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MONOTONICITY PROPERTIES OF INTERPOLATION SPACES

by Michael Cwikel

ABSTRACT.- For any interpolation pair (Ao’Al)’ Peetre's K-functional is
defined by : ’ .
o Agap = int oyl +ilal,
o 1 ~ , .
We show that all interpolation spaces A for the pair (Lp ,Lq) are characterised by
the property of K-monotonicity, that is, if a€A and K(t,b ; LP,LY) <K(t,a ; LP,L9)
for all positive t then bEA also. This extends results of Calderon and of Lorentz

and Shimogaki. Sedaev and Semenov also showed that all the interpolation spaces for a
pair of weighted Lp - spaces and for a pair of Hilbert spa¢es have analogous characte-
risations. We give a necessary (but not sufficient) condition for an intérpolation pair to
have its interpolation spaces characterised by K-monotonicity. We describe a weaker fofm
of K-monotonicity which holds for all the interpolation spaces of any interpolation pair*'
and show that it is in a sense the strongest form of monotonicity which holds in such gene-
rality.

O. INTRODUCTION.
In the study of interpolation spaces the point of debartUre is usually a pair of
Banach spaces Ao and A1 which are both continuously embedded in some Hausdorff

topological vector space c]% We refer to the couple (AO ,A1) " as an interpolation pair.

For such a pair the vector spaces Abﬂ A, and Ao‘+A are well defined and,

1 1

When normed by Ha”AoﬂA1 = max(”aHAo, ”al]A 1',) and
”a“ A WAL S inf (HaOH N Ha1 l ]A ), become Banach spaces continuously embedded
o 1 a=ao+a1 (o] 1 :

in db.



AO + A} “can be equivalently renormed by Peetre's "K-functional"

K(ta 5 AgA,) o (HaOHAO +ftI'Ia1HA§)

for any positive number t. The abbreviated notation K(t,a) is also used where there

is no risk of ambiguity. For each fixed a € A0+A K(t,a) is a continuous non decrea-

"!
sing concave functién of t. (see [1] p. 167).

A vector space A is called intermediate if AoﬂA?clf%cAoa—zﬁx1 , the inclusions

‘ being continuous erhbeddings it A is topoiogised. An intermediate space A is an

:‘mterpolatioﬁ space if all linear operators on A o™ A1 which map A o continuously
into itself and ” AAI | conﬁnﬁously into itself also map A into itselt (continuously if A
is topologised).
We shall be concerned here with the characterisation of all interpolation spaces for

~ a given couple (Ao’Al)' The first r*esuit of this type was obtained by Calderdn [41

for,thc? pair (L} ,Lm). Subsequently Lofentz and Shimogaki [9] tr*éated the pair
(LD,LOO) with 1<p< e, and‘Sedaev and Semenov [13] , [14] , dealt with a pair of 1
1P spaces with different weights, and also with é pair of Hilbert spaces. ?or each of
these intefpolation pairs it x&a‘s found that the corresponding interpolation spaces could be

characterised as those spaces possessing a property which we shall call K~monotonicity.

DEFINITION 1. The space A is K-monotone with respect to the pair (A ,A,)
if whenever acA, bEZAé)—{-A1 and K(t,b ; AO,A1) < Kft,a ;AO,Al) for all positive t

it follows that bEA.

In view of the above series of results we also introduce the follow}lng terminology.



DEFINITION 2. The interpolation pair (AO’AT) will be célled a Calderdn pair if

every intermediate space is an interpolation space if and only if it is . K~monotone.

In Secticn IT of this paper we show that &Lp ,Lq) isa Caldefonpair for any choicé
of p and g in [1 ,oé] . The proof is giver? for ari arbitrary measure space, thus
dispensing with some restz‘icticﬁs imposed in the above-mentioned studies of (I} ,Loo)
and (Lp ,Lm).‘ We remark that this result énabies a feformulaﬁon of a theo‘re‘km} ébout
~ norm convergence of Fourier series in reafrangement invariant Banach spacés. "(See [5]

1

(We r‘efér to [9] for an alternative charac{erisation of the interpolation spaces of (L ,Lp

, | :
obtained by dualising the results for (LP ,LOO).)

In sectionsIII and IV we Stxidy the interplay of K-monotonicity and interfpo}ation in the
general setting; A necessary _condition for an ipterpolation pair to be Calderdn is describec
in section III. This condition is not sufficient. In section IV we show that for an arbitrary
in’cerp_olation pair (AO,,A1 ), evér*y interpolation space A satisfies a we‘ék form of
K-—monoténicity :if a€A and b~€A0+A1 , then b isalsoin "A if the inequality
K(t,b) < w(t)K(t,a) holds for all positive t, where w(t) isa po.sitive measurable

7 ' 0o
- function satisfying Jo min(e, w(t))dt/t < e for some positive constant €. This result
seems very close to the best possible. It wi}.l be seen that the hypothesis on w(t) - cannot

%

be weakened to J min (e, w(t)P) at/t < o for some p> 1.
.

I. PRELIMINARIES .

For any pair of Banach spaces A and B, £(A,B) will denote the class of all



bounded linear operators mapping A into B, and :f,k (A,B) will denote the
subclass of £(A,B) of operators with norm not exceeding X. Let :2(A)=2(A,A)
| and :,3/\(/\) = i)&(A,A).
Let R+ denote the positive real line equipped with Lebesgue measure. Where it is
; neceSsary to indicate the underlying measure space of the space P we shall write
LP (R+), or LP(X) or LP(1) inthe case of a measure space (X,Z;u).
Given an interpolation pair (AO,A1) . there are two important special methods
of constructing interpolation spaces.
\ .
(i) The real method (see for example .[’1 | Chapter 3): For 0<86 <1 and

1< g<, the space (Ao’Al)G is defined to consist of all elements a€AO+A

»9 1

such that .
Ha”(AO’AT)S q"" (JO B“GK(t,a ; A.O’AT)]q dt/t‘)1/q < o

(Ao’A1 )8 . 1s defined similarly by the norm sup T K(t,a).
s >0

(ii) The complex method (see for example [3:]) : Let C(IL (Ao’A1) be the space of
A6+A1 —valued functions f(z) continuous inthe strip O0<Rez < 1 and analytic in

its interior such that

| “ng‘= max {_mj;:gw ”f(iy)”ﬁ\o , -;’;im l!f(1+;y)f1A1} < oo,

Then the complex ihterpolation spaée__ [AO,AJ g is defined by [AO,A;I g = '
{f(e) lf Gaﬁ }_, and as norm we usually take ”a”e = inf{”f(z)’lg ]f(e ) = a} )

The notation @(t,f)}w \If(t,f) shall mean that there exists a positive constant C

independent of t and f suchthat C &(t,f) < Ut,f) < C o(t,1).



n. @P,L9 1S A CALDERON PAIR.

