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2
Some Applications
of tlie Tlieory
of Distributions

Laurent Schwartz

In this paper we give a summary of the main results of the theory óf
distributions, and some selected applications.

SUMMARY OF THE MAIN ELEMENTARY RESULTS*

Définition [36]. Let 8(Rn) be the space of complex-valued infinitely
differentiable functions on Rn, equipped with the topology of uni-
form convergence of every derivative on every compact subset of
Rn. We adopt the following notations: p = (pi, p2, . . . , Pn), Pi
positive or zero integers, will be a multi-index of differentiation of
order |p| = px + p2 + • • • + pn, so that, for tf> G ë(Rn), 0(p)

/ d V 1 / d V 2 / d \Pn

means the derivative ( — ] ( — ) • • • I — ) 0. We shall
also introducé (for the applications to Fourier transform) the symbol

( 1 d V* / 1 d V»
J . . . f ) If we adopt also the con-

2%-K dxj \2IT dxj
vention that p\ will be pi!p2f- * * * Pn!, and that, for x G Rn,

* Références are given here to the individual chapters of our book on the sub-
ject [36-41]. It will also be very useful, for this whole section, to consult
[17], which is a complete exposition of the theory of generalized functions, with
many examples and applications.
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x = (xh x2} . . . , xn), xp will be xiPlx2
Pi • • • xn

v% then the usual
Taylor formula is written in Rn as it is in R:

Among the multi-indices we introducé an order relation by putting
P < 0 if Pi < 0i> P2 < Q2, . . . , Pn < Çn, and an addition, with
P + 8 = (Pi + gi, P2 + g* . . - , ptt + Qn). The Leibnitz formula,
for the derivative of a product, is written

(2) (uvYp) = V
21/ 0!(p — q)l
Q<P

The topology of S(Rn) may be defined by the family of seminorms
Pm,K[2]:

(3)

The support of a continuous function >̂ being the smallest closed
subset of Rw outside which <̂> is zero, 3Dx(Rn) will be the subspace of
8(Rn) formed by the functions having their support in the compact
set K of Rw; it will be endowed with the topology induced by £(Rn).
The space £>(Rn) of infinitely differentiable functions with compact
support is the union of the 3>x(Rtt), K compact C Rn. One puts
on it a topology called inductive limit of the topologies of the 3)^ : a
subset of £>(Rn) will be said to be a neighborhood of 0 in this
topology if and only if it contains a convex set, intersecting every
£>K according to a neighborhood of 0 in £)#. One may prove that a
linear form on £> is continuous for this topology if and only if its
restriction to every £)& is continuous. Such a continuous linear
form is called a distribution T on Rn (or generalized function) ; it is
simply a linear form on 3) denoted by 0 —-> {T, </>), and having
the following property : if functions 4>$ of £> converge uniformly to 0
on Rn iovj going to infinity as well as their derivatives of any order,
and if they vanish outside the same compact K of Rn, then (T7, <j>j)
converge to 0 for j infinité. The space of distributions is called
£>'(Rn), dual of £>(Rn).

A function ƒ on Rn, locally integrable, defines a distribution T/ by

(4) <T/> *) = fRJ(*)+(x) dx
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dz being the Lebesgue measure. Two functions define the same
distribution if and only if they coincide almost everywhere. There-
fore the Lebesgue classes (where two functions belong to the same
class if they are almost everywhere equal) of locally integrable func-
tions form a subspace of 3D'. We shall identify ƒ and Tf, and write
(ƒ, <t>) instead of (T/, <j>); a distribution defined by a function ƒ will
have the privilege that both (ƒ, <£) and f(x) (for almost all x) will
have a meaning; for a gênerai distribution T, which will not be a
function, only (T, <£) has a meaning. Dirac's distribution ô is
defined by

(5) <«, *> - *(0)

The gênerai Dirac distribution relative to a point a of Rn is 5(a>
defined by

(6) <«(«), *> = *(a)

Supports. If 12 is any open subset of Rn, one can define in the same
way the space 8(12) of infinitely differentiable functions on 0, the
subspace £>(12) of functions having a compact support in 12, its
dual 3)'(12), space of distributions over 12. A distribution T on 12 is
said to be 0 on an open subset 01 of 12 if (T, $) = 0 as soon as <t> has
its support in «U. Using the classical tool of partition of unity
(saying that, given any covering of 12 by open sets 12;, f G ƒ there
exists a System of a* G S (12), at- > 0 having its support in 12t-, such
that on every compact subset of 12 only a finite number of a* are not
identically 0, and ^ a* is identical to 1), one can see that, for every

T G 3y(12), there exists a smallest closed subset F of 12 in the com-
plement of which T is zero; F is called the support of T; if T is a
continuous function, its support is the same as with the previous
définition (page 24). The dual 8'(12) of 8(12) may be identified
with the subspace of 30'(12) formed by the distributions with com-
pact support. Moreover, one can extend the définition of (T, <£) to
the case where neither T nor <t> have a compact support, provided
<t> G 8(12), and the intersection of the supports of T and <f> is com-
pact, by putting (T, <j>) = (T, a<t>), a G SD being equal to 1 on a
neighborhood of the intersection of the supports of T and <t>.

Differentiation [37]. The derivative of a distribution is defined in
such a way that if this distribution is a usual C1 function, its dériva-
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tive coïncides with the usual derivative of this fonction. One is
therefore led to put:

(7) {Tij>\<t>) = (-l)]p](T, t&>)

Every distribution (in particular, every locally integrable function)
is infinitely differentiable in the sensé of distributions. The com-
putation of the derivative is much more complicated than that in
classical analysis: it in volves different kinds of intégral formulae,
such as Stokes, Green, and so on. For instance, the function

. • 2 (where \x\ = \/xi2 + • • • + xn
2) is known to be harmonie

FI
in the complement of the origin; it is not regular in the neighborhood
of the origin. The classical computation of its laplacian gives the

simple answer : A , , 2 = 0 in Q 0. But , . 2 is locally integrable
\x\ \x\

in the whole of Rn, and therefore is a distribution over Rn; this
distribution must have a laplacian over Rn, and this is

(8)

where Sn is the area of the unit sphère in Rn. This result will con-
tain Poisson's intégral formula, and play a central role in the theory
of potentials and partial differential équations. In the so-called
Heaviside symbolic calculus, a fondamental formula is

(9) Y' = ô

where Y is the Heaviside function over R, equal to 0 f or x < 0,
to + 1 fora: > 0.

Multiplication [39]. Multiplication of two distributions cannot be
defined. One can define easily the product of a distribution T by a
function a of 8 in such a way that, if T7 is a locally integrable fonction
ƒ, we just get the usual product af. One puts

(10) (aT, 0) = <T, a*) T G 3D', <t> G », « G S

This multiplication has the usual properties, in particular bilinear-
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ity, associativity with multiplication in 8 (that is (a/3)T = a(pT)),
and Leibnitz's formula for the derivative of a product:

(11) (uT)M = V ^

Many people have tried to extend this very restricted multiplica-
tion, but without any great success. Of course, formula 10 holds
if a is only ra times continuously differentiable, a G &m, provided
T is only a distribution of order < ra (here 3DW is the subspace of &m

formed by the functions of compact support; it is equipped with
the inductive limit of the topologies of the S)K™", and a distribution
T is of the order < ra if it can be extended as a continuous linear
form on 2DW). But it can be easily proved that no product can be
defined for two arbitrary distributions so that it possesses reasonable
properties (as associativity, Leibnitz formula). It appears more
and more that some of the greatest mathematical difficulties in
theoretical physics, for instance, in quantum field theory, proceed
precisely from this impossibility of multiplication.

