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NOTE
A tape recorder was used to record Prof. Schwartz' lecture. Then some members

of the Math. Department had to work hard to come up with this final text, approved
by the speaker.

The same lecture was given in several other foreign Universities but it is published
for the fïrst time, now, in the Proceedings of the General Mathematics Seminar of the
University of Patras.

N.Artémiadis

It is a great pleasure for me to give this lecture here. It is a diffîcult
lecture, though, because you ask me to speak about the history of
Distributions, in which I am much involved, so that I cannot avoid speaking
about myself, which is always a difficult problem. So I decided to do exactly
that: to show you in what way I could discover, or I discovered, the
Distributions, seeing some things quite soon and some things very late; in
what way my strength and my weakness can be compared with other
people's.

Because, when one examines this discovery, as well as many others, one
can see that there were many people before me who had something, even may
be a large part of the subject, but could not go far enough. And then, at some
time, something, imposed by the circumstances, comes out, which was not
recognized before.

I shall try to give other examples, because I want to show you in a way,
the strength and the weakness of human spirit for discovery.

Let me give a very famous example: Einstein discovered Relativity, but
Lorentz had already completely written, what is called the "Lorentz Group'*,
namely the group of transformations of space-time which leave invariant
MaxwelFs Equation of Electromagnetism. So he wrote that! but it was more
or less ignored, because it was not assumed that the electromagnetism and the
velocity of light had to be invariant. Why should they be invariant? When one
has the light as something propagated in a matter like ether, then it does not
have to be invariant with respect to the various observers, moving with
respect to each other.

It was only a négative physical experiment that Michelson made, trying
to measure the velocity of light with respect to various places moving
mutually, which indicated that there was no observable différence. After
Michelson's experiment had been repeated, it was admitted that the velocity
of light seemed to be constant. Again nobody considered that as a fundamental
fact. And then Einstein(1) came. It was already known by expérience that the
veiocity of light was invariant and that there was a group leaving invariant

(1) I don't want to compare me with Einstein, but just to show how, usually, a discovery
arrives through various steps and various people.
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Maxwell's Equation and velocity of light, i.e. the Lorentz group. But he had
to impose the new conception of space-time, and in the same way a lot of
new formulae and concepts, on Mechanics (force, energy, mass) and Physics;
nobody would believe it at the beginning. And there was a very strong
contravening current. There are still people who want to fight Relativity, but
they are really crazy. At that time it was the opposite, I mean it was Einstein
who wasn't believed immediately. Yet afterwards, he was completely recognized
and the system became universal. But it was considered to be so difficult, that
it was said in many circles that only two or three people could understand
relativity. Nowadays Relativity is taught in all Universities in the world; and
even Highschool pupils know something about Relativity.

Usually, when a new concept is established, one can find that this
concept had already existed but was not recognized as something useful and
fundamental.

This is also true for the Distributions. It is difficult to imagine how many
people, who lived much earlier, already knew something about them. Even I
had known a lot of things which I could not bring together. And when I did,
I found very oblique ways to get the results and not immediately the
définition which exists now. So one has to overcome external and internai
difficulties in order' to establish new théories. This I wanted to show.

Let us return to the past. You find some traces of future distributions in
Riemman, in Gayss, in Dirichlet, in the Theory of Harmonie Functions.

For instance it has been known that a harmonie function f (Af = 0) in
IRn (in order to be harmonie it has to be twice differentiable) is ipso facto
indefinitely differentiable. Then people observed that in order to define a
harmonie function it was not even necessary to have derivatives of the second
order and a harmonie function could be defined as a continuous function
such that for every sphère S(R) the value f(0) at the center was equal to the
mean value of f on thè sphère S(R). This could be taken as a définition:

If a continuous function has the property that the mean value on every
sphère is equal to the value at the center, then it is ipso facto twice
differentiable and is harmonie. So, one has a définition of harmonie functions
without derivatives apriori.

The same happened with holomorphic functions. If you have a holo-
morphic function f(z) of one complex variable in a complex plane, Cauchy
proved that it is indefinitely differentiable and if C is a closed rectifiable curve
then:

Jf(z)dz = 0
C
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There is also a converse tbeorem by Morera saying that if a continuous
function has intégral zero over every ctosed rectifiable curve, then it is
holomorphic, so it has derivatives. Therefore one can also define a
holomorphic function without using derivatives. Of course this does not lead
immediately to the distribution but it is implying that sometimes it is not
necessary to assume the derivatives in the usual sense to get a property which
finally comes back to derivatives.