It is a simple matter to show that if T € ;ﬁu(AO) N4 5(A1) and a€ A 0+A1 , then
K(t,Ta ; AO’AT) < max(cx, B)K(t,ang,A1). Thus any K-monotone space is necessarilv
an intérpolation space with respect to (Ao’A1 ). The non trivial part of the proof that a

given pair (Ao ,A1) is Calderdn is to show that if f,g arein A oA with

1
K(t,g) < K(t,f) for all positive t, then there exists an operator T € zZ(AO) ﬂ;{(A])

- with Tf=g and soevery infer*polation s‘pace is K-monotone. Theorem 4 will give such-
an operator for the pair (LP(u) , L)) where 1< p,q< o and (X,Z_,u) is an

; arbitrary measure space.

For any measurable function f on (X,Z,u) welet f*¥(t) denote the non-increa-~

sing rearrangement of !fl on R+.' Then
1 ;o0 t
Kt,f;1L',L )uJ f%(s)ds ° (Peetre |10))
o ,
p
and K(t,f ; IP’,L"")»—»(Jt (s as)/P  (krée [8]).
o _

For 0 < p <q< oo, Holmstedt [6] has shown that :

. t“ oo
Kt 5 LP, LY~ (| s as) /P at(| re(s)? as)/d
0 t*

where 1/a=1/p - 1/q.

THEOREM 1. let p¢€ [1,00) and let ’f, g be non-negative non-increasing simple

functions on R+ such that :

t - ‘ t .
j g(s)P ds < J #(s)P ds for all positive t.
o o '

' Then there exists an operator T € ,(LP(R D NLILTR)) suchthat Tf=g.




Proof: This is exaétly Lemma 4 of [9] . (The case p=1 was treated in [4] ).

THEOREM 2. Let q € (1,) andlet f,g be non-negative non-increasing simple

functions on R+ such that :

e} e}

(1) J o(s)¥ds < J #(s)d ds  for all positive t.
t t



Then there exists an operator T € =£1(L1(R+)) N :&1(Lq(R+)) such that Tf=g.

Proof: We proceed via two lemmas.

LEMMA 2A. Let ¢, ¢ betwo measurable functions on a finite measure space such

that ¢ isaconstantandlet q> 1. Then H

ol o= lell mmpties [l < lell -

Proof: Simple application of Holder's inequalitly.

LEMMA 2B. Let f be a non-negative non—incréasing simple function on R+ taking

a constant value « on aninterval [a,b). Thenforany a', 0<a'<a, there exists

an operator S € & 1(L1(R +)) N £1(Lq(R+)) such that :

i) f is non-negative and non-increasing

(ii) St=a on [a',b)

oG oo
(iii) J (st)? ds = J f9ds forall 0<t<a"
t t :
where ,[a" ,a') is the interval of constanciy of Sf preceding [a' ,b)

-~ (iv)

The number of different values takenby Sf on [O,a’) does not exceed the number

of different values tekenby £ on [0,a).

N
Proof: ILet = . ' f here O=a < <,
225X [ay_pp2) " Xfap) * Xp,e) VR 0
o<ag=a, and o« >aq, ... > ay > a.  For each ue [aN_1,aN) define the function

f, toequal « on I_—u,a‘N) and to equal A(u)sz on '[aN,u), where A{u)> 1 is

chosen to give

a. - a :
J N- fg ds = J N} 19 gs.
IN-1 N-1
N
By Lemma 2A, J

aN
fu ds S‘:j
a

aN-1 N-1

- Clearly A(u) is a continuous decreasing function of u. Let uy be the smallest



- 8.
value of u in. EaN-T’aN) for which A(u)cxNSaN_T, and for all ue€ [uN’aN')
~ define the operator Su by :

f a ‘
Sh= L N hds on [aN_‘?,aN)
B (agmayy) OcN‘LI\M

= h elsewhere,

Cforanl hern's+rd,
It is easy td seethat S €& (L1) ﬂz LY, andthat Sf=f on [a a.)
| u - = u N-172N
and equals f elsewhere. Thus Suf satisfies (i), (ii), (iii) and (iv) with a'=u and
[a",a‘):: '[aN_T,u). If the given number a' satisfies a' = uy this completes the .
proof of the lemma. If instead a' < Uy the process must be reapplied as follows. Let us

redefine aN‘_i to be uy. Then

N-1 ,
S f= Y% + XX +Ix .
Suy T 5 Xy g8 Xlay_,0) * X, )

We may apply the preceding argument to the function S, f and construct a new function

Su(SuNf) - which equals « on the interval fu,b). This construction will be valid for
all ue [uN-PuN) where uN-i' is determined by conditions analogous to those above

which fix Uy Again S, Will be an operator in the class £1(L1)h JL}(Lq) and
consequently the composed operator SQS will also be in this class. Reiterating this
argument as many times as necessary we can, so to speak, move the point u. baék to any

point a' >0 by an operator S=S_,S.. S .S, such that - S¢€ £ (LT)ﬂ;fi wd
a Uy UM+1 : 1 1

and gSf satisfies (i), (ii), (iii) and (iv).