Convolution [41]. Differentiation and multiplication are local
opérations which have a meaning on any open set ü of Rn. On the
contrary, convolution is a global opération related to the group
structure of Rn. Let S and T be two distributions on Rn. One
can form S^T^ "tensor product" of S and T, a distribution on the
2n-dimensional space Rn X Rn. Then, if some conditions on
supports are verified, one may compute (£$7%, <£(£ + rj)) for
<t> G £>(Rn). If S and T are such that this has a meaning for every
4> G £>(Rn), one says it is the product of convolution S * T of S
and T; thus we have

(12) (S * r, *> = (S^T„ <KS + rj))

S, T G £>'(Rn), <t> G £>(Rn); * n e riSnt s i d e i s computed between
30'(Rn X Rn) and 8(Rn X Rn). Formula 12 surely defines a dis-
tribution S * T G sy(Rn) if, for every <t> G £>(Rn), the supports of
/S$T, and <t>(% + rj) have a compact intersection in Rn X Rn (see
page 25). This will happen if the supports A and B of S and T
verify the following condition:
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(13) (f, rj) -~—> £ + rj (addition) is a proper map from A X B
into Rn (that is, the pre-image of any compact subset of Rn

is compact in A X B).

Condition 13 is satisfied if one of the supports is compact, so that
convolution is a bilinear map from g'(Rn) X £>'(Rn) into £)'(Rn).
Many other cases are important; for instance, for n = 1, if £)+'(Rn)
is the space of distributions whose support is bounded below, then
convolution is a bilinear map from £>+'(Rn) X a+'ÇR*) into £>+'(Rw).
The support of S * T is always contained in A + B, A + B being
the set of the £ + rj's, £ G A, rj G B. But, of course, it may be
much smaller: formula 18 will show that 8' * 1 = 0, so that hère
A = {0}, B = R, A + B = R, and the support of ô' * 1 is empty.
However, Lions [23] proved that, if A and B are compact, the convex
huil of the support of S * T is exactly the sum A' + B1 of the con-
vex hulls A' and B' of the supports A and B of S and T. Convolu-
tion is commutative, associative, provided some conditions on the
supports are satisfied. If ƒ and g are two functions whose supports
verify condition 13, their convolution is a function h defined almost
everywhere by

(14) h(x) =

One sees immediately that

(15) Ô*T = T

5 is the unit of convolution. In the same way:

(16) «(a) * T = raT

transform of T by the translation ra: x~—>x + a, of Rn.
Therefore convolution commutes with translation:

(17) ra(S *T) =raS*T = S*raT

Convolution has also remarkable properties with respect to dif-
ferentiation, which is the most significant reason for its application:

(18) è(p) * T = T(p)

and therefore convolution commutes with differentiation:

(19) (S * !T)(P) = S(p) *T = S* T(p)

= S(q) * T ( p-ö ) q < p
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An immédiate application is given by Poisson's formula for
potentials. The potential of a distribution T is defined by

(20) UT = T*

(Generalization of the usual formula for the potential of a function;
(16) has a meaning if T has a compact support.) From (8) and
(19) we deduce

(21) AUT = T * A

= - (n - 2)Sn(ô *T) = -(n- 2)SnT

which is Poisson's formula. It is exactly this kind of formula
we shall discuss more carefully in the following paragraphs on
applications.

Topologies [38]. A lot of topological problems about topological
vector spaces arose from the theory of distributions. A large part
of the research done in the direction of going beyond the Banach
spaces into locally convex spaces found their origin or their applica-
tions hère. First of all, the notion of inductive limit [1] of topologies
introduced to define £>. Now one has to define topologies on 3D'.
There are two natural ones, the weak and the strong ones. The
weak one is defined by the seminorms of pointwise convergence
[2]: P+(T) = \(T, <f>)\, for every <t> of £>. The strong one is defined
by the seminorms PB of uniform convergence over every bounded
subset of £>: PB(T) = sup \(T} <t>% B bounded subset of 2X

It occurs because of very particular properties of £> (£> is a
"Montel" space) [5] that any séquence of 3D', which is weakly
convergent, is also strongly convergent. 2) and 33' (as 8 and 8')
are reflexive spaces [4] : each of them is the dual of the other. More-
over, the usual properties of topological vectors spaces, as Hahn-
Banach theorem [3], enable us to make a deep and fruitful study
about the structure of distributions and about the bounded sets
and convergent séquences of distributions (for instance, any dis-
tribution in 0 is, in any relatively compact open subset 01 of 0,
a finite derivative of a continuous function).

Fourier Transform [41]. The Fourier transform, which is also a
global one, cannot be defined for ail distributions. One has to
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introducé a condition of slow increase at infinity. Let §(Rn) be
the space of infinitely differentiable functions <j> having the f oUowing
property : for every p and g, xqDv<j> is bounded on Rn. One can say
that # is rapidly decreasing at infinity (more than any power of

R )i as well as each of its derivatives. g(Rn) is endowed with the

topology defined by the family of seminorms PQyP:

(22) PqA4) = sup \x*D*4>(x)\

A distribution T on Rn is said to be tempered if it can be extended
as a continuous linear form on §(Rn). Tempered distributions
form a subspace of £>'(Rn), the dual g'(Rn) of §(Rn); S' may be
equipped with the weak or strong topology, and hère again g and g'
are reflexive spaces, and a weakly convergent séquence in g' is
strongly convergent. A continuous function, bounded by a
polynomial (or "slowly increasing at infinity") is tempered. This
slow order of increase is the origin of the name "tempered."
Conversely, it can be proved that any tempered distribution is a
finite derivative of a slowly increasing continuous function.

g' is the natural domain of Fourier transform and harmonie
analysis. The usual Fourier transform being defined for functions
by

(23) g = &ƒ, or/, g(£) = fRn J{x)e'M^dx

where (£, x) — %\X\ + £2̂ 2 + • # • + %nXn, one sees that $ is a con-
tinuous linear map of g into §. Then we will define the Fourier
transform of a distribution in such a way that, if this distribution is
an integrable function, its transform is the bounded function given
by (23). We now write

(24) ($T, 0) = <r, *<*>>

a formula which has a meaning for every <j> G § if T G §'. For-
mula 24 defines a Fourier transform for ail tempered distributions,
and SF is a continuous linear map from §' into g'.

Simultaneously with SF, one can define the opération 2F, changing
—2wr(£, x) in (23) into +2wr(£, x). 5 has the same properties.
Moreover, the Fourier reciprocity formula expresses that $ and S
are inverse of each other: 5^ = $5 = identity, for tempered dis-
tributions as for functions.
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One has the famous Parseval-Plancherel formula: ^ is a unitary
opération from L2 onto L2.