At the end of the 19th and tRé beginning of the 20th century, people
considered very much intégral équations, convolution intégral équations,
Volterra convolution, Mercer convolution of the type:

h(t) = ƒ f(t-T)g(T)dt
O

Convolution played an important role at that time in the studies of
electricity, in differential équations, in partial differential équations and, in
particular,workers in electricity were led to consider phenomena which
started at the time zero (one switches on the current, for instance) and then
they observe the reactions. So there are functions which are zero for négative
t and just different from zero for non-négative t. This produces an intégral
from o to t.

It was known that if one had a complex electrical System which contained
résistances, self-inductions, capacities, it had an impédance Z(t) which was a
function of t, so that if you had put electromotive force e(t) you obtained a
current with intensity i(t). Then one has the relationship

e(t) = J Z(t-T)i(T)dT
o

i.e., the convolution of the intensity and the impédance of the electromotive
force. This was known at the end of the 19**1 and the beginning of the 20*
century.

Then the British engineer and mathematician Heaviside introduced for
that a syfnbolic calculus (1893): instead of writing e(t), Z(t), i(t) he wrote i(p),
Z(p), e(p) and he wrote that in the following algebraic rule : e(p) = Z(p) • i(p).

This was justified later on using the notion of Laplace transform, which
was not systematically used at that time(1). It was purely symbolic. He
introduced a 5 impulsion (it was not called 8, it was called a "unity
impulsion") much before Dirac. This 8 impulsion represented for him an
imaginary, very strange, electromotive force acting for a very short time, so
that the intégral was equal to one. It was exactly the future notion of Dirac
function.

(1) Carson 1926, van der Pol 1932.
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Then he introdiîced the so cailed unit scale y which was a current equal
to zero for négative t and equal to one for positive t.

He observed that the derivative in some sense of this unit scale should be
equal to 8 :y ' = 8, (in what sense was not very précise) but he observed that 8
must be zero except at the origin, and that:

ƒ £S(x)dx = y(e) - y(-6) = 1
-e

So he said everything about Dirac's 8-function at that time: 8 is the
derivative of the function y above, it is zero everywhere exept at the origin
and its intégral equals one. But this cannot be possible because S is almost
everywhere equal to zero, so that its intégral is zero, according to Lebesgue
theory. So 8 didn't really exist, but he wrote that. He cailed it, 1; he cailed

8', p; and y he cailed — That 8'*y = 8 (here is the modern writing with

distributions) Heaviside wrote as p • — = 1. He made a complete symbolic

calculus with these functions of p. He constructed a symbolic algebra in
which he used polynomial multiplications, décomposition of rational fractions
into simple éléments and it became a fantastic construction with asymptotic
developments and *so on, but no mathematician had accepted that! It was
completely rejected by the community of mathematicians who said he was
just crazy. It was a little strange because it led him mostly to perfectly true
results; he also found theorems which were absolutely exact (for instance the
extension of the fundamental solution E of a differential équation on Rwith

constant coefficients, P(D)E = 8, written as P(p)E(p) = 1 or E(p) = pTTT'

computed by décomposition of the rational fraction ps-r- into simple

éléments), and which nobody could reasonably" explain. One could prove
these theorems, but he found them using this symbolic computation and
nobody would admit that it ought to have something true in it, if it led to true
results.

He was refused, considered insane; and in the same way he was so
rejected that at the end of his life he lost partly his equilibrium. It may be
that to be a mathematician is as dangerous as to be a man of politics] You
may be rejected if you are not in the normal currçnt!
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This was a first expérience and it is now part of the Theory of Distributions,
but it was then rejected.

Later, Dirac introduced in 1927 the ô-function which is called the
"Dirac function", with the same définition: 8 is a function which is zero
everywhere except at the origin and whose intégral has to be one. Then he
said another thing about 5: We have an approximation of- 8 as shown in the
following picture:

This is a discontinuous approximation of 8 with the value 1/E on an e-
interval. He also gave another, this time continuous, approximation which
was a Gauss-lobe, very concentrated, called a Gauss-lobe with a small
parameter. In both cases the intégrais are equal to one (see Fig. 4).