Proof of Theorem 2: ILet £ and g be functions satisfying the hypotheses of the

N

‘ = <
theorem. Let f jzz;ccj XECj C

-ch), with . O :c0< 4 5 e < N and a1>cx2>..‘>aN



We shall perform inductionon N. If N=1, = oy X[O c.) g must vanish outside
b4 1 .

c C
1gds_<.J des

C _ C .
[O,c1) and so J ! gq ds < J ! i ds. By Lemma 2A we then have J
: o

8] O O

) |
J1hds>g forall heL'+19,

and the des_ired operator T is givenby Ths= (&lc
o

171

Now suppose the theorem is proven in the case where f has N-1 different positive

. N .
values and consider f = o and as above such that (1) holds for all
es an f; JX[Cj-VCj) g (1)
t> 0. It follows that g(s) must vanish for s> CN and so :
N q N g q
(2) JC glds < JC filds = cxN(cN - CN—1)'
N-1 N-1 ' ‘
At this point we must consider two possible cases.
' CN q q cN
CASE 1. Suppose that Jo g ds< oy N Then, by Lemma 2A, jo gds < o, ON

N

o]

and the operator T can be obtained in the form Th = <(—:1- j h/f ds)g.
' N

CASE 2. Alternatively we have :
N _a q
(3) | Jo g'ds > oy ON-

- From (2) and (3) and the fact that g is non-increasing we deduce that there exists a
number a'€(0,cy-1]  for which :

c _
@) [ etas= ey -2 = [Nisefas,
a' ' a' _
where s ¢ 251(1_,1) N ;21(Lq) is an operator of the type constructed in Lemma 2B,chosen to

give Sf= 0y on [a' y cN). Furthermore Si is a nonériegative non-increasing simple

function vanishing on (cN,oo) and

o0 OO0
(5) J gdds < J (st)¥ as forall t< a"
t . t
where [a",a') is the interval of constancy of Sf preceding a'. Infact (5) will be
' ,00 foe]
shown to hold for all positive t. If t= N J gq ds = J (Sf)q ds=0. If
t t
te [a ,cN)



10.

o0 q _ q i . oo q
L (s1) ds_aN(cN ’t)m.jt g'ds

from (4) and the fact that g is non-increasing. It remains to consider t €& [a",a').
‘ : o o0 : o
On this interval J (Sf)q ds is a linear function and J gq ds 1is a convex function since
i t
its gradient is increasing (becoming less negative). The inequality (5) holds for t=a",
t=a', andsoholdsforall t& [a",a'].
Using (4) and the constancy of Sf on [a! ,CN) we see that the operator U,

defined by

Uh = X[Oa )h + C_T—-—TTS hdS> X[a‘
. A~ q e - -
is in £1(L YN £1(L ) and USf= X[O,a' SI’. + an, o ) 8- X[O,a')Sf is a non-increa
sing simple function taking no more than N-1 dﬁferent non-zero values (by (iv) in Lemma 2A
and from (4) and (5) ,
J [XI:O al )g] ds<J [X[O al )Sf_] ds for all t= 0.
By the inductive hypothesis there exists an operator V € :51(141) N :Z,,l(Lq) with
VX [0,ar) SE) = X[g,a1)
Let - T be the operator
h= \Y h
=X, ar) [XEO,a') sn *X@,e ) Y [X[a',CN) st

1

forall helL' +L9. Then Te¢ :51(141) N :&1(Lq) and Tf=g, proving Theorem 2.

THEOREM 3. Let 1$p<q<'oo and let the number o« begivenby 1/ax=1/p - 1/q.

Let f and gb be non-negative non-increasing simple functions on R+- such thét
1/p w - 1/q
q
+t Qt“ 1ds)

x L
(6) gt g dsj/p t Q g dsj/q < Qi * s )
Yo

. . - , P WA o dn )
for all positive t. Then thelre exists an operato_r we .7521 /p (L (R+)) N o / q(L (R+)) |

such'that Wf =g.
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. t 1)
Proof: Let P(t) = J P - oPds and Q)= J 9. g%as. Let
o i

A = {t€R+. lP(t) > O}, B= {t€R+ llQ(t_) _>_O}_. By (6) AUB= R+. A is a union of"

disjoint intervals A, i=1...n with P(t) = 0 at each end point. Similarly

B=UB, where i‘ s are disjoint intervals with Q(t) =0 at the end points.
i=1

In the following it will bé convenient to uée a second cdpy of R+ which we shall
deﬁote Ri. R+ U Ri will denote the measure space consisﬁng of the disjoinf union of
R+ and Rz each equipped Wi{h Lebesgue measure. Let ¢ be the measure preserving
map of R+ U R:)_ onto itself which interchanges each point t of R+ with the correspon-
ding point 2 of Ri.

The operator W will be constructed as the composition of three operators

W =W.W.W., where

ERPAST
7) Ve PR, LPR URY) O 2 1/g R, , L9 URY)
® wé e £, (LPR,URD),LPR +URi))h 2, (LIR,URD),LYR U RD)
) Wy € 2, (LPR,URD), LP(R ) N %1(Lq(R+U R)),LIR,)).

- From this is follows of course that W € £2} /p(L (R+)) N 1 /q(L (R+)). For each

he LD(R+) +Lq(R+), W, putsacopyof h ontoboth R, and Rf:, that is

‘ _ | v - o
WTh(t) = xR+(t) hit) + XRO (tYh{et) forall tc R+UR+ .
+
~ Then (7) is obvious.

Since P(t)=0 at the left end point a; of the interval A, it follows that
t t - L
J (x A g)p ds < J (x A f)p ds forall t= a. - Thus, using Theorem 1 and an obvious
a, i a, i :
i i
~ translation, there exists an operator U; € :éiT(Lp (R+)) N :£1(L°°(R+)) such that

Uj(xp ) = Xy 8-
1 - 1
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Then the operator U given by
n
Uh = E XA.Ui(XA.h)
1=1 i i
is also in ;:iT(Lp (R +)) N £1€L°°(R +)) and U(x Af) =X,B. Since Qt)=0 at the right

[ee]
end point of the interval Bi we also have J
t

a translation of Theorem2 gives us an operator v, € :£T(L1(R +)) N £}(LQ(R+}) such that

o
(Xg g)quEJ (xg 7 ax foran t, and
i t Ci

, m

. ' . 1

Vi(xBif) = xBig. Then Vhs= 1Z=; XBi Vi(xBih) defines an operator in zﬁj(L (R+)) N
g

a’iT(L (R+)).

Let V° denote the operator which is a copy of V acting on functions defined on

R_?_ instead of on R_{_. Then W2 is defined by :

0
th = U(xAh) +V (X<p(B)h)'

(8) can readily be deduced with the help of the Riesz-Thorin theorem. ( 56] Chapter XIT)

Finally W3 collects up pieces of function on R+ and Ri and patches them together
on R+ :
_ ' . p 0 q o
WBh(t) =X A\'B(t) h(t) + xB(t) h{pt) for all hE€L (R+UR+) + L (R+UR+)

andall t€R .