Finally, the Fourier transf orm exchanges multiplication and con-
volution; but one has to give very précise conditions. Let us
call OM (operators of multiplication) the space of infinitely dif-
ferentiable functions <f> ha ving the following property: for every p,
2)P0 is bounded by a polynomial. OM can be called the space of
functions which are slowly increasing at infinity, as well as each of
their derivatives. One can prove easily that, if a G OM and
T G g', the multiplication product aT still belongs to g'. Now
let us call Oc (operators of convolution) the space of distributions
T having the following property: for every q, xqT is a "bounded
distribution/' or finite sum of derivatives of continuous, bounded
functions. One can say that Oc' is the space of distributions which
"decrease rapidly at infinity. " Then one can prove that S * T has
a meaning and belongs to g' (although the conditions on supports
(13) are not satisfied), for S E. Oc and T G g'. Now $ exchanges
OM and 0C ' ; and, if a G 0M, T G g', S G 0c', one has

)
(25)

5(S * T) =

In particular, one has

(26) $Ô = 1, ffl = Ô

(exchange between the unit ô of convolution and the unit 1 of
multiplication),

(27) Ç(D*t) = e

5((-x)q) = Dqô

From it results that $ exchanges differentiation and multiplica-
tion by monomials:

(28) $(DpT) = 5(DPÔ * T\

= Dqô • 5T = Dq$T
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These formulae (28) are the basic ones in the applications of
Fourier transform to partial differential équations with constant
coefficients.

Let us finally give the generalized Paley-Wiener theorem. If
T is a distribution with compact support, its Fourier transform f
is a function, defined for every £ by the formula:

(29) f (Ö = {Txy e-***'**)

Moreover, this formula is still meaningful if we replace £ by £ +
irj; T can be extended as a holomorphic function on the complex
space Cn, and this entire function is of exponential type, that is,
there exists a constant C such that

(30) \f(^ + irj)\ < Ce(U1+M)

Conversely, one can prove that, if a tempered distribution on Rn is
a function which can be extended as a holomorphic function on Cn of
exponential type, it is the Fourier transform of a distribution with
compact support [41].

FUNDAMENTAL SOLUTIONS OF PARTIAL DIFFERENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS

Comparison of Operators [18, 43], A polynomial P on Rn
; of degree

< m, may be written

(31)

It defines a differential operator with constant coefficients, of
order < m,

(32) P(D) = £ apD*
\p\<m

and conversely. Therefore all the properties of such a differential
operator must be visible on the associated polynomial. For such
operators, Hörmander generalized Leibnitz's formula in a very
useful way:

(33) P(D)(uv)

Q
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(for P(D) = Dp, it is formula 2; for P arbitrary, one gets it by
addition).

A very powerful tooi in the study of partial differential operators
with constant coefficients is the comparison of operators (or poly-
nomials), introduced by Hörmander* in the following way.

Assume that for some open bounded (nonempty) set Q of Rn

there exists a constant c such that, for all <(> G i)(fl) one has:

(34) \\Q(D)4 < c\\P(D)4

|| || being the L2- norm. Then one proves that an analogous
relation holds for all such 12's, the constant c, of course, depending
on ü. In this case we shall say that P is stronger than Q, and write
P > Q) or Q < P; if P > Q and Q > P, Q and P will be said
equally strong. Moreover, Hörmander proved that the necessary
and sufficient condition for P to be stronger than Q is the existence
of a constant C such that, for all { G R n :

(34a) Q(Q < CP{&

where

(35)

(Note that at least one derivative of P is a constant =1= 0. There-
fore P(Ç) is greater than some > 0 constant; and the inequality
(34a) only involves the large values of |{|.)

There are different proofs of this theorem. An indispensable
step in the proof of the sufficiency is the proof that, for every g, the
derivative P(q) is weaker than P; af ter that one has only to apply
Fourier transform. But this particular case may be improved by
considering, instead of Œ (which al way s had to be bounded), Rn

itself. Of course, one cannot obtain a relation of the type (34)
because Rn is unbounded; but, for every polynomial P and every
a > 0, there exists a constant C (depending on P and a) such that,
for every <j> G D(Rn) and every q [19, 25, 43]

(35a) \\P(q\D)4 < C\\eMP(D)<l>\\

If ü is bounded, ea|xl is bounded on Q, and may be canceled with

* A book just published by Hörmander (Linear Partial Differential Operators,
New York (1963) Academie Press) contains many new and known résulta on
partial differential équations.
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a modification of the constant, so as to obtain (34). The présence
of this factor e"1*1 introduces some dissymmetry between the two
sides of the inequality. Trêves [31, 42] has given a more symmetrie
one proving that, for every P and every k > 0, there exists a con-
stant C (depending on P and k) such that, for every <f> G D(Rn)
and every q

(36) \\ek]x]2P^(D)4 < C\\eklxl2P{D)<t>\\

from which one still obtains an inequality of the type in (34) for a
bounded set fi, efc'*'2 being bounded above and below in fi. As a
case of particular interest, assume that P is elliptic; it means that,
if Pm is the homogeneous part of highest degree m of P, Pm(Ç) ne ver
vanishes for £ G Rn, except £ = 0. Then one sees immediately that
JP(£) is equivalent to constant times \%\m for |?| infinité, so that every
polynomial of degree < mis weaker than P.

If now P is of principal type, which means that there is no £ G Rn

(except £ = 0) for which all the first derivatives of Pm vanish
simultaneously, then JP(£) is > constant times \i\m~l for large |£| ; so
that every polynomial of degree < m — 1 is weaker than P.

Fundamental Solution. A fundamental solution of the differential
operator P(D) is a distribution E such that

(37) P{D)E = ô

This définition, using distributions, replaces now the old ones in
which E was defined as a solution of the homogeneous équation
P(D)E = 0, having however some singularities at the origin or on
the characteristic cône. Moreover, for instance, for a hyperbolic
operator of the second order (say, the wave operator) in Rn, n > 4,
a fundamental solution cannot be a (locally integrable) function.
Finally, the main interest of a fundamental solution is that it
allows one to solve nonhomogeneous équations where the nonhomo-
geneous term has compact support. If A G S', the distribution
x = E * A (which has meaning as a convolution between 8' and
3)') is trivially a solution of

(38) P(D)X = A

b e c a u s e of ( 1 9 ) : P(D)(E * A) = P(D)E *A = Ô*A = A . T h i s
procedure generalizes the classical one in potential theory,
namely Poisson's formula: for P(D) = laplacian A, one may take
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E = — -, -zr^r I u_2 (at least for n ^ 2), and a solution of

AX = A is given (for A G S') by the potential E * A = -

UA (formulae 20 and 21).
(n —

Of course, a fundamental solution is never unique (except for
P = constant) because one can add to such a distribution any
solution of the homogeneous équation.