He then introduced the derivative 8', something which was completely
unacceptable for mathematicians, but his explanation was that: if the function
in Fig. 4 is an approximation of S, you just differentiate it and you obtain a
function as follows:
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which should be an approximation of S'. He then
differentiated 8-function many times. But not only did he introducé the 8-
function, he also made changes of variables: for instance he considered 8(t2-
x2-y2-z2) which jntroduces a distance in terms of Relativity. This was»a
change of variables in Distributions before they actually existed! Then he
manipulated all these in such a way that in 1940 in all books of Theoretical
Physics there were fantastic computations with distributions prior to the
existence of distributions in Mathematics! These computations were sometimes
wrong, since they were based on intuition which often is misleading. Still,
there were a lot of true formulae which are now well proved. So Dirac was
not only the inventor of Dirac function, but he and many physicists also did a
lot of computations so that in every book of Physics there were many 8-
functions and distributions with no justification at all from the mathematical
point of view (which came at least 15 years later). The mathematicians feit
only contempt for that and they rejected the whole method. Yet Dirac did not
become insane, but the Physicists formed a world outside of Mathematics.

I folio wed a course, when I was a student, in the year 1935, in which I
heard about 5-function and its derivatives, I thought about it with some
friends, so it remained in my mind that this existed in Physics and had
absolutely no sense in Mathematics. I dis'cussed it with the mathematicians of
that time, my professors, my classmates and we came to the conclusion that it
was nothing, we had nothing to do with it. It was absolutely impossible to
find any kind of justification, especially for 5' which was the first true
obstacle. Because 5 could be a measure, but then a measure has not derivative.
But I kept that open in my mind.

One of .the first completely coherent things on the subject has been
introduced by Sobolev just before the war (1936). Sobolev introduced some
kinds of generalized functions which were very near to my définition of
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distributions. Sobolev instead of considering the space C L P (of infinitely
differentiable functions with compact support) (that I called 3)°° =3)),
considered C L p which he called DT, and introduced continuous, linear
functionals of Dmand manipulated some derivatives, so that he had a correct
définition, possible to use. Something completely lacking in his theory was
the support, the carrier of a distribution; and the carrier of a distribution
dépends on the Theorem of Unity Partition which was discovered in France
during the War by Dieudonné. Sobolev had no convolution, no Fourier
transform, no strong topological properties, but he had many formulae and,
in particular, he was able to see that a partial differential équation with a
boundary value could be solved in this way by putting the boundary value in
the second hand-side, a décisive fact. It was quite a good approximation of
distributions. However in the world of Mathematicians it remained a curiosity
in the sensé that it was just a publication among others, for a particular aim
and not presented as a gênerai tool for a lot of things. Most of the
mathematicians ignored it (including myself). Of course this appeared just
before the War and Sobolev himself did not continue much afterwards in this
direction. He just had it published and then went to other subjects. However
he introduced very interesting objects which still carry his name, the spaces
Hm, m^O integer, called the Sobolev spaces. With his generalized derivative
he defines Hm, for integer m, as the space of L2 functions whose derivatives,
in the weak sensé of generalized functions, belong to L2; they need not be
continuous, they are differentiable in the sensé of distributions and not in the
usual sensé. That was a really considérable work, and the Sobolev spaces
remained because they are an essential tool for the study of partial differential
équations. The beginning was a little forgotten; it is difficult to know exactly
why, but this is the case (as often happens) and it is comparable with the
Lorentz group. Lorentz found the group, but he forgot it and he continued
on other directions. In order that a new essential idea becomes universally
accepted, it's not sufficient that somebody introduces it casually, it's neces-
sary that one or several people introducé it at a massive scale, and be strongly
persuasive.

Bochner made another very good approach. The case of Bochner is
extremely interesting because in some way he was at the least possible
distance from distributions, although he did not go further. So he published
at the end of his book about Fourier Intégrais (1932) a chapter in which he
introduces "formai functions" on the real line til A formai function was
defined as follows: Consider a square integrable function f, multiply it by a
polynomial Q and apply P(D), a partial differential operator with constant
coefficients. So it is the derivative of a slowly increasing function:

P(D)[Q . f]
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These beings, introduced by Bochner, are exactly the same with the
temperate distributions which I introduced later on, on IRN, N arbitrary. But
nobody perceived it, I ignored then myself. So it remained also a curiosity
and it was so difficult to be explained, that he put that as an isolated chapter
at the end of the book (24 pages), as a curiosity. He did make some
computations with that; he did know that Fourier opération, transforms
convolution into multiplication and multiplication into convolution. So he
knew everything in some way, without topology. Yet, even he himself did not
recognize it as a new fundamental tooi.

For instance if you want to define 8 in this way (which he did not do)
you have to define it as:

6 = i

(the second derivative of the function one-half of modulus of x).

