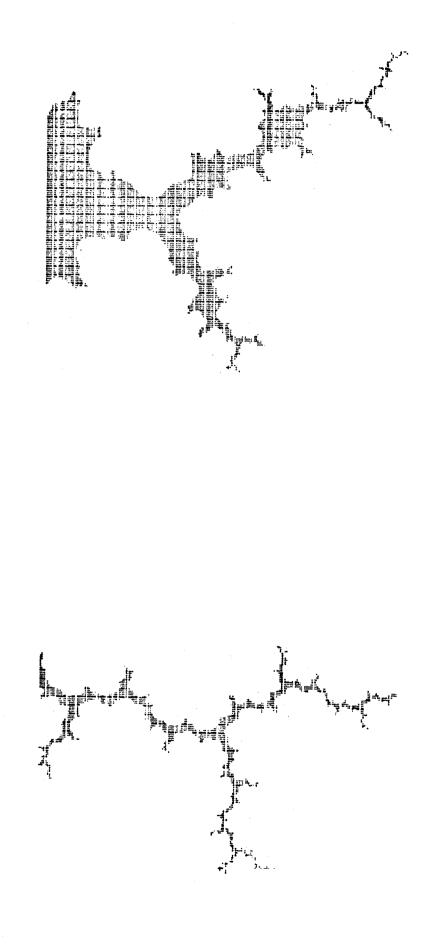
i.e.
$$\rho(c_0)^n \tau_{-c_0}(W \cap M) \longrightarrow \frac{1}{v'(c_0)} Y(c_0)$$
. cqfd.

- [1] L.V. AHLFORS. Complex analysis.
- [2] A. DOUADY et J.H. HUBBARD. On the dynamics of polynomial like mapping, à paraître aux Annales de l'Ecole Normale Supérieure, 1985, 2.
- [3] W. RUDIN. Real and complex analysis.

k= 15 n= 188 TAN---l'ensemble de Julia w= 15 c= 8 + 1 i, p= 4 + 4 i, m= 4 , p' L= .4614258 le nombre des points allumés= 1763

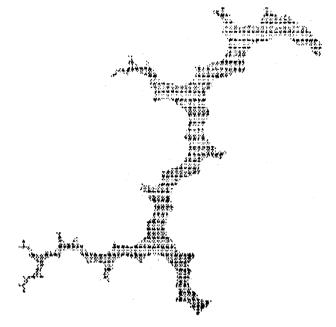
le nombre des points allumés= 6319

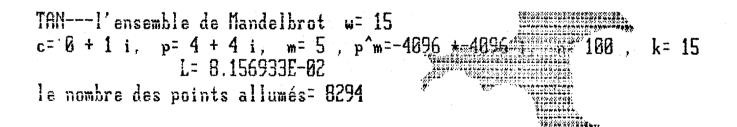
TAN---I' ensemble de Mandelbrot



TAN---l'ensemble de Julia w=15 c= 0 + 1 i, p= 4 + 4 i. m= 5 , p^m=-4096 +-4096 i, n= 100 , k= 15 L= 8.156933E-02

le nombre des points allumés= 3568





BIBLIOGRAPHIE

- BAKER I., Completely invariant domains of entire functions, Mathematical essays dedicated to A.J. MacIntyre, Ohio University Press, 1970.
- BLANCHARD P., Complex analytic dynamics on the Riemann sphere, Bull. A.M.S. (cet article contient une bibliographie assez complète jusqu'en 1983).
- BROLIN H., Invariant sets under iteration of rational functions, Arkiv for Matematik 6 (1965), 103-144.
- CAMACHO C., On the local structure of conformal mappings and holomorphic vector fields, Astérisque 59-60 (1978), 83-84.
- COLLET P., Local C^{∞} conjugacy on the Julia set for some holomorphic perturbations of $z \rightarrow z^2$, IMA Preprint # 18, Institute for Math. and its applications, Minneapolis, Minnesota.
- CURRY J., GARNETT L. and SULLIVAN D., On the iteration of a rational function: computer experiments with Newton's method, to appear in Comm. of Math. Physics.
- DEVANEY R., The structural instability of Exp(z), Preprint.
- DEVANEY R. and KRYCH M., Dynamics of Exp(z), To appear in the Journal of Ergodic Theory and Dynamical Systems.
- DOUADY A., Systèmes dynamiques holomorphes, Séminaire Bourbaki, 35e année, 1982-83, exposé nº 599, novembre 1982.
- DOUADY A., Etude dynamique des polynômes quadratiques complexes et ses réinvestissements, Conférence, Journée annuelle SMF, 26 janvier 1985.
- DOUADY A., Veins of the Mandelbrot sets, Abstracts from workshop on rational maps, M.S.R.I., Berkeley, CA (USA), 26-30 mars 1984.
- DOUADY A., Algorithms for computing angles in the Mandelbrot sets, Proc. of the Conference on chaotic dynamics, Georgia Tech., Atlanta (USA) Avril 1985.
- DOUADY A., Itération de polynômes complexes, Image des Mathématiques, à paraître au Courrier du C.N.R.S.
- DOUADY A. and HUBBARD J., Iteration des polynômes quadratiques complexes, C.R. Acad. Sc. Paris, t. 294, série I, 123-126.
- DOUADY A. and HUBBARD J., On the dynamics of polynomial like mappings, à paraître aux Ann. ENS.
- **DOUADY** A. and HUBBARD J., A proof of Thurston's topological characterization of rational functions, Preprint Institut Mittag-Leffler.

- GUCKENHEIMER J., Endomorphisms of the Riemann sphere, Proc. of Symposium of Pure Math., vol. 14, edited by S. Chern and S. Smale AMS, Providence, RI (USA), 1970.
- HERMAN M., Exemples de fractions rationnelles ayant une orbite dense sur la sphère Riemann, Preprint.
- HERMAN M., Lecture notes on an easy proof of Siegel's theorem, see also appendice VII of the preceding.
- JAKOBSON M., Structure of polynomial mappings on a singular set, Mat. Sbornik 80 (1968), 105-124 (Russian); Math. USSR 6 (1968), 97-114 (english).
- JAKOBSON M., On the problem of the classification of polynomial endomorphisms of the plane, Mat. Sbornik 80 (1969), 365-387 (Russian); Math. USSR 9 (1969), 345-364 (english).
- MANDELBROT B., Fractal aspects of the iteration of $z \rightarrow \lambda z(1-z)$ and z; Annals of NY Acad. Sc. 357 (1980), 249-259.
- MANE R., SAD P. and SULLIVAN D., On the dynamics of rational maps, Ann. ENS.
- MANTON N.S., and NAUENBERG M., Universal scaling behavior for iterated maps in the complex plane, Preprint.
- MISIUREWICZ M., On iterates of e^{Z} , Ergodic Theory and Dynamical Systems 1 (1981), 103-106.
- REES M., Ergodic rational maps with dense critical point forward orbit, University of Minnesota, Math. Report 82–140.
- REES M., Positive measure sets of ergodic rational maps, University of Minnesota, Math. Report 82-169.
- SULLIVAN D., Quasi conformal homeomorphisms and dynamics I, Preprint.
- SULLIVAN D., Quasi conformal homeomorphisms and Dynamics III: Topological conjugacy classes of analytic endomorphisms, Preprint.
- SULLIVAN D. and THURSTON W., Extending holomorphic motions, Preprint.
- THURSTON W., Lecture notes, CBMS Conference, Univ. of Minnesota, Duluth.
- WIDOM M., Renormalization group analysis of quasi periodicity in analytic maps, Preprint.