Clearly (9) holds and Wf = W3W2W1f'= g, completing the proof of the theorem,

REMARK. This proof of theorem 3 does not seem to use the full strength of condition -
(6). Possibly a more refined proof would enable the Sharpeﬁed conclusion W € £1(Lp YN

£ (L),

THEOREM 4. Let p,q€ [1,] andlet f and g be complex valued functions in

1P 119 ona measure space (X,%,u) such that
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(10) K(t,g ; LP),L9%W)) < K(t,f; LP(),L%%)) forall t>0.

Then there exisis an opefator TE L s(Lp(u NN %%(Lq(u )), where & and 7 are

constants dependingonlyon. p and q, suchthat Tf=g.

Proof: The operator &, ®&h=¢h where ”go“ w = 1, isinthe class %1(Lp N
" L
£1(Lq) “and so it suffices to treat the case where I and g are non-negative. Also, since
K(t,a ; Ao’AT) =tK(1/t,a ; A, ,Ao) we can suppose without loss of generality that p < q.

In view of the estimates given above for. %((t,f ; Lp,Lq) there exists a constant A  depen-

ding onlyon p and q, such that:
; o «

» t*  A/p % 1/q % J/p © o J/a
(11) : (g*)P ds +1 (g ds < (ax)P ds +t (e gs
Gora eifwna)® = Coora)® o (oens)
forrall t>0, where 1/a=1/p - 1/q andthe LY integrals are understood to be zero

if g=oo.

STEP 1. If £ and g are simple functions thenTheorems 1 and.3 togéthér* with (11)
give an o;ﬁer'ator* T, in :Z,g(Lp (R+)) N ain(-Lq(RqL)) which ‘m'aps * to g¥. | &€ and 7
depend oﬁly on p and q (forexample & = 21/ b ). , n= 21/ 9 if g< ). One can
easily firid an operator T, in 2 (L), LR Dl :51(L°°(p),L°°('R+)) taking £ to f*
and another, T, in :£1(L1(R+),L1(/-L))ﬂ £1(L°°(R+),L°°(u )) taking g* to g. (cf.

Lemma 2 in [4J ). Using the Riesz-Thorin theorem we obtain that T = TBTZTT € £ E(}“_,p(/,t))

n z&n(Lq(ﬂ}) and of course Tf =g.

STEP 2. If only g is simple then, given any g, 0<e<1, we shall construct

Te2, PN )

n(Lq) with Tf=(1-g)g where ¢ and 7 are as estimated in step 1.

If q =0 itis easy to see that there exists a simple function fe < {f such that
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i 1P t
J [(‘h—e) g*} ds < J (fi)p ds for all t>0. Thus the desired operator is obtained by
o o

. N . . . p oo
first multiplying by (_fg/ f)x{x l f(x)>0} and then applying the operator in 2 g(L n ;-fin(L )
which maps f to (1-g)g. For g < o more care is needed. We must first examine the
behavmur' of the function K(t,g) = K(t ,g P Lq) near t=0 and t=c. Foreach

t> 0, there exist functions u k,

0 Vg such that ut+vt‘=g, O0<uyc<=<g, O<v < g and

[ t—

(12) ”utHLp + tHvt“Lq - min(®, 1/4%) < If(t,g) < min(”gHLp,tHg”Lq
VConsequentiy lim ”v,[H = lim HutH .=0. Thus there are subsequences {Vt(n)}n=1

ts00 LY 1.0 _ LP

{us (n)}:~1 which tend to zero almost everywhere, (Limt(n)= o , lims(n)=0). By
- n>co . N

‘dominated convergence ) g in 1P and v s(n) »>g in L4, K(t,g) and

Y(n
,gK(t, g)=K(1/t,g ; Lq,Lp) are each continuous monotone functions. So using (12) again

we deduce that

lim K(t,g)—”g” and lim 1K ,g)~|gH

ta00 - 120 L

In particular, given g, 0<e<1, there exist positive numbers a, and a.
‘such that :
K(t, (1-elg) < (-e/2)llel| ¢ <k0) forall t=a
L

and
K, (1-g)g) < (1-¢/2)lel| p < K(t,g) forall t=a_
L

We seek to construct a continuous piecewise linear function H(t) - with finitely many
vertices such that K(t,(1-€)g) < H(t) < K(t,g) forall t> 0. From the above estimates
we may take H(t) = (T—s/Z)HgH qt on (O,aO] and H(t) = (T-e/Z)HgH p on [am,oo).

_ I, . I,

Since K(t,g) is continuous and strictly positive on the compact interval [ao . aOO] it is



easy to extend the definition of H(t) to the whole of (0,) using only
segments.
Let (fn)n=1 F)e an increasing sequence of simple functions, 0< fn < fn L& with

lim f =f a.e. Since feLP+19, f tendsto t in LP+L? norm also and thus
n-co

lim K(t,fﬁ) = K(t,f) for each positive t. Also K("t,fn) < K(«;,fnﬂ),..gx(t,f) since -
n-3eo

N . ‘ S - Dy - -~y
multiplication by the function (£ N +’$/fn) X {x Ifn(x)>0} is an operator in :51(1_‘ YN £ }(L ).
Let vi sy Vy... ¥y bethe values of t where H(t) has its vertices. For some sufficiently

‘large n we have K(Vi’fn)>H(vi) for i=1,2...M. But K(t,fn) is concave and

soforall t>0  K(t,f)> H(t)> K(t,(1-e)g). It follows that

« | « o
Lk 1/p oo 1/q t . Jd/p % 1/q
- * : - * q ¥ P J__ )(-q IS
QO ((1 s)vg )pds> +1 Q;a ((1-€) g*) ds> e Go (Afn) ds> -t Qta(kfn) ds)
for all positive t, andso, asfor q=«, wa have an operator in =2 g(Lp N2 n(Lq)

taking f to (1-g)g.