But the second derivative of ^N is not usable as ô! You cannot handle

6 in this way. So he did not define the ô of the physicists. And so there was no
relationship with the experiments and with the physicists; no relationship with
Heaviside; it was just a chapter flying over the remainder as a kind of
curiosity. It is a quite exceptional scope on what is the introduction of a
theory, because in some way everything was contained in that chapter and
nobody recognized it; even Bochner himself didn't estimate it at its correct
value. He himself considered it as a curiosity, published at the end of his
book; and he never spoke about it any more. You see how things advanced
exactly as in the case of Lorentz. Lorentz found the Lorentz group but there
was no conclusion about that.

A second time Bochner considered a partial differential équation with
constant coefficients: P(D)f = 0 in RN, and he had to know what was a
"generalized" solution of the partial differential équation. This could be done
by using his Fourier Transform, but he did not do it this way! He said: fis a
generalized solution of P(D)f = 0, if there exist infinitely or several times
differentiable functions fn which converge uniformly to f on every compact
subset of RN, andsuch that: P(D)I„ = 0, in the usual sensé. This could be
done only for an operator with constant coefficients, by regularization : the fn
are of the form f*<pn, (pn smoolth functions with compact support, <pn was
differentiable cnough, so that P(D) (l*<pn) was meaningful, not indefinitely
differentiable. So there is a second article in which he discovers in a way the
derivative in the sensé of distributions, but he establishes no relationship
between both articles!

The main defect is thaj one could define f verifying P(D)f = 0, but one
could not compute the values of the derivatives. For instance in the hyperbolic
équation of a vibrating string:
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U2 dt2 dx2 " 0

it was known a long time ago that the gênerai solution was:

f = u(x + ut) + w(x-i)t)

In order to be a solution, u and w must be twice differentiable. What
about the case of a function which is a sum of this kind, where u and w are
just continuous functions without derivatives? That was one of my obsessions
since already 1934: in what sense is it possible to say that a u(x + ut) and a
w(x-ut), where u and w are continuous functions, can form a solution of the
wave équation, although they have no derivatives in the usual sense? So one

can not actually compute either -^ or ^r' but in some sense their

combination is zero. I ignored also this définition of Bochner. I found
it again myself in 1944. I shall describe that below. Anyway it didn't solve my
problem: Namely f can be approximated by fn = un + wn ,

fn = Un(x + Ut) + Wn(x-Ut)

Then one could say that f was a generalized solution, but one could
d2f d2f

compute neither ^p- nor ^-y Just the combination was zero by a limiting
procedure, and one could not compute intermediate terms. Jean Leray had
introduced early 1934, the weak derivatives, and the weak solutions of
partial differential équations, by just integrating by parts (as it is now in
distributions), and I attended his lectures in 1935. He defined the weak
derivative when it was a function, and also a weak solution of

- 7 flp- - j - f = 0, without each term having any meamngl Always the same

difficutly! I had now this objective which remained always in my mind
for the future: how to define a generalized solution of a partial
differential équation so that one can say that f is a generalized solution,

^2f sn
but also that ^p- has some meaning and g^j- to°» i n s u c h a waY t h a t i f y ° u

combine them you find zero?
Now, Hadamard introduced finite parts of divergent intégrais. In his

very remarkable book on Hyperbolic Partial Differential Equations he
studied fundamental solutions of the équations. The very définition of a
fundamental solution had never been written in its full generality. The
following définition cornes with distributions: if P(D) is a partial ditïerential
operator with constant coefficients, E is called a fundamental, or an
elementary solution, if P(D)E = 8 in the sense of distributions. So that now it
is very easy, but because 5 did not exist at that time, the elementary solution
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was a solution of P(D)E = 0 in some open set, and with some kind of
singularity at the origin or on the wave core. With these singularises in the
way, it was difficult to define the fundamental solution. A lot of
computations have been done by Hadamard himself and by other scientists
on fundamental solutions of P.D.E'.s by Fourier transform, or some other
method, without a fundamental solution being anywhere correctly defined.
They have now a meaning with the theory of distributions. Hadamard also
defined the finite parts of divergent intégrais which played an enormous role
in the theory of hyperbolic partial differential équations (1932). So something
was ready for me that I knew, the finite parts of divergents intégrais of
Hadamard, and fundamental solutions. I knew them well and I knew that
something had to be done also in this domain. Now, I remember that
Georges de Rham came to Clermont-Ferrand during the war (1942) and gave
a lecture about this notion of "currents". He had a notion of currents, which
was quite fascinating, according to which a current of degree p, on a manifold
of dimension N could be either a differential form of degree p, or a
submanifold of dimension N-p with boundary, or a sum of a differential
form w and a manifold with boundary: T = w + u. And then there was a
notion of coboundary dr of this current, which was the coboundary of the
differential form plus or minus the boundary of the manifold : dF = dw ± ($u,
dF = dw + (-l)PtlPu.