A natural way to look for a fundamental solution is to make a
Fourier transform. If E is tempered, and thus has a Fourier trans-
form $E = Ê, this has to verify

(39) PÊ = 1

So that one is led to take for Ê the function Ê(Ç) :

1
(40) Ê(Q =

P(&

But P vanishes generally on an algebraic variety of Rn, ancl
\/P has no reason to be locally integrable and tempered. If it is,
then the problem is solved and ^(l/P) will be a tempered funda-
mental solution. It is just the case for P(D) = A, or P(£) =

-4TT2|£|2, in Rn for n > 3. Then — 2. [2is locally integrable,

and trivially tempered (tends to 0 at infinity!), and $ (î^p)is

just the distribution — —7- , [n_2 previously found. On the
(n - 2)Sn \x\n

contrary, this method f ails for n - 1, 2, and, although being an
exceptionally simple case, it gives a good indication of the dif-
ficulty of the problem. Of course, if we take now for n = 4 the

wave operator D = £ , + £- f + ^- f - ^ then P( 0 -

- 47r2(^!2 + £2
2 + ^32 - ^42), and l /P vamshes on the light cône

P(£) = 0, and is surely not locally integrable; even more will
this be the case for the itérâtes •"*•

It happened that the research on fundamental solutions produced
two essential progresses in the theory of distributions, as well as in
the theory of partial differential operators. One is the solution of
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the problem of division (see page 37), and the other is the collection
of L2 inequalities, in the way of the comparison (34) between
polynomials.

Existence of Fundamental Solutions [11, 19, 25, 35, 43, 44]. It was
first proved by Malgrange and Ehrenpreis that every P(D) (except
0) has a fundamental solution. Although different proofs may be
given now, the best seems to use inequalities of the type (35a). If
we take |g| = m, degree of P, one of the derivatives P (a ) is a con-
stant. Therefore, for every a > 0, there exists a constant C such
that, for every <t> G D(Rn):

(41) ||*|| < C\\eMP(-D)4*

On the other hand, Fourier transform and Schwarz inequality prove
immediately that there exists a constant C' such that, for every
a G Rn and 0 G £>:

(42) k (a ) |<C' ( Y \\D*<t>\\*Y
\v\<N

where N = - + 1, - = integer part of - (this number N

cannot be improved). Taking a = 0, we get

(43) |*(0)| < CCf ( V \\fMD*P(-D)4*)H

\P\<N

But ^—-> ( y \\ea^Dp\f/\\2J is a continuous seminorm on

3). Therefore the linear form P( — D)<l>—-» 0(0), defined on the
linear subspace P(~D)£> of 3), is continuous; by the Hahn-Banach
theorem [3] it can be extended on the whole of £>, that is, as a dis-
tribution E. Thus E vérifies

(44) (E, P ( -D)« ) = *(0)

Applying formula 7, the left side is (P(D)E} <t>); therefore E is a
fundamental solution.

But one gets more: an estimate on E (according to the Hahn-
Banach theorem). Let us reason a little differently. Consider
the product of Hilbert spaces (L2)M, where M is the number of

* We use the polynomial P( — 0 instead of P(£) for reasons which will appear
later.
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multi-indices p of order |p| < N. An element of this space is a
system (^p)|p|<Ar. If <t> £ £>, it defines an element of this space,
namely (ea™Dp<j>)\v\<N. Then we have a linear form on the sub-
space of the corresponding éléments defined by the P( — D)<l>,
namely

(45) (eMD»P(-D)<t>)lp]<N > «(0)

and (43) proves that this linear form is continuous. Therefore it
can be extended on the whole of (L2)M (Hahn-Banach theorem for a
Hubert space!). Besides, we know that on a Hilbert space every
continuous linear form is definedjby the scalar product with an
element of the space. Therefore, there exists a system of functions
epoï L2, \p\ < N with:

(46) £
\P\<N

= (P(D)
\P\<N

which proves that P(D)E = 5, with

(47) E =
\P\<N

Properties of Fundamental Solutions. The result is very remark-
able from two points of view: (1) E is of exponential increase
at infinity; a is arbitrarily small (of course, the ep's change if
a changes), but cannot be taken equal to 0. This could suggest
there does not exist any tempered fundamental solution such
as we looked for (page 35). In f act, it was not proved that there
exist tempered fundamental solutions until recently when the prob-
lem of division was solved (see page 43). Thus the present method
does not give as muchas division; but the E we find here has
additional properties, see (2), and Hörmander proved that the
tempered solutions do not satisfy, in gênerai, these properties.
(2) E is the sum of derivatives of order < N of functions which are
locally L2. One can say, in the sense of L2, E is of order < N.
This L2 order is not the same as the order defined on page 27. Let
us make this more précise.

Call H\ for s > 0 integer, the space of functions which are L2,
as well as their derivatives (in the sense of distributions) of order
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< s. H8 is a Hubert space, for the scalar product

(48) (f\g)8= 2
\p\<s

A function of H8 is "s times differentiable, in the sensé of L2."
Now define H~8' as the dual of Hs' with the dual norm. It is still
a Hubert space. Moreover, the Hahn-Banach theorem, in the way
we applied it twice already, proves that a distribution T belongs to
H~8' if and only if it is the sum of derivatives of order < s' of L2

functions. Such a distribution is "of order < s', in the sensé
of L2." For the following, it will be useful to introducé also, for
any real s, the subspace î comp of Hs f ormed by the distributions with
compact support, and the space Hs

oc of distributions which, in
every open, relatively compact set of Rn, coincide with a distribu-
tion of H8. One must remark that, even for s > 0, a function of
Hfoc need not be continuous. One can only say, using the method of

inequality (42), that any function of H^c, N — - + 1, is con-

tinuous; and this cannot be improved. In the same way, ô is not of

order 0, as it is in the sensé of page 27; ô belongs to H~^py and not to
H
•*••*• c o m p •

Now the expression (47) proves that, in Rn, every differential
operator with constant coefficients (except the 0 operator) has at
least a fundamental solution belonging to H^. This is a remarka-
ble f act (already seen by Malgrange): this order — N does not
depend on the operator but only on the dimension n of the space!
When one observes the facts which were known before, it is not as
surprising as at first glance. AU the specialists already noted that
the équations which have the "worst'' fundamental solutions in
the sensé of local regularity are the équations of low order. For
instance, a fundamental solution of Ak is proportional to . \n_2k

log \x\
or eventually • inl2k- -̂ or fc large, n — 2k becomes < 0, and the

\x\
fundamental solution becomes continuous and more and more dif-
ferentiable for increasing k. Thus it is rather normal that we can
find a common bound N for the L2 order of E. The worst possible
case is just given by the operator of order 0 which is the identity:
P (0 = 1, P(D) = identity, E = ô E #7omP.
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One can also see, in another way, the improvement of the local
regularity of E when the order ra of P increases. Hörmander
proved that one can find a proper fundamental solution [19, 43, 44]
E having the following property: for every A G ^Offip, s real, the
convolution E * A (which is a solution of the équation where the
nonhomogeneous term has compact support, P(D)X = A, see
formula 38) belongs to H8

loc and, for any polynomial Q weaker than
P in the sense of (34), Q(D)(E * A) also belongs to H8

loc. Moreover,
such a proper fundamental solution may be built explicitly without
the Hahn-Banach theorem [44]. This gives important information
about local behavior of solutions of nonhomogeneous équations.
Taking A = ô G H~^p, we see in particular that not only E G
Hfr?, but also Q(D)E for every Q weaker than P belongs to H^.
For instance, for P elliptic (see page 34), one has DPE G
Hfo? for \p\ < ra, therefore E G H^+m which confirms the resuit
observed with the powers of A ; for P of principal type, DPE G H^
for |p| < ra — 1, therefore E G H~^f+m~l. For ra large, E is a con-
tinuous function and becomes more and more differentiable as m
increases. (Note that it is only true, in this simple way, for simple
types of équations, as elliptic or principal ones. Note also that not
all the fundamental solutions have these properties; except for the
hypoelliptic case.)

