PUBLICATIONS

MATHEMATIQUES

D'ORSAY

84 - 02

ÉTUDE DYNAMIQUE DES POLYNÔMES COMPLEXES

(Première partie)

A. DOUADY & J.H. HUBBARD

Université de Paris-Sud

Département de Mathématique

Bât. 425

91405 ORSAY France

Code matière AMS (1980): 30 C 20 - C 60 -

39 B 10

Mots-clefs: systèmes dynamiques, fonctions holomorphes, ensembles de Julia, polynômes complexes, itération.

PUBLICATIONS

MATHEMATIQUES

D'ORSAY

84 - 02

ÉTUDE DYNAMIQUE DES POLYNÔMES COMPLEXES

(Première partie)

39460

A. DOUADY & J.H. HUBBARD

Université de Paris-Sud Département de Mathématique

Bât. 425

91405 ORSAY France

A. DOUADY & J.H. HUBBARD

Ce travail a pour but d'exposer des résultats obtenus par A. Douady et J.H. Hubbard en 1981-82. Les plus importants ont été énoncés, avec ou sans démonstration, dans [CRAS] et [Bbk].

Le présent texte est constitué par les notes rédigées chaque semaine par A. D. pour son cours "Systèmes dynamiques holomorphes" du 1er semestre 1983-84. On excusera les redites.

La terminologie est celle utilisée par A. D. Certains exposés, notamment "Tour de Valse" (2e partie), ont été mis au point avec la participation de Pierrette Sentenac.

Ce texte est destiné à être repris dans un ouvrage plus complet. Nous pensons cependant utile de le proposer dans l'état actuel au lecteur.

Nous remercions le Groupe de Topologie d'Orsay qui a permis cette publication, et Bernadette Barbichon qui a assuré l'éxécution de cette tâche avec compétence et gentillesse.

Première partie : Exposés nº I à VIII

Deuxième partie : Exposés nº IX et suivants, Appendices

[CRAS] A. DOUADY et J.H. HUBBARD, Itération des polynômes quadratiques complexes, CRAS, t. 294 (janvier 1982)

[Bbk] A. DOUADY, Systèmes dynamiques holomorphes, Séminaire Bourbaki, Novembre 1982.

Première PARTIE

	Page
Exposé nº I : OBJET DU COURS	3
Exposé nº II : COMPACTS de C	9
1. Chemins et arcs	9
2. Espaces compacts localement connexes	10
3. Le théorème de Carathéodory	11
4. Composantes de l'intérieur de K	13
5. Projection sur une composante	14
6. Arcs réglementaires	15
7. Arbres réglementaires	17
Exposé nº III : CONNEXITE LOCALE de CERTAINS ESPACES de JULIA	18
1 Engamble de Julia	18
1. Ensemble de Julia	19
 Représentation conforme de C-K_f Le lacet de Carathéodory 	20
4. Applications expansives et sous-expansives	22
5. Connexité locale pour les polynômes sous-hyperboliques	24
6. Points périodiques	2 4 25
7. Caractérisation des polynômes hyperboliques ou	ر2
sous-hyperboliques	26
Exposé nº IV : ARBRES de HUBBARD	30
0	30
1. Action sur $\pi_0(\check{K}_f)$	
2. Les centres des U_i	31
3. L'arbre de Hubbard	33
4. Cas du degré 2	35
Exposé nº V : ENSEMBLES de JULIA de MESURE NULLE	37
1. Distorsion	37
2. Densité	38
3. Le cas hyperbolique	39
4. Cas sous-hyperbolique : relèvement d'un revêtement	40
5. Cas sous-hyperbolique	43
Exposé nº VI : POSDRONASVILI	44
0. Notations et introduction	44
Partie combinatoire:	
1. L'arbre H ¹	45
2. La structure complémentaire	46
3. Reconstitution de H ¹	47
4. Décoration des arbres	48
5. Construction d'homéomorphismes	49
6. Ajustement à l'infini	51
Partie analytique:	
1. Rappel sur les applications quasi-conforme	53
2. Construction de Φ_0 et Φ_1	54
3. La suite (Φ_n)	55
4. Holomorphie de Φ_n	56
5. Conclusion	56

	Pi
Exposé nº VII : ARGUMENTS EXTERNES dans les	
ENSEMBLES de JULIA	. 5
1. Rappels et introduction	5
2. Accès	5
3. Arbre augmenté	5
4. Calculs des arguments externes	6
Exposé nº VIII : ARGUMENTS EXTERNES dans M des POINTS	. (
de MISURFWICZ	6
I. Représentation conforme des C-M	
1. Potentiel des ensembles de Julia	6
2. Points critiques de G_f	6
3. La fonction Φ · · · · · · · · · · · · · · · · · ·	6
II. Rayons externes des ensembles de Julia	
1. Comportements possibles	6
2. Rayons externes d'argument rationnel	7
3. Une propriété de stabilité	7
III. Récolte dans le plan des paramètres	7

OBJET DU COURS (1er semestre 83-84)

On étudiera la famille d'applications $P_c: z\mapsto z^2+c$ de $\mathbb C$ dans $\mathbb C$ d'un point de vue dynamique. Pour chaque c, on note K_c l'ensemble des z tels que $P_c^n(z)\mapsto\infty$ (ensemble de Julia rempli de P_c). D'après un théorème de Fatou et Julia (1919), K_c est connexe si $0\in K_c$ et est un Cantor sinon. On note M (ensemble de Mandelbrot) l'ensemble des c pour lesquels K_c est connexe, et M' l'ensemble des c pour lesquels C est connexe, et C et connexe, C et connexe, C est connexe, et C est connexe, et C est connexe, et C est connexe, C est connexe, et C est connexe, C est C est connexe, C est C est

- (MLC) <u>L'ensemble</u> M <u>est localement connexe</u>
- (HG2) <u>L'intérieur de</u> M <u>est</u> M'.

A défaut de démontrer l'une ou l'autre, nous avons l'intention de montrer que (MLC) \Rightarrow (HG2) .

Soit $K\subset \mathbb{C}$ un compact connexe plein (i.e. tel que C-K soit connexe). Il existe un couple (r,φ) unique tel que $r\in \mathbb{R}_+$ et que $\varphi=\varphi_K$ soit un homéomorphisme \mathbb{C} -analytique de $\mathbb{C}-K$ sur $\mathbb{C}-\overline{\mathbb{D}}_r$ avec $\varphi(z)/z \to 1$ quand $|z| \to \infty$. On dit que $r_K=r$ est le <u>rayon de capacité</u> de K. Pour $t\in \mathbb{T}=\mathbb{R}/\mathbb{Z}$, l'ensemble $\mathbb{R}(K,t)=\varphi_K^{-1}$ ($\{\rho\,e^{2i\pi\,t}\}_{\rho>r}$) est appelé le <u>rayon externe</u> de K d'argument t (les arguments sont comptés en tours et non en radians). Si $\varphi_K^{-1}(\rho\,e^{2i\pi\,t})$ a une limite $x\in K$ quand $\rho\to r_K$, on dit que $\mathbb{R}(K,t)$ <u>aboutit</u> en x, ou que x admet t comme <u>argument externe</u> dans K. Si K est localement connexe, en vertu d'un théorème de Carathéodory, tout rayon externe aboutit.

Fait très remarquable, on connaît φ_M , ainsi que les $\varphi_C = \varphi_{K_C}$ pour $c \in M$. Faute de (MLC), on ne sait pas que tout rayon externe de M aboutit. Cependant:

THEOREME. Tout rayon externe de M d'argument rationnel aboutit.

La situation se présente de façon différente pour les rationnels à dénominateur impair et les rationnels à dénominateur pair.

Si $t \in [0,1]$ est un rationnel à dénominateur impair, le rayon externe $\Re(M,t)$ aboutit en un point c tel que P_c admet un cycle indifférent rationnel. Chacun de ces points est obtenu pour 2 valeurs de t (sauf c=1/4 correspondant à t=0). Si t est à dénominateur pair, $\Re(M,t)$ aboutit en un point c tel que, par P_c , le point 0 tombe en un temps fini sur un cycle répulsif. Ces valeurs de c sont appelées points de Misurewicz. Chaque point de Misurewicz a un nombre fini d'arguments externes (tous rationnels à dénominateur pair).

La méthode qui mène à l'implication (MLC) \Rightarrow (HG2) est la suivante : Soient c_1 et c_2 deux points de M ayant des arguments externes θ_1 et θ_2 de la forme p/2k (quand un point a un argument externe de cette forme, il n'a pas d'autre argument externe).

En supposant M localement connexe, construisons des arcs topologiques Γ_1 et Γ_2 joignant 0 à c_1 et c_2 respectivement (en fait, on impose à ces arcs certaines conditions -"arcs réglementaires"). Soit c_3 le point où Γ_1 et Γ_2 se séparent. On montre que c_3 est un point de Misurewicz ou un centre de composante hyperbolique, et on peut construire son arbre à partir de ceux de c_1 et c_2 .

Si c est centre d'une composante hyperbolique W , appelons argument externe généralisé de c tout argument externe d'un point de ${}^{\circ}$ W . Dans les 2 cas, on montre que c_3 a au moins trois arguments externes (éventuellement généralisés) t_1 , t_2 , t_3 tels que $t_1 < \theta_1 \leqslant t_2 < \theta_2 \leqslant t_3$. Toute la partie combinatoire de cette étude peut se faire sans supposer M localement connexe -la définition de c_3 paraît alors artificielle.

Supposons maintenant que $\overset{\circ}{M}$ admette une composante farfelue (i.e. non hyperbolique) W . Soient w_1 , w_2 et w_3 trois points de $\eth W$, et u_1 , u_2 et u_3 des arguments externes de w_1 , w_2 , w_3 respectivement. Soient θ_1 et θ_2 de la forme p/2 k tels que $u_1 < \theta_1 < u_2 < \theta_2 < u_3$, et notons c_1 et c_2 les points d'aboutissement de $\overset{\circ}{\mathbb{R}}(M,\theta_1)$ et $\overset{\circ}{\mathbb{R}}(M,\theta_2)$. Construisons alors c_3 et t_1 , t_2 , t_3 comme plus haut. Posons $S = W \cup \{w_1, w_2, w_3\} \cup \overset{\circ}{\mathbb{R}}(u_1) \cup \overset{\circ}{\mathbb{R}}(u_2) \cup \overset{\circ}{\mathbb{R}}(u_3) = W \cup \overset{\circ}{\mathbb{R}}(u_1) \cup \overset{\circ}{\mathbb{R}}(u_2) \cup \overset{\circ}{\mathbb{R}}(u_3)$; $S' = \overset{\circ}{\mathbb{R}}(t_1) \cup \overset{\circ}{\mathbb{R}}(t_2) \cup \overset{\circ}{\mathbb{R}}(t_3) \cup v_3$ si c_3 est de Misurewicz et $S' = \overset{\circ}{\mathbb{R}}(t_1) \cup \overset{\circ}{\mathbb{R}}(t_2) \cup \overset{\circ}{\mathbb{R}}(t_3) \cup w'$ si c_3 est le centre de w' . Les ensembles s_3 , s_3 et $\overset{\circ}{\mathbb{R}}(t_3) \cup \overset{\circ}{\mathbb{R}}(t_3)$ doivent être disjoints et cela mène à une contradiction .

Remarque. Cette méthode ne permet pas d'exclure une composante farfelue dont l'adhérence rencontrerait celle de 2 rayons externes seulement. Cette situation risquerait de se produire si M n'était pas localement connexe.

RESULTATS SUPPOSES CONNUS

TOPOLOGIE. THEOREME DE JORDAN. $\Gamma \subseteq \mathbb{R}^2$, $\varphi \colon S^1 \to \Gamma$, homéomorphisme $\Rightarrow \exists \Phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ homéomorphisme, tel que $\phi_{|S^1} = \varphi$.

<u>COMPLEMENT</u>. L arc de a à b coupant Γ en un point c . On suppose qu'il existe un homéomorphisme ψ d'un voisinage U de c sur un voisinage V de 0 tel que $\psi(U \cap \Gamma) = V \cap (\mathbb{R} \times 0)$ et $\psi(U \cap L) = V \cap (0 \times \mathbb{R})$. Alors, a et b sont chacun dans une des composantes connexes de $\mathbb{R}^2 - \Gamma$.

On dit qu'un compact (resp. un ouvert borné) $A \subseteq \mathbb{R}^2$ est <u>plein</u> si \mathbb{R}^2 - A est connexe.

<u>PROPOSITION</u>. Soit $U \subseteq \mathbb{R}^2$ un ouvert borné connexe. Les conditions suivantes sont équivalentes :

- U est plein ;
- Pour toute courbe de Jordan $\Gamma\!\subset U$, le domaine de ${\rm I\!R}^2$ borné par Γ est contenu dans U ;
 - U est simplement connexe ;
 - $-H^{1}(U:\mathbb{Z}) = 0:$
 - $-H^{1}(U:\mathbb{Z}/2) = 0 : H^{1}(U:\mathbb{R}) = 0 :$
 - U est homéomorphe à D.

<u>PROPOSITION</u>. Soit $K \subset {\rm I\!R}^2$ un compact connexe. Les conditions suivantes sont équivalentes :

- K est plein;
- K admet un système fondamental de voisinages homéomorphes à \overline{D} :
- $H^{1}(K:\mathbb{Z}) = 0 :$
- $-H^{1}(K;\mathbb{R}) = 0 ; H^{1}(K;\mathbb{Z}/2) = 0 ;$
- Pour tout $a \in \mathbb{R}^2$ -K , le revêtement universel (resp. le revêtement

connexe de degré 2) de \mathbb{R}^2 a induit un revêtement trivial de K ;

- Tout revêtement fini de K est trivial.

Nous commencerons le cours par une étude plus détaillée des compacts connexes pleins localement connexes de $\ensuremath{\mathbb{R}}^2$.

FONCTIONS HOLOMORPHES.

THEOREME D'UNIFORMISATION. Toute surface de Riemann (i.e. variété \mathbb{C} -analytique de dimension 1 sur \mathbb{C}) simplement connexe est isomorphe à D , \mathbb{C} ou $\Sigma = \mathbb{C} \cup \{\infty\}$.

METRIQUE de POINCARE. C'est la métrique définie sur D par $\|dz\| = \frac{|dz|}{1 - |z|^2}$.

Tout automorphisme de D est de la forme $z\mapsto\lambda$ $\frac{z+a}{1+a\,z}$ avec $|\lambda|=1$, |a|<1, et est une isométrie pour la métrique de Poincaré.

Si $X \approx D$, on définit la métrique de Poincaré de X en transportant celle de D. Si le revêtement universel \widetilde{X} de X est isomorphe à D, on définit la métrique de Poincaré de X par la condition que $\pi: \widetilde{X} \to X$ est une isométrie locale.

Soient X et Y deux surfaces de Riemann telles que $\widetilde{X} \approx \widetilde{Y} \approx D$, et $f: X \to Y$ une application analytique. Alors, f est lipschtzienne de rapport 1 pour les métriques de Poincaré. On a $\|T_X f\| < 1$ pour tout $x \in X$ sauf si f est un revêtement. Si f(X) est relativement compact dans Y, f est lipschtzienne de rapport < 1 sauf si Y est compact et f est un revêtement.

THEOREME DE CARATHEODORY. Soit $U \subset S^2$ un ouvert isomorphe à D et $\psi \colon D \to U$ un isomorphisme. Si ∂U est localement connexe, ψ admet un prolongement continu $\overline{D} \to \overline{U}$. (En fait, nous donnerons une démonstration.)

COROLLAIRE. Soit $U \subset \mathbb{C}$ un ouvert borné simplement connexe et $\psi \colon D \to U$ un isomorphisme. Les conditions suivantes sont équivalentes :

- 1) ψ admet un prolongement continu $\overline{D} \to \overline{U}$;
- 2) ∂U est localement connexe ;
- 3) € U est localement connexe ;
- 4) $\exists L$ localement connexe, $\partial U \subset L \subset \mathbb{C} U$;
- 5) $\exists \gamma : \mathbb{T} \rightarrow \partial U$ surjective.

<u>THEOREME de MORREY-AHLFORS-BERS</u>. Nous aurons peut-être à l'utiliser. Nous l'énoncerons à ce moment-là.

COMPACTS DE C

1. CHEMINS ET ARCS.

Soit X un espace topologique. Un <u>chemin</u> dans X est une application continue γ : $I = [0,1] \rightarrow X$. Un <u>arc</u> dans X est un sous-espace de X homéomorphe à I, autrement dit l'image d'un chemin injectif. Il est d'usage de dire que X est <u>connexe</u> <u>par arcs</u> si deux points quelconques de X peuvent être joints par un chemin. Cette terminologie est excusée par la proposition suivante :

PROPOSITION 1. Soient X un espace séparé, a et b deux points distincts de X. Si a et b peuvent être joints par un chemin dans X, il peuvent aussi être joints par un arc.

Principe de la démonstration. Soit γ un chemin de a à b . Notons Ω l'ensemble des ouverts $W \subset I = 0$, 1[tels que, pour toute composante connexe] α , β [de W, on ait $\gamma(\alpha) = \gamma(\beta)$.

- . Pour W $\in \Omega$, il existe un chemin $\gamma_{\mathbb{W}}$ unique qui coincide avec γ sur I W et est constant sur chaque composante connexe de W .
- . Pour tout ouvert W de $\overset{\circ}{I}$ sans composante connexe: adjacente, W $\neq \overset{\circ}{I}$, il existe une fonction croissante $\lambda:I\to I$, constante sur chaque composante connexe de W et vérifiant $\lambda(t)>\lambda(s)$ si t>s, et $]s,t[\not\subset W$. Si $W\subseteq \Omega$, le chemin γ_W est de la forme $\overset{\sim}{\gamma}_W\circ\lambda$.
- . Ω est inductif. Si $W\in\Omega$ est maximal, W n'a pas 2 composantes adjacentes et $W\neq \overset{o}{I}$.
 - . Pour W maximal, $\overset{\sim}{\gamma}_{W}$ est injectif.

2. ESPACES COMPACTS LOCALEMENT CONNEXES.

Soit X un espace métrique et h: $[0,a[\rightarrow \mathbb{R}]$ une fonction continue croissante avec h(0)=0. On dit que X admet h comme module de connexité locale si, pour x et y dans X tels que d(x,y)=r < a, il existe une partie connexe L de X, contenant x et y, de diamètre $\leq h(r)$. Tout espace admettant un module de connexité locale est localement connexe. Tout espace métrique compact localement connexe X admet un module de connexité locale (défini sur tout \mathbb{R}_{\perp} si X est connexe).

Un ordinateur ne peut pas dire si un espace métrique est localement connexe, mais il peut éventuellement répondre "non" à la question de savoir s'il admet une fonction donnée comme module de connexité locale.

PROPOSITION 2. Tout espace métrique compact connexe localement connexe est connexe par arcs.

<u>Complément</u>. Supposons que X admette h comme module de connexité locale, soient x et y deux points de X tels que d(x,y)=r et $\eta>h(r)$. Il existe un arc joignant x à y de diamètre $\leq \eta$.

Démonstration. On peut supposer X plongé isométriquement dans un espace de Banach E, par exemple en prenant $E = \mathbb{C}(X:\mathbb{R})$ et $r(x) = (y \mapsto d(x,y))$. Un chemin polygonal γ à sommets dans X est un chemin $\gamma: I \to E$ muni d'un ensemble fini $S = \{s_0, \dots, s_n\} \subset I$ avec $s_0 = 0 < s_1 < \dots < s_n = 1$, tel que $\gamma(s_i) \in X$, γ affine sur $[s_i, s_{i+1}]$. On dit que (γ', S') raffine (γ, S) si $S' \supset S$ et $\gamma' \mid_S = \gamma \mid_S$. Le pas de γ est sup $d(\gamma(s_i), \gamma(s_{i+1}))$.

LEMME. Soient $\gamma: I \to E$ un chemin polygonal de pas $\leq \delta$ à sommet dans X, et $\delta^{\dagger} > 0$. Il existe alors un chemin polygonal γ^{\dagger} à sommets dans X raffinant γ , depas $\leq \delta^{\dagger}$, tel que $d(\gamma, \gamma^{\dagger}) \leq h(\delta)$.

Fin de la proposition avec son complément. Soit (δ_n) une suite de nombres >0 tendant vers 0 telle que $\Sigma h(\delta_n) < \eta - h(r)$. Soit γ_1 un chemin polygonal de x à y à sommets dans X de pas $\leq \delta_i$, de diamètre $\leq h(r)$, et construisons par récurrence une suite de chemin (γ_n) telle que γ_n de pas $\leq \delta_n$, $d(\gamma_n,\gamma_{n+1}) \leq h(\delta_n)$. Cette suite converge uniformément vers un chemin γ_∞ continu dans X de x à y, de diamètre $\leq h(r) + \varepsilon = \eta$. Dans l'image de γ_∞ , on peut trouver un arc Γ joignant x à y. cqfd

3. LE THEOREME DE CARATHEODORY.

Soit $K \subset \mathbb{C}$ un compact connexe plein (i.e. tel que C-K soit connexe). Il résulte du théorème d'uniformisation de Riemann qu'il existe un couple (r,φ) unique tel que φ soit un isomorphisme de surface de Riemann de (C-K) sur $(C-\overline{D}_r)$ tangent à C en ∞ , i.e. tel que $\frac{\varphi(z)}{z} \to 1$ quand $|z| \to \infty$. Le nombre r est le rayon de capacité de K.