STEP 3. Proof of the theorem under the assumption that thé measure space is o -finite :
Let (gn);_»_di be a sequence of simple functi»_ons which tend mo’netonicaﬂy almost evér*ywhere
to g from b{alow. Then using step 2, let T,, be an operator in £ é(Lp N gn(Lq) with
Tnf = (1-1/n) g, let @ be a continuous linfzaf functional of norm bne on £%° such
that w({an}ﬂ = lim‘ an for every convergent sequence {an} . Define the bilinear

N0
functional T acting on pairs of simple functions, by

w(0,8) = o({f(r o) s au }).
Of course T(0,¥) is definedalsofor ¢ and P ranging over larger -.classés of functions

In pax*ticular'

lf(&o,ﬁf))] < €“so” D ”z,f)” p! forall ocLP z,beLp1t
L L
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and lro,0) < alloll sl | toran  oerd , perd'.
44

Thus for a fixed cpeLq - 7(0,¥) is a continuous linear functional on Lq" and éo,
since q> 1, there exists a function h@GLq determined by ¢ uniquely to within a set of
zero measure, such that 7(o,9) = Jh (le)du for all ¢€Lq' . The above estimates for
rampty that [ [l < nlloll anait o e LPALY weatso mave [l [l < ellol

oLl Lt . § P L

The operator T, T¢ =h_ is thus in £n(Lq) and its restriction to LPN LY extends

©
uniquely to an operator in £ g(Lp ) which we may also denote by T. It z,beLp ﬂLq,

7(p,d) is defined for oelP+LY and (0, )= J(T(p) pdu . In particular

Jertypap = 16, 9) =w{J (t, 0 v @ P = w{(1-1/m) ] g, b du )= [ev du

and since this is true for all ¢ € LPNLY it follows that Tf=g.

STEP 4. Proof of the theorem for an arbitrary measurespace: If q< o then the
subset of the measure space where f and g are non zerd is o -finite and the methods
of step. 3 apply immediately. Thus we need only consider the case g = . Given positive
functions f,g € P + 1% which satisty (10), it follows that j W ds < j (A 1¥) P s
forall t>0.

1 (5 e 4 1/D
Let a=lim g*(t) = lim (t—j (g*)" ds)’*. Then G = {x }g(x) > cx} is o-finite and
tac0 a0 o

(gx o )*(t) = g*(t) for all positive’ t.

Let B =lim £*(t) = hm( J (£%)P ds) P hen F _{ ffx)> 3} is o-finite.

taoo tyoo

Case 1. If B=0, then a=0 andboth f and g have o-finite support. Step
3 is immediately applicable.
Case 2. B >0. Case2A. If ,u(FO) =o then (f Xp Y (1) = £°(t)  and there exists an |
~ o «

operator T _ € £, whN 2 A(L ) which maps fo to gX,. Let
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P‘n = {x If(x) > B+1 /n} ‘and let w be the functional introduced in step 3. Define the

operator T1 by I
w(LMFnS J.F hd‘“D

T,h =

n
iy ], 1))
n

g Xx\G -

Then T1 - maps P to {0} and maps > into itself with norm bdunded by «/B<X.

. o
The operator T, Th= x . To(th) +Tqh, isin £k(Lp) N ﬁk(L ) and Ti=g.

Case 2B. u(FO) < e, Thenforeach n, the set
E_ ={x !B > f(x) > 6—1/n} has infinite measure.
Case 2B (i). Suppose that each measurable subset E of En “with

L(E) =  has a subset of finite positive measure. Then each E  hasasubset D ,

) 0 ) : .
n<pg (Dn) <o, Let F= F,U UD . F is o-finite and (£ XF)*(t) = f¥(t). Much as
' n=1 :

- : . . w . k .
before we can obtain T € sﬁk(Lp) N %A(L ) which maps f Xp to g Xgs and T,

given by
o Gy J, )

n
&
« Gy J, £

and T, Th= ¥ G ‘TO(th) + T h is the required operator.

T.h =

XX\G

Case 2B (ii). The only remaining possibility is that the above defined sets
En for each integer tﬁgger than some integer m contain ﬁleasurable subsets Cn such
that every measurable subset of Cn . has either zero or infinite measure. Let Loo(Cn)
be the subspace of Lw(u) consis’c‘ing of functions which are a. e. zeroon X\ Cn.
Let "@n be a continuoﬁs linear functional of norm 1 ‘on LOO(CHV)‘ such that

£n(x c f) = H Xc f” o+ Let (Y,8,v) bea measure space consisting of the disjoint unjon
n n L : ’ _ :
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of FO equipped with g-measure together.with a sequence (Rn);'f:m of disjoint
copies of the real line, each equipped with Lebesgue measure. We define an operator

Py, p P o0 b . - = .
Qe (LPW),L () Nn=L, L7k),L7(¥) by Oh xFoh-kr};% XR, zn(xcnh)‘

Infact ¥ C'nh = O‘ a. e. forany herP (). Q has the further pfopepty that

(Qf)*(t) = f*(t) , andsince (Y,8,v) is o -finite Vwe may use the arguments of case 2B(i)
to construct an operator T € £y (LP (V),Lp(u })h £>\ (Loo(v),Lw(pt )) which mabs Qf to
g. TQ is tﬁen the required operator and the proof of theorem 4 is complete.

COROLLARY. (LP(r), L%u)) isa Calderdn pair.

III.. INTERPOLATION PAIRS WHICH ARE NOT CALDERON.

Define A ot A1 to be the space of all elements a € A o—s—A ~ for which

1

”aHA +§o.A = limK(t,a ; AO,A1) (s finite.

0 T taco

Let Aﬁoo.Ao be defined analogously, so that
R . N .
”a“A oo A = lim K(t,a ; Al’Ao) =lim gK(’c,a ; AO’AI)'
1 0 fax t-0

It is not very difficult to see that Ao+oo.A,! is a Banach space which contains Ao’

and that for each aer Ha”

A0+oo.A1§HaHAO. In fact Ao A

; can be thought of as

a sort of closure of AO with respect to A} s as the following lemma shows,

LEMW\ 1. Anelement a of A0+A1 is in Ao+°°‘A1 if and only if there exists a

sequence (aﬂ)}i';1 3{3 AO with sup”anHA < o_b and lim ”a-»anHA =O.> For each
T n o) BRI ¢ 1) 1
SUCh a, Ha”

= inf{sup Uan” A } wberé the infimum is takén over all sequences
n o] '

= 0.