The previous results, of course, do not exhaust what is known or
what can be looked for about fundamental solutions. Let us point
out a recent resuit of Trêves [44] : it is possible to choose a funda-
mental solution E for all the P + 0 of degree < m, in such a way
that, as a distribution, it dépends C°° on the coefficients of P. This
resuit is surprising, especially in the neighborhood of 0 values of all
the coefficients of degree ra of P.

INHOMOGENEOUS EQUATIONS

Now consider an inhomogeneous équation

(49) P(D)X = A A G £>'

If A has a compact support, a solution was obtained in the previ-
ous section by convolution with a fundamental solution. It does
not give any indication at all for the case where A has an arbitrary
support. Many results had been given for many years in particular
cases: elliptic or hyperbolic équations, for instance. It seems
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that the first gênerai resuit, valid for ail partial differential équa-
tions with constant coefficients, was given by Malgrange [26]:
if A G 8(Rn) (infinitely differentiable function), there exists a
solution X G 8(Rn), for every P (not identically 0); in other words,
P(D)(8(Rn)) = 8(Rn). Of course, except for special cases such as P
elliptic, not all the solutions are in 8. Surprisingly enough, this
problem has, a priori, nothing to do with distributions because
everything involves only infinitely differentiable functions; how-
ever, the first solution given by Malgrange [27] uses a lot concerning
distributions. The space 8 is a Frechet space (topological vector
space, Hausdorff, locally convex, with a countable fundamental
System of neighborhoods of 0, and complete). A famous theorem of
Banach expresses that, in order that a continuous linear map (here
P(D)) of a Frechet space 8 into itself be onto, it is necessary and
sufficient that its transposed map (here P( — D)f operating from 8'
into 8') be one to one and have a weakly closed image [6, 7]. That
P{ — D) is one to one in S' is trivial by Fourier transform because
the Fourier image of a distribution of 8' is an analytic function,
therefore its product by P( — £) can be 0 only if it is already 0
itself. Now, why is P( — D)&' weakly closed in 8'? Here, still
one uses a theorem of Banach saying that a vector subspace of the
dual 8' of a Frechet space 8 is surely weakly closed if its intersection
with any bounded set of 8' is weakly closed in this bounded set
[7, 9]. But a bounded set of 8' is contained in an 8^', K compact
of Rn(&Kf is the set of distributions having their support in K) so
that finally it remains to be proved that P( — D)&' C\ 8^' is closed.
Imagine that distributions of this subset, therefore of the form
P(-D)Sj} Sj G 8', P(-D)Sj G &K', have a limit T in 8'. Lions's
theorem of supports says that the support of P( — D)Sj has a con-
vex huil which is exactly equal to the convex huil of the support of
Sj(P( — D)8 having as support the origin) (see page 28). There-
fore the support of Sj is contained in R, convex huil of K. Now
Sj must be equal to E * P( — D)Sj, E being a fundamental solution
of P( — D), for Sj has a compact support. Therefore, when
P( — D)Sj converges to T, with support in K, Sj converges to
E * Thy the continuity of convolution; E * T has its support in K as
limit of the S/s, and T = P(-D)(E * T) belongs to P(-D)8>' n
&K', which therefore is closed, Q.E.D. [11, 12, 26, 27, 46].

Improving this method, one can see that, for any A E #?oc (R
n)>

there exists a solution X G Hioc(R
n). Consequently, if A is a
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distribution of finite order, there exists a solution X of finite order.
It has been much more dimcult to prove that, if A is any distribu-
tion (locally, A is always of finite order but not in the whole of Rn),
there still exists a solution X; it was proved by Ehrenpreis [13].

These results are equivalent (by duality and an extension of
Mittag-Loeffier's method to build a meromorphic function with
given singularities in C) to some approximation theorem. It is
well known that any harmonie function ƒ (Af = 0) in a convex
open set 01 of Rn can be approximated, uniformly on every compact
subset of 01 [or also for the topology of 8(01)] by functions harmonie
in the whole space Rn. The same result is obtained for holomorphic
functions in a convex open set 01 of C (a holomorphic function is

simply a solution of the Cauchy-Riemann équation — ƒ = - ( h
dz 2 \dx

's)'- 0). Now, the previous results are exactly equivalent to

the following one (which, in the case of harmonie or holomorphic
functions, had nothing to do with the elliptic character of the cor-

responding operators A or ~z) : every T G H8
O0 Ĉ )» ^ open convex

dz
set of Rn, satisfying P(D)T = 0, is the limit, in H8

loc (01), of distribu-
tions of Hïoc(R

n), verifying the same équation in the whole of Rn.
Now these properties can be extended to an open set 12 of Rw, but

of course the result is no longer true for any 12. One can prove that,
for a given 12 and a given P, the following properties are equivalent
(all true or aU false) [11, 12, 25, 26, 27, 46]:
(1) For every A G 8(12), there exists X G 8(12) such that P(D)X =

A.
(2) For every A G H\JSl), there exists X G H8

loc(Ü) such that
P(D)X = A.

(3) P(-D)(8/(ï2)) is closed in S'(O).
(4) For every compact subset K of 12, there exists another compact

subset H of 12 such that S G £'(0), P(-D)S G 8*'(12), implies
S G 8ir'(O).

(5) For every relatively compact open subset V of 12, there exists a
relatively compact open subset U "D V of 12, such that every
ƒ G H8

loc(U), solution of P(D)f = 0, can be approximated, in
Hïoc(V) by functions of H8

oc(ti), solutions of the same homo-
geneous équation in the whole of 12.
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These equivalent properties are relative to the pair (P, 0).
If they are satisfied, one says that 0 is P convex. For instance,
they are verified for every P, if 0 is convex (in this case, the H of (4)
is the convex huil of K; the U of (5) is the convex huil of V). But if
P is elliptic, ü may be arbitrary (hère, an argument of analyticity
of the solutions of a homogeneous elliptic équation shows that the
H of the fourth question is the union of K and the relatively com-
pact connected components oi QKinÜ). Many conditions canbe
given for the P convexity of O using the relationships between the
frontier Ù and the characteristic lines of P.

The previous properties are not sufficient to insure that, for
A G £>'(u) (of infinité order), there will be a solution X in £>'(Q).
For this, Hörmander gave a necessary and sufficient condition [21,
47]: besides the previous properties, for any compact K of 0,
there must exist a compact H of 12, such that S G &'(&), P( — D)S G
8 (C K H ti) implies S G S (C H H Q).