But this was just formai and he wanted to have something more than
that, and we had a discussion. He then told me : "I should like to find a kind
of generalization of Lebesgue intégration". In Lebesgue intégration on RN

you have absolutely continuous measures with respect to dx and singular
measures as a unit mass. But you have a lot of intermediates, as measures on
surfaces, and you have a space of measures, which is a complete vector space
with very known properties. I should like some more generalized currents in
which one may have differential forms corresponding to the absolutely
continuous functions; I should also like some manifolds corresponding to 8
(which was not called 8, but e) or measures on surfaces; so that one may have
also a lot of intermediates and this could be a true complete vector space with
nice properties. But it seems to be so considerably more difficult than
Lebesgue theory, that probably we are very far from that. "It's not for our
génération".

I was also impregnated with this. This was in 1942 and I said: "I think it
is probably impossible, since we have no good tools to do it". Two and a half
years later, I found the distributions, allthough at that time I considered it as
an impossible task! I had threrefore a lot of things by that time, not ail
related to each other. I worried about P.D.Es. with generalized solutions; I
worried about 8, 8 ' of the physicists and whether they can be related to de
Rham's currents. I had also functional analysis and duality. It was known
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after André WeiFs book of intégration on topological groups (1940) that
instead of considering abstract measures on a sigma field it was possible to
define a Radon measure n on a locally compact topological space X as a
continuous linear functional on the space C(X) of continuons fonctions
vanishing outside compact subsets of X , \i was a functional, so that for
every continuous function with compact supprt cp, n((p) was a number; \i was
a linear form on C(X), continuous on each CK(X) (space of continuous
fonctions on X with supprt CK, K compact subset of X) equipped with the
sup-norm.

Frédéric Riesz' theorem is that every measure gives birth to such a
functional, but A. Weil reverted the process and he defined in his book a
Radon measure as being a continuous linear functional on the space of
continuous fonctions with compact support. He had the n(q>) and he had the
carrier or support of \i, introduced by Henri Cartan in potential theory. Henri
Cartan called "noyau fermé des masses" what is now called the support of \i.
I learned that in his book in 1940. I had these functionals rand I knew they
were very important!

So it appeared to me that the dual of a nice functional space might be a
very important space too. That was a fondamental step! I also put it in my
mind and tried to study other cases. I thus made for myself (just for myself),
in the year 1943, during the worst of the war, a theory of duality not for
Banach spaces but for Fréchet spaces or for other topological spaces. I did
not know the work of Mackey who had done many things in the United
States but they were not known in France at that time.

I had a topological vector space E, for instance E = C([0,l]). I had the.
dual E' which in this case is M([0,l]), the space of measures: E' = M. It
could be very interesting to consider E', for non-Banach spaces E, but the
theory of duality for non-Banach spaces, at that time, at least in France,,
practically did not exist.

I did that for myself. I took E, a topological vector space, considered its
dual E' and tried to define the usuial things.

Hahn-Banach theorem, Banach Steinhaus theorem were known. I
studied the bounded subsets, the weak and strong topology on the dual E'
(the strong one being the topology of uniform convergence on the bounded
subsets of E), the bidual, the reflexivity. I remember I took the particular case
E = ©([0,1]) = C°°([0,l]), and considered its dual E', which is, ih the
distributions of today, the space ©'([0,1]) of distributions on [0,1] (more
difïicult than the space of distributions on IRN ©'(RN), because of the
singularities at the boundary {o,l}; but©(RN) = C°̂ omP(R

N) is much more
complicated than©([0,l]) = C°°([0,l]), that was my reason!). I didn't think at
all of the possibility to introducé differentiation on ©' ([0,1]) by transposing
the differentiation on ©([0,1])! I just considered the topological properties
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(for instance ©([0,1]) is reflexive). "Well, I said, I have a dual, I have
reflexivity, it's nice. But it's probably completely uselless". This was in 1943,
one and a half year before the distributions! I forgot it, I didn't think of it
anymore. But the war prevented me from doing mathematics!