AO+00.A 1

(an) ;3 A, for which rii;r)zof}a--anHAT

Preoof: We leave the details to the reader.
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and all positive t, K(t,a ; Ao AL A +oo.AQ) =

LEMMA 2. Forall ac€ AO + A 179

1

K(t,a ; Ao’Ai)'

Proof: Fix a and t, and let 'beA0+co.A and ¢ €A +o. A be suchthat

1

a=b+c¢c and-

+tI
1

for some arbitrarily‘ small positive number g, Let (bn):;} and (Cﬁ)::@ be

| Hb”Ao+oo.A ICHA.I-;«oo.AOS K(t,‘a : A0+oo.AI,A1+oo.AO)+ € |

sequences which approximate b and ¢ in A,* and AO norms respectively such that

1+ e and égpncn”;w = Hé”Aﬁoo.Ao

Then K(t,a ; AO’AT) < an +C - CnHA + t”cn +b - anA?-
o

< Hb”A too. A +t”c”A +o<;A + (14t)e + 0(n).
ot T o

an by, < bl

+ E.
oo, A :
0+

It follows that K(t,a;Ao,Ai) < K(t yaA o A ,A3+00.A0). The reverse inequality is an

< [l

immediate consequence of the inequalities Ha” A o0 A‘ .
1" 1

O+OO'AT£ Ha”Ao’ ”a‘,[A

1 —

LEMMA 3. I (A_,A,) isaCalderénpair, then A_=A te.A, and

A1 = A1+00'.A0.

Proof: Let a € Ao-;~o<>.%~x1

and let (an)::i be a bounded sequence in A with

IimﬂawanHA =0. For én positive t K(t,a) = UaHA oo A ,’ énd also for any fixed n
N-xc0 1 ; o 1 ’ :

K(t,a) < K(t,a-a ) + K(t,a )
< t”a-—an”A1 +}<(t,an).

So K(t,a)< K(t,an} + min(t”&*?nHA1, HaHAOer. A1)v“ ‘K(t',»a) is a positive non decreasing

c.oncave function and so for a sufficiently large positive number X , Kft,a)< AK(t, an).

But,by hypothésis s AO as an interpolation space must be K~monotone and Aan c Ao‘
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Thus aer and AO=A0+oo.A Similarly A, =A +00.A0.

1 1 1

REMARK. It can be seen that if AO # AO+00.A then spaces other than the "end point"

1

spaces AO and A1 may also fail to be K-monotone.

EXAMPLES. Let the meésﬁ}:*e spéce‘ be the real hiné R equipped with Lebesgue

measure. Let C(R) be the space of continuous bounded functions on R with supremum ;

1,1

norm, andlet W'’  be the Sobolev space of L1 functions f whose first derivatives

f! (in the distribution sense) are also in L1 with ”f” 1.1° Hf“ 1t Hf' H 1° Then
; W L L

C(R) + w.L' =L and for example C(R) and CR)N L' are not K-monotone.

1 1 1

@', w"") also fails to be a Calderon pair. In fact W's b1 = BVAL', the space
of functions in L1 which coincide almost everywhere with functions of bounded variation.
BV ﬂL1 can be nor‘med by Ht‘” 1= ”f” + var(f)
BVAOL" — L1 ’
The last example will show that Lemma 3 does not have a converse. Let T , denote the
-circle group with Haar measure and w'sP (T) the Sobolev space of functions £ in LP(T)

whose (distributional) first derivatives f' are alsoin LP(T). . As norm take

”fnw% P Hf”Lp + Hf' HLD‘ For 1< p< o we have an estimate of Peetr;e,v

K(t,f 5 LP(T), W " P(T)) ~u(t,£)

p+t”f” P for 7t<1

L

where I{t,f) = ﬁ“ﬂ Hf(mh)—f(X)H
o<lh st L

= el Cfor t=1.

See [10] , [1 1], also [-1:! ‘p. 258. Though these proofs are given for (Lp(Rn),W1 P(rM)
rather than for spaces taken on the circle or n-torus, the result for T onr T can be

readily deduced. (For example construct an operator
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s € 2P, LPRM) 2w P, w ’P(R )) where Sf is the periodic extension

of f multiplied by a suitable C®  function of compact support, so that Sf ; n
' T

f ~ , llst el d Ut,S6)~ Ut,1).
S O~ S ERI R

Let Li(T) be the space of tempered distributions f on T whose Fourier

f ' 1+in12 /2

coefficients f(n) are givenby f{n) = ( o), where ¢ is a function in

LP(r). Let Hf” Hcp” . There are analogous definitions for L§ on T" and R".
For our purposes it suffices to consider the parameter « in the xfange | (o, 1k) énd in this
case Lp [Lp whP :} as was sf;own by Calderon. ( [2] , BJ ). However Lgc is

not K-monotone, atleastif 2<p< oo’ 0 and 1/ p < a< 1. This may be seen with the . :
help of some special functions used by Taibleson [1 5] to show non-inclusio_nsv between L‘; '

and certain generahsed Lipschitz or Besov spaces (Lp W Lp )oc q

The functiori k=k which has the Fourier series E X 2 1/ 2 cos 2nx

«, 1/2

does not belong to Lp ( [1 5] p. 473 paragraph (e)). Using the estimate on P- 472 of [1 )]

we see that Hk(x+h) - k(x)” =M, lh ‘0‘ log"1/2(1/ |h |) for some constant M.,
LP(T) |

However the function f=f{ with Fourier series

o+1/p*, 1/pre

o .
> on ~a-1/p! log~ -1/p- “&h cos nx is in Lp for each €>0 and furthermore
2 .

Hf(x+h) - f(x)” = M, I }alog 1/p- “&(1/ lh }) for some constant M, [35-} pp. 47)-—474
LP(r) |
paragraph (h)). We choose €= 1/2-1/p and clearly K(t,k)< K(t,Af) forall t and
some constant A.
(It is easy to deduce that Ll;(l"—%n) and Li (") are also not K-monotone for the
above ranges of values of p and « using Lemmas 23, 24 and 25 of [1 5] . Incidentally,

by using interpolation methods with an operator of the form S as above, one can give

an immediate proof of Lemma 25).
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Obviously 1P +<><>.W1 PP , and frdm the'weak compactness of the unit ball of 1P
forr 1< p<w we may readily deduce that WT P oo 1P = W1 P fetus summaﬁse the

resulis of this section.

" THEOREM. Every Calderdn pair (AO,A)}.) has the "mutual closure" property

Ao = AO+<><>.A1 s A1 = A1+oo.Ao, but this property is not a sufficient condition for an

interpolation pair to be Calderdn.

IV. WEAK K-MONOTONICITY.

Having obseﬁred that there are at least two different “mechanisnis" which may (pyx_"eve_nt,,
a‘n interpolation space from being Kgmonotone, we riow turn to the study of a monotonicity
property weaker than K;monofsnicity which hol-ds» in all interpolation spaces.