If this condition is satisfied, Q is said to be strongly P convex.
Let us also point out some properties in relation with the theory

of mean-periodic distributions. Let us call exponential poly-
nomial on Rn a function of the form x ——> e{a"x)Q(x), a G Rn, Q
polynomial. The first resuit in the theory of ordinary homogeneous
differential équations with constant coefficients (dimension n — 1)
is that the exponential polynomials, solutions of the équation,
generate all the solutions. This is true for more gênerai équations
in dimension 1, namely the homogeneous convolution équations
C * X = 0, C G £'(R) (a differential équation with constant
coefficients P(D)X = 0 is a convolution équation with P(D)Ô =
C), or even the Systems of convolution équations, in the sensé that
every solution of the System is a limit of sums of exponential poly-
nomials which are solutions [22, 35]. This is true for every dimen-
sion n, for one convolution équation, as was proven by Malgrange
[28]; we shall see later that it is still true for Systems of partial
differential équations with constant coefficients (see page 53); it is
still unknown for Systems of convolution équations.

On the other hand, the necessary and sufficient condition for the
équation P(D)X = A to have a solution X in S'(Rn), for A G S',
is that the Fourier transform Â (which is an entire function on
Cn, see Paley-Wiener theorem, page 32) be divisible by P in the
ring of entire functions on Cn[26].
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DIVISION OF DISTRIBUTIONS

Position of the Problem [39]. Let A be a distribution on an open
set ft of Rn, and a a function of 8(fi). Does there exist a distribu-
tion X such that

(50) a l = 4 on ft?

If it exists, one can say that X is a quotient of A by a; for this
reason, this problem is called problem of division of distributions.

The problem is trivial if a never vanishes; thus one has one and
only one solution

(51) X = -
a

Thus it becomes interesting and difficult if a, without being
identically zero, has a null set. One sees trivially that the problem
is purely local: if ft is a union of open subsets ft;, if in each ft; we
know a distribution Xi such that aXi = ftz-, then it will be sumciei^t
to use a partition of unity & (see page 25) relative to the ft;'s

and X = } PiX% will be a solution of (50) in ft.
i

The best way to see the main features of the problem is to treat
completely division by a = # on R ; a has a simple zero at the origin.

In this case, a solution X of (50) has to verify

(52) (X, xf) = (A, \p) for every ^G3)

Thus we know (X, x) for every x of the form x\p, yf/ G 33 by

(53) {X, x) = (A, ^)

But a function x of 3) is divisible by x in T> if and only if x(0) = 0.
Let us choose, once and for all, a function S G SD such that 6(0) = 1.
Now every <f> G 3) has a unique décomposition

(54; * = X H x , x G 3 ) , x(0) = 0

namely with X = <£(0), $ = <t> —
Therefore, (50) is now equivalent to

/ fk _ ó(0)e\

(55) <x, «) = *(0)<x, e) + (A, J w ƒ
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Conversely, it is easily seen that, for an arbitrary choice of (X, 0),
this formula defines X as a distribution (continuous linear form on
3D). Therefore the problem always has solutions. Moreover, one
can choose (X, 0) arbitrarily, for one function 0 £ £> such that
0(0) j£ 0. The différence between two solutions is therefore of the
form <£ —-> (70(0) ; it is C8, proportional to ô. In other words,
all the solutions of the homogeneous équation xX = 0, are the
Côy8. Thus, f or a = x on R, the problem is completely solved. For
a = xkj it is easy to have a solution by k successive divisions by x;
and the solutions of the homogeneous équation xkX = 0 are of the
form Cod + Cib' + • • • + Ckb

{k). The resuit is the same if a is a
function of S, ha ving the origin as the only zero with multiplicity of

xk

order k: for — never vanishes, and (50) is equivalent to
a

xk

(56) xkX = — A
a

If a has an isolated 0 at a point a of R, of order k, one has an
analogous resuit, d being replaced by 5(o). And finally, using the
local character of division, one sees that the division by a is always
possible on R, provided a has only isolated zéros of finite order;
moreover, the degree of indeterminacy is completely known.
On the contrary, if a has nonisolated zéros or a zero of infinité order,
the division by a ceases being possible for every righthand side A.

The problem on Rn, n > 2, is considerably more difficult. If
the null set {x; a(x) = 0} is a C^-manifold of dimension n — 1,
on each point of which a has at least a nonzero derivative, then the
problem can be solved as easily as for n = 1; for it is purely local
and, locally, a manifold can be written xn = 0 by changing the
coordinates, and a can be replaced by xn

k as in (56). But, even if
a is an analytic function, the set of zéros which is an analytic
variety may be highly singular, and new methods become necessary.

Lojasiewicz Inequality. The problem was solved for a polynomial
on Rn by Hörmander [20, 48] and Lojasiewicz [24, 30] quite recently,
and even for a analytic by Lojasiewicz. Hörmander's method is
simpler; but it does not seem to go as far as Lojasiewicz's. There-
fore we shall briefly expose the latter's method.

Let 12 be an open subset of Rn. A distribution T on Q is continua-
ble if it is the restriction to Q of a distribution on Rn. For that,
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there is a necessary and sufficient condition: for every point a of Û,
there must exist an open neighborhood 'üo of a, a constant C, and an
integer m such that, for every 4> G £>(Va H Q) :

(57) |<r, 0)| < C sup |D**|
| |<

Now, call Ojif (0) the subset of 8(0) formed by the functions which
are slowly increasing at the border of Œ, as well as each of their
derivatives (slowly increasing means: bounded by some power of the
inverse of the distance to Ô). Then one sees that, if T is a continua-
ble distribution on 0, and if a G GM(®)} then aT is still continuable.
The first step of Lojasiewicz's proof is Lojasiewicz's inequality: if a
is an analytic function on Rn, if 7 is its variety of zéros, then, for
every point a of F, there exist constants p, C, such that

(58) \a(x)\ > C(d(x, V)Y

for x close enough to a. The proof of this inequality is of con-

sidérable difficulty; it in volves a double induction, and all the struc-

ture of analytic varieties. It is equivalent to say that -, as defined
a

on C V, belongs to 0M (C V).
Let us now introducé a new notion. Two closed sets A, B of Rn

are said to be "regularly separated" if, for every a G A C\ B, there
exist constants C, p, such that
(59) d(x, A) + d(x} B) > C{d{x, A C\ B))'

for x close enough to a. (For instance if A and B are two C°° curves
in R2, tangent at the origin as isolated common point, (59) is veri-
fied at the origin if and only if the curves have only a contact of
finite order). Then one can prove that A and B are regularly
separated if and only if there exists a function on Ç(A Hi B)
belonging to QM (C (^ H B)) equal to 0 in a neighborhood of A
and to 1 in a neighborhood oî B in Q (A C\ B). Lojasiewicz's
inequality (58) proves thus that two analytic varieties of Rn are
always regularly separated (as indicated by intuition, one never has
contacts of infinité order with analytic functions!).