This proves that when people find various new concepts (as did not only
Heaviside, who was rejected, but Sobolev and Bochner, and myself) they may
often take certain steps without realizing they are fînding something very
useful. Some further work is necessary in order to see that it may be used,
and that it is important.

Now cornes an article by Deny and Choquet (October 1944), in which
they prove something about polyharmonic functions (they appeared as
functions which are solutions of an iterated Laplacian). But the theory is easy
with the iterated Laplacian because polyharmonic functions, exactly as
harmonie functions, can be defined without derivatives and they are
immediately infinitely differentiable functions. Then I made some generalization,
a srhall article of three pages which has been partly the start of the whole
thing, called "Sur certaines familles non fondamentales de fonctions
continues" (November 1944). In this, instead of finding polyharmonic
functions, I found generalized solutions of a P.D.E. with constant coefficients.
And the generalized solutions which I used were in the exact sensé of
Bochner, as the limit of usual solutions, by regularization (I invented them
myself, ignoring Bochner's article).

Immediately this trick upset me: I had generalized solutions of a P.D.E.
but I could just say that a function f is a generalized solution of the wave

d2l d2f
équation -^y - Af = 0 without -gjy and Af having any particular sensé,
once again!

But in order to define that, I used convolution with a C°° function (p with
compact support: f*q>, and took the limit, if f is a function, of fn = f*<pn. The
<pn's were 5*0, C°° functions as in Fig. 6, converging to ô in the sensé that their
support converged to zero and their intégral was equal to one. And I said that
f is a generalized solution of P(D)f = 0, if the P(f*cpn) are 0.
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Then I showed my work to Cartan, but he told me: "C°° functions with
compact support are a bit monstruous beings because they are not analytic. If
you take a C00 function with compact support it is not analytic at the points
marked in Fig. 6 (with all the terms being zero, and all the derivatives equal
to zero) and therefore it has no Taylor expansion. These functions will be
horrible, maybe you should better avoid to consider them".

I said, "yes of course, I know, I must be careful but they give the good
trick here".

So actually he was a little sceptical about the use of them, but I was not
sceptical at all because they were giving here the shortest proof. In fact, I
found only a few years ago an article by N. Wiener in 1926, in which he says
that although the C*OmP functions are monstruous beings, they are very useful
indeed; and he proves a theorem with this, which can be considered as a
theorem of Distributions.

Then, in November 1944, suddenly I got a good complete theory for
everything, a theory which gave derivatives to all beings and made unification
between a lot of things. They were the Distributions.

I could then justify 5 and 8', the generalized solutions of the P.D.Es.
with separate meaning for the terms. Now when I have:

each term ("KTf anc* Af) separateiy can be a distribution and the sun of

the two distributions gives zero.
I had exactly what I wanted and that for me was the beginning of the

révélation. During a long night of thinking I found most of the theorems.
Just in one night! Cartan was now immediately enthusiastic, also the other
members of Bourbaki, whose support helped me very much.

However my définition was not the définition which is adopted now, it
was a different one, much more complicatedl

It was not yet T(<p), it was something else. I did not cail them distributions,
but operators, because of their origin in Choquet and Deny*s probiem. I
considered the space3)(iRN) of C*compi functions and £(RN) the space of C"
functions with arbitrary support; I put tHe good topologies on theDYs, and
on Ç; then an operator T was not a distribution, but a linear map from 2)into
E, continuous on eachDic:CD T » £, cpmmuting with convolution withD.

I called this map: (p—^T . (p. This was a convolution operator: to every
test function <p€Î)it assigned a function T • <pe£, with the commutation
T • (<p*y) = (T • (p)*y • So I called them operators. There operators, if T is a
function, gave exactly the usual convolution:

(f
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a locally integrable function was an operator. I put on the space 3) of
operators the topology of uniform convergence on bounded subsets. One
could differentiate the operators infinitely many times. The derivative of an
operator, DT, is defined by: DT • <p = T • D<p (DT convoluted by <p equals T
convoluted by EHp) (no minus sign). So every operator, in particular every
continuous function, is infinitely differentiable in the space of operators. A
function which has no usual derivative has a derivative operator.

I immediately saw 8: the convolution with 8 is just the identity operator:
<p *> »(p. 8' is just the derivative: cp: ** »(p'.