Pour $z \in \mathbb{C}-K$, $\log |\varphi(z)|$ est le <u>potentiel</u> de z et l'argument de $\varphi(z)$ est l'<u>argument externe</u> de z par rapport à K. Les arguments sont comptés en tours (et non en radians). L'ensemble des $z \in \mathbb{C}-K$ d'argument externe θ est le <u>rayon</u> externe $\Re(K,\theta)$.

THEOREME 1 (Carathéodory). Soit $K \subset \mathbb{C}$ un compact connexe plein. On suppose qu'il existe un compact localement connexe L tel que $\partial K \subset L \subset K$. Alors, l'application $\psi = \varphi^{-1} : \mathbb{C} - \overline{D}_r \to \mathbb{C} - K$ admet un prolongement continu $\Psi \colon \mathbb{C} - D_r \to \mathbb{C} - K$.

Posons
$$\Gamma_{\rho} = \partial D_{a,\rho} \cap C - \overline{D}_{r}$$
 et $\lambda(\rho)$ la longueur de $\psi(\Gamma_{\rho})$. On a :
$$\lambda(\rho) = \int_{\theta=\theta_{\rho}}^{\theta} |\psi'(z(\rho,\theta))| \rho d\theta = \langle \rho|\psi'|, 1 \rangle ,$$

d'où
$$\lambda (\rho)^2 \leq \|\rho \psi^{\dagger}\|^2 \cdot \|1\|^2$$

= $\rho A(\rho) (\theta^+_{\rho} - \theta^-_{\rho}) \leq 2 \pi \rho A(\rho)$.

Fin de la démonstration du théorème. Soit h un module de continuité pour L.

Soit $a \in \partial D_r$ et (ρ_n) comme dans le lemme ; posons $U_n = U_a, \rho_n$. La courbe (Γ_{ρ_n}) est de longueur finie, donc a 2 extrémités α_n et β_n dans ∂K , distantes de moins $\det \lambda_n = \lambda(\rho_n)$. On peut joindre dans L les points α_n et β_n par un arc H_n de diamètre $\leq h(\lambda_n)$ et $\varphi(\Gamma_n) \cup H_n$ est une courbe de Jordan J_n de diamètre $\leq \lambda_n + h(\lambda_n)$. L'ouvert $\psi(U_n)$ est contenu dans l'ouvert borné par J_n , donc a aussi un diamètre $\leq \lambda_n + h(\lambda_n)$. Il en résulte que les U_n convergent vers un point $\Psi(a)$. Pour $h \in \partial D_r$, avec $|b-a| \leq \rho_n$, on a $|\Psi(b)-\Psi(a)| \leq \lambda_n + h(\lambda_n)$, ce qui prouve la continuité de Ψ .

Remarque. L'application Ψ induit une application surjective $\gamma_K: \mathbb{T} = \mathbb{R}/\mathbb{Z} \to \delta K$ que nous appellerons le <u>lacet de Carathéodory</u>. Pour $x \in \delta K$, les éléments de $\gamma_K^{-1}(x)$ sont appelés les <u>arguments externes</u> de x.

4. COMPOSANTES DE L'INTERIEUR DE K.

- a) Pour tout i , \bar{U}_i est homéomorphe au disque fermé.
- b) diam $U_i \to 0$ (i.e. $V \in > 0$ <u>l'ensemble des</u> i <u>tels que</u> diam $U_i > \varepsilon$ <u>est fini</u>).

Démonstration.

- a) Si Γ est une courbe de Jordan dans U_i , le domaine limité par Γ est contenu dans K, donc dans U_i . Par suite, U_i est simplement connexe, donc isomorphe à D ou C. Comme U_i est borné, il est isomorphe à D. Soit $\psi \colon D \to U_i$ un isomorphisme. On a $\partial U_i \subseteq \partial K \subseteq \Xi U_i$, et ∂K est localement connexe. Il résulte du théorème de Carathéodory (après inversion centrée en $\psi(0)$ que ψ se prolonge en $\Psi \colon \overline{D} \to \overline{U}_i$ continue. Reste à montrer que $\Psi_{|\partial D}$ est injective.
- α) Partie analytique. $\forall x \in \partial U_i$, $\Psi^{-1}(x)$ est d'intérieur vide dans T: ceci résulte du principe de réflexion de Schwarz.
- eta) Partie topologique. $\forall \ x \in \partial U_i$, $\Psi^{-1}(x)$ est connexe. Supposons que non ; soient t_1 , t_2 , u_1 , u_2 disposés comme ci-dessous t_1 , u_1

 $-t_2$

tels que $\Psi(t_1)$: $\Psi(t_2) = x$, $\Psi(u_1) \neq x$, $\Psi(u_2) \neq x$, et soient A et B des arcs C^1 d'extrémités (t_1, t_2) (u_1, u_2) se coupant transversalement en un point. Alors, $\Psi(A)$ est une courbe de Jordan $\Gamma \subseteq K$, et $\Psi(B)$ la coupe transversalement en un point, donc l'un des points $\Psi(u_1)$, $\Psi(u_2)$ est dans le domaine intérieur à Γ et l'autre dans le domaine extérieur. Mais, il ne peut y avoir de point de $\partial U_1 \subseteq \partial K$ dans le domaine intérieur à Γ .

La partie a) résulte de α) et β).

b) Soient n > 0 , h un module de continuité pour K et $(U_{i_{\mathcal{V}}})$ une suite de c.c. de \mathring{K} telle que diam $U_{i_{\mathcal{V}}}$ > m . Dans chacun des U , soit $(x_{\mathcal{V}},y_{\mathcal{V}})$ un couple de points tels que $|y_{\mathcal{V}}-x_{\mathcal{V}}|\geq m$. Quitte à extraire une suite, on peut supposer que $x_{\mathcal{V}}\to x$ et $y_{\mathcal{V}}\to y$. On a $x\in K$, $y\in K$, $|y-x|\geq m$. Soient A_1 et A_2 des voisinages connexes disjoints de x et y dans x0 dans x1 dans x3 dans x4 dans x5 de x6 dans x7 de x8 dans x9 dans

5. PROJECTION SUR UNE COMPOSANTE.

PROPOSITION 4 et DEFINITION. Soient $K \subseteq \mathbb{R}^2$ un compact connexe plein localement connexe, U une composante connexe de $\overset{\circ}{K}$ et $x \in K$. Soient γ_1 et γ_2 deux chemins dans K, avec $\gamma_1(0) = \gamma_2(0) = x$, $\gamma_i(1) \in \overline{U}$; notons u_i le plus petit t tel que $\gamma_i(t) \in \overline{U}$. On a $\gamma_1(u_1) = \gamma_2(u_2)$. Ce point est appelé la projection de x sur \overline{U} et noté $\pi_U(x)$.

COROLLAIRE. Pour tout arc $\Gamma \subseteq K$, l'ensemble $\Gamma \cap \overline{U}$ est connexe.

PROPOSITION 5. Soient $K \subset \mathbb{R}^2$ un compact connexe plein localement connexe et U une composante connexe de $\overset{\circ}{K}$. La projection $\pi_U: K \to \overline{U}$ est continue, localement constante sur $K \to \overline{U}$.

Complément. Soit h un module de connexité locale pour K . Alors, h est un module de continuité pour π_U . Si $h(d(x,y)) < d(x,\overline{U})$, on a $\pi_U(x) = \pi_U(y)$.

<u>Démonstration.</u> Soient x et $y \in K$, $\delta > h(|y-x|)$ et γ un chemin de x a y de diamètre $\leq \delta$. Si $\gamma([0,1]) \cap \overline{U} \neq \emptyset$, soient u et v le plus petit et le plus grand v tels que v (v) v on a v (v) v (v), v (v), et v diam v (v) v diam v diam v (v) v diam v diam v diam v diam v diam v diam v diameter v diam

6. ARCS REGLEMENTAIRES.

Soit $K\subset\mathbb{C}$ un compact connexe plein localement connexe; notons $(U_i)_{i\in I}$ la famille des composantes connexes de K. Choisissons dans chaque U_i un point w_i . Ceci détermine, à multiplication par un λ de module 1 près, un homéomorphisme $\varphi_i: \overline{U}_i \to \overline{D}$ induisant un isomorphisme \mathbb{C} -analytique de U_i sur D tel que $\varphi_i(w_i) = 0$.

PROPOSITION 6. Soient x et y deux points distincts de K . Il existe un arc réglementaire unique Γ de x à y .

 $\underline{\text{D\'emonstration.}} \ \ \underline{\text{Existence}} : \ \text{Si} \ x \ \text{et} \ y \ \text{sont dans un m\'eme} \ \overline{\mathbb{U}}_i \ \text{, cela est}$ $\text{clair} : \ \text{si} \ \varphi_i(x) \ \text{et} \ \varphi_i(y) \ \text{ont m\'eme argument,} \ \varphi_i(\Gamma) \ \text{est le segment} \ [x,y] \ \text{, sinon}$ $\text{c'est} \ [x,0] \cup [0,y] \ .$

En général, soit γ un chemin injectif de x à y. Rangeons les éléments i de I, tels que $\gamma^{-1}(\overline{U}_i)$ ait plus de 2 points, en une suite (i_n) , et notons γ_n le chemin obtenu en modifiant γ sur $\gamma^{-1}(\overline{U}_{i_1}),\ldots,\gamma^{-1}(\overline{U}_{i_n})$ de façon à le rendre réglementaire sur ces intervalles. Il résulte de la proposition 3.(b) que les γ_n convergent uniformément vers un chemin γ^* . On vérifie que γ^* est injectif et que son image est un arc réglementaire.

b) Unicité. Elle résulte du lemme suivant :

Notation. On note $[x,y]_K$ l'arc réglementaire de x à y. Cette notation sous entend la donnée des w_i . Si x=y, on pose $[x,y]=\{x\}$.

Propriétés des arcs réglementaires :

- Tout sous-arc d'un arc réglementaire est un arc réglementaire.
- Soient x, y, z trois points de K . Alors $[x,y]_K \cap [y,z]_K$ est de la forme $[y,c]_K$ (lemme ci-dessus). On a : $[x,y]_K = [x,c]_K \cup [c,y]_K$, $[y,z]_K = [y,c]_K \cup [c,z]_K , \quad [x,z]_K = [x,c]_K \cup [c,z]_K .$

En particulier, si $[x,y]_K\cap [y,z]_K=\{y\}$, l'arc $[x,y]_K\cup [y,z]_K$ est réglementaire. Nous noterons c(x,y,z) le point ainsi défini.

7. ARBRES REGLEMENTAIRES.

Nous dirons qu'une partie X de K est <u>réglementairement connexe</u> si, pour x et y dans X, on a $[x,y]_K \subset X$. Une réunion d'une famille de parties réglementairement connexes ayant un point en commun est réglementairement connexe. L'intersection d'une famille quelconque de parties réglementairement connexes est réglementairement connexe. On définit <u>l'enveloppe réglementaire</u> [A] d'une partie A de K comme l'intersection des parties réglementairement connexes contenant A.

PROPOSITION 7. Soient x_1, \dots, x_n des points de K. L'enveloppe réglementaire $[x_1, \dots, x_n] \quad \text{de } \{x_1, \dots, x_n\} \quad \text{est un arbre topologique fini}.$

Remarques. 1) Toute extrémité de $[x_1,\ldots,x_n]$ est l'un des x_i , mais il peut y avoir des x_i qui ne sont pas des extrémités.

2) On pourrait définir des arcs géodésiques. Mais la proposition 7 ne marcherait pas.

CONNEXITE LOCALE DE CERTAINS ENSEMBLES DE JULIA

1. ENSEMBLE DE JULIA.

Soit $f: \mathbb{C} \to \mathbb{C}$ un polynôme de degré d > 1. On appelle <u>ensemble de Julia rempli</u> de f l'ensemble K_f des z tels que $f^n(z) \leftrightarrow \infty$. C'est un compact. En effet, soit $f_i: z \to a_d z^d + \ldots + a_o$, posons $R^* = \sup (1, \frac{1 + |a_{d-1}| + \ldots + |a_o|}{|a_d|})$. Pour $|z| > R^*$, on a $|f(z)| \ge |z|^d/R^*$. Par suite, $K_f = \bigcap f^{-n}(\overline{D}_{R^*})$. Posons $J_f = \delta(K_f)$; c'est <u>l'ensemble de Julia</u>.

Nous étudions particulièrement la famille $(f_c)_{c\in\underline{C}}$ définie par $f_c(z)=z^2+c$. Tout polynôme de degré 2 est conjugué par une application affine unique à un f_c unique. Par exemple $z\to z^2+\lambda z$ est conjugué à f_c pour $c=\lambda/2-\lambda^2/4$. On note K_c l'ensemble de Julia rempli de f_c .

PROPO SITION 1 (Julia, Fatou). a) \underline{Si} $0 \in K_c$, 1'ensemble K_c est connexe.

b) $\underline{\text{Si}}$ 0 \notin K_{C} , $\underline{\text{l'ensemble}}$ K_{C} est homéomorphe à l'ensemble de Cantor.

 $\underline{\text{D\'emonstration}}. \text{ Choisissons } R>1+|c| \text{ et posons } V_n=(f^n)^{-1}(D_R) \text{ pour tout } n\text{ . On a } \overline{V}_{n+1}\subseteq V_n \text{ et } K_c=\cap V_n \text{ .}$

- a) Pour tout n , l'ensemble V_{n+1} est un revêtement de V_n de degré 2 ramifié en 1 point, V_o est un disque, donc V_n est homéomorphe à un disque pour tout n , et $K_c = \cap \overline{V}_n$ est connexe.
- b) Il existe un m tel que $0 \in V_m$ et $c = f_c(0) \notin V_m$. Alors, V_m est homéomorphe à un disque, mais pour tout $n \geq m$ l'espace V_{n+1} est un revêtement de degré 2, non ramifié, de V_n . Par suite, pour tout k, l'ouvert V_{m+k} a 2^k composantes connexes homéomorphes au disque. Notons δ_k le maximum des diamètres de ces composantes connexes pour la métrique de Poincaré μ de V_m . L'application $f_c: V_{m+1} \to V_m$

admet deux sections g_0 et g_1 lipschitziennes de rapport $\lambda < 1$ pour μ , d'où $\delta_k \leq \lambda^{k-1} \delta_1$. En particulier, $\delta_k \to 0$, d'où b). cqfd.

Pour un polynôme f de degré d > 2 , il y a en général plusieurs points critiques, d'où plus de possibilités. Si tous les points critiques appartiennent à \mathbf{K}_f , l'ensemble \mathbf{K}_f est connexe. Si aucun point critique n'appartient à \mathbf{K}_f , l'ensemble \mathbf{K}_f est un Cantor. S'il y a au moins un point critique hors de \mathbf{K}_f (et éventuellement d'autres dans \mathbf{K}_f), l'ensemble \mathbf{K}_f a une infinité non dénombrable de composantes connexes, mais certaines peuvent n'être pas réduites à un point. La démonstration est analogue.

Pour tout polynôme f , le compact K_f est plein : cela résulte du principe du maximum. On a $f(K_f) = f^{-1}(K_f) = K_f$. L'application f induit une application holomorphe (donc ouverte) et propre de K_f dans K_f . Par suite, pour toute composante connexe U de K_f , son image f(U) est une composante connexe de K_f et f induit une application propre de U sur f(U).

Il y a des polynômes pour lesquels ${\rm K}_{\rm f}$ est localement connexe et d'autres (même en degré 2) pour lesquels il est connexe mais non localement connexe. Le but de ce chapitre est de donner des conditions suffisantes pour que ${\rm K}_{\rm f}$ soit localement connexe.

2. REPRESENTATION CONFORME DE \mathbb{C} - \mathbb{K}_f (cas où \mathbb{K}_f est connexe).

 en 0, elle est donc de la forme $z\mapsto u\,z^d$, et u ne s'annule pas sur D_r . D'autre part, g est propre, donc |u(z)| tend vers $1/r^{d-1}$ quand $|z| \to r$; par suite, u est constante. Comme f est monique et φ tangente à l'identité en ∞ , on a u(0)=1, d'où u(z)=1 pour tout z, r=1, $g(z)=z^d$ pour $z\in D$ et $\varphi(f(\varphi^{-1}(z)))=z^d$ pour |z|>1. cqfd.

Remarques. 1) Supposons que $0 \in K_f$, soit $z \in \mathbb{C} - K_f$ et posons $z_n = f^n(z)$. Il résulte de l'équation fonctionnelle $\varphi(z_{n+1}) = (\varphi(z_n))^d$ que φ est donnée par le produit infini

$$\varphi(z) = z \prod_{n=0}^{\infty} \left(1 + \frac{a_{d-1}}{z_n} + \ldots + \frac{a_o}{z_n^{d-1}}\right)^{1/d^{n+1}}$$
 (notations du nº 1)

L'ambiguité due à l'exposant fractionnaire est levée de la façon suivante : pour n tel que $|z_n^-| > R^+$, prendre la détermination principale de $(1+\zeta)^{1/d}$ sur D . D'autre part, chaque facteur, comme fonction de z, admet une unique détermination continue tendant vers 1 quand $z \to \infty$. Ce produit infini converge avec une rapidité fantastique à partir du moment où $|z_n^-| > R^+$.

2) Dans la démonstration (et même dans l'énoncé) de la proposition 2, nous supposons connu le théorème de Riemann d'existence de la représentation conforme. On n'en a pas vraiment besoin, puisqu'on peut le construire effectivement.

3. LE LACET DE CARATHEODORY.

Soit $f: \mathbb{C} \to \mathbb{C}$ un polynôme monique de degré $d \ge 2$ tel que K_f soit connexe. Si K_f est localement connexe, la représentation conforme $\psi = \varphi^{-1}: \mathbb{C} - \overline{\mathbb{D}} \to \mathbb{C} - K_f$ tangente à l'identité en ∞ admet un prolongement continu à $\mathbb{C} - \mathbb{D}$ (théorème de Carathéodory), d'où une application continue surjective $\gamma: \mathbb{T} = \mathbb{R}/\mathbb{Z} \to \partial K$ définie par $t \mapsto \psi(e^{2i\pi t}): c'est le lacet de Carathéodory de <math>K_f$ (ou de f). Nous allons donner un procédé pour construire le lacet de Carathéodory, procédé qui converge

 \underline{si} et seulement \underline{si} K_f est localement connexe. Par la suite, on utilisera la convergence de ce procédé comme critère pour savoir si K_f est localement connexe.

Considérons le rayon externe $\Re(K_f,0)$ d'argument 0. Soit $\gamma_o: \mathbb{T} \to \mathbb{C}$ un lacet tel que $\gamma(\mathbb{T}) \subseteq \mathbb{C} - K_f$, $\gamma_o(0) \in \Re(K_f,0)$, γ_o d'indice 1 par rapport à un point (donc à tout point) de K_f .

PROPOSITION 3. a) On peut définir par récurrence une suite (γ_n) de lacets $T \to \mathbb{C}$ par les conditions $f(\gamma_{n+1}(t)) = \gamma_n(d.t)$, $\gamma_{n+1}(0) \in \Re_0(K_f)$.

- b) Pour que K_f soit localement connexe, il faut et il suffit que la suite (γ_n) soit uniformément convergente.
 - c) Si K_f est localement connexe, $\lim (\gamma_n)$ est le lacet de Carathéodory de K_f .

 $\label{eq:convergence} \begin{picture}(b-il\ faut)\ et\ (c)\ Uniform\'ement\ sur\ T\ ,\ \rho_n\to 1\ et\ \theta_n\to id\ .\ Si\ K_f\ est\ localement\ connexe\ ,\ \psi=\varphi^{-1}\ \ admet\ un\ prolongement\ continu\ \grave{a}\ \mathbb{C}-D\ ,\ donc\ \gamma_n\ converge\ uniform\'ement\ vers\ t\mapsto \psi\ (e^{2i\pi\,t})\ .$

 $(\text{b-il suffit}) \ \, \text{Supposons que les} \ \, \gamma_n \ \, \text{convergent uniformément vers un lacet} \\ \gamma_\infty: \ \, \mathbb{T} \to \mathbb{C} \, , \ \, \text{et montrons que} \ \, \gamma_\infty(\mathbb{T}) = \operatorname{d} \mathrm{K}_f \, . \ \, \text{Tout compact de} \ \, \Sigma - \overline{\mathrm{D}} \, \, \text{est contenu} \\ \text{dans un } \ \, \Sigma - \mathrm{D}_{1+\varepsilon} \, , \ \, \text{donc tout compact de} \, \, \Sigma - \mathrm{K}_f \, \, \text{est contenu dans un } \, \varphi^{-1}(\Sigma - \mathrm{D}_{1+\varepsilon}) \, . \\ \text{Comme} \ \, \rho_n \to 1 \, \, \text{uniformément, pour tout voisinage} \, \, \mathrm{V} \, \, \text{de} \, \, \mathrm{K}_f \, , \, \, \text{on a} \, \, \gamma_n(\mathbb{T}) \subset \mathrm{V} \, \, \text{pour} \\ \text{n assez grand. Il en résulte que} \, \, \gamma_\infty(\mathbb{T}) \subset \operatorname{d} \mathrm{K}_f \, . \\ \end{array}$

Soit $x \in \partial K_f$ et $y \in C - K_f$ un point voisin de x. Soit L un chemin dans $\Sigma - K_f$ joignant $y \ alpha \infty$. Pour n assez grand, $\gamma_n(\mathbb{T}) \cap L = \emptyset$, donc γ_n est d'indice 0 par rapport alpha y. Comme il est d'indice 1 par rapport alpha x, $\gamma_n(\mathbb{T})$ coupe le

segment [x,y], et il existe un t_n tel que $\gamma_n(t_n) \in [x,y]$, d'où $|\gamma_n(t_n)-x| < |y-x|$ Ceci ayant lieu pour tout y, on peut trouver une suite (n_k) et une suite $(s_k = t_{n_k})$ telle que $\gamma_{n_k}(s_k) \to x$. Quitte à extraire une suite, on peut supposer que (s_k) a une limite s, alors $\gamma_\infty(s) = x$.