Now let T be a distribution carried by the union A \J B. Is it
always expressible as a sum of two distributions, respectively car-
ried by A and B ? A priori, one should hope so. But an easy coun-
ter example can be given. And precisely the necessary and sufficient
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condition for this to be possible for ail T is that A and B be regularly
separated, so that it is always possible for T carried by A KJ B if
A and B are two analytic varieties. Moreover, if one studies the
local structure of an irreducible (real) analytic variety by the
"canonical représentation," one sees that the different branches (or
sheets) of this variety are mutually regularly separated, so that the
same conclusion holds for them.

Solution of the Problem. Lojasiewicz's proof of division is based on
an induction on the dimension of analytic varieties of Rn. We
cannot give the details of it, but we shall try to sketch it. a and A
being given, A £ 33'(Rw), a analytic (not identically zero), let
F be the variety of zéros of a. Then the division is easy in Q F,

and unique by putting X = - A. But A being defined on Rn is a
a

continuable distribution on Q F, and we saw that - belongs to
a

QM (C y)> Therefore - A is continuable; let X be an arbitrary
a

continuation. We have aX — A on F; if we put B = A — aX,
B is & distribution carried by F. If we find a distribution Y such
that aY = B, then X = X + Y is a solution of aX = aX + B =
A. We are, by this first step, led back to solve a division problem
aY = Bj where B is carried by F, analytic variety of dimension
< n — 1. At first glance, it may seem that it is a very illusory
first step because, a being zero on F, the division by a of a distribu-
tion carried by F will be very difficult. That is not the case.
Remember the case of division by x on R. We completely solved
the problem in gênerai; but, if B is a distribution carried by the
origin, the solution was immédiate because B can be written as a
finite sum:

(60) B =
p

and the solution of division by x is explicitly given by

(61) Y = - > cp — — + cô
L4 Pp + 1

V

c arbitrary.
And again this procedure is valid in Rn for a regular manifold.
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Put F = Vo U Fi', Fo being the regular part of F (nonclosed
analytic variety), Vi the set of singular points of F, closed analytic
variety of dimension < n - 2. Then the division is possible on
C Vi' by a generalization of (61) ; and F is obtained as a distribution

carried by Fo, by multiplying B by functions involving —-> where

Dra is a derivative of a of sufficiently high order to be nonidentically
zero on Fo. Let Vi be the union of F / and the set of zéros of
Dra on Fo. Vi is an analytic set of dimension < n — 2. And,

by this multiplication by —— on the regular part Fo, the solution'of

CLY = B is found in C^i- But because of Lojasiewicz's inequality
1

(58) applied to Dra, —- belongs to OM ( C ^ I ) *
 a n d the F we find is

continuable. Let F be an arbitrary continuation. Thus «F = B
on C^i- If w e Pu^ C = B — a¥, C is carried by Fi; if we solve the
problem aZ = (7, then Y = f + Z will be a solution of aY =
a f + C = 5, and X = X + F + Z a solution of a l = A. Then
we are led back to the solution of a problem of division aZ = (7,
where C is carried by Fi, analytic variety of dimension <n — 2.
And the induction proceeds, by separating the regular and singular
parts of Fi, so that, finally, we have to solve the problem for a
distribution carried by only one point, and still by the same pro-
cedure, the problem is solved.

The problem of division aX = A always has a solution, for every
A and every analytic nonidentically zero a. This method is not only
a solution of the problem of division; it gives a lot of new properties
of analytic functions and analytic varieties, and Lojasiewicz is
proceeding to enrich this part of mathematics. On the other hand,
this method gives some information about the indeterminacy of
the problem; but not in an easy and practical way.

Malgrange [30] obtained a considérable generalization of these
results, using a refinement of Lojasiewiez's method. Consider a
(p, 1) matrix distribution

A =

APJ
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and a (p, q) matrix a = (a*,y), analytic. Is it possible to find a
g, 1) matrix distribution

•y- _ .

Xi

x2

such that

(62) aX = A, or £ <*i,jXj = Ait i = 1, 2, . . . , p

Certainly, some trivial conditions of possibility are necessary.
Indeed, there are analytic relations between the rows of a. Such an
analytic relation is, by définition, a System of analytic functions

v
0i, 02, . . . , fiP, such that \ fii<xij = 0 for j = 1, 2, . . . , q;

t=i

or 0a = 0 if we call 0 the (1, p) matrix (0i, 02, . . . , 0P). And, if
there exists a solution X of (62) we must have

(63) j3A = PaX = 0, or £ &A* = 0

The relations /3 between the rows of a form a submodule (R of the
module &p, Ct = Ct(Rn) being the ring of analytic functions; a
necessary condition for (62) to have a solution is that fi A = 0 for
every fi of (R. Malgrange proved that this condition is also suf-
ficient. The proof, of course, uses Oka's theorem about the rela-
tions between analytic functions and, although based on the same
principle as division by scalar analytic functions, is much more
difficult.

Of course, everything we said bef ore is valid on any real analytic
manifold V of dimension n instead of Rn; a distribution on V is
understood as a continuous linear form on 3)(V); if A is a matrix
distribution on F, a an analytic matrix on F, the necessary and
sufficient condition for the existence of a matrix distribution X on F,
such that aX = A, is that fi A = 0 for every analytic matrix fi such
that fia = 0. This generalization of the Rn results to V is trivial,
the problem of division being purely local (page 43) and V being
locally isomorphic to an open set of Rn. (One could see a difficulty
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in the fact that analytic functions on F, namely the 0's, are not
purely local objects! One avoids it, either by localizing the con-
ditions "fia = 0 => pA = 0" in the previous statement on Rn, or
by using Remmert's theorem, according to which any real-analytic
manifold F, being immersible in a Euclidean space, is a Stein
manifold).

The problem of division of distributions is interesting in itself.
But it arose as a way of solving partial differential équations with
constant coefficients, and its main applications are still there.

Let P be a polynomial of degree m on Rn. If A is a tempered
distribution, does there exist a tempered distribution X such that

(64) P(D)X = A?

As we saw on page 35, we may try to make a Fourier transform.
If we call X, Â the Fourier transforms of X and A, we get the
equivalent problem:

(65) P(S)Ê = A [30, 41, 48]

which is now a problem of division. For Â given in §', we know, by
fche previous results, that there exists I G 3 ) ' satisfying (65).
But, of course, we need X G S'. We have to improve the results
about division to be sure that, if P is a polynomial, and Â tempered,
the division of Â by P is possible in such a way that we get Ê
bempered.