So I had all that concerned the Physicists. I had the convolution of Jtwo
distributions: (S*T) • (p = T • (S • (p), if S has a compact support: if S has a
compact support, (p is indefïnitely differentiable with compact support, S • f
is also infinitely differentiable with compact support, and S*T is an operator.
So that, apart from the restriction of compact support, you çould convolute
arbitrary operators.

I remember that, some day later on, after a long work in the night, I had
a dream. I was so enthusiastic about the possibiiity of having convolution of
two arbitrary operators (but of course the resuit of convoiution is an
operator), that I'dreamed I was explaining to somebody that you could
convolute whatever you wanted, for instance you could say Mozart* Beethoven,
but of coursç. it would not be a musician, but an operator; and you could
convolute Nancy and Strasbourg, but of course it would not be a city, but ah
operator. It may seem extremely strange that, having the |i(cp) of Weil to
define a Radon measure, having studied the duality E-E' in 1943, I defined
an operator (p ^T • (p fromCDinto 8, instead of a linear form cp ^T(<p),
a distribution in the today meaning. It cornes of the origin of the invertion

Choquet-Deny's problem. I didn't realize that a duality formula with T(<p) a
number, would have given also a differentiation, with Tt<p) = -T(<p'), (P(D)T)
(q>) = T(*P(D)<p). This came only several months later! My T • (p of November
1944 is the T*<p of today. This proves the important négative rôle of the
inhibitions; to discover is sometimes to break inhibitions!

A strong obstacle was to define a product aT, the multiplicattaproduct of
a distribution by a C00 function a. It is very difïicult to define a product
because multiplication does not commute with convolution! But I had also a
theorem at this time: that every distribution T, locally speaking,is a derivative
of a continuous function f (may be without usual derivative) i.e. T = Dpf, so
that all you have to do is to define <xDpT formally and then you can use
Leibnitz formula to get it. But it was necessary to have this finiteness theorem,
that every operator, locally, is a derivative of a continuous function (without
usual derivative). Of course one had to prove that aT is independent of the
représentation T = Dpf; this was done by a limiting procedure, it was true for
a C°° function, and the C°° functionswere dense in3)'. I had the topology, and
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all my theorems of 1943 about the duality and about the usual topological
vector spaces came back. However I was unable to find Fourier Transfprm.
Here again the définition as convolution operators made the things awkward.

I couldn't find it, because I tried to define the T • <p as à function but not
T((p), a complex number. Moreover, it was necessary to introducé this space
J( RN) of C°° functions, rapidly decreasing at infinity as well as their derivatives
and its dual J'( RN), the space of temperate distributions. It was unusual, at
this time to introducé many functional spaces. But it came five months later. I
was in Grenoble 1944-45. Càrtan was in Paris and we had a correspondence
and we met often. During several months I was stubborn with this T • q>;
manipulated it better and better but I wasn't able to get the result. Eventuaüy
one day I said, well why not take T((p)? It was in February or March 1945
(about four or five months after a beginning); I wïote immediately a letter to
Cartan, saying I had the trick! One must consider distributions as linear
forms, and not as operators. Why the name distributions? Because n(q>), when
H is a measure, is a distribution of .charges in the universe; electric charges for
instance; with distributions you have the dipoles, you have the magnets,
double layers, you have distributions which are exactiy physical distributions
of masses, magnetic or electric distributions with positive and négative
charges; and if you take the space, introduced by Deny later, of all distributions
which are of finite energy and therefore may intervene in physics, they are
distributions, not measures. As soon as de Rhant knew my article on
distributions he found immediately the gênerai notion of currênts, which he
was looking for, for many years! It was still difficult at the time of the
operators, but with the distributions it worked perfectly. Although I had that
also in my mind for years, I was essentially preóccupied at that time with RN,
multiplication, convolution, Fourier transform (with the functional spaces S,
S', OM, OC'); I knew more or less how to manage to get currents, but really
didn't think of them seriously; but he considered immediately these currents,
their coboundary, their Laplacian on a Riemannian manifold, their cohomo-
logy, etc... He published his book "Formes, currents, formes has moniques",
in 1955. I found also distributional sections of vector bundies, but published
them only much later.

After two articles in the "Annales de FInstitute Fourier" (1945, 1947), I
siowiy wrote the book; it was achieved in 1950-51. Then, of course, everything
was arranged. I think I had the first éléments when I was a student, in 1934
(Dirac introduced his function in 1926-27), I had the défini te form in 1945
and I published the book in 1950-51. 15 years!