Ceci montre que $\gamma_\infty(\mathbb{T})=\partial K_f$. Comme l'image d'un compact localement connexe par une application continue est localement connexe, ∂K_f est localement connexe, et il en résulte que K_f est localement connexe. Cqfd.

4. APPLICATIONS EXPANSIVES ET SOUS-EXPANSIVES.

Soient Ω un ouvert de $\mathbb C$, $f:\Omega\to\mathbb C$ une application holomorphe et Λ une partie de Ω telle que $f(\Lambda)\subseteq\Lambda$. Soit $u:\Omega\to\mathbb R_+^{\times}$ une fonction continue. On dit que f est fortement dilatante sur Λ pour la métrique riemannienne définie par u si

FD
$$(\exists \lambda > 1) (V x \in \Lambda) \|T_{X}f\| \ge \lambda$$
.

Si A est compact et u continue, il suffit que

$$(\forall x \in \Lambda) \quad ||T_{X}f|| > 1 \quad .$$

Définition. On dit que f est expansive sur Λ s'il existe un voisinage V de Λ dans et une fonction continue $u:V \to \mathbb{R}_+^{\times}$ telle que f soit fortement dilatante pour la métrique riemannienne définie par u.

Exercice. Si A est compact, les conditions suivantes sont équivalentes :

- (i) f est expansive sur Λ .
- (ii) ($\exists \ \lambda > 1$), ($\exists \ c > 0$), ($\forall \ x \in \Lambda$), ($\forall \ n \in {\rm I\! N}$), $|(f^n)^{\intercal}(x)| \geq c \lambda^n$.
- (iii) $(\forall \exists x \in \Lambda)$, $(\exists n \in \mathbb{N})$, $|(f^n)'(x)| > 1$.

Remarque terminologique. Je devrais peut-être dire "fortement expansive", certains auteurs donnant à "expansive" un sens plus faible. L'anglais permet de faire une nuance entre "expansive" et "expanding".

Nous allons montrer que, si un polynôme f est expansif sur son ensemble de Julia J_f , le compact K_f est localement connexe (et J_f aussi). Mais ceci est vrai sous des hypothèses plus faibles. Pour les formules, nous allons introduire la notion d'application sous-expansive.

Nous appellerons métrique riemannienne <u>admissible</u> sur Ω une métrique $\|dz\| = u(z) \ |dz| \quad \text{où } u \text{ est définie continue et strictement positive sur } \Omega - \{a_1, ..., a_k\} \text{ ,}$ avec au voisinage de chacun des a_i une inégalité $m_i \leq u(z) \leq \frac{c_i}{|z-a_i|^{\beta_i}}$ avec $m_i > 0$, $0 < \beta_i < 1$, $c_i < \infty$.

Une métrique admissible permet de définir une longueur finie pour tout arc \mathbb{R} -analytique par morceaux, et une distance qui définit la même topologie que la métrique ordinaire (avec $m_i \mid z-a_i \mid \ \leq \ d(a_i,z) \leq \frac{c_i \mid z-a_i \mid^{1-\beta_i}}{1-\beta_i}$). On dit que $f:\Omega \to \mathbb{C}$ est fortement dilatante sur Λ si chacun des $f(a_i)$ est l'un des a_j , et s'il existe

un voisinage V de Λ et un $\lambda > 1$ tels que :

$$(\forall x \in V - (\{a_i\}_i \cup f^{-1}(\{a_i\}_i)), (\|T_x f\| \ge \lambda)$$
.

Définition. Soit $\Lambda \subset \Omega$ un compact tel que $f(\Lambda) \subset \Lambda$. Nous dirons que f est sous-expansive sur Λ s'il existe un voisinage V de Λ dans Ω et une métrique riemannienne admissible sur V pour laquelle f soit fortement dilatante sur Λ .

5. CONNEXITE LOCALE POUR LES POLYNOMES SOUS-HYPERBOLIQUES.

PROPOSITION 4. Soit f un polynôme tel que K_f soit connexe. Si f est sous-hyperbolique, K_f est localement connexe.

$$d(\eta,\eta') = \inf_{\begin{subarray}{c} h \text{ homotopie de } \eta \text{ à } \eta' \\ h(s,0) \in \Re_{O}(K_{\mathbf{f}}) \end{subarray}} \sup_{\begin{subarray}{c} \ell \\ \mathbf{t} \in \mathbf{T} \end{subarray}} \ell_{\mu} (\mathbf{s} \mapsto \mathbf{h}(\mathbf{s},\mathbf{t}))$$

On peut supposer que $\varphi(V_1 - K_f)$ est une couronne. On a, pour $n \ge N$, $d_{\mathfrak{F}}(\gamma_{n+1},\gamma_{n+2}) \le -\frac{1}{\lambda} \ d_{\mathfrak{F}}(\gamma_n,\gamma_{n+1}) \ .$

Par suite, (γ_n) est une suite de Cauchy dans \Im , donc aussi dans $\mathscr E$ puisque $d_{\mathscr E} \leq d_{\Im}$. Mais $\mathscr E$ est complet, donc (γ_n) converge dans $\mathscr E$, et la topologie de $\mathscr E$ coincide avec celle de la convergence uniforme pour la distance usuelle puisque \overline{V}_1 est compact, donc (γ_n) converge uniformément pour la distance usuelle. Cqfd.

6. POINTS PERIODIQUES.

Soit $f: \mathbb{C} \to \mathbb{C}$ un polynôme (ou une fonction holomorphe).

Un point périodique pour f est un point x de C tel qu'il existe un n > 0 pour lequel $f^n(x) = x$. Le plus petit n ayant cette propriété est la période k de x. Le cycle de x est alors $\{x_0, \dots, x_{k-1}\}$, où $x_i = f^i(x)$, et la valeur propre de ce cycle est $\rho = (f^k)^!(x) = \{f^i(x)\}$. On dit que x est un point périodique attractif (resp. répulsif, resp. indifférent) si $|\rho| < 1$ (resp. $|\rho| > 1$, resp. $|\rho| = 1$). Un point périodique est dit superattractif si $\rho = 0$; cela équivaut à l'existence d'un point critique dans le cycle. On dit que x est un point prépériodique s'il existe un entier ℓ tel que $f^\ell(x)$ soit périodique.

Si x est un point périodique attractif de période k, le <u>bassin</u> de x est l'ensemble des points z tels que $f^{nk}(z)$ tende vers x quand n tend vers ∞ . Le bassin immédiat de x est la composante connexe du bassin de x contenant x. Le bassin (resp. bassin immédiat) d'un cycle attractif est la réunion des bassins (resp. bassins immédiats) des points de ce cycle.

Soient f un polynôme et x un point périodique attractif de f . Le bassin de x est contenu dans K_f , donc $x\in \overset{o}{K_f}$.

Soit V un disque fermé pour la métrique de Poincaré de U_X , de centre x. L'application f^k induit une application holomorphe de U_X dans lui-même, qui n'est

pas un isomorphisme, donc lipschitzienne de rapport $\,\lambda < 1\,$ sur $\,V\,$; par suite, tout point de $\,V\,$ est attiré par $\,x\,$.

PROPOSITION 5 (Fatou, Julia). Tout cycle attractif a dans son bassin immédiat un point critique au moins.

 $\underline{\text{D\'emonstration}}. \text{ Le bassin imm\'ediat } U_X \text{ d'un point } x \text{ du cycle contient un}$ point critique de f^k ; sinon U_X serait isomorphe au disque D et f^k serait un automorphisme de U_X dont l'inverse contredirait le lemme de Schwarz. La proposition en résulte. Cqfd.

COROLLAIRE. Un polynôme de degré d a au plus d-1 cycles attractifs.

Si x est un point périodique indifférent, sa valeur propre ρ est de la forme $e^{2i\pi\,\theta}$; on dit que x est un point périodique indifférent rationnel, diophantien, liouvillesque si θ a ces propriétés. On dit que x est linéarisable s'il existe un difféomorphisme φ d'un voisinage V de x sur un disque tel que $\varphi \circ f^k \circ \varphi^{-1}$ soit $z \mapsto \rho z$. Le plus grand V possible est le domaine de linéarisation de x .

THEOREME (Siegel). Tout point périodique, indifférent, diophantien est linéarisable.

Pour une démonstration, voir Siegel, Iteration of analytic functions, Ann. Math. 43 (1942).

On peut donner une démonstration plus simple pour θ diophantien d'exposant 2 (Herman).

Rüssmann (1972) a étendu ce théorème à certaines valeurs non diophantiennes de θ .

7. <u>CARACTERISATION DES POLYNOMES HYPERBOLIQUES OU SOUS-</u> HYPERBOLIQUES.

THEOREME 1. Soit $f: \mathbb{C} \to \mathbb{C}$ un polynôme. Pour que f soit hyperbolique (resp. sous-hyperbolique), il faut et il suffit que tout point critique de f appartenant à K_f soit uttiré par un cycle attractif (resp. soit prépériodique ou attiré par un cycle attractif).

Démonstration. a) Il faut : Soient V un voisinage de J_f , μ une métrique riemannienne admissible sur V , $E \subseteq V$ un ensemble fini et $\lambda > 1$ tels que μ soit à coefficient continu sur V - E et que, pour tout $x \in (V - E) \cap f^{-1}(V - E)$, on ait $\|T_X f\|_{\mu} \ge \lambda$. Pour $\varepsilon > 0$, notons V_{ε} l'ensemble des $x \in V$ tels que $d_{\mu}(x, J_f) \le \varepsilon$. Si ε est assez petit, on a $f^{-1}(V_{\varepsilon}) \subseteq V$; alors $f^{-1}(V_{\varepsilon}) \subseteq V_{\varepsilon/\lambda} \subseteq V_{\varepsilon}$. En effet, pour tout $x \in V_{\varepsilon}$ et tout $\varepsilon' > \varepsilon$, on peut trouver un chemin γ de μ -longueur $< \varepsilon'$ joignant x à un point de J_f et évitant E; si $y \in f^{-1}(x)$, on peut relever γ en un chemin d'origine y, on obtient un chemin de μ -longueur $< \varepsilon'/\lambda$ joignant y à un point de J_f , d'où $d_{\mu}(y, J_f) < \varepsilon'/\lambda$.

Choisissons un tel ε et posons $L=K_f-\overset{\circ}{V_\varepsilon}$. L'ensemble L est compact, donc la famille $(U_i)_{i\in J}$ des composantes connexes de $\overset{\circ}{K_f}$ qui rencontrent L est fini et chacune de ces composantes est prépériodique. D'autre part, on a $f(L)\subset L^0$; donc si $f^k(U_i)\subset U_i$, on a $f^k(U_i\cap L)\subset U_i\cap L^0$ et f^k induit une application de $U_i\cap L$ dans lui-même fortement contractante pour la métrique de Poincaré de U_i . Il en résulte que tout point de L est attiré par un cycle attractif.

Soit E^* l'ensemble des $a \in E$ tels que le coefficient de μ soit non borné au voisinage de a. Pour $a \in E^*$, on a $f(a) \in E^*$ si $f(a) \in V$. D'autre part, pour tout point critique c de f appartenant a b0, on a $f(c) \in E^*$ si $f(c) \in V$. Soit c0 un point critique de f0, appartenant a1, f2, f3 (f4) f4, f5 (f4) f5 (f5) f6, f7 (f6) est contenu dans f8, donc fini, et f8 est prépériodique. S'il existe un f9 n tel que f9, pour un tel f9 n on a f9 est attiré par un cycle attractif.

Si $A = \emptyset$, tout point critique est attiré par un cycle attractif.

b) II suffit : Soit $R > R^*$, de sorte que $f^{-1}(\overline{D}_R) \subset D_R$. Choisissons pour chaque point périodique attractif a de f un disque ouvert Δ_a centré en a de façon que $f(\overline{\Delta}_a) \subset \Delta_{f(a)}$. Posons $U_o = D_R - \bigcup_{a \in A} \Delta_a$, où A est l'ensemble des points périodiques attractifs, et $U_n = f^{-n}(U_o)$. Par construction de U_o , l'ouvert U_1 est relativement compact dans U_o , et comme $f: \mathbb{C} \to \mathbb{C}$ est propre, U_{n+1} est

relativement compact dans U_n pour tout n .

Supposons d'abord que tout point critique appartenant à K_f soit attiré par un cycle attractif. Il existe alors un n tel que U_n ne contienne aucun point critique de f. Fixons un tel n et notons μ la métrique de Poincaré de U_n (pour chaque composante connexe V de U_n , on prend la métrique de Poincaré du revêtement universel \widetilde{V} de V et on la descend sur V). Soient V et V' deux composantes connexes de U_n telles que V' contienne une composante connexe W de $f^{-1}(V)$. Alors, il existe une application $g: \widetilde{V} \to \widetilde{V}'$ qui est "une détermination de f^{-1} ", plus précisément telle que $f_o\pi'\circ g=\pi$ où $\pi:\widetilde{V} \to V$ et $\pi':\widetilde{V}' \to V'$ sont les projections. En fait, $V'\supset \overline{W}$, donc g n'est pas surjective, et $\|T_{\widetilde{X}}g\|<1$ pour tout $\widetilde{X}\in\widetilde{V}$, la norme étant prise pour les métriques de Poincaré de \widetilde{V} et \widetilde{V}' . Par suite, $\|T_Xf\|_{\mu}>1$ pour tout $X\in V_{n+1}$, et Y est dilatante pour Y.

Supposons seulement, maintenant, que <u>tout point critique appartenant à Kf soit prépériodique ou attiré par un cycle attractif</u>. Il existe un n tel que tout point critique c de f appartenant à U_n soit prépériodique, avec $f^p(c) \in U_n$ pour tout p. Fixons un tel n et notons E la réunion des orbites directes de ces points critiques. C'est un ensemble fini, et il n'y a pas, dans E, de point critique périodique (car un tel point serait superattractif, donc dans A). Pour $x \in E$, on peut définir $\delta(x)$ et $\nu(x) \in \mathbb{N}$ par : $\delta(x) = \prod_{p \geq 0} \deg_{p} f$

et
$$\nu(x) = \frac{1}{\delta(x)} \text{ p.p.c.m. } \{\delta(y)\}\ y \in (\cup f^{-p}(x)) \cap E$$

Pour tout $x \in E$, on a $\delta(x) = \deg_X f \cdot \delta(f(x))$, et $\nu(f(x))$ est un multiple de $\deg_X(f) \cdot \nu(x)$.

Soit X un revêtement ramifié fini de U_n , non ramifié au-dessus de U_n -E et avec comme degré de ramification $\nu(x)$ en chaque point au-dessus de x pour $x \in E$. Notons \widetilde{X} le revêtement universel de X, et $\pi_{\widetilde{X}}$ la projection $\widetilde{X} \to U_n$. Alors, \widetilde{X} induit un revêtement galoisien de U_n -E, et la métrique de Poincaré $\mu_{\widetilde{X}}$ de X descend sur U_n -E et y donne une métrique riemannienne μ . Au voisinage de chaque

point $x \in E$, le coefficient de μ est de la forme $\frac{u(z)}{|z-x|^{\beta}}$ où u est continue > 0 et $\beta = \frac{\nu-1}{\nu}$; par suite, μ est une métrique riemannienne admissible sur U_n .

Soient x et y deux points de U_n tels que $y \in f^{-1}(x)$. Il existe alors deux points \widetilde{x} et \widetilde{y} de \widetilde{X} au-dessus de x et y respectivement, et une application holomorphe $g:\widetilde{X}\to\widetilde{X}$, qui est un relèvement de f^{-1} telle que $f(\widetilde{x})=\widetilde{y}$. L'application g est contractante pour la métrique de Poincaré de \widetilde{X} . Mieux, comme l'image dans X de $g(\widetilde{X})$ est contenue dans $\pi_X^{-1}(U_{n+1})$, donc relativement compacte, g est lipschitzienne de rapport λ g<1. On a : $\|T_yf\|_{\mu}=\frac{1}{\|T_{\widetilde{X}}^*g\|_{\mu_{\widetilde{X}}}}>\frac{1}{\lambda}$ Quand on fait varier y dans une composante connexe de U_{n+1} , on peut garder la même application g, et comme U_{n+1} n'a qu'un nombre fini de composantes connexes, il existe un $\lambda<1$ tel que, pour tout $y\in U_{n+1}$ E, on ait $\|T_yf\|_{\mu}>\frac{1}{\lambda}$. Autrement dit, f est fortement dilatante pour μ , qui est une métrique riemannienne admissible sur U_n . Cqfd.

Remarque. Il existe des polynômes dont l'ensemble de Julia est connexe, mais non localement connexe. C'est le cas par exemple pour f polynôme de degré 2 admettant un point fixe (ou périodique) indifférent non linéarisable. Pour une démonstration, voir Séminaire Bourbaki, novembre 1982.

ARBRES DE HUBBARD

1. ACTION SUR $\pi_0(\mathring{K}_f)$.

Soit f un polynôme de degré d = 2 , et notons $(U_i)_{i\in I}$ la famille des composantes connexes de $\overset{\circ}{K}_f$, de sorte que $I = \pi_0(\overset{\circ}{K}_f)$. Rappelons que, pour tout $i\in I$, $f(U_i)$ est un des U_j , avec un j qu † on note $f_*(i)$, et que $f:U_i \to U_j$ est holomorphe et propre de degré d_i , avec d_i -1 égal au nombre de points critiques dans U_i , comptés avec multiplicité, de sorte que $\sum\limits_i (d_i-1) \leq d-1$ (égalité ssi f est hyperbolique avec K_f connexe).

PROPOSITION 1. On suppose f sous-hyperbolique.

- a) Tout élément de I est prépériodique pour f_{\star} .
- b) <u>Pour tout</u> i <u>périodique</u>, U_i <u>contient un point périodique attractif</u>, <u>dont</u> il est le bassin immédiat.
- c) Tout cycle de composantes connexes de $\overset{\circ}{K}_f$ contient au moins un point critique.

Remarque. a) est vrai sans l'hypothèse de sous-hyperbolicité (Sullivan), mais la démonstration est beaucoup plus difficile.

 $\begin{array}{c} \underline{\text{D\'emonstration}}. \text{ Soit } V \text{ un voisinage de } J_f \text{ , } \mu \text{ une m\'etrique riemannienne} \\ \text{admissible sur } V \text{ et } \lambda \geq 1 \text{ , } \text{ tels que } \forall \ x \in V^{\parallel} = f^{-1}(V) \text{ , } \|T_X f\|_{\mu} \geq \lambda \text{ . Soit} \\ \varepsilon \geq 0 \text{ tel que } V_1 = \{x \in V, d_{\mu}(x,J_f) < \varepsilon \} \text{ soit relativement compact dans } V \text{ ; posons} \\ V_1^{\parallel} = f^{-1}(V_1) \text{ et } L = K_f - V_1^{\parallel} \text{ . } L^{\parallel} \text{ensemble } L \text{ est compact et on a } f(L) = K_f \setminus V_1 \subset L^0 \text{ .} \\ \text{Notons } I_L \text{ l'ensemble des } i \in I \text{ tels que } U_i \cap L \neq \emptyset \text{ . Comme les } U_i \cap L \text{ forment} \\ \text{un recouvrement de } L \text{ par des ouverts disjoints, } I_L \text{ est fini .} \\ \end{array}$

(a) On a $f_{\star}(I_L) = I_L$, donc tout élément de I_L est prépériodique. Soient $i \in I$, $x \in U_i$ et $n \ge \frac{Log \ \varepsilon - Log \ d(x,J_f)}{Log \ \lambda}$. Alors $f^n(x) \in L$, $d^{\dagger}où \ f^n_{\star}(i) \in I_L$, donc i est prépériodique.

(b) Soit i tel que $f_{\chi}^k(i) = i$, avec $k \ge 1$. On a alors $f^k(L \cap U_i) \subseteq L^1 \cap U_i \subseteq L^0 \cap U_i$. Il en résulte que diam $(f^k(L \cap U_i)) < \text{diam } (L^k \cap U_i)$, où est la métrique de Poincaré de U_i . Par suite, $f^k: U_i \to U_i$ n¹est pas un isomorphisme, $\|T_\chi f^k\| < 1$ pour tout $x \in L \cap U_i$, sup $\|T_\chi f^k\| < 1$, $f^k: L \cap U_i \supseteq \text{est fortement contractante, donc admet un point fixe } \alpha_i$ attractif.

Le point périodique α_i attire tout point de $L \cap U_i$, et en faisant varier ε , on voit qu'il attire tout point de U_i , donc U_i est contenu dans le bassin de α_i . Comme il est connexe, il est contenu dans le bassin immédiat. Ce bassin immédiat est connexe , contenu dans K_f et contient α_i , donc contient U_i , et finalement lui est égal.

(c) L*application $f^k: U_i \to U_i$ est holomorphe et propre mais n'est pas un isomorphisme, donc est de degré \$>1. Or, H d =\$, donc l'un de ces facteurs $f^j_{\pm}(i)$ est ≥ 1 , et l'ouvert $U_{f^j_{\pm}(i)}$ correspondant contient un point critique. Cqfd.

2. LES CENTRES DES U_i .

On garde les notations du § 1.