OO

LEMMA 1. Let w(t) be a positive measurable function such that J w(t)dt < oo,

andlet (A_,A,) be an interpolation pair. Let f,g€ A+A, such that

K(t,g) < w(t) K(t,f) for all positive t. Then there exists an operator T € Ly (Ao) N

i)& (-A1) such that Tif=g. A  may be'téken to be any nu'mber.great‘er* than -

min
o1 loga

jw w(t) dt/t.
fe .

Proof : Let r > 1 be such that min Za/log o= 2r/log r. Choose a number ¢>0.

el
For each n=0, +1, _-g2, fee let g= =a +b , where a €Ao , b €A, gnd
Ha HA + Pn”b H ( 1+ ¢€) K(r ,g). - Weshall 'need two estimates :

1

(1) ’]anfanm1[le< (1+€) (;Z;L (Jrn 1w(t) at/t) K", 1)
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1 l’l
(2) i n 1” 1s(n-ys) 2;:1 g ; wit) dt/t> K(r", ).
For (1), Han a _ ” < Ha ” Jt ”a e “ = (e)K(™, gk g)

0

< (1+e)(1+p)K(r*n“ ,g), since Kf(t,g)/t is non-increasing,

0
no1 Klt,e)at/t
< (1+&)(1+1) = , since K(t,g) is non-decreasing,
cet .
Jrn_1dt/t
< (1+g) L1) q g WD) dt/t> K(e",£).
log r r

”A} =.an—1-bn”A1 = (1+€)(1‘~n+1K(P_n~1ag) + r—nK(Pn,g))

For (2), ”a -a_ 4

<1+e>( N1 K(r““',g>)

1
< (1+e) 2;‘ o (J w(t) at/t) K", £).
~logr :

For each n ||h” = K(@™,h) is anormon A +A; and thus there exists a continuous

linear functional £n - on AO+A

; such that z»n(f) = K(pn,f) and . ’un(h){ < K(rn,h)

forall hc€A 0+A1 . The operator T will be given by

= 4 n(h)

Th = _5‘_: =
n=—-c K(r ,f)

(an—-an_ 1 ) for all. ¥’1€A0+A1 .

If heA o’ Th is given by an absolutely convergent A o~ valued series, since-

< (49 11 [Pt atfe [l svom (1),
W)

log e}

Similarly if h€A :

o ,Iz (h){ , e . ‘
n ”an'an-—1HA1 S(He)iigg—ﬁjo w(t) dt/t by (2) and so THGAT, and

n=—oc K(r",£)
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(o0}

indeed TGNA(A YN £ (AT) for every A greater than (1+g) 2r J w(t) dt/t.
log r
Since f€A +A  Tf= Z:(a - is.a series converging absolutely in ASHAS
norm,
o _ o
Ti= f;(an = Ah-1 )+ Z;(an
=a - lim a1 +bo - lim bn'
100 1500
' Pn+1
As in the proof of (1), K@",g)< ! <j dt/t> n+1 ). Thusas n= -
n
logr “r
K('",g) >0 andas n s+ K(",g)/r" 0. From ”a H +rng H < (+e)Ka",g)
o 1
we have
w lo s o < loy -0 sl o < ol o
400 1 nNowco o f=sco 0;

So ‘Tf.=a0+b0=g.A

THEOREM 1. Let w(t) be a positive measurable function such that for some positive

00 ) v :
number e, J min(e,w(t) dt/t <. Let A be an interpolation space for (AO ,»A1).
o

Thenif f€A and g€ A0+A -such that  K(t,g) < w(t) K(t,f) forall t> 0. it follows

1

that geA.

Proof : We change to a notation in which Ao ~and A1 appear more symmetrically.

-x/2

Let Ky(x,a)=e K(ex,a) and w*(x)mw(ex): so that K,(x,g) < w,(x)K,(x,f)

(ee]

forall x € (-,») and J min(e,wy(x)) dx < . For any a €AO'+A - and any real
- OO

1
x and y we seethat K. (x+y,a)<e ]y ]/2 K.(x,a). Let H(x)=K,(x,g)/K,.(x,1).

We deduce immediately that H(x+y)= e” ly fH(x) forallreal x and y Further, since
H(x) < w,(x), the set {x lH(x) > n} must have finite Lebesgue measure for any

m H(x)=0, and that J H(x)dx < . Let

400 -0

positive 7. It follows that- ] 11;
X
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WT(t) = H(log t). j ‘ wi(t)%g <o and Kt,g)< W1(t) K(t,f). Using Lemma 1 we
o ,

conclude that g€A.

REMARKS. In some particular cases the condition K(t,g) < w(t) K({t,f) for f€A
forces g to be in a class much smallerthan A. Forexampleif f¢& (Ao’A1)8 o
. ’ b4

g must be in (AO’A1)6 17 and if fer or A, then g mustbe zero. This seems
, >

1

to suggest that the above theorem is rather crude and that, for example, it should be possible
to weaken the conditions imposed on w(t) and still have gCA. Bearing in mind that for

some interpolation pairs we only need w(t) to be»‘bounded,A we ask if it is possible to.

]

weaken the x‘equiremeht j min(e, w(t)) dt/t < o to something corresponding to a slower

O

convergence of w(t) tozeroas t-0 and t-s o, forexample

oo

j min(e, w(t)P) dt/t < » for some p>1. We shall construct an example which shows

. that such a sharpening of the theorem is in fact impossible.

oo
Let {Bn} be a sequence of Banach spaces. For 1< p < o define the space

n=1
. oo
zp{Bn} to consist of all vector valuedSequences {an}nzﬂ _satisfying - anéBn for each
n, and “{an}H D = ( Z ”an”% )T/ P < ». The usual modification is made for
2 {Bn} n=1 n

p‘m oo,

LEMMA 2. Let (Bn,Cn) n=1,2, ... beasequence of interpolation pairs. Then
(2 1{Bn},£1 {Cn}) is an interpolation pair and
: TN N
() . K(t’{an}- ; J& {Bn}”“e {Cn}) =ZT: K(t’an ; Bn’cn)
iy gl 1 e 1y Ceed e |
() 2 {(Bn,cn)e’q} (e }, 4 {Cn})g,q, for 0<6 <1 and 1<q< o,

The inclusion is an equality for qg=1.