I also want to mention that in doing research, one can waste a lot of time
on easy things and find immediately very difficult ones. For instance, there
has been a theorem about which I was thinking one whole week, eight hours
every day, and it became more and more difficult to prove it (I believed the
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theorem was true). Each day, at the end of the day, I believed I had the proof,
but I was too tired and went to sleep and in the morning I found the proof
was false. I tried to prove that a distribution carried by a compact subset K
can be expressed as a finite sum of derivatives of measures carried by K. It's
false, K has to be "Whitney regular". This lasted one week, one entire week of
suffering. Research is not only enjoyment; it is enjoyment when you ftrtd the
results, but you may suffer for a long time and the enjoyment is the result of
this suffering!

I became more and more upset about that theorem and in the morning
of the last day I found a counterexample of four or five Unes. The theorem
was false! This I wrote in my book using some kind of irony against myseif. It
goes aw follows: "One could believe that the following theorem is true (and I
wrote the theorem); it is not true though, as proved by the following very
trivial counterexample". And 1 gave the very trivial counterexample and
nobody knew I had suffered one week to find it.

So that was a little of this history. I gave a course in Paris in 1945 about
Distributions (cours Peccot) which was attended by about 25 people; half of
them were Physicists and in particular workers in electricity.

I also gave a lecture about that in the Symposium of Harmonie Analysis
in Nancy in 1947. There were many foreign mathematicians present. Among
them Harald Bohr was very enthusiastic, and he invited me to Copenhagen
where I gave several lectures on distributions, to a large audience; that was
my first travel abroad in my professional life, the beginning of a long series!
At the same occasion, I went to Lurd, where I made acquaintance with
Marcal Riesz and Gording. I lectured also in Oxford and London in 1947,
and was invited to the Canadian Mathematical Congress in 1949 at Vancouver,
also to speak about distributions. At the International Congress of Mathema-
ticians, Cambridge, Mass, U.S.A. 1950, I received the Fields Métal for my
work on distributions (before the publication of the book!), and I gave a talk
on the theorem of kernels, which was published only later on. So the
résonance of the distributions grew reasonably!

However, when the book appeared in 1950, it was not yet quite accepted.
I had to fight some battle against two quite opposite catégories of critics:

some people said it was so simple that it could not really be useful, and some
other said it was such a complicated définition of a generalized function that
it could not be handled and could not be used.

So some people found it too simple to give useful results while some
others found it too complicated to be usable. Sometimes I thought myseif one
or the other of these contradictory things! So a battle had to be fought which
I remember very well. Also Gording told me he kept it in his memory, after I
gave my lecture in Lund, in 1947. Hörmander was about sixteen years old
then, I guess. He only entered the University a little later so he learnt
distributions in the first years of his studies, and found rapidly applications.



I remember the battle I fought to make the distributions univcrsally
accepted, something which is part of the researcher^ wortd. Some of my
younger students, as Lions, or Malgrange, may say that it was immediately
accepted, but this is not quite true. They came to the distributions as
students, in Nancy in 1945-50, they accepted them immediately; other young
people started r -arch in the years 1953-54-55, when the battle was over.
The work of the . ^unger génération has been an essential part of the success.

In the years after 1950 came many articles or books; Gelfand-Shylov's
books on generalized functions are very complete and self-contained/Now
cvery mathematician introduces easily new vector spaces; and later, distri-
butions were generalized by Sato's hyperfunctions.

Remark. Distributions can be considered as a generalization of functions
in the sense in which real numbers are generalization of rational numbers.
How do we gencralize the rationals; by the cuts defined by Dedekind on the
straight line. After all, at some time, it became necessary to define correctly
the irrational numbers! and Dedekind introduced cuts on the real line, a
rational number defined a eut, so that the reals are generalization of the
rationals.

And there is an article by Peano, in 1912, in which he considers
Heaviside's computations and he says: "I am sure that something is to be
found now; there must be a notion of generalized functions which are to
functions what the reals are to the rationals". Peano writes this in 1912, so
very much earlier to 1944!

Reading that text again, I think I exaggerate the convergence of a lot of
varky u-stions to the same solution: distributions. It has been so, and this
expiai *he strength of my own enthusiasm for distributions, because it
solvev ether many problems I had before. But it is sure that till the final
colle solution came, these problems were not bound together in my
mind, the v were not thought as having the same solution : partial differentiaî
équations (wave équation) Dirac's 8 of the physicists, de Rham's currents,
du-1?* T< dual of C°° [0,1]) were considered by me as independent things.
Jr Ication by the distributions causes my enthusiasm!