PROPOSITION 2. On suppose que tout point critique de f est prépériodique. On peut alors choisir, pour tout $i \in I$, un isomorphisme $\varphi_i : U_i \to D$ de façon que $\forall i$, φ of o $\varphi_i^{-1} : D \to D$ soit l'application $z \mapsto z^{d_i}$. Si d = 2, ce choix est possible de façon unique.

<u>LEMME</u>. <u>Soit</u> h: D \rightarrow D <u>une application holomorphe et propre</u>, <u>de degré</u> δ , <u>telle</u> <u>que</u> h(0) = 0 . <u>On suppose que tout point critique de</u> h <u>est prépériodique</u>. <u>Alors</u>, h <u>est de la forme</u> $z \mapsto \lambda z^{\delta}$ <u>avec</u> $|\lambda| = 1$.

<u>Démonstration</u>. Si \$=1, h est un isomorphisme, donc de la forme $z \to \lambda z$. On peut donc supposer \$>1. Alors, 0 attire D, et tout point critique de h tombe sur 0 en un temps fini.

Notons A la réunion des orbites directes des points critiques de h . L'ensemble A est fini. Soit γ un lacet entourant A tel que $\gamma \cap h^{-n}(A) = \emptyset$ pour tout n , et posons $\gamma_n = h^n(\gamma)$. Pour n assez grand, γ_n est contenu dans un petit disque de centre 0 , qui ne contient aucun autre point de A . Alors, γ_n est homotope dans D - A à un lacet η_n de longueur arbitrairement petite pour la métrique de Poincaré de D - A . Comme h^n : D - $f^{-n}(A) \rightarrow$ D - A est un revêtement, γ est homotope dans D - $h^{-n}(A)$ (et à fortiori dans D - A) à un lacet η relevant η_n . On a alors $\log_D(\eta) \leq \log_{D-h^{-n}(A)} \eta = \log_{D-A} \eta_n$ arbitrairement petite, ce qui montre que A est réduit à un point qui est nécessairement 0 . La multiplicité de 0 comme point critique est δ - 1 .

L'application h est donc de la forme $z\mapsto u(z).z^{\delta}$, où u est holomorphe, ne s'annule pas, et $|u(z)|\to 1$ quand $|z|\to 1$ puisque h est propre. Par suite, u est constante de module 1. Cqfd.

Démonstration de la proposition 2. Soit $i \in I$ un point périodique de période k, et α_i le point périodique attractif pour f appartenant à U_i . Soit φ_i : $U_i \to D$ un isomorphisme tel que $\varphi(\alpha_i) = 0$ et posons $h = \varphi_i \circ f^k \circ \varphi_i^{-1}$. Il résulte du lemme que h est de la forme $z \to \lambda \ z^\delta$, et on a $\delta > 1$ en vertu de la proposition 1 (c). Si on remplace φ_i par $\mu \varphi_i$ avec $|\mu| = 1$, on remplace λ par $\mu^{\delta - 1} \lambda$. Par suite, on peut choisir φ_i de façon que $\lambda = 1$. Ce choix peut être fait de $\delta - 1$ façons.

Pour $0 \leq \ell \leq k-1$, la relation déquivalence définie sur U_i par f^ℓ est plus fine que celle définie par f^k ; transportée à D par φ_i , elle devient de la forme $z \sim z_1^{\ell} \iff z^{\delta^{\ell}} = z_1^{\delta^{\ell}}$, où δ^{ℓ} est un diviseur de δ . On peut donc choisir, de façon unique $\varphi_{\chi} : U \xrightarrow{\cong} D$, tel que $\varphi_{\chi} \circ f^{\ell} \circ \varphi_i^{-1}$ soit $z \mapsto z^{\delta^{\ell}}$. On a alors $\varphi_{f_{\chi}}(i) \circ f \circ \varphi_j = (z \mapsto z^{d_j})$ pour tout j dans le cycle $\{f_{\chi}^{\ell}(i)\}_{\ell=0,\ldots,k-1}$. On procède de même pour chacun des cycles de f_{χ} . On construit ensuite par récurrence sur ν les φ_i pour les i tels que $f_{\chi}^{\nu}(i)$ soit périodique. Le point $\varphi_i^{-1}(0)$ est appelé le <u>centre</u> de U_i . Le pas de récurrence se fait en observant que,

stil y a un point critique dans U_i , son image est nécessairement le centre de $U_{f_{\star}(i)}$ car dans cet ouvert le centre est le seul point prépériodique. On a alors d_i choix possibles pour φ_i . Finalement, le nombre de choix pour la famille (φ_i) est $((i,i,d_i)-1)\times \prod_{i\in C} d_i$. $(i,i,d_i)-1)$ i non périodique

En particulier, si d=2, il y a 1 point critique simple (donc avec un $d_i=2$) dans l¹ unique cycle, donc 1 choix pour la famille. Cqfd.

Remarque. Même s'il y a du choix pour les φ_i , pour chaque i le <u>centre</u> $\varphi_i^{-1}(0)$ de U_i est déterminé de façon unique.

3. L'ARBRE DE HUBBARD.

Dans la suite, f désigne un polynôme de degré $d \ge 2$ tel que tout point critique soit prépériodique. On rappelle que cela entraı̂ne que f est sous-hyperbolique, et que K_f est connexe et localement connexe. On reprend les notations des \S 1 et 2. En particulier, chaque U_i est muni d'un centre, ce qui permet de définir les <u>arcs réglementaires</u>.

On rappelle que, si x et y sont deux points de K_f , il existe un arc réglementaire unique $\left[x;y\right]_f$ d'extrémités x et y, et que si $\left(x_s\right)$ est une famille de points de K_f , l'ensemble $U\left[x_{s_1},x_{s_i}\right]_f$ est un arbre topologique fini, appelé enveloppe réglementairement convexe (ou enveloppe réglementaire) des x_s .

<u>Définition</u>. <u>Nous appellerons arbre de Hubbard de</u> f <u>l'enveloppe réglementairement</u>

<u>convexe</u> H_f <u>de la réunion des orbites directes des points critiques</u>.

Notons $\mathbb C$ l'ensemble des points critiques de f et $(H_{_{\hbox{$0$}}})$ les fermetures des composantes connexes de H_f - $\mathbb C$.

PROPOSITION 3. L'application f induit une application continue de H_f dans lui-même, dont la restriction à chacun des H_σ est injective.

<u>LEMME 1. Soit i \subseteq K_f un arc réglementaire ne contenant pas de point critique de f sauf éventuellement ses extrémités. Alors, f_{|\Gamma} est injective et f(\Gamma) est un arc réglementaire.</u>}

Démonstration. Soit $\gamma: \mathbb{T} \to K_f$ un chemin injectif d'image f. Si $f \circ \gamma$ est injectif, son image est un arc réglementaire car f transforme un rayon interne de \overline{U}_i en un rayon interne de $\overline{U}_{f_{\pm}(i)}$. Montrons que $\eta = f \circ \gamma$ est nécessairement injectif. Il est clair que γ est localement injectif, donc $S = \{(t_1, t_2) | t_1 < t_2 \text{ et } \eta(t_1) = \eta(t_2)\}$ est compact. Supposons $S \neq 0$, et soient $(t_1, t_2) \in S$ avec $t_2 - t_1$ minimum et $t_3 \in]t_1, t_2[$. Alors, $\eta([t_1, t_3])$ et $\eta([t_3, t_2])$ sont des arcs réglementaires de mêmes extrémités ; ils coincident, ce qui est en contradiction avec l'injectivité de η sur $]t_1, t_2[$. On a donc $S = \emptyset$, η est injectif et $f(\Gamma) = \eta(T)$ est un arc réglementaire. Cqfd.

 ne contient pas de point critique, sauf éventuellement x ou y , donc $f_{\mid \Gamma}$ est injective et $f(x) \neq f(y)$. Cqfd.

4. CAS DU DEGRE 2.

On suppose en outre d=2, et f de la forme $z\mapsto z^2+c$. Le point critique est 0. On pose $a_n=f^n(0)$, et on note A l'orbite directe de 0 (qui est finie par hypothèse). Deux cas sont possibles :

 $- \underline{\text{Cas p\'eriodique}}: \ 0 \ \text{ est p\'eriodique, on note } k \ \text{ sa p\'eriode ; on a donc}$ $\# \ A = k \ , \ A = \{a_0, \dots, a_{k-1}\} \ . \ \text{ Les points } \ a_i \ \text{ sont superattractifs, donc dans } \overset{\circ}{K}_f \ ;$ on note U_i la composante connexe de $\overset{\circ}{K}_f$ contenant a_i (qui est son bassin immédiat). On a donc $d_0 = 2$, $d_i = 1$ pour $i = 1, \dots, k-1$, et $f^k : U_0 \to U_0$ est de dégré $\delta = 2 : U_0 \xrightarrow{f} U_1 \xrightarrow{f} U_2 \xrightarrow{f} \dots \xrightarrow{f} U_{k-1} U_{k-1}$

Toute autre composante de $\overset{\circ}{K}_f$ tombe en un temps fini, par un homéomorphisme, sur l'un des U_i .

 $- \underline{\text{Cas strictement prépériodique}} \text{ (ou de Misurewicz): 0 tombe en } \ell \text{ coups}$ sur un cycle d'ordre k: on a $a_\ell = a_{k+\ell}$, $a_{\ell-1} \neq a_{k+\ell-1}$, d'où $\ell \geq 2$ et $a_{\ell-1} = -a_{\ell+k-1} \text{ . L'ensemble } K \text{ est d'intérieur vide (proposition 2) et le cycle}$ $\{a_\ell, \dots, a_{\ell+k-1}\} \text{ est répulsif. Notons } \nu(i) \text{ le nombre de brins de l'arbre } H_f \text{ en } a_i \text{ .}$

PROPOSITION 4. On suppose d = 2.

a) Cas périodique: Si k = 1, on a c = 0, $\nu(0) = 0$. Si k > 1, il existe r, $2 \le r \le k$, tel que $\nu(i) = 1 \text{ pour } 1 \le i \le r \text{ et } \nu(i) = 2 \text{ pour } r < i \le k$.

Les arguments internes des brins en a_i sont: 0 si $\nu(i) = 1$, 0 et $\frac{1}{2}$ si $\nu(i) = 2$.

b) Cas strictement prépériodique : On a $\nu(0) = 2$, $\nu(1) = \nu(2) = 1 \leq \ldots \leq \nu(\ell) = \ldots = \nu(\ell+k-1) .$

b) On a encore:

 $\frac{1}{2} \nu(0) \leq \nu(1) \leq \ldots \leq \nu(\ell) \leq \ldots \leq \nu(\ell+k-1) \leq \nu(\ell+k) = \nu(\ell).$

Montrons que $\nu(0)>1$. Si on avait $\nu(0)=1$, l'application $f:H\to H$ serait injective; en contradiction avec $f(a_{\ell-1})=f(a_{\ell+k-1})$. Comme H_f doit avoir au moins deux extrémités, on a $\nu(1)=\nu(2)=1$. Cqfd.

ENSEMBLES DE JULIA DE MESURE NULLE (+)

La question de savoir si J_f est de mesure nulle pour tout polynôme f est ouverte (même pour les polynômes $z\mapsto z^2+c$). Nous montrons que c'est le cas si f est hyperbolique, ou seulement sous-hyperbolique (dans ce dernier cas, la démonstration est seulement esquissée).

1. DISTORSION.

<u>Définition</u>. <u>Soient</u> U <u>un ouvert connexe de</u> \mathbb{C} <u>et</u> $f: U \to \mathbb{C}$ <u>une application</u> <u>holomorphe</u>. <u>On appelle distorsion de</u> f <u>sur</u> U <u>le nombre</u> :

$$dist_{U}(f) = \sup_{x,y \in U} |Log \frac{f'(y)}{f'(x)}|$$

Commentaire. On a $\operatorname{dist}_U(f)=0$ si f est affine. On a $\operatorname{dist}_U(f)=\infty$ si f a un point critique ou si f' est une application $U \to \mathbb{C}^{\times}$ non homotope à une constante. Dans les autres cas, il faut prendre la détermination du Log qui vaut 0 si x=y.

Si $f:U\to V$ et $g:V\to \mathbb{C}$ sont des applications holomorphes, on a $dist_U(g\circ f) \leq dist_U(f) + dist_V(g) \ .$

 $\begin{array}{c} \text{Si } f: \ U \xrightarrow{\approx} \ V \ \text{ est un isomorphisme, on a: } \operatorname{dist}_U(f) = \operatorname{dist}_V(f^{-1}) \ . \\ \text{On a } \operatorname{dist}_U(f) \leq \operatorname{diam int}(U). \sup |\frac{f''}{f^{1}}| \ , \ \text{où diam int}(U) = \sup \left(\ \inf \left(\ell \left(\gamma \right) \right) \right), \\ \chi, y \in U \ \gamma \ \text{chemin de} \\ \chi \ \grave{a} \ y \end{array}$

THEOREME 1 (Quasi-auto-similitude). Soient U un ouvert de \mathbb{C} , $f: U \to \mathbb{C}$ une application holomorphe, $\Lambda \subset U$ un compact tel que $f(\Lambda) \subset \Lambda$ et que f soit expansive sur Λ . Alors :

$$(\forall m > 0) (\exists a, b) (\forall \varepsilon) (\forall x \in \Lambda) (\exists n \in \mathbb{N})$$

 $b > a > 0 0 \le \varepsilon \le a$

$$B(f^n(x),a) \subseteq f^n(B(x,\varepsilon)) \subseteq B(f^n(x),b) \quad \underline{et} \quad dist_{B(x,\varepsilon)} (f^n) \leq m$$

⁽⁺⁾ Les résultats de cet exposé ont été obtenus indépendamment par M. Yu Lyubich. Une démonstration succinte est publiée dans "On typical behaviour of the trajectories of a rationnal mapping of the sphere" (Dokl., t. 268 (1982), n° 1; traduction Soviet Math. Dokl., vol. 27 (1983), n° 1).

Posons $M_1 = \inf_{U_1} u$, $M_2 = \sup_{U_1} u$, $M_3 = \sup_{U_1} \left| \frac{f^{ii}}{f^i} \right|$, $M_4 = \sup_{U_1} \left| f^i \right|$

Soit m tel que $0 < m \le 1$; posons $b = \inf (b_0 \frac{M_1}{M_2}, \frac{m(\lambda - 1)}{2m})$, et $a = be^{-2m}/M_4$.

Soit $x \in \Lambda$; posons $x_k = f^k(x)$ et $\rho_k = (f^k)^*(x)$ pour tout k. Choisissons $n \in \mathbb{N}$ arbitrairement, posons $V_n = B(x_n,b)$ et, pour $0 \le k \le n$, notons V_k la composante connexe de $f^{-(n-k)}(V_n)$ contenant x_k , de sorte que f^{n-k} induit un homéomorphisme de V_k sur V_n . On a diam int $(V_k) \le \frac{2b\,M_2}{M_1\,\lambda^{n-k}}$, d'où $\mathrm{dist}_{V_k}(f) \le \frac{2b\,M}{n-k}$

et
$$\operatorname{dist}_{V_0}(f^n) \leq \sum_{k=0}^{n-1} \operatorname{dist}_{V_k}(f) < \frac{2bM}{\lambda - 1} \leq m .$$

Il en résulte que $V_0\supset B(x_0,\frac{b}{\rho^n}\ e^{-m})$ et $f^{-n}(B(x_n,a))\cap V_0\subset B(x_0,\frac{a}{\rho^n}\ e^{m})$. Posons $\varepsilon_0=b\ e^{-m}$ et soit ε tel que $0<\varepsilon\leq\varepsilon_0$.

Revenons maintenant sur le choix de n . Comme on a $\rho_k < \rho_{k+1} \le M_4 \rho_k$ pour tout k, et $M_4 e^m a = e^{-m} b$, si n est la plus grande valeur de k telle que $\rho_k \varepsilon \le e^{-m} b$, on a : $\rho_n \varepsilon \le e^m a$, d'où

$$\begin{split} f^{-n}(B(x_n,a)) &\cap V_0 \subset B(x_0,\varepsilon) \subset V_0 &\text{ et } B(x_n,a) \subset f^n(B(x_0,\varepsilon)) \subset B(x_n,b) \\ \text{et} & \operatorname{dist}_{B(x_0,\varepsilon)} f^n \leq m \quad . & \operatorname{Cqfd}. \end{split}$$

2. DENSITE.

Dans \mathbb{R}^N (ici N=2), soient Λ et V deux ensembles mesurables, avec $0 < \text{mes } V < \infty$ (mes (V) désigne la mesure de Lebesgue de V). On appelle <u>densité</u> de Λ dans V le nombre $d_V(\Lambda) = \frac{\text{mes}(\Lambda \cap V)}{\text{mes}(V)}$. Si $V \subset V'$

avec mes $(V^{\dagger}) < \infty$, on a $d_{V^{\dagger}}(\Lambda) \geq \frac{\operatorname{mes}(V)}{\operatorname{mes}(V^{\dagger})} d_{V}(\Lambda)$ et $1 - d_{V^{\dagger}}(\Lambda) \geq \frac{\operatorname{mes}V}{\operatorname{mes}V^{\dagger}}(1 - d_{V}(\Lambda))$.

Rappelons le théorème de densité de Lebesgue : <u>Pour presque tout</u> $x \in \Lambda$, <u>la densité</u> $d_{B(x,r)}\Lambda$ <u>tend vers</u> 1 <u>quand</u> $r \to 0$. Nous utiliserons le résultat plus faible suivant :

 $\begin{array}{lll} \underline{\text{PROPOSITION 2. Soient }} f: \ U \rightarrow \mathbb{C} \ \underline{\text{ une fonction holomorphe, }} \ \ \Lambda \subseteq U \ \underline{\text{ un compact }} \\ \underline{\text{et }} \ \ V \subseteq U \ \underline{\text{ un ouvert tel que }} \ f_{\big|V} \ \underline{\text{ soit injective. }} \ \underline{\text{Si}} \ \text{dist}_V(f) \leq \ m \ , \ \underline{\text{ on a }} : \\ \\ 1 - d_{f(V)} f(\Lambda) \leq \ e^{2m} (1 - d_V(\Lambda)) \ \ . \end{array}$

3. LE CAS HYPERBOLIQUE.

THEOREME 2. Soient $f: U \to \mathbb{C}$ une application holomorphe et $\Lambda \subset U$ un compact tel que $f(\Lambda) \subset \Lambda$ et que f soit expansive sur Λ . Alors, Λ est de mesure nulle.

COROLLAIRE. Pour tout polynôme hyperbolique f, l'ensemble J_f est de mesure nulle.

LEMME 1. L'ensemble A est d'intérieur vide.

Quitte à extraire une suite, on peut supposer que (y_{ν}) a une limite y, et que $|y-y_{\nu}|<\frac{a}{2}$ pour tout ν . Alors, $B(y,\frac{a}{2})\subset B(y_{\nu},a)$, et $1-d_{B(y,\frac{a}{2})}(\Lambda) \leq 4\cdot (1-d_{B(y_{\nu},a)}(\Lambda)) \to 0 \text{ . Mais, cela ne dépend pas de } \nu \text{ ; } d^{\nu}\text{ où d} \qquad (\Lambda)=1 \text{ et } \Lambda\supset B(y,\frac{a}{2}) \text{ puisque } \Lambda \text{ est compact. Ceci contredit le lemme } 1 \text{ . } Cqfd.$

4. CAS SOUS-HYPERBOLIQUE: CONSTRUCTION D'UN REVÊTEMENT.

Nous allons reprendre la construction ci-dessus en la modifiant de façon à tenir compte de la présence des points critiques.

Soit f un polynôme sous-hyperbolique. Notons A (resp. A^*) la réunion des orbites directes (resp. des orbites directes strictes) des points critiques de f qui sont dans J_f . C'est un ensemble fini. Pour tout point critique α , on note

$$\begin{split} \deg_{\alpha} f & \text{ le degr\'e de ramification de } f & \text{ en } \alpha \text{ (la valeur de } \alpha \text{ telle que} \\ f(\alpha+z) &= f(\alpha)+c\,z^d+\dots \text{ avec } c\neq 0) \text{ . Pour } \alpha\in A \text{ , notons } \nu(\alpha) \text{ le produit} \\ & \text{des } \deg_3(f) \text{ pour les points critiques qui sont dans l'orbite inverse stricte de } \alpha \text{ .} \end{split}$$

Soient U un voisinage relativement compact de J_f tel que U' = $f^{-1}(U) \subset U$, $u: \overline{U} \to]0,+\infty$] une fonction continue, telle que $u^{-1}(\infty) = A^{\times}$, définissant une métrique riemannienne admissible μ , et $\lambda > 1$ tels que $\|T_X f\|_{\mu} \geq \lambda$ pour tout $x \in U' - A$. Pour tout $\alpha \in A$, choisissons trois disques Δ_{α} , $\Delta_{\alpha}^{!}$, $\Delta_{\alpha}^{!}$ de centre α , de rayon r_{α} , $r_{\alpha}^{!}$, $r_{\alpha}^{"}$ avec $r_{\alpha}^{"} < r_{\alpha}^{!} < r_{\alpha}$, de façon que $\Delta_{f(\alpha)} \subset f(\Delta_{\alpha})$, $\Delta_{f(\alpha)}^{!} \subset f(\Delta_{\alpha})$, $\Delta_{f(\alpha)}^{"} \subset f(\Delta_{\alpha})$, et que les $\overline{\Delta}_{\alpha}$ soient disjoints.