@) LeYp },e¥c H, =2l 1} for 0<6<1.
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: . ‘ 1 1 | ,

Proof : It is easy to see that £ {Bn} and £ {Cn} - are each Banach spaces
continuously embedded in £ 1{Bn+cn} . The proofs of (i) and (ii) are left to the reader.
For* (iii) it is convenient to use a different construction for the complex interpolation space

[A A :}  Let ?1 1(A LA ) be the space. of A A -valued analytlc funct:tons £(z)
defined in the strip 0< Re z< 1 such that the limits on the boundary
£(j + iy) = limf(x + iy) exist in the sense of tempered A A, - valued distributions on the -

X]

line, and satisfy j Hf(j-z—iy)“ A dy<ow for j=0,1. Then [AO , AJ 6 consists
: . -C0 J :

of all elements a € A_+A, suchthat a=1£(0) for some f£(z)€ 34 (A ,A.) and
o 1 1,17 07 1

oo

H f(iy)” o+ Uf(”iY)u dy. Using ideas

b db H = f J
may be normed by 13}@ A]‘ m _ o 1

1mp11c1t in section 9.4 of [3] Whlch are further explamed in [12:] (Lemma 1.1) it can be .
seen that this construction gives the same space to within equivalence of norm as that
obtained fr’om"the original definiﬁon.

Let {an } €4 1{[Bn,cn] 8}’ There exist analytic functions £ Sz e g«1 '1(13n ,C)

such that fn(9)= a  and HanH [B C ] > (1 e)J “ f (1y H : + ”f. (1+1y)” ndy

Let- {fn’m-(z)} and {an_,m} be truncated sequences, that is fn,m(z) :fn(z),
an,m =a, for n<m and. fn’m(z‘) =0, an,m =0 for n>m. Notmgthat

2 1_{}3n} +e'{c }=4"{Bac | has dual space zm{B;lmc;}}, we see that for each xﬁ,
o m®} €, ¢ {5} e,y amaso {o, n} el {m ba'c Ty i
sorm (s, I, o hatfe, 0= | ool el av. sy simtar
estimates {an’fm} is a Cauchy sequence with respect to m in [ B bt 1{c ]

Thus its limit {a_} in £1{Bn} +o'c | must also be in [z B } ,z‘{cnﬂ 5
This shows that £ *‘{[Bn,cn] o} < [e‘{an}, 2 ‘{CHHG. wé leave the proof of'the |

reverse inclusion to the reader.,
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Let {rn}:ﬂ be a sequence including all the rational numbers in (1,c). Let us

ke D -—Lr”(R) d C »L°°(1§) £ =1 v2 dlet A ~£1{LPH(R )b

ake B = L) an = N or.n.-,,...ane/oﬂ. R,

TSNS S r_/(1-8)
1{, o 1T{{, n, o 1/, n

A=t {L (R)}. Then [AO,AJQ =2 {[L L ]a}” {L }([3], 13.5,

13.6).  We next observe that

3) Ay A1)9‘,q ¢ [AO , AJG forall q> 1/(1;8).

: 10, 1 , 1)
The space (4 {L },JZ {L })3& includes sequences {an} such that anzo for
r ,

r_/A1-6)
6 ,q = L(Pm/(1‘6)9Q) ¢ L "

all n#m and a € w ™ L% if m issuch that

q> rm/(i—ﬁ). (See [1], p. 187 and [7] p. 255.)
Now let us suppose that there exists a number p> 1 such that the conclusion of
Theorem 1 holds when w(t) satisfies the weakened integrability condition

o0
J , min(s,w(t)p ) dt/t < . We shall see that this coniradicts (3). Let us choose - 6 suffi-

ciently small so that p > 1/(1-8). We also introduce a second positive number « chosen
to ensure that '

(4) (1) p > 1/(1-8)(1-o) > 1/(1-6)
(ii) r=p(1-6 }(1-«)/x 1is a rational number greater than 1.
Let g= {g } € (A _,A,) Then w(t)= (t“e K(t,g ; A ,A ))T'"C’C satisfies
: n 0’10 ,p(1-a)" - . = 18 5 Agshg)) T salistic
I 118 (1-0) | |
J witlP at/t <o  and K(t,g) = wt) 2 O, o).
o ; .
Our next step will be to show that te“‘“)(z«:(t,g))o‘ < K(t,f) for some f€ [AO,AJ 5-
On the assumption that the sharpened version of Theorem 11is true, Kf(t,g) < w(t) K(t,f) then

implies that g € [AO,AJ g+ But g isan arbitrary element of (Ao’Ai)e and

,D(1-ax)
so (3) will be contradicted.
As a non~decr*eésing concave function of ’t, K(t,g) mustbe absolutely continuous.on’

every compact subinterval of (0,). Thus it is differentiable almost everywhere and the

derivative K!' (t,g) must coincide almost everywhere with a non-increasing non-negative
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function. We introduce the function ht),

h(t) = [8(1-0:) t8(1;a)—1(K(t1/r’g)) a ate(T‘—oc)ﬂ/r-i(K,(tT/r"g))ocr*—Tj 1/?. .

From (4) and the fact that K(t,g)/t 1s non increasing we see that h(t) 1is a non-
incrfeasing function such that h(t)' = %Eﬁe (1-0) (K(tv P,g))om} almost ever3n§here.
But 0 (1_0()(K(t1/ T eN™  is also absolutely continuous on every compact subinterval of

(0,) andtends tozeroas t tends to zero. It follows that

t
tG(T",",‘)(K(tT/ TeN™ = J h(s)" ds and so
0

i
t9(1-a)(K(t’g))oc= (J h(s)" dS)T/r‘ < K(t,h ; LY‘(R+),L°°(R_§_’)) ;
o ' |

(as in [8] p. 159). Since r isrational r= r forsome m andif f= {fn} isa

sequence in AO +A. whichiszeroforall n#Zm andhas f m= h, then

1

K(t,f ; AO,A1‘) = K(t,h; LY,1%). It remains only to show that f € [Ao’AJG which

amounts to showing that h e LY/(1-8) put

t .
ht) < tlj h(s)' ds = tg(}”“)*}(}{(tj/p‘,g))w, and so
o : '

J,m'h(t)l*/(!-'e) ds < Jw [{'3/1" K(t’/?,‘g) P(La) at/t
o o

lel, pl-o) <o,

o’A’t)G,p(1-oc)
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