Nous allons maintenant construire un revêtement ramifié (non galoisien en général), Y de U , ramifié seulement au-dessus de A^{\times} . Soit β un point périodique répulsif de f n'appartenant pas à A , de période k . Notons Y l'ensemble des suites $\underline{x} = (x_n)_{n \in \mathbb{N}}$ dans U telles que $f(x_n) = x_{n-1}$ pour $n \ge 1$ et $(\exists \ r) \ x_{kp+r} \to \beta$ quand $p \to \infty$. On munit Y de la topologie de la convergence uniforme.

Soit $\underline{x} \in Y$. Il existe un n tel que $x_n \notin A^*$. Alors, pour tout $p \ge n$, on a $x_p \notin A^*$, puisque $f(A^*) \subseteq A^*$. Si on pose $\rho = d(x_n, A^*)$, pour tout $q \ge 0$ l'application f^q admet une section σ_{n+q} continue sur $D(x_n, \rho)$, telle que $\sigma_q(x_n) = x_{n+q}$. En posant $\sigma_{n-q}(z) = f^q(z)$, on obtient une section σ de $\pi_n : (z_p) \to z_n$, d'où un voisinage de \underline{x} homéomorphe au disque $D(x_n, \rho)$, et muni d'une carte dans ce disque. Ces cartes munissent Y d'une structure de variété. L'application π fait de $Y - \pi^{-1}(A^*)$ un revêtement de $U - A^*$. Pour $\alpha \in A^*$, l'image réciproque de Δ_{α} se compose de disques analytiques avec degré de ramification divisant $\nu(\alpha)$ (mais en général pas le même d'un disque à l'autre, c'est pourquoi le revêtement α n'est pas galoisien).

L'application $\widetilde{f}: \underline{x} \to (f(x_n)) = (f(x_0), x_0, x_1, \ldots)$ est un isomorphisme de $Y' = \pi^{-1}(U')$ sur Y: son inverse est $(x_0, x_1, x_2, \ldots) \mapsto (x_1, x_2, x_3, \ldots)$.

Nous munissons Y des cartes suivantes : Sur $\pi^{-1}(U-U\mathcal{L}_{\alpha}^{\overline{n}})$, on prend les cartes induites par π . Si $\overset{\sim}{\alpha}\in\pi^{-1}(\alpha)$ avec $\alpha\in A$, la composante connexe $\mathcal{L}_{\overset{\sim}{\alpha}}$ de $\pi^{-1}(\mathcal{L}_{\overset{\sim}{\alpha}})$ contenant $\overset{\sim}{\alpha}$ se projette sur \mathcal{L}_{α} par une application ramifiée en $\overset{\sim}{\alpha}$ de degré $d_{\overset{\sim}{\alpha}}$: on munit $\mathcal{L}_{\overset{\sim}{\alpha}}$ d'une coordonnée $W=W_{\overset{\sim}{\alpha}}(\underline{x})$ telle que $(W_{\overset{\sim}{\alpha}}(\underline{x}))$ $\overset{\sim}{\alpha}=\pi(\underline{x})-\alpha=x_0-\alpha$. Ces cartes forment un atlas G.

Nous allons maintenant munir Y d'une métrique riemannienne $\overset{\sim}{\mu}$. Sur $Y=\pi^{-1}(A^{\star}) \ , \ \ \text{considérons la métrique riemannienne} \ \ \pi^{\star}(\mu) \ . \ \ \text{Pour chaque} \ \ \alpha\in A \ ,$ notons $\ell(\alpha)$ le plus petit i tel que $f^i(\alpha)$ soit périodique.

Sur chaque cycle, on peut définir une famille (v_{α}) de nombres > 0 telle que $|f'(\alpha)| \frac{v_{f(\alpha)}}{v_{\alpha}} > 1$, puisque dans A tous les cycles sont répulsifs. On définit $\mu \sim 0$ pour α périodique par $v_{\alpha} = |dW_{\alpha}| = 0$. On a alors $||T_{\alpha} ||_{\mu} > 1$ pour tout $||T_{\alpha}||_{\mu} = 0$ definir pour tout $||T_{\alpha}||_{\mu} = 0$ par la même formule, on ait encore $||T_{\alpha}||_{\mu} = 0$: il suffit à chaque pas de prendre v_{α} assez petit.

On peut alors trouver pour chaque α un disque $\angle \frac{m}{\alpha} \subset \angle \frac{m}{\alpha}$ de façon que $\|T \underset{\alpha}{\sim} \widetilde{f}\|_{\mu} > 1$ pour $x \in \angle \underset{\alpha}{\sim} = \Delta \underset{\alpha}{\sim} \cap \angle \frac{m}{\alpha}$, $\overset{\sim}{\alpha} \in \pi^{-1}(\alpha)$. On pose $\overset{\sim}{\mu} = \inf(\pi^*\mu, M^*\mu)$ où M^* est pris assez grand pour que $\pi^*\mu < M^*\mu$ sur $\partial \Delta \underset{\alpha}{\sim} pour$ tout $\overset{\sim}{\alpha}$ (il suffit de le vérifier pour un nombre fini de valeurs de $\overset{\sim}{\alpha}$, puisque deux points de même degré de ramification au-dessus du même point α donnent la même chose).

PROPOSITION 3. La métrique $\widetilde{\mu}$ a les propriétés suivantes :

- a) Elle est à coefficient continu.
- b) Il existe un $\widetilde{\lambda} > 1$ tel que $\|T_{\widetilde{X}} \widetilde{f}\|_{\widetilde{\mathcal{U}}} \ge \lambda$ pour tout $\widetilde{X} \in Y^{\dagger}$.
- c) Tout point de $U-U \overline{\Delta}_{\alpha}^{"}$ a un voisinage connexe au-dessus duquel les applications de changement de feuillet sont des isométries. Pour chaque $\alpha \in A$, on peut trouver un nombre fini $\alpha_1, \ldots, \alpha_r$ de composantes de $\pi^{-1}(\mathcal{L}_{\alpha})$ telle que chaque composante de $\pi^{-1}(\mathcal{L}_{\alpha})$ soit isométrique au-dessus de Δ_{α} à l'un des Δ_{α} .

Tout cela résulte de la construction de $\stackrel{\sim}{\mu}$.

5. CAS SOUS-HYPERBOLIQUE.

THEOREME 3. Si f est un polynôme sous-hyperbolique, J_f est de mesure nulle.

Nous nous contentons d'indiquer les modifications à apporter aux démonstrations des théorèmes 1 et 2 .

Soient $V \subset Y$ un ouvert et $g: V \to Y$ une application ${\Bbb C}$ -analytique telle que V et g(V) soient contenus dans les domaines de cartes de ${\Bbb C}$. On note alors ${\rm dist}_V(g)$ la distorsion de l'expression de g dans ces cartes. Si on a le choix entre plusieurs cartes pour V ou g(V), on prend le sup des distorsions des différentes expressions.

Soient $x \in Y$ et r > 0. S'il existe une carte $w : \mathcal{L} \to \mathbb{C}$ de G telle que $B(w(x),r) \subseteq w(\mathcal{L})$, on pose $B(x,r) = w^{-1}(B(w(x),r)$. Si on a le choix, on choisit la carte induite par \mathcal{H} (ou on prend l'intersection).

Soient $\Lambda \subseteq U$ un compact et V un ouvert de U contenu dans l'un des Δ_{α} . On pose : $\widetilde{d}_{V}(\Lambda) = \inf_{\alpha \in \pi^{-1}(\alpha)} d_{W_{\alpha}^{\infty}}(\pi^{-1}(V)) \ W_{\alpha}^{\infty}(\pi^{-1}(\Lambda))$.

On choisit $b_0 > 0$ tel que, pour tout $x \in Y' = \pi^{-1}(U')$, $B(x,b_0)$ soit défini et pour tout $n \ge 0$, $f^{-n}(B(x,b_0))$ soit contenu dans le domaine d'une carte de G. Avec ces conventions, la démonstration est analogue.

POSDRONASVILI (*)

0. NOTATIONS et INTRODUCTION.

Soit $f: \mathbb{C} \to \mathbb{C}$ un polynôme de degré d tel que tout point critique soit prépériodique. On note C l'ensemble des points critiques de f, A l'ensemble fini $\bigcup_{n \geq 0} f^n(C)$, J et K l'ensemble de Julia et l'ensemble de Julia rempli, H l'arbre de Hubbard, i.e. l'enveloppe réglementaire de A dans K. Pour $\alpha \in A$, on note $\nu(\alpha)$ le nombre de brins de H en α , $\tau(\alpha)$ le degré de ramification de f en α (la multiplicité de α comme point critique est $\tau(\alpha)-1$; on a $\tau(\alpha)=1$ si $\alpha \in A-C$). Les points de A sont appelés <u>points marqués</u>, en ajoutant les points de branchement de H , on obtient les points remarquables.

Nous retiendrons sur H la structure définie par les données suivantes :

- sa topologie,
- l'ordre cyclique des brins aux points de branchement (ce qui détermine la classe d'isotopie du plongement H → C) ,
- l'ensemble A des points marqués,
- la dynamique sur A , c'est-à-dire $f_{\mid A}$: $A \rightarrow A$,
- la fonction $r: A \to \mathbb{N}$ (si f est de degré 2, on a $r(\alpha) = 2$ si α est le point critique et $r(\alpha) = 1$ sinon).

Ces données constituent la structure primaire.

Nous allons montrer qu'un polynôme de la forme $z\mapsto z^2+c$, tel que 0 soit prépériodique, est déterminé par son arbre muni de sa structure primaire.

^(*) Alias Flora Poil. Ce nom est un anagramme. Si vous trouvez de quoi, vous saurez quel jour ceci a été raconté la première fois.

La démonstration comprend deux parties, une première partie topologicocombinatoire et une deuxieme partie analytique. La deuxième partie peut se faire
aussi bien en degré d quelconque. Pour étendre la première partie, il faut
définir sur l'arbre une <u>structure complémentaire</u>. On obtient alors le résultat
suivant : un polynôme tel que tout point critique soit prépériodique est déterminé
à conjugaison affine près par son arbre muni de sa structure primaire et de
sa structure complémentaire.

I. PARTIE COMBINATOIRE

1. L'ARBRE H¹.

On pose $H^1=f^{-1}(H)$. Cet ensemble est aussi l'enveloppe réglementaire de $A^1=f^{-1}(A)$ dans K. Les <u>points marqués</u> de H^1 sont les points de A^1 . Un point de H peut être marqué (resp. remarquable) dans H^1 sans l'être dans H^1 . On définit de la même façon sur H^1 une structure primaire (on a $r(\alpha)=0$ si $\alpha\in A^1-A$). En notant $\nu_1(\alpha)$ le nombre de brins de H^1 en α , on a, pour tout $\alpha\in A$:

 $\nu(\alpha) \le \nu_1(\alpha) = r(\alpha) \cdot \nu(f(\alpha))$.

Pour un polynôme de la forme $f: z \mapsto z^2 + c$, il est facile de reconstituer H^1 avec sa structure primaire (ainsi que le plongement $H \to H^1$) au vu de H avec sa structure primaire.

Si T est un arbre et $F\subseteq T$ un ensemble fini, l'espace obtenu en <u>coupant</u> T suivant F est la réunion disjointe des fermetures des composantes connexes de T - F .

Supposons f de degré 2, disons de la forme $z + z^2 + c$. Soit $a_0 = 0$ le point critique, et $a_i = f^i(a_0)$. On a $\nu(a_1) = 1$, d'où $\nu_1(a_0) = 2$. En coupant H^1 en a_0 , on obtient H^1_0 H^1_1 avec disons $\alpha_1 \in H^1_1$. L'application f induit un homéomorphisme de chacun des H^1_s sur H, notons b_i^s l'image réciproque

de a_i dans H_s^1 (s=0,1). On obtient ainsi un homéomorphisme $b_i^s \mapsto (a_i,s)$ H^1 sur $H \times \{0,1\} / (a_1,0) \sim (a_1,1)$. L'injection naturelle $\iota: A \to H^1$ est donnée par $\iota(a_i) = b_{i+1}^s$ avec s=1 si a_i est du même côté de a_0 que a_1 dans H et s=0 sinon . (Dans H^1 , on a $b_1^0 = b_1^1 = a_0$). Ceci détermine $i: H \to H^1$ à une homotopie fixant les points remarquables près. Le point a_0 n'est pas un point de branchement dans H^1 , donc tout point de branchement est dans $H^1_0 - b_1$ ou $H^1_1 - b_1$, et l'ordre cyclique des brins est donné par celui des brins de H au point correspondant.

2. LA STRUCTURE COMPLEMENTAIRE.

Ce paragraphe n'a d'intérêt que pour d = 3. Nous allons ajouter à la structure primaire deux données complémentaires.

Soit $\alpha \in A$. On a $\alpha \in \overset{o}{K}$ si et seulement si $(\exists \ n,k)$ $f^{n+k}(\alpha) = f^n(\alpha)$ et $r(f^n(\alpha)) \geq 2$. Cela se lit donc sur la structure primaire de H.

Si $\alpha \in \mathring{K}$, les brins de H sont au voisinage de α des rayons internes de la composante U_{α} de \mathring{K} contenant α . La <u>première donnée complémentaire</u> est la donnée, pour chaque $\alpha \in C \cap \mathring{K}$, des angles entre les brins de H en α ; comptés en tours, ce sont des éléments de $T = \mathbb{R}/\mathbb{Z}$. Ces angles déterminent les angles entre les brins en tout point de $A \cap \mathring{K}$. En effet, soit $\alpha \in A \cap \mathring{K}$, et n_0 le plus petit $n \geq 0$ tel que $f^n(\alpha) \in C$; si ξ et ξ sont deux brins en α , leur angle est égal à celui de $f^n(\xi)$ et $f^n(\xi)$ en $f^n(\alpha)$. Ces angles sont rationnels, avec un dénominateur qu'on peut estimer au vu de la structure primaire. La première donnée comporte donc une information finie.

Pour $\alpha \in A$, on appelle <u>bourgeons</u> en α les $r(\alpha)$ $\nu(f(\alpha))$ – $\nu(\alpha)$ brins (*) de H^1 en α qui ne sont pas des brins de H. Si $\tau(\alpha)$ = 1, la façon dont les

Les <u>branches</u> de H en α sont les composantes de H coupé en α . Les brins sont les germes des branches.

bourgeons s'insèrent dans l'ordre cyclique des brins de H en α est déterminée par la structure primaire. Si $\alpha \in C \cap K$, cette façon est déterminée par les angles entre les brins en α et en $f(\alpha)$.

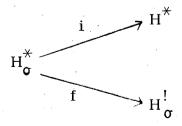
La <u>deuxième donnée complémentaire</u> est constituée par la façon dont les bourgeons en α s'insèrent dans l'ordre cyclique des brins de H pour $\alpha \in C \cap J$.

3. RECONSTITUTION de H^1 (degré $d \ge 3$).

Notons H^{\star} la réunion de H et des bourgeons (représentés par de petits arcs), et soit $\coprod_{\sigma \in S} H^{\star}_{\sigma}$ l'espace obtenu en coupant H^{\star} suivant C. Pour tout $\sigma \in S$, posons $C_{\sigma} = H^{\star}_{\sigma} \cap C$ et notons H^{1}_{σ} la composante de H^{1} coupé suivant C qui contient H^{\star}_{σ} . L'espace H^{1} est réunion des H^{1}_{σ} .

Démonstration. L'application f est injective sur H^1_{σ} , donc est un homéomorphisme de H^1_{σ} sur son image qui est compacte. Elle induit donc un homéomorphisme de H^1_{σ} - C_{σ} sur un fermé de H- $f(C_{\sigma})$. Comme elle est ouverte sur H^1_{σ} - C_{σ} , et que H^1_{σ} - C_{σ} est connexe, ce fermé est une composante connexe, d'où le lemme. Cqfd.

On peut maintenant donner de $\mbox{ H}^1$ la description suivante : $\mbox{ H}^1$ s'obtient en recollant à $\mbox{ H}^{\times}$ les $\mbox{ H}^!_{\sigma}$ suivant les applications



Les espaces H^* , H^*_σ et $H^!_\sigma$ sont connus à partir de H avec sa structure primaire et ses données complémentaires, et l'application f est connue à homotopie fixant les p**o**ints remarquables près.

La proposition suivante en résulte :

PROPOSITION 1. Soient f et g deux polynômes de degré d = 2 tels que tout point critique soit prépériodique. Soit φ un homéomorphisme de H_f sur H_g respectant les structures primaires et les données complémentaires. Il existe alors un homéomorphisme unique φ_1 de H_f^1 sur H_g^1 , coincidant avec φ sur A_f et tel que $g \circ \varphi_1 = \varphi \circ f$.

Compléments. 1) On a $\varphi_1(H_f)=H_g$, et la restriction de φ_1 à H_f est homotope à φ parmi les homéomorphismes coincidant avec φ sur les points remarquables de H_f .

2) L'application φ_1 respecte les structures primaires, et les angles aux points de $A^1 \cap \overset{o}{K}$.

Remarques. 1) On ne peut en général avoir à la fois $g \circ \varphi_1 = \varphi \circ f$ et $\varphi_1|_{H_f} = \varphi$; il faut une homotopie d'un côté ou de l'autre. Nous avons choisi l'énoncé qui nous sera utile.

2) La proposition est vraie en degré d = 2 sous l'hypothèse sur les données complémentaires qui est automatique puisqu'elles n'apportent aucune information ; cela résulte du § 1.

4. DECORATION des ARBRES.

Nous allons maintenant, la saison s'y prête, transformer les arbres en arbres de Noël. Revenant à f , soit (U_i) la famille des composantes connexes de $\overset{\circ}{K}$; pour $\alpha \in A \cap \overset{\circ}{K}$, on notera U_{α} la composante de centre α . Soit (ζ_i) la famille de cartes \mathfrak{C} -analytiques $\zeta_i:U_i \xrightarrow{\approx} D$ telle que l'expression de f dans ces cartes soit $\zeta_i \longmapsto \zeta_{f_{\chi}(i)} = \zeta_i^{r_i}$. Pour $z \in U_i$, on pose $\rho(z) = |\zeta_i(z)|$.

 $L'\underline{arbre\ décoré}\ \underset{c}{\models_{c}}\ \ \text{est la réunion de }\ H\ \ \text{et des disques}$ $N_{\alpha} = \{z \in U_{\alpha} \mid \rho(z) \leq \frac{1}{2}\} \ \ \text{pour}\ \ \alpha \in A \cap \overset{o}{K}\ .$

5. CONSTRUCTION d'HOMEOMORPHISMES.

PROPOSITION 2. Sous les hypothèses de la proposition 1, on peut trouver deux homéomorphismes ψ_0 , ψ_1 : $\mathbb{C} \to \mathbb{C}$ tels que :

- a) $\psi_0(H_f) = H_g \underline{et} \psi_0|_{H_f} \underline{est \ homotope \ a} \varphi \underline{parmi \ les \ homéomorphismes}$ $H_f \to H_g \underline{qui \ coincident \ avec} \varphi \underline{sur} A_f.$
- b) ψ_0 induit un isomorphisme C-analytique de $\overset{\circ}{N}_{\alpha}^f$ sur $\overset{\circ}{N}_{\varphi}^g(\alpha)$ pour $\alpha \in A_f \cap \overset{\circ}{K}_f$.
 - c) $g \circ \psi_1 = \psi_0 \circ f$.
- d) ψ_1 est homotope à ψ_0 parmi les homéomorphismes $\mathbb{C} \to \mathbb{C}$ induisant un homéomorphisme $H_f \to H_g$, et coincidant avec ψ_0 sur $\alpha \in A_f \cap \mathring{K}_f$ $\alpha \cup A_f$.

Démonstration.

 $\begin{array}{l} \alpha) \ \ \underline{\text{Construction de}} \ \ \psi_0 \ . \ \ \text{On peut modifier} \ \ \varphi \ \ \text{et} \ \ \psi_0 \ \ \text{de façon que} \\ \rho_g(\varphi_0(z)) = \rho_f(z) \ \ \text{pour} \ \ z \in H_f \cap N_\alpha \ , \ \ \alpha \in A_f \cap \mathring{K}_f \ . \ \ \text{Sur chaque brin} \ \ H_f \cap N_\alpha \ , \\ l'\text{expression de} \ \varphi \ \ \text{dans les cartes} \ \zeta \frac{f}{\alpha} \ \ \text{et} \ \zeta \frac{g}{\varphi(\alpha)} \ \ \text{est de la forme} \ \zeta \mapsto \lambda \ \zeta \ \ \text{avec} \\ |\lambda| = 1 \ , \ \ \text{et la condition de préserver la première donnée complémentaire entraîne} \\ \text{que } \lambda \ \ \text{est le même} \ \lambda_\alpha \ \ \text{pour les différents brins issus d'un} \ \ \alpha \in A_f \cap \mathring{K}_f \ \ \text{donné.} \\ \text{On peut alors définir} \ \varphi_0 \ \ \text{sur chaque} \ N_\alpha \ \ \text{par} \ \zeta \mapsto \lambda_\alpha \zeta \ . \ \text{On obtient ainsi un} \\ \text{difféomorphisme} \ \varphi_0 : \ |_{f} \ |_{f} \ \ |_{f} \$

Soit τ_f un isomorphisme de \mathbb{C} – $\overline{\mathbb{D}}$ sur \mathbb{C} – t_f , prolongé de façon continue à \mathbb{C} – \mathbb{D} , et définissons de même τ_g . Du fait que φ_0 préserve l'ordre cyclique aux points de branchement, il résulte qu'il existe un homéomorphisme $h: S^1 \to S^1$ tel que $\varphi_0(\tau_f(u)) = \tau_g(h(u))$ pour $u \in S^1$. On peut alors prolonger φ_0 en un homéomorphisme $\psi_0: \mathbb{C} \to \mathbb{C}$ défini sur \mathbb{C} – t_f par $\psi_0(\tau_f(ru)) = \tau_g(rh(u))$.

 β) Construction de ψ_1 au voisinage de H_f^1 . Sur H_f , ψ_1 est donné par la proposition 1.

Pour chaque point critique α de f, soient V_{α}^f et W_{α}^f des voisinages de α et $f(\alpha)$ homéomorphes à D, tels que f induise un revêtement de degré $r(\alpha): V_{\alpha}^f - \{\alpha\} \to W_{\alpha}^f - \{f(\alpha)\}$. Posons $W_{\alpha}^g = \psi_0(W_{\alpha}^f)$, et soit V_{α}^g un voisinage de $\varphi(\alpha)$ tel que g induise un revêtement $V_{\alpha}^g - \varphi(\alpha) \to W_{\alpha}^f - \varphi(f(\alpha))$ de degré $r_g(\varphi(\alpha)) = r_f(\alpha)$. On peut relever $\psi_0: W_{\alpha}^f - f(\alpha) \xrightarrow{\approx} W_{\alpha}^g - \varphi(f(\alpha))$ en un homéomorphisme $\psi_1^\alpha: V_{\alpha}^f - \alpha \to V_{\alpha}^g - \varphi(\alpha)$, et grâce à l'hypothèse que f préserve les données complémentaires, on peut le faire, de façon unique, en prolongeant ψ_1 déjà défini sur les brins de H_f^1 en α .

Pour chaque point $x \in H_f^1$ non critique, on peut trouver des voisinages V_X^f , W_X^f , V_X^g , W_X^g de x, f(x), $\psi_1(x)$, $\psi_0(f(x))$ tels que l'on ait des homéomorphismes $V_X^f \xrightarrow{f} W_X^f \xrightarrow{\psi_0} W_X^g \xleftarrow{g} V_X^g$, ce qui permet de définir $\psi_1^X = g^{-1} \circ \psi_0 \circ f : V_X^f \to V_X^g$. Tous ces germes se recollent (on peut invoquer un lemme de Godement) en un homéomorphisme ψ_1^V d'un voisinage V^f de H_f^1 sur un voisinage V^g de H_g^1 , tel que $g \circ \psi_1 = \psi_0 \circ f$.

 γ) Extension de ψ_1 à $\mathbb C$. Les applications f et g induisent des revêtements de degré d (c'est le même car c'est Σ (r(α) - 1) + 1) :

$$f \,:\, \mathbb{C} - H_f^1 \,\longrightarrow\, \mathbb{C} - H_f \quad , \quad g \,:\, \mathbb{C} - H_g^1 \,\longrightarrow\, \mathbb{C} - H_g \;.$$

Ces quatre espaces sont homéomorphes à une couronne.

Soit $x \in V^f - H_f^1$. Il existe un relèvement unique $\psi_1^\infty \colon \mathbb{C} - H_f^1 \to \mathbb{C} - H_g^1$ de $\psi_0 \colon \mathbb{C} - H_f \to \mathbb{C} - H_g$ tel que $\psi_1^\infty(x) = \psi_1^V(x)$. On peut supposer V^f connexe et de la forme $f^{-1}(W^f)$, où W^f est un voisinage connexe de H^f . Alors, ψ_1^V et ψ_1^∞ induisent deux relèvements de $\psi_0 \colon W^f - H_f \to W^g - H_g$, qui coincident en x; donc sur $V^f - H_f^1$. Alors, ψ_1^V et ψ_1^∞ se recollent en un homéomorphisme $\psi_1 \colon \mathbb{C} \to \mathbb{C}$.

Pour chaque $\alpha \in A_f \cap \overset{\circ}{K}_f$, l'expression de ψ_0 sur N_{α} dans les cartes

 ζ_{α}^f et ζ_{α}^g est de la forme $\zeta \mapsto \lambda_{\alpha} \zeta$ avec $|\lambda_{\alpha}| = 1$, et l'expression de ψ_1 sera de la forme $\zeta \mapsto \lambda_{\alpha}^1 \zeta$ avec $(\lambda_{\alpha}^1)^{r_{\alpha}} = \lambda_{f(\alpha)}$. Mais (à part le cas trivial où f serait un monôme et $H_f = \{\alpha\}$), il y a au moins un brin de H_f en α , sur lequel ψ et ψ_1 coincident. On a donc nécessairement $\lambda_{\alpha}^1 = \lambda_{\alpha}$. Il en résulte que ψ_1 coincide avec ψ_0 sur $|\cdot|_f$.

 $\delta) \ \, \underline{\text{Homotopie de}} \ \, \psi_0 \ \, \underline{\grave{a}} \ \, \psi_1 \ \, . \ \, \text{Reprenons} \ \, \tau_f \ \, \text{et} \ \, \tau_g \ \, \text{qui ont servi en} \ \, (\alpha) \ \, .$ Soit $(\psi_t)_{t \in [0,1]}$ une homotopie entre ψ_0 et ψ_1 parmi les homéomorphismes $(\psi_t)_{t \in [0,1]} \ \, \text{qui coincident avec} \ \, \psi_0 \ \, \text{sur} \ \, X = A_f \cup \bigcup_\alpha N_\alpha^f \ \, . \ \, \text{Pour tout } t \ \, , \ \, \text{il existe}$ un homéomorphisme unique $h_t : S^1 \to S^1 \ \, \text{tel que} \ \, \psi_t \circ \tau_f = \tau_g \circ h_t \ \, , \ \, \text{qui coincide}$ avec $h_0 = h \ \, \text{sur} \ \, \tau_f^{-1}(X) \ \, . \ \, \text{On peut étendre cette homotopie } \ \, \mathbb{C} - D \ \, \text{en vertu du}$ lemme suivant, auquel on se ramène par inversion :

LEMME. Soient φ_0 et φ_1 deux homéomorphismes $\overline{D} \rightarrow \overline{D}$ et (h_t) une homotopie entre $\varphi_0|_{S^1}$ et $\varphi_1|_{S^1}$. Il existe alors une homotopie (φ_t) entre φ_0 et φ_1 induisant (h_t) sur le bord.

Ceci achève la démonstration de la proposition 2. [Ouf! C'est pas vraiment vache, je devrais pouvoir faire plus court.]

Remarque: On a du choix pour ψ_0 , mais la donnée de ψ_0 détermine ψ_1 .

6. AJUSTEMENT à l'INFINI.

Choisissons R et R' tels que R > R' > 1 . Soit $\zeta_\infty^f: \mathbb{C} - K_f \to \mathbb{C} - \overline{D}$ un isomorphisme tel que l'expression de f dans cette carte soit $\zeta \mapsto \zeta^d$, et

posons $N_\infty^f=\{z\in C-K_f|\ |\zeta_\infty^f(z)|\ge R\}$. Définissons de même ζ_∞^g et N_∞^g , N_∞^f et N_∞^g .

Choisissons dans $\partial \vdash_{\sigma}^{f}$ un point x qui soit un point remarquable de H_f ou un point de l'un des ∂N_{α} . On a donc $\psi_0(x)=\psi_1(x)$, et même $\psi_t(x)=\psi_0(x)$ pour tout $t\in [0,1]$. Soient $x'\in H_f$ un autre point remarquable, $y\in N_{\infty}^f$ et η un chemin de x à y tel que $\eta(t)\in \mathbb{C}-|_{\overline{b}_f}$ pour t>0. Soit $\widetilde{\eta}$ un chemin de $\psi_0(y)$ à $\psi_1(y)$, homotope dans $\mathbb{C}-\psi_0(x')$ au chemin concatenant $\psi_0(\eta)$ renversé avec $\psi_1(\eta)$. En suivant l'argument de ζ le long de $\widetilde{\eta}$, on obtient un $\theta\in \mathbb{R}$ tel que $\lambda_1=\lambda_0e^{2i\pi\,\theta}$.

LEMME. a) On a $\psi_1 = \psi_0$ sur N_{∞}^f si $\theta \in \mathbb{Z}$.

b) Pour qu'on puisse modifier l'homotopie de ψ_0 à ψ_1 de façon que $\psi_t = \psi_0 \quad \underline{\text{sur}} \quad N_\infty^f \quad \underline{\text{pour tout}} \quad t \ , \quad \underline{\text{il faut et il suffit que}} \quad \theta = 0 \ .$

<u>Démonstration</u>. La partie a) est triviale. La partie b) résulte de la description du π_0 du groupe des homéomorphismes d'une couronne fermée induisant l'identité sur le bord.

Fin de la démonstration de la proposition 3. Faisons varier ψ_0 en fonction d'un paramètre s de façon que $\lambda_0(s)=\lambda_0(0)\,\mathrm{e}^{2\mathrm{i}\pi\,s}$. On a alors $\theta(s)=\theta(0)+(\frac{1}{d}-1)s$. Pour $s=\frac{d}{d-1}\,\theta(0)$, on a $\theta(s)=0$, et ψ_0 satisfait aux propriétés requises. Cqfd.

II. PARTIE ANALYTIQUE

1. RAPPEL sur les APPLICATIONS QUASI-CONFORMES.

Si U est un ouvert de \mathbb{R}^n , l'espace de Sobolev $\sharp^1(U)$ est l'espace des fonctions de $L^2(U)$ dont les dérivées premières au sens des distributions sont dans $L^2(U)$. On note $\sharp^1_{loc}(U)$ l'espace des fonctions telles que $\forall \ x \in U$, $\exists \ V \ vois \ de \ x \ , \ f_{|V} \in \sharp^1(V) \ , \ et \ {\mathbb{C}} \sharp^1_{loc}(U)$ l'espace ${\mathbb{C}}(U) \cap \sharp^1_{loc}(U)$. On note ${\mathbb{C}} \sharp^1_{loc}(U,\mathbb{R}^p)$ l'espace des $f: \ U \to \mathbb{R}^p$ dont les coordonnées sont dans ${\mathbb{C}} \sharp^1_{loc}(U)$. Si U est un ouvert de ${\mathbb{C}}$, on définit ${\mathbb{C}} \sharp^1_{loc}(U; {\mathbb{C}})$ en oubliant la structure complexe et identifiant ${\mathbb{C}}$ à ${\mathbb{R}}^2$.

Soient U et V deux ouverts de $\mathbb C$ et $f:U\to V$ une application. On dit que f est <u>quasi conforme</u> si $f\in \mathbb C\sharp_{\mathrm{loc}}^1(U;\mathbb C)$ et s'il existe un m<1 tel que, pour presque tout $x\in U$, on ait : $|\frac{\partial f}{\partial \overline{z}}(x)|\leq m\;|\frac{\partial f}{\partial z}(x)|$.

Cette inégalité signifie que T_xf (qui est définie pour presque tout x) préserve l'orientation et transforme un cercle en une ellipse dont le rapport des axes est majoré par $M=\frac{1+m}{1-m}$. Le plus petit M pour lequel cela ait lieu est le rapport de dilatation de f.

Si f est un homéomorphisme quasi-conforme de U sur V , f^{-1} est quasi-conforme avec même rapport de dilatation , et on a :

$$\|Df\|_2 = 2 \int_U \left| \frac{\partial f}{\partial z} \right|^2 + \left| \frac{\partial f}{\partial \overline{z}} \right|^2 \le (M+1) \text{ aire (V) }.$$

Terminons par deux remarques qui nous servirons.

1) Soit (f_n) une suite dans $\mathbb{C}\sharp^1(U)$, $U\subseteq\mathbb{R}$ ouvert. Si $f_n \to f$ uniformément et $\|\mathrm{D}f_n\|_2 \le k$ (indépendant de n), alors $f\in\mathbb{C}\sharp^1(U)$ et $\|\mathrm{D}f\|_2 \le k$. En effet

$$\begin{split} \|\mathrm{Df}\|_2 & \leq k \iff \forall \ (u,v) \in \mathbb{C}_{\mathrm{comp}}^{\infty}(U) \ | \int_{U} f(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}) | \leq k \ . \end{split}$$

$$\|u\|_2^2 + \|v\|_2^2 \leq 1 \ .$$

2) Si $f \in \mathbb{C} \mathbb{H}^1(U;\mathbb{C})$ avec $U \subseteq \mathbb{C}$ et $\frac{\partial f}{\partial \overline{z}} = 0$ presque partout, f est holomorphe.

2. CONSTRUCTION de Φ_0 et Φ_1 .

PROPOSITION 4. Sous les hypothèses de la proposition 1, on peut trouver deux homéomorphismes Φ_0 et Φ_1 : $\mathbb{C} \to \mathbb{C}$ tels que :

- 1) Φ_0 est un difféomorphisme de classe e^1 .
- 2) Φ_0 induit un isomorphisme C-analytique de $\overset{\circ}{N}^f_{\alpha}$ sur $\overset{\circ}{N}^g_{\alpha}$ pour $\alpha \in A_f \cap \overset{\circ}{K}_f \cup \{\infty\}$.
 - 3) $g \circ \Phi_1 = \Phi_0 \circ f$.
 - 4) $\hat{\Psi}_1$ est quasi-conforme.

[Par rapport à la proposition 3, on a perdu $\psi_0(H_f)=H_g$, et on a gagné Φ_0 de classe \mathbb{C}^1 .]

Soient ψ_0 et $\psi_1: \mathbb{C} \to \mathbb{C}$ des homéomorphismes satisfaisant aux conditions des propositions 2 et 3, $\bar{\psi}_0$ un difféomorphisme de classe \mathbb{C}^1 de \mathbb{C} homotope à ψ_0 parmi les homéomorphismes coincidant avec ψ_0 sur \mathbb{N}_f et η_0 une homotopie. Les applications $f: \mathbb{C} - A_f^1 \to \mathbb{C} - A_f$ et $g: \mathbb{C} - A_g^1 \to \mathbb{C} - A_g$ sont des revêtements. L'application $\psi_1: \mathbb{C} - A_f^1 \to \mathbb{C} - A_g^1$ est un relèvement de $\psi_0: \mathbb{C} - A_f \to \mathbb{C} - A_g$; on peut donc relever η_0 en une homotopie η_1 de ψ_1 à un difféomorphisme $\Phi_1: \mathbb{C} - A_f^1 \to \mathbb{C} - A_g^1$, qui se prolonge en un homéomorphisme $\mathbb{C} \to \mathbb{C}$.

Le difféomorphisme Ψ_0 est quasi-conforme puisque ${\tt C}^1$ est holomorphe en dehors d'un compact. Il résulte de c) que Ψ_1 est quasi-conforme de même rapport. L'homotopie η_0 est constante sur ${\tt N}_{\rm f}$, donc η_1 est constante sur ${\tt N}_{\rm f}^1={\tt f}^{-1}({\tt N}_{\rm f})$, qui contient ${\tt N}_{\rm f}$. On a les homotopies suivantes, constantes sur ${\tt N}_{\rm f}$:

 $\psi_0\simeq\psi_0\simeq\psi_1\simeq\psi_1$, d'où une homotopie \mathbf{h}_0 de ψ_0 à ψ_1 constante sur \mathbf{h}_f . Cqfd.

3. La SUITE (Φ_n) .

A partir de Ψ_0 , Ψ_1 et h_0 , on construit par récurrence, pour chaque n, un homéomorphisme $\Psi_n: \mathbb{C} \to \mathbb{C}$ coincidant avec Ψ_0 sur n_f , et une homotopie h_n de Ψ_n à Ψ_{n+1} . L'homotopie h_n s'obtient en relevant h_{n-1} entre Φ_{n-1} et $\Phi_n: \mathbb{C}-A_f \to \mathbb{C}-A_g$ aux revêtements $\mathbb{C}-A_f^1$ et $\mathbb{C}-A_g^1$ à partir de Φ_n ; elle détermine Ψ_{n+1} . On a donc $g \circ \Psi_{n+1} = \Phi_n \circ f$ pour tout n, et l'homotopie h_n est constante sur $h_f^n = f^{-n}(n)$.

En particulier, Φ_n coincide avec Φ_{n+1} sur n_f^n , et la suite (Φ_n) est localement stationnaire sur l'ouvert \cup n_f^n . Or cet ouvert est \mathbb{C} - J_f , car tout point de \mathbb{C} - J_f est attiré par un cycle de $A_f \cap \overset{\circ}{K}_f$ ou par ∞ .

PROPOSITION 5. La suite (Φ_n) converge uniformément sur $\mathbb C$.

Démonstration. Le polynôme g est sous-hyperbolique. Soient Ω un voisinage ouvert de J_g , μ une métrique riemannienne admissible sur Ω et $\lambda > 1$, tels que $f^{-1}(\Omega) \subseteq \Omega$ et que $\|T_\chi g\|_{\mu} \ge \lambda$ pour tout $x \in g^{-1}(\Omega)$. Soit n_0 tel que $\mathbb{C} - n_g^{n_0} \subseteq \Omega$. Pour $n = n_0$, posons $\rho_n = \sup_{x \in \mathbb{C} - n_f^{n_0}} \int_{\mu}^{d} (\Phi_n(x), \Phi_{n+1}(x))$ (d_μ désignant la longueur pour μ du plus court chemin de $\Phi_n(x)$ à $\Phi_{n+1}(x)$ dans Ω , dans la classe du chemin donné par h_n). On a $\rho_{n+1} \le \frac{1}{\lambda} \rho_n$. Il en résulte que la suite (Φ_n) converge uniformément pour la distance définie par μ . Comme elle est constante en dehors d'un compact contenu dans Ω et que la distance définit la même topologie que la distance ordinaire, (Φ_n) converge uniformément sur \mathbb{C} pour la distance ordinaire. Cqfd.

4. HOLOMORPHIE DE Φ.

Notons \P la limite des \P_n . C'est une application continue. Pour chaque n, Φ_n est holomorphe sur \mathfrak{n}_f^n . Par suite, \P est holomorphe sur $\mathfrak{l}_f^n = \mathbb{C} - \mathbb{I}_f$. On sait que \mathbb{I}_f et \mathbb{I}_g sont de mesure nulle.

Remarque. Soient J_1 et J_2 deux fermés de mesure nulle, $\Psi\colon \mathbb{C} \to \mathbb{C}$ un homéomorphisme tel que $\Psi(J_1) = J_2$, et Ψ holomorphe sur $\mathbb{C} - J_1$. Cela n'entraîne pas que Ψ est holomorphe.

<u>Contre-exemple</u>. Soit $u: \mathbb{R} \to \mathbb{R}$ une fonction continue croissante, constante sur chaque composante du complémentaire d'un Cantor de mesure nulle, mais cependant non constante. Alors, $\Psi \colon (x+iy) \longmapsto x+i(y+u(x))$ donne un contre-exemple.

Cependant:

PROPOSITION 6. L'application • est holomorphe.

On a $\|D\Phi_n\|_{L^2(\mathbb{C}-h_f^*)} \le (1+M)$ aire $(\mathbb{C}-h_g^*)$, pour tout n. Il en résulte, comme on l'a remarqué à la fin du \S 1, que \P est de classe $\mathbb{C} \#^1$ sur $\mathbb{C}-h_f$. Comme $\frac{\partial \Phi}{\partial \mathbb{Z}}=0$ presque partout, l'application Φ est holomorphe sur $\mathbb{C}-h_f$. Elle est aussi holomorphe sur $\mathbb{C}-J$, elle l'est donc sur \mathbb{C} . Cqfd.

COROLLAIRE. 4 est affine.

En effet, 4 est propre de degré 1.

5. CONCLUSION.

THEOREME. Sous les hypothèses de la proposition 1, f et g sont conjugués par une application affine.

COROLLAIRE 1. Soient $f: z \mapsto z^2 + c_1$ et $g: z \mapsto z^2 + c_2$ deux polynômes de degré 2. S'il existe un homéomorphisme de H_f sur H_g préservant la structure primaire, on a $c_1 = c_2$.

COROLLAIRE 2. Soient c_1 et c_2 deux nombres réels, tels que 0 soit périodique de même période k pour $f: x \mapsto x^2 + c_1$ et $g: x \mapsto x^2 + c_2$. On suppose que l'ordre induit par celui de \mathbb{R} sur $\{0,f(0),\ldots,f^{k-1}(0)\}$ et $\{0,g(0),\ldots,g^{k-1}(0)\}$ coincident. Alors, $c_1=c_2$.

Ce résultat était connu sous le nom de conjecture de Métropolis-Stein-Stein.

Remarque. On peut donner des variantes de la condition sur les données complémentaires. Je pense qu'une variante possible serait de compléter l'arbre en adjoignant à A les points d'argument externe de la forme $\frac{p}{d-1}$ (points fixes), ou bien $\frac{p}{d}$ (peut-être faut-il tous les $\frac{p}{d(d-1)}$).

ARGUMENTS EXTERNES DANS LES ENSEMBLES DE JULIA

1. RAPPELS ET INTRODUCTION.

Si $K \subseteq \mathbb{C}$ est un compact connexe plein localement connexe, la représentation conforme $\varphi_K^{-1}: \mathbb{C} - \overline{D}_{\Gamma(k)} \xrightarrow{\approx} \mathbb{C} - K$ tangente à l'identité en ∞ admet un prolongement continu à $\mathbb{C} - D_{\Gamma}$, d'où une application continue $\gamma_k: \mathbb{T} = \mathbb{R}/\mathbb{Z} \to \partial K$, surjective, que nous appelons le <u>lacet de Carathéodory</u> de K. Pour $x \in \partial K$, les éléments de $\gamma_K^{-1}(x)$ sont appelés les <u>arguments externes</u> de x.

Soit $f:\mathbb{C}\to\mathbb{C}$ un polynôme monique de degré $d\geq 2$ tel que tout point critique soit prépériodique. Alors, K_f est un compact connexe plein, localement connexe; et le lacet de Carathéodory $\gamma_f:\mathbb{T}\to J_f$ satisfait à l'équation fonctionnelle $f(\gamma_f(t)) = \gamma_f(d.t) \ .$

Nous allons indiquer comment déterminer les arguments externes de certains points de J_f . Nous nous intéressons particulièrement aux polynômes quadratiques $f_c: z \mapsto z^2 + c$, car nous verrons que, dans le cas où 0 est strictement prépériodique pour f_c , les arguments externes de c dans K_c sont aussi (en un certain sens car on ne sait pas que M est localement connexe) les arguments externes de c dans M . Il y a aussi un énoncé concernant les points c tels que 0 soit périodique (un peu plus compliqué bien sûr puisqu'alors $c \in \overset{\circ}{K}_c$ et $c \in \overset{\circ}{M}$: il y a un jeu entre le centre et la racine des composantes de $\overset{\circ}{M}$ et de $\overset{\circ}{K}_c$).

2. ACCES.

Soit K un compact plein connexe et localement connexe, muni d'un centre pour chaque composante de $\overset{\circ}{K}$. Soient $H \subseteq K$ un arbre fini réglementaire, x un point de $H \cap \partial K$, et ν le nombre de brins de H en x. On appelle accès

à x (relativement à H) les bouts en x de \mathbb{C} - H , c'est-à-dire les éléments de $\lim_{K \to \infty} \pi_0(U \setminus H) \ .$ En termes plus concrets, soit Δ un disque centré en X, U vois de X ne contenant pas d'autre point remarquable de X, et soient $[X,Y_1]_K, ..., [X,Y_\nu]_K$ les brins de X en X arrêtés à leur premier point de rencontre avec X. Les accès à X sont les Y composantes connexes de X - $([X,Y_1]_K \cup ... \cup [X,Y_\nu]_K)$. Tout argument externe X de X détermine un accès à X : c'est la composante où se trouve X (t) au voisinage de X.

PROPOSITION 1. Chaque accès à x correspond à au moins un argument externe de x.

3. ARBRE AUGMENTE.

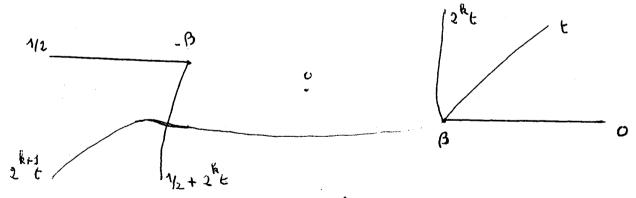
On pose $\beta=\gamma_f(0)$. C'est un point fixe, répulsif puisqu'il appartient à J_f et que f est sous-hyperbolique. Pour $i\in \mathbf{Z}/(d)$, on pose $\beta_i=\gamma(\frac{i}{d})$. On peut

montrer que $f^{-1}(\beta) = \{\beta_i\}_{i \in \mathbb{Z}/(d)}$ (exercice).

On appelle <u>arbre augmenté</u> l'enveloppe réglementaire \hat{A} de $\hat{A} = A \cup \{\beta_i\}_{i \in \mathbb{Z}/(d)}$. Cet arbre est muni de sa <u>structure primaire</u> définie par sa topologie, l'ordre cyclique des brins aux points de branchement, la ¬dynamique sur les points de \hat{A} (points marqués) ainsi que le degré de ramification aux points de \hat{A} .

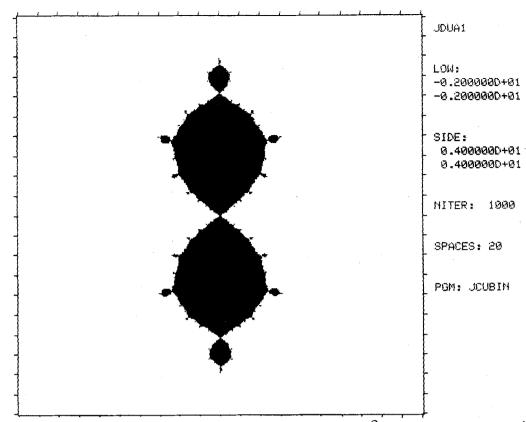
En degré 2 , nous allons voir qu'on peut reconstituer \hat{H} à partir de H .

<u>LEMME 1. Si</u> d = 2, <u>le point</u> β <u>n'a pas d'autre argument externe que</u> 0.



COROLLAIRE. β est une extrémité de \hat{H} .

Remarque. Le lemme 1 et son corollaire ne s'étendent pas à d > 2 : Voici l'ensemble de Julia de $z^3 + \frac{3}{2}z$:



Supposons maintenant d=2, f de la forme $z\mapsto z^2+c$, et mettons \hat{H} sous la forme $\hat{H}_+\cup\hat{H}_-$ avec $\hat{H}_+\cap\hat{H}_-=\{\infty\}$. $c=f(0)\in\hat{H}_+$. Notons α l'autre point fixe.

LEMME 2. On a $\beta \in H_{\underline{}}$ et $\alpha \in H_{\underline{}}$.

Reste le cas c=0 où $\alpha=0$, $\beta=1$ (il faut alors poser $\hat{H}_{+}=[-1,0]$ et $\hat{H}_{-}=[0,1]$. Le cas c=0 est trivial.

b) Définissons $\pi_+: H \to H_+$ par $\pi_+(x)$ pour $x \in H_+$ et $\pi_+(x) = 0$ pour $x \in H_-$. L'application $f \circ \pi_+: H_+ \to H_+$ a un point fixe d'après le théoreme de Lefschetz. Si $c \neq 0$, ce n'est pas 0, c'est donc un point fixe de f, qui n'est pas β , qui est donc α , et $\alpha \in H_+$. Cqfd.

Indiquons maintenant comment on reconstitue \hat{H} , connaissant H. On commence par reconstituer $H^1=f^{-1}(H)$ en recollant deux copies H^1_+ et H^1_- de H par leur point c, comme indiqué dans l'exposé précédent. L'application f induit une injection : $[\beta,0]_K \to [\beta,c]_K$; notons g l'application inverse : $[\beta,c]_K \to [\beta,c]_K \text{ , et posons } z_i=g^i(c) \text{ , de sorte que } z_1=0 \text{ , } z_i \in [\beta,c]_K$ pour $i \geq 1$. Tant que $z_i \in H$, le point z_{i+1} est l'image réciproque de z_i dans H^1_+ , donc on connait sa position combinatoire connaissant celle de z_i . On peut ainsi déterminer $i^*=\sup\{i|z_i\in H\}$, la position combinatoire de z_i dans H pour $i\leq i^*$, et, si $i^*<\infty$, la position de z_{i+1} dans H^1 . On a $i^*=\infty$ si et seulement si $\beta\in H$, i.e. s'il existe un point fixe dans H_- , et dans ce cas $\hat{H}=H$. Sinon, on a un homéomorphisme de \hat{H} sur l'enveloppe dans H_1 de $H\cup\{z_{i^*+1},-z_{i^*+1}\}$ qui coincide avec l'identité sur H, applique β sur z_{i^*+1} et $\beta_1=-\beta$ sur $-z_{i^*+1}$. Cet homéomorphisme est compatible avec l'ordre des brins aux points de branchement.

4. CALCUL DES ARGUMENTS EXTERNES.

Soient f un polynôme monique de degré $d \geq 2$ tel que tout point critique soit prépériodique, $X \subseteq \mathbb{C}$ un ensemble fini tel que $f(X) \subseteq X$, contenant les points critiques et les $(\beta_i)_{i \in \mathbb{Z}/(d)}$, et T l'enveloppe réglementaire de X dans K_f (par exemple $X = \hat{A}$, $T = \hat{H}$). On munit T de sa structure primaire :

topologie, dynamique sur les points marqués (points de X), ordre cyclique aux points de branchement et degré de ramification aux points marqués.

La dynamique des points de branchement est déterminée par celle des points de X, on peut donc les ajouter à X. La dynamique sur les brins est également connue : Si ξ est le germe en x de $[x,y]_T$, avec $]x,y[\cap X=\emptyset$, le brin $f(\xi)$ est le genre en f(x) de [f(x),f(y)].

Pour $x \in X$, posons $x_n = f^n(x)$ et notons $\nu(x)$ le nombre de brins de T en x. On a $x \in J$ si et seulement si le degré de ramification $r(x_n)$ est 1 pour tout x_n dans le cycle sur lequel tombe x. Nous allons indiquer comment déterminer les arguments externes de x dans K_f dans ce cas.

Si $x \in J$, posons $\stackrel{\checkmark}{\nu}(x) = \prod_{0 \leq i < n} r(x_i) \cdot \nu(x_n)$, avec n assez grand pour que x_n soit périodique. On peut définir un arbre $\stackrel{\checkmark}{T}$ en ajoutant à T, en chacun des x_i , $\stackrel{\checkmark}{\nu}(x_i) - \nu(x_i)$ bourgeons, avec un ordre cyclique entre brins de T et bourgeons compatible avec la dynamique.

L'arbre \check{T} se réalise comme une partie de $f^{-1}(T)$, et , en chaque point $x\in X$, il y a $\check{\nu}(x)$ brins de \check{T} et $\check{\nu}(x)$ accès à x relativement à \check{T} . La dynamique sur les accès aux points de X est déterminée par les données.

Pour chaque $i\in \mathbf{Z}/(d)$, notons w_i l'accès à $\boldsymbol{\beta}_i$ correspondant à l'argument externe i/d (si d=2, c'est l'unique accès à $\boldsymbol{\beta}_i$; si d>2, c'est une donnée supplémentaire qu'il faut connaître pour faire le calcul). Posons $u(w_i)=i\in\{0,\ldots,d-1\}$, et $u(\xi)=i$ si ξ est entre w_i et w_{i+1} en tournant autour de T dans le sens direct.

THEOREME. Soient x un point de X , θ un argument externe de x dans K_f et ξ l'accès à x relativement à \check{T} , correspondant à θ . Notons ε_n l'image de ξ par f^{n-1} (de sorte que $\varepsilon_1 = \xi$) . On a alors, $\theta = \sum_{i=1}^{\infty} u(\xi_i)/d^n$.

Autrement dit, les (ξ_n) sont les chiffres après la virgule du développement de θ en base d .

COROLLAIRE 1. Tout accès à x relativement à T correspond à un argument externe de x et un seul.

COROLLAIRE 2. Tout point $x \in X$ a un nombre fini v'(x) d'arguments externes. Ce sont des nombres rationnels, à dénominateur premier à d si et seulement si x est périodique.

ARGUMENTS EXTERNES DANS M DES POINTS DE MISUREWICZ

I. REPRESENTATION CONFORME DE C - M

1. POTENTIEL des ENSEMBLES de JULIA.

Soit $f: \mathbb{C} \to \mathbb{C}$ un polynôme monique de degré $d \geq 2$. On a vu ([CLJ], proposition 2) que, si K_f est connexe, il existe un isomorphisme $\varphi_f: \mathbb{C} - K_f \to \mathbb{C} - \overline{D} \text{ unique, tangent à l'identité en } \infty \text{ (i.e. tel que } \frac{\varphi(z)}{z} \to 1) \text{ , et qui conjugue } f \text{ à } f_0: z \mapsto z^d \text{ .}$

On pose $G_f(z)=\text{Log }|\varphi_f(z)|$. La fonction $G=G_f:\mathbb{C}-K_f\to\mathbb{R}_+$ possède les propriétés suivantes :

- 1) G est harmonique.
- 2) G(z) = Log |z| + O(1) quand $|z| \rightarrow \infty$.
- 3) $G(z) \rightarrow 0$ quand $d(z, K_f) \rightarrow 0$.
- 4) $G(z) = \frac{1}{d} G(f(z))$.

Les propriétés 1), 2) et 3), ou bien 2) et 4), suffisent à caractériser G. On peut même remplacer 2) par 2') $G(z)/Log |z| \to 1$ quand $|z| \to \infty$.

Dans le cas général (K_f non nécessairement connexe), il existe un isomorphisme \mathbb{C} -analytique φ_f d'un voisinage V de ∞ sur un voisinage V_0 de ∞ , tangent à l'identité en ∞ , tel que $f(V) \subseteq V$, $f_0(V_0) \subseteq V_0$, $f_0 \circ \varphi_f = \varphi_f \circ f$. Par exemple, si $f = z \to z^d + a_{d-1}z^{d-1} + \ldots + a_0$, on peut prendre $V = \mathbb{C} - \overline{D}_R \times \mathbb{C}$ où $R^* = 1 + |a_{d-1}| + \ldots + |a_0|$, et définir φ_f par $\varphi_f(z) = z \cdot \prod_{n=1}^\infty (1 + \frac{a_{d-1}}{z_n} + \ldots + \frac{a_0}{z_{d-1}^{d-1}})^{1/d^{n+1}}$, où $z_n = f^n(z)$,

la puissance fractionnaire étant déterminée en remarquant que

$$|\frac{a_{d-1}}{z_n} + \ldots + \frac{a_0}{z_n^{d-1}}| < 1$$
. Nous préférons rétrécir V de façon que V_0 soit de

de la forme \mathbb{C} - $\overline{D}_{R_0^*}$. Alors, f induit une application holomorphe propre de degré d: V - f(V); en particulier, $V = f^{-1}(f(V))$.

Le germe de φ_f en ∞ est déterminé de façon unique. On peut définir $G_f: \mathbb{C} - K_f \to \mathbb{R}_+$ par $G_f(z) = \text{Log} |\varphi_f(z)|$ pour $z \in V$, et dans le cas général, $z \in \mathbb{C} - K_f$ par $G_f(z) = \frac{1}{d^n} G_f(f^n(z))$ avec n assez grand pour que $f^n(z) \in V$ (le résultat ne dépend pas du choix de n). La fonction G_f possède encore les propriétés 1), 2), 3), 4) énoncées plus haut. Les propriétés 2) et 4) suffisent à la caractériser, car elles entraînent $G(z) = \lim \frac{1}{d^n} \operatorname{Log} |f^n(z)|$. Il est encore vrai que G est caractérisée par 1), 2) et 3), mais c'est moins évident.

Notons \mathbb{P}_d l'espace des polynômes moniques de degré d (qu'on peut identifier à $\mathbb{C}^d)$, et pour tout $f\in\mathbb{P}_d$, prolongeons G_f à \mathbb{C} par $G_f(z)$ = 0 si $z\in K_f$.

PROPOSITION 1. a) L'ensemble % des couples (f,z) tels que $z \in K_f$ est termé dans $P_d \times C$.

b) Liapplication (f,z) \mapsto $G_f(z)$ est une fonction continue $\mathbb{P}_d \times \mathbb{C} \to \mathbb{R}_+$.

Posons $\mathbb{V}_1 = \{(\mathbf{f},\mathbf{z}) \mid |\mathbf{z}| > \mathbb{R}^{\times}(\mathbf{f})\}$, $\mathbb{V}_0 = \{(\mathbf{f},\mathbf{z}) \mid |\mathbf{z}| > \mathbb{R}^{\times}_0(\mathbf{f})\}$; définissons $\Phi \colon \mathbb{V}_1 \to \mathbb{R} \times \mathbb{C}$ par $\Phi(\mathbf{f},\mathbf{z}) = (\mathbf{f},\varphi_{\mathbf{f}}(\mathbf{z}))$, $\mathbf{F} \colon \mathbb{R} \times \mathbb{C} \to \mathbb{R} \times \mathbb{C}$ par $(\mathbf{f},\mathbf{z}) \mapsto (\mathbf{f},\mathbf{f}(\mathbf{z}))$, et \mathbf{F}_0 par $(\mathbf{f},\mathbf{z}) \mapsto (\mathbf{f},\mathbf{z}^d)$. On vérifie que Φ induit un isomorphisme d'un ouvert \mathbb{V} de \mathbb{V}_1 sur \mathbb{V}_0 .

On a $\mathbb{P}_d \times \mathbb{C} - \mathbb{X} = \bigcup F^{-n}(\mathbb{V}_1)$, d'où a).

La fonction $(f,z)\mapsto G_f(z)$ est continue sur $\mathbb{P}_d\times\mathbb{C}$ -%, car elle est continue sur \mathbb{V}_1 où elle est donnée par une série localement normalement sommable, et sur chaque $F^{-n}(\mathbb{V}_1)$ elle est donnée par $G_f(z)=\frac{1}{d^n}\,G_f(f^n(z))$. Il reste à montrer que, pour tout $\varepsilon>0$, $\mathbb{W}_\varepsilon=\{(f,z)\,|\,G_f(z)<\varepsilon\}$ est un voisinage de %. Il suffit de montrer que, pour tout ouvert relativement compact Λ de \mathbb{P}_d , l'ensemble

$$\begin{split} & W_{\varepsilon\,,\, \Lambda} = W_{\varepsilon} \, \cap \, \Lambda \times C \ \text{est ouvert dans} \ \Lambda \times \mathbb{C} \ . \ \text{Posons} \ R_0^{\times}(\Lambda) = \sup_{f \, \in \, \Lambda} R_0^{\times}(f) \ \text{et soit} \ N \\ & \text{tel que } \ d^N \varepsilon \, > R_0^{\times}(\Lambda) \ . \ \text{Alors,} \end{split}$$

$$\Lambda \times \mathbb{C} - W_{\varepsilon, \Lambda} = F^{-N}(\Lambda \times \mathbb{C} - W_{d^{N}\varepsilon, \Lambda})$$
$$= F^{-N}(\Phi^{-1}(\{(f, z) \mid |z| \ge d^{N}\varepsilon\})).$$

C'est un fermé. Cqfd.

2. POINTS CRITIQUES de G_f .

PROPOSITION 2. Les points critiques de $G_f: \mathbb{C} - K_f \to \mathbb{R}_+$ sont les points des orbites inverses des points critiques de f dans $\mathbb{C} - K_f$.

Soit $z \in \mathbb{C}$ - K_f et posons $z_n = f^n(z)$. Pour n assez grand, $z_n \in V$, donc z_n n'est pas point critique de G_f . Par suite, z est point critique de G_f si et seulement si l'un des z_n est point critique de f. Cqfd.

On retrouve une démonstration du fait que, dans ce cas, $\, {\rm K}_{\hat{\mathbf{f}}} \,$ est connexe.

Pour $z \in \mathbb{C}$ - L_f , on définit l'argument externe $\operatorname{Arg}_{K_f}(z) = \operatorname{Arg}_{L_f}(z) = \operatorname{Arg}_{\Psi_f}(z)$. Si $0 < G_f(z) \le h_0$, et si z n'est pas un point critique de G_f , on peut définir le rayon externe de f passant par z comme trajectoire orthogonale aux lignes de niveau de G_f . Ce rayon, prolongé du côté des G_f croissants, peut sortir de L_f , ce qui permet alors de définir $\operatorname{Arg}_{K_C}(z)$, ou bien finir sur un point critique de G_f . Un point critique de G_f est un col s'il a dans son orbite directe un seul point critique de f, simple. Dans le cas général, c'est une "selle de singe" avec f rayons ascendants et f rayons descendants, f étant le produit de ramification des points critiques dans l'orbite directe de f . Au total, il f0 a une famille dénombrable de courbes f1 analytiques sur lesquelles on ne peut pas définir la fonction "argument externe" .

3. LA FONCTION .

Considérons la famille de polynômes quadratiques $f_C: z \mapsto z^2 + c$. On écrira φ_C pour φ_{f_C} , etc...

Pour $c\in \mathbb{C}$ - M , on a $h_0(c)=G_c(0)>0$, et $G_c(c)=2$ $G_c(0)>h_0(c)$. On peut donc poser : $\Phi(c)=\varphi_c(c)$.

THEOREME 1. On définit ainsi un isomorphisme Φ de \mathbb{C} - \mathbb{M} sur \mathbb{C} - $\overline{\mathbb{D}}$.

 $\underline{D\acute{e}monstration}.\ \ Pour\ \ c\in \hbox{\mathfrak{C}-M}\ ,\ \ on\ a\ \ Log\ |\Phi(c)|=G_{_{\hbox{\Bbb{C}}}}(c)>0\ ,\ \ donc$ $\Phi(c)\in \hbox{$\mathfrak{C}$-$$$$\overline{D}$}\ .\ \ L'application\ \ \Phi\ \ est\ holomorphe.\ En\ effet,$

 $\mathfrak{L} = \{(\mathtt{c},\mathtt{z}) \mid \mathtt{z} \in \mathtt{L}_{\mathtt{C}}\} = \{(\mathtt{c},\mathtt{z}) \mid \mathtt{G}_{\mathtt{C}}(\mathtt{z}) \leq \mathtt{G}_{\mathtt{C}}(\mathtt{0})\} \quad \text{est ferm\'e, et, sur } \mathbb{C}^2 - \mathfrak{L} \text{ , 1'application } (\mathtt{c},\mathtt{z}) \mapsto \varphi_{\mathtt{C}}(\mathtt{z}) \quad \text{qui est une détermination de } (\varphi_{\mathtt{C}}(\mathtt{f}_{\mathtt{C}}^{\,n}(\mathtt{z})))^{\frac{1}{2}n} \text{ , est holomorphe.}$

On peut écrire :

$$\frac{\Phi(c)}{c} = \left(1 + \frac{1}{c}\right)^{1/2} \left(1 + \frac{c}{c^2 + c}\right)^{1/4} \dots \left(1 + \frac{c}{f_c^n(c)}\right)^{1/2} \dots ;$$

Ce produit infini converge uniformément pour $|c| \le 4$ et tous ses facteurs tendent

vers 1 quand $c \to \infty$. Par suite, $\frac{\Phi(c)}{c} \to 1$ quand $c \to \infty$. On peut donc prolonger Φ en une application holomorphe $\overline{\mathbb{C}} - M \to \overline{\mathbb{C}} - \overline{\mathbb{D}}$, où $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ est la sphère de Riemann, en posant $\Phi(\infty) = \infty$. L'application Φ ainsi prolongée est propre : en effet, si $c \to c_0 \in \partial M$, $G_c(c) \to G_{c_0}(c_0) = 0$ et $\Phi(c) \to 1$.

En tant qu'application holomorphe propre, elle a un degré. Or, $\mathfrak{C}^{-1}(\infty) = \{\infty\}$ avec multiplicité 1; donc ce degré est 1 et \mathfrak{P} est un isomorphisme $\mathbb{C}-M \to \mathbb{C}-\overline{D}$. Cgfd.

COROLLAIRE 1. a) L'ensemble M est connexe.

b) Son rayon de capacité est 1.

COROLLAIRE 2. Pour tout $c \in \mathbb{C}-M$, on a:

- a) $G_M(c) = G_c(c)$.
- b) $\operatorname{Arg}_{M}(c) = \operatorname{Arg}_{K_{C}}(c)$.

Le théorème 2 $\,$ qui suit plus bas affirme en quelque sorte que la formule $\,$ b) du corollaire 2 $\,$ s'étend à certains points du bord de $\,$ M $\,$.

II. RAYONS EXTERNES DES ENSEMBLES DE JULIA

1. COMPORTEMENTS POSSIBLES.

Soit $f: \mathbb{C} \to \mathbb{C}$ un polynôme monique. Quand on suit un rayon externe $\mathbb{R}(f,\theta)$ de K_f dans le sens des G_f décroissants, ce rayon peut soit <u>buter</u> sur un point critique de G_f , soit se prolonger jusqu'à ce que $G_f \to 0$, i.e. jusqu'à tendre vers K_f .

Dans ce cas, il peut soit tendre vers un point de K_f -on dit alors qu'il aboutit en ce point-, soit avoir dans K_f un ensemble d'accumulation connexe non réduit à un point -nous dirons alors qu'il vagabonde. Si $\Re(f, \theta)$ ne bute pas, on a $f(\Re(f, \theta)) = \Re(f, d, \theta)$. Ce rayon aboutit en f(x) si $\Re(f, \theta)$ aboutit en x,

vagabonde si $\Re(f,\theta)$ vagabonde. Il peut arriver que $\Re(f,\theta)$ bute, mais que $\Re(f,d\theta)$ ne bute pas.

PROPOSITION 1. Si f est sous-hyperbolique, tout rayon externe de K_f bute ou aboutit.

2. RAYONS EXTERNES D'ARGUMENT RATIONNEL.

PROPOSITION 2. On suppose θ rationnel. Alors, si $\Re(f,\theta)$ ne bute pas, il aboutit en un point $\alpha \in K_f$. Ce point est prépériodique (périodique si θ est à dénominateur premier à d), répulsif ou indifférent rationnel.

Démonstration. Supposons d'abord θ à dénominateur premier à d. Si $\theta = \frac{p_0}{q}$, alors d est inversible mod q, donc il existe k tel que $d^k \equiv 1 \bmod q$, i.e. q divise d^k-1 . On peut alors écrire θ , de façon peut-être non irréductible mais avec un k minimal, sous la forme $\frac{p}{d^{k}-1}$. On suppose que $\Re(f,\theta)$ ne bute pas ; il est alors invariant par f^k .

Soient h_0 la borne inférieure des $G_f(\omega)$ pour ω point critique de f dans \mathbb{C} - K_f (s'il n'y en a pas, $h_0 = \infty$) et $h < h_0$. Soient $U = \{z \mid 0 < G(z) < h\}$ et $U' = f^{-k}(U) = \{z \mid 0 < G(z) < \frac{h}{d^k}\}$. Notons \widetilde{U} un revêtement universel de la composante connexe de U rencontrant $\Re(f,\theta)$ et $\widetilde{\Re}$ un relèvement de $\Re(f,\theta) \cap U$ dans \widetilde{U} . Il existe un relèvement $g: \widetilde{U} \to \widetilde{U}$ de f^{-k} tel que $g(\widetilde{\Re}) \subseteq \widetilde{\Re}$. Choisissons $x_0 \in \Re(f,\theta) \cap U$ et définissons $x_n \in \Re(f,\theta)$

 $\text{par } G(x_n) = \frac{G(x_0)}{d^k n} \text{ , de sorte que } f^k(x_{n+1}) = x_n \text{ . Soit } L \text{ la longueur de Poincaré dans } U \text{ de } [x_0, x_1]_{\Re(f, \vartheta)} \text{ . Comme } g \text{ est contractante pour la métrique de Poincaré } d^{\sim}_{U} \text{ de } U \text{ , on a } d_{U}(x_n, x_{n+1}) \leq L \text{ pour tout } n \text{ . Comme } x_n \text{ tend vers } \vartheta K \subseteq \vartheta U \text{ , la distance euclidienne } |x_{n+1} - x_n| \text{ tend vers } 0 \text{ . Si } une \text{ suite extraite } (x_n)_{n \in I} \text{ tend vers un point } \alpha \in \vartheta K \text{ , la suite } (x_{n-1}) \text{ tend aussi } vers \alpha \text{ , donc } f^k(\alpha) = \alpha \text{ . }$

Soient α_1,\ldots,α_r les points tels que $f^k(\alpha)=\alpha$, W_1,\ldots,W_r des voisinages de α_1,\ldots,α_r tels que $d_U(W_i\cap U,W_j\cap U)>L$ pour $i\neq j$. Il existe un n_0 tel que $x_n\in UW_i$ pour $n\geq n_0$, sinon on pourrait extraire de (x_n) une suite tendant vers un $\alpha\notin\{\alpha_1,\ldots,\alpha_r\}$. Mais comme $d_U(x_n,x_{n+1})\leq L$, les x_n pour $n\geq n_0$ appartiennent tous au même W_i , disons W_i . Alors, $x_n\neq\alpha_i$, car pour toute suite extraite convergente vers un point α , on a $\alpha=\alpha_i$. Tout $y\in \Re(f,\theta)$ tel que $G(y)\leq G(x_0)$ appartient à un segment $[x_{n(y)},x_{n(y)+1}]$ de $\Re(f,\theta)$, on a alors $d_U(y,x_{n(y)})\leq L$. Il en résulte que $|y-x_{n(y)}|\to 0$, donc $y\neq\alpha=\alpha_1$, quand $G(y)\to 0$. En d'autres termes, $\Re(f,\theta)$ aboutit en α , qui est un point périodique de f, de période k', divisant k.

Le point $\,\alpha\,$ appartient à $\,\partial\, K$, il n'est donc pas attractif ; par suite, il est répulsif ou indifférent .

LEMME. Si α est un point périodique indifférent, on a $(f^k)'(\alpha) = 1$.

 $\frac{\underline{\text{D\'emonstration}}. \text{ Supposons que } (f^k)'(\alpha) = e^{2i\pi t}. \text{ On a } t = \lim t_n \text{ , où } t_n = \arg (\frac{x_{n-1} - \alpha}{x_n - \alpha}). \text{ Soit } \widetilde{t}_n \text{ le repr\'esentant de } t_n \text{ dans } \mathbb{R} \text{ d\'efini par le chemin } \text{de } x_n \text{ à } x_{n-1} \text{ suivant } \Re(f,\theta) \text{ . La suite } (t_n) \text{ tend vers un repr\'esentant } \widetilde{t} \text{ de } t \text{ .}$ Nous allons montrer que $\widetilde{t} = 0$.

On définit une fonction holomorphe $F: \{z \mid Ré(z) \leq m\} \to \mathbb{C}$ par la formule $F(\text{Log}(z-\alpha)) = \text{Log}(f^k(z)-\alpha)$, précisée par la convention que $F(\zeta)-\zeta$ tend vers $2i\pi\widetilde{t}$ quand $Re\ \zeta \to 0$.

On définit une paramétrisation $\gamma: \mathbb{R} \to \Re(f,\theta)$ par $G_f(\gamma(s)) = G_f(x_0)/d^s$, de sorte que $x_n = \gamma(n)$. Soit $\widetilde{\gamma}$ une détermination continue de $s \to \text{Log}(\gamma(s) - \alpha)$. Notons $\widetilde{\Re}_{\alpha}$ l'image de $\widetilde{\gamma}$ et $\widetilde{x}_n = \widetilde{\gamma}(n)$. La suite $\text{Ré}(\widetilde{x}_n)$ tend vers $-\infty$, et on a $\widetilde{x}_{n-1} = F(\widetilde{x}_n)$ pour n assez grand.

Supposons $\widetilde{t}>0$. Quitte à diminuer m, on peut supposer que $\inf_{\Gamma} \operatorname{Im}(F(\zeta)-\zeta)=\mu>0 \text{ , et que } \Gamma \text{ définit un isomorphisme du demi-plan } \operatorname{R\'e}\zeta< m\\ \{\zeta\mid \operatorname{R\'e}\zeta< m\} \text{ sur un ouvert contenant le demi-plan } P_1=\{\zeta\mid \operatorname{R\'e}\zeta< m_1\} \text{ . Alors, } \operatorname{R\'e}\gamma(s)\to -\infty \text{ et } \operatorname{Im}\gamma(s)\to -\infty \text{ quand } s\to +\infty \text{ . Pour tout } \eta\in \mathbb{R} \text{ , notons } N_\eta \text{ la composante connexe de } \{\zeta\mid \operatorname{Im}\zeta<\eta\}-\widetilde{\aleph}_\alpha \text{ contenant les } u+i(\eta-1) \text{ pour } u\to -\infty \text{ . } Si \ \eta \text{ est assez petit, } N_\eta\subseteq P_1 \text{ , et } \Gamma^{-1}(N_\eta)\subseteq N_{\eta-\mu} \text{ . }$

L'image Ω_{η} de N_{η} par $\zeta \to \alpha + e^{\zeta}$ est un voisinage de α , et l'image de $\Gamma^{-p}(N_{\eta})$ est l'image $\Omega_{\eta,p}$ de Ω_{η} par la branche de Γ^{-pk} qui a pour point fixe α . On a $N_{\eta,p} \subset N_{\eta-p\mu}$, qui est dans un demi-plan $\{z \mid R \in z < m_2\}$ avec M_2 arbitrairement négatif si ρ assez grand, donc $\Omega_{\eta,p}$ est arbitrairement petit. En particulier, on peut avoir $\Omega_{\eta,p} \subset \Omega_{\eta}$. Alors, le lemme de Schwarz montre que $|(f^{-pk})'(\alpha)| < 1$, donc α est répulsif, donc contradiction. Cqfd.

Fin de la démonstration de la proposition 2. Si θ est à dénominateur premier à d , $\theta=\frac{p}{2^k-1}$, $\Re(f,\theta)$ aboutit en un point $\alpha\in K_f$, périodique pour f de période k' divisant k . On a $(f^k)'(\alpha)=1$, donc $(f^k)'(\alpha)$ est une racine k/k'-ème de 1 .

Si θ n'est pas à diviseur premier à d , on peut mettre θ sous la forme $\frac{p}{d^{\ell}q}$ avec q premier à d . Alors, si $\Re(\theta,f)$ ne bute pas, $f^{\ell}(\Re(\theta,f))=\Re(\theta_1,f)$ où $\theta_1=d^{\ell}\theta=\frac{p}{q}$. Le rayon $\Re(\theta,f)$ ne peut pas vagabonder, car $\Re(\theta_1,f)$ vagabonderait. Il aboutit donc en un point α , donc $\Re(\theta_1,f)$ aboutit en $\alpha_1=f^{\ell}(\alpha)$, d'après le cas étudié, α_1 est périodique répulsif ou indifférent rationnel. Cqfd.

3. UNE PROPRIETE DE STABILITE.

On note \mathbb{P}_d l'espace des polynômes moniques de degré d. Pour $f \in \mathbb{P}_d$ et $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$, on définit $\psi_{f,\theta} \colon \mathbb{R}_+^{\times} \to \Re(f,\theta)$ par $G_f(\psi_{f,\theta}(s) = s - si - \Re(f,\theta))$ ne bute pas ; s'il bute sur un point critique ω de G_f , la fonction $\psi_{f,\theta}$ est seulement définie sur $[G_f(\omega), +\infty[$. Si $\Re(f,\theta)$ aboutit en un point α , on prolonge $\psi_{f,\theta}$ à \mathbb{R}_+ en posant $\psi_{f,\theta}(0) = \alpha$.

PROPOSITION 3. Soient $f_0 \in \mathbb{P}_d$ et $\theta \in \mathbb{Q}/\mathbb{Z}$. On suppose que $\mathbb{R}(f_0,\theta)$ aboutit en un point prépériodique répulsif $\omega_0 \in J_{f_0}$. On suppose en outre que $f^i(\alpha_0)$ n'est un point critique de $f^i(\alpha_0)$ n'est un point critique de $f^i(\alpha_0)$ que valeur de $f^i(\alpha_0)$ le rayon $f^i(\alpha_0)$ aboutisse en un point prépériodique répulsif α_f . L'application $f^i(\alpha_0)$ $f^i(\alpha_0)$ aboutisse en un point prépériodique répulsif $f^i(\alpha_0)$ le rayon $f^i(\alpha_0)$ aboutisse en un point prépériodique répulsif $f^i(\alpha_0)$ le $f^i(\alpha_0)$ de $f^i(\alpha_0)$ est continue, holomorphe en $f^i(\alpha_0)$ est continue, holomorphe en $f^i(\alpha_0)$ et $f^i(\alpha_0)$ et $f^i(\alpha_0)$ de $f^i(\alpha_0)$ de $f^i(\alpha_0)$ de $f^i(\alpha_0)$ est continue, holomorphe en $f^i(\alpha_0)$ et $f^i(\alpha_0)$ de $f^i(\alpha_0)$ de $f^i(\alpha_0)$ est continue, holomorphe en $f^i(\alpha_0)$ et $f^i(\alpha_0)$ de $f^i(\alpha_0)$ de $f^i(\alpha_0)$ est continue, holomorphe en $f^i(\alpha_0)$ et $f^i(\alpha_0)$ est continue, holomorphe en $f^i(\alpha_0)$ et $f^i(\alpha_0)$ et $f^i(\alpha_0)$ est continue, holomorphe en $f^i(\alpha_0)$ et $f^i(\alpha_0)$ est continue, holomorphe en $f^i(\alpha_0)$ et $f^i(\alpha_0)$ est continue, holomorphe en $f^i(\alpha_0)$ et $f^i(\alpha_0)$ et $f^i(\alpha_0)$ et $f^i(\alpha_0)$ est continue, holomorphe en $f^i(\alpha_0)$ et $f^i(\alpha_0)$ est continue.

Soit $s_0 \in \mathbb{R}_+^{\times}$ tel que $(f_0, \psi_{f_0}, \theta(s_0)) \in \mathbb{V}'$. En vertu des théorèmes de semi-continuité du temps de vie des solutions d'équations différentielles, et de dépendance de ces solutions par rapport à un paramètre, il existe un voisinage Λ de f dans Λ_1 tel que, pour $f \in \Lambda$, $\psi_{f,\theta}$ soit défini sur $[s_0, +\infty[$ avec $(f,\psi_{f,\theta}(s_0)) \in \mathbb{V}'$, et $\psi_{f,\theta}(s)$ dépendant de façon continue de (f,s) et holomorphe en f pour $f \in \Lambda$, $s \ge s_0$. Pour chaque $f \in \Lambda$, on peut prolonger $\psi_{f,\theta}$ à \mathbb{R}_+^{\times}

en posant $\psi_{f,\,\theta}(\frac{s}{d^kn}) = \zeta_f^{-1}(\frac{\zeta_f(\psi_f,\varepsilon^{(s)})}{\rho(f)^n})$ pour $s \geq s_0$, $\psi_{f,\,\theta}(s) \in \mathbb{V}$. On obtient ainsi une application $(f,s) \mapsto \psi_{f,\,\theta}(s)$ définie sur $\Lambda \times \mathbb{R}_+^{\times}$, continue et holomorphe en f. Pour chaque f, l'image de $\psi_{f,\,\theta}$ est $\mathscr{A}(f,\theta)$. Enfin, $\psi_{f,\,\theta}(s) \to \alpha_f$ uniformément sur tout compact de Λ quand $s \to 0$. On peut donc prolonger $(f,s) \mapsto \psi_{f,\,\theta}(s)$ continûment à $\Lambda \times \mathbb{R}_+$.

Ceci démontre la proposition dans le cas où θ est à dénominateur premier à d (ce qui entraîne α_0 périodique). Dans le cas général, il existe un $\ell \geq 0$ tel que $\theta^* = d^\ell \theta$ soit à dénominateur premier à d. Pour tout $i \geq 0$, le rayon externe $\Re(f,d^i\theta)$ aboutit à $f^i(\alpha_0)$. On démontre la propriété énoncée pour $2^i\theta$ par récurrence descendante sur i à partir de $i = \ell$. Pour $i = \ell$, c'est le cas particulier étudié. Pour $i < \ell$, l'application $\mathfrak{F}: (f,z) \mapsto (f,f(z))$ admet un inverse holomorphe g_i défini au voisinage de $\{f_0\} \times \overline{\Re}(f_0,d^{i+1}\theta)$ avec $g_i(\{f_0\} \times \overline{\Re}(f_0,d^{i+1}\theta)) = \{f_0\} \times \overline{\Re}(f_0,d^{i}\theta)$, puisque \mathfrak{F} n'a pas de point critique sur $\{f_0\} \times \overline{\Re}(f_0,d^{i}\theta)$. On peut alors définir $\psi_{f,d}i_{\theta}(s)$ pour $s \leq s_0$ et f assez voisin de f_0 par $(f,\psi_{f,d}i_{\theta}(s)) = g_i(f,\psi_{f,d}i_{\theta+1}g(s))$. Cqfd.

III. RECOLTE DANS LE PLAN DES PARAMETRES

On considère la famille $(f_c: z \mapsto z^2 + c)_{c \in C}$ de polynômes du second degré.

THEOREME 2. Soit $c \in M$ un point tel que 0 soit strictement prépériodique pour f_c (point de Misurewicz).

- a) Le point c a dans K_{C} un nombre fini d'arguments externes, qui sont rationnels à dénominateur pair.
- b) Pour chaque argument externe θ de c dans K_C , le rayon $\Re(M,\theta)$ aboutit en c .

La partie a) est un cas particulier de [AEJ], corollaire 2 du théorème.

Démonstration de b). Le point c est un point prépériodique répulsif de f_C , et on a $\psi_{C,\,\theta}(0)=c$, avec les notations de II.3. Le point c n'admet pas de point critique dans son orbite directe puisque $c=f_C(0)$ et que 0 n'est pas périodique. Pour λ voisin de c et $s\in\mathbb{R}_+$, posons $H_s(\lambda)=\psi_{\lambda\,,\,\delta}(s)-\lambda$. Notons ν l'ordre du zéro de H_0 en c. On a $\nu<\infty$ car sinon on aurait $f_\lambda^{k+\ell+1}(0)=f_\lambda^{\ell+1}(0)$ pour tout λ voisin de c, donc pour tout $\lambda\in\mathbb{C}$.

Pour s>0 voisin de 0, l'équation $H_s(\lambda)=0$ admet ν solutions voisines de c, en tenant compte des multiplicités. Pour une telle racine λ , on a $\lambda=\psi_{\lambda,\,\theta}(s)\;,\; \text{d'où}\;\lambda\notin K_{\lambda}\;,\; \text{i.e.}\;\lambda\not\in M\;,\; \text{et}\;\Phi(\lambda)=\varphi_{\lambda}(\lambda)=e^{S+2i\pi\,\theta}\;.\;\;\text{On voit donc que }\Phi^{-1}(e^{S+2i\pi\,\theta})\to c\;\;\text{quand }s\to 1\;.\;\;\;\text{Cqfd.}$

La démonstration ci-dessus donne aussi le résultat suivant :

COROLLAIRE 1. L'équation $P_{\lambda}^{\ell+1+k}(0) - P_{\lambda}^{\ell+1}(0) = 0$ admet en c une racine simple.

<u>Démonstration</u>. La multiplicité de c comme racine de cette équation est égale à ν introduit dans la démonstration du théorème.

Pour s>0 , l'équation $H_s(\lambda)=0$ n'a qu'une solution, puisque c'est nécessairement $\Phi^{-1}(e^{S+2\,i\pi\,\theta})$.

On passe de l'équation $\lambda = \psi_{\lambda}$, $_{6}(s)$, qui donnt l'intersection de la diagonale avec le graphe de $\lambda \longmapsto \psi_{\lambda}$, $_{\theta}(s)$, à l'équation $\varphi_{\lambda}(\lambda) = \mathrm{e}^{s+2\mathrm{i}\pi\lambda}$ en transformant ces deux courbes par le difféomorphisme $(\lambda,z) \mapsto (\lambda,\varphi_{\lambda}(z))$. La multiplicité de la solution de $\lambda = \psi_{\lambda}$, $_{\theta}(s)$ est donc égale à celle de $\Phi(\lambda) = \mathrm{e}^{s+2\mathrm{i}\pi\lambda}$, qui est 1 puisque Φ est un isomorphisme. On a donc $\nu = 1$. Cqfd.

Remarque. Il existe d'autres démonstrations de ce corollaire, par exemple une démonstration arithmétique consistant à compter des valuations 2-adiques.