For that, we need the followingproperty of tempered distributions.
Let Rn be the compactification of Rn by adding a point <» at infinity ;
Rn will be identified, as a real analytic manifold, to a n-dimensional
sphère. Rn can be covered by two open sets, each analytically
isomorphic to Rn; one is O0 = Rn = G F ° ° > t n e second one is

Ûoo = CR^°> isomorphic to Rn by inversion ^ ——>• ftp' m o r e o v e r >

this inversion is an analytic automorphism of Rn ̂ exchanging 0 and
°o ). Now one can prove [41] that a distribution Â onjln is tempered
if and only if it is continuable to a distribution Â on R^ (Moreover,
the set Ojif(Rn) relative to the open subset Rn of Rn, in the sensé
of page 45, is exactly the space 0Af(Rn) defined for Fourier trans-
form on page 31). But there is still a difficulty; we cannot solve
PX = 1 on RB because a polynomial P is not an analytic function
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on Rn! But we may consider the équation

P(t) 3 1 ?

pn)
m being the degree of P; for the function £ —> — j — ^ — > extended

by the value 0 at the point °o; is analytic on Rn. IfX isa
solution of (65) on Rn, its restriction X on Rn is a solution of (65).
Finally, every inhomogeneous partial differential équation with constant
coefficients and a tempered inhomogeneous term has a tempered
solution.

Division of distributions is the only known way to prove this
theorem. By taking A = ô, we get a tempered fundamental
solution. But, as we saw on page 35, such a tempered fundamental
solution, having the best possible properties as to the behavior at
infinity, has not the best local behavior, it need not be a proper
fundamental solution, in the sensé of page 39.

If now P(D) is a (p, g)-matricial partial differential operator with
constant coefficients, and A is a (p, 1) matrix distribution which is
tempered, then the necessary and sufficient condition for the System

(66) P(D)X = A, or | Pij{D)Xj = A, i = 1, 2, . . . , p

to have a tempered (q, 1)-matrix solution X, is that

(67) Q(D)A = 0, for every (1, p)-matricial polynomial
Q such that QP = 0

The method uses the resuit of page 48. In particular, if there
exists an X £ (2D'(Rn))« verifying (66), this condition is surely
satisfied. Therefore: if, for A tempered, (66) has a solution in
(£>'(Rn))5, it also has a tempered solution. This resuit proves that
the image P(Z>)((§'(Rn))«) is closed in (§>'(Rn))p; the map P(D) is
a homomorphism of (§>'(Rn))q into (§'(RW))P, in the sensé of the
theory of topological vector spaces [6, 8] (a homomorphism onto or
epimorphism if p = q = 1); besides, by transposition, replacing D
by — D and the matrix P by lP7 we see that, according to a well-
known theorem of Banach, P(D) is also a homomorphism of
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(S(Rn))« into (§(Rn))p (a monomorphism or one-to-one homo-
morphism if p = q = 1), and P(£)((S(Rn))g) is closed in (§(Rn))p.

We see how division gives a new method for the approach to the
inhomogeneous Systems, and will in fact enable us to extend some of
the results of pages 39-42. However, it will not be possible to use
in this way any L2 inequality, nor any fundamental solution, because
they do not exist or are not known for Systems. In the following,
JC will be one of the spaces £>(Q), 8(12), £>'(&), ü convex open set of
Rn, or §(Rn), §'(Rn). P will be a (p, ç)-matricial polynomial, so
that P(D) opérâtes from 5Cg into 3CP. It would be nice to extend
the following results also to X = £>'(Œ), 0M(Rn), Oc'(Rn), but it
has not yet been done (the last results of Malgrange [40] are from
June 1962!). (As to all the results relative to § and §', division and
Fourier transform are in the nature of the problem. On the con-
trary, for S(Œ), £>(Œ), S'(Œ), all the corresponding results have been
proved by Malgrange and Ehrenpreis, before any theorem about
division was found, in the case of one équation (p = q = 1); why
should the division be more indispensable for the Systems? On
the other hand, Ehrenpreis announced the results on Systems and
the fundamental principle (see page 53) several years ago, also
before the solution of the problem of division; the proofs have not
yet been published, therefore I give here Malgrange's statements
using division and recently published with complete proofs)
[10, 14, 15, 16, 32, 33, 34].

1. P(D)3Q,q is closed in Xp; except perhaps for 5C = £>(&), P(D)
is a homomophism of 3Cq into 3CP. This had been seen on page 39
for one équation (p = q = 1), but not for X = § ,§ ' ; for 3C = §,
S', we just saw it, even for Systems, in the previous pages.

2. For X = 8(Œ), or S'(Rn)>tne necessary and sufficient condition
for (66) to have a solution in 3Cq for A given in 3CP, is the condition
(67) already given for 5C = §'. In particular, for A in 3C, if (66)
has a solution in £>', it has a solution in 5C, too. This result is
probabily valid for 5C = 0M(Rn), 1°°-

3. For X = §(Rn), (67) is, of course, still necessary, but no longer
sufficient. It insures, for A given in §p, the existence of a solution
X of (66) in $'q ; but X need not belong to §>q. A trivial example will
clarify the situation. Take n = p = q = 1, P(0 = S, P(D) =

— —• Here (67) is satisfied because we have only one équation:
2iV dx
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Q is always 0. In fact, for every A of §, we can find a function

such that — — = A} namely X(x) = constant + 2iw I ^ A(t) dt.

But for x converging to + °° or — <x> ; X(x) does not converge
in both cases to 0 and therefore does not belong to §, except

ƒ +00
A(t) dt = 0. If this particular condition is satisfied, then

X(x) = 2ùr J*^ A(t) dt = - 2wr j * * A(t) dt lies in §, and (66)
has a solution (and hère only one) in §. Instead of (67), which is
always a condition of local and differential charaeter, we have here a
condition of global and intégral charaeter; it cornes from the fact
that $Fg = g is a space of differentiable functions, and we shall see
that the condition of solvability of (66) for JC = § involves local
and differential conditions for the Fourier transform Â of A which
gives global and intégral conditions for A itself.

By Fourier transform (66) becomes

(68) P(Ö*(Ö - 1 ( 0

We have seen in (1), page 51, that P$q is closed in $p. But gp

is a module over § for multiplication, and P(D)$9 is trivially a
submodule 9fïï. And there is precisely a theorem by Whitney
[49] about the closed § submodules of gp (or closed 3) submodules
of £>p, or closed 8 submodulus of Sp). Let a be a point of Rn.
Every function ÖGSP has a formai Taylor expansion at the point a
which is:

(69) ^2^> ( s _ a ) .

Let us call Sa the ring of formai power series at the point a;
Sa

p is an Sa module. Then Ba is the image of 6 G Sp into Sa
p. If

9TI is a submodule, it has an image 3ïïo in Sa
p. This theorem of

Whitney says that, if 9fTl is a closed submodule in £)p, §p, or 8P, then
the trivial necessary condition: "Va G Rn, 0a G îiïla" for 6 to belong
to 9fll, is also sufficient. Hence, the trivial necessary condition

(70) Va G Rn, there exists a formai power series ua G Sa
q such

that Paua = -^a,

for the existence of a solution X G S5 of (68) or for the existence of a
solution X G $Q of (66), is also sufficient.
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In the example on page 51, p = q = n = 1 P(D) = —: >
2ÏTC dx2ÏTC

[68) is £X(£) = Â(Ç). At every point a =f= 0, 3ïla is equal to
>ecause £ = a + (£ — a) is invertible in Sa, and the condition
Aa G 2TCa is always satisfied. For a = 0, 9fïl0 is the idéal of multi-
ples of £ in So; Âo belongs to 9iïl0 if, and only if, Â(0) = 0, which
neans exactly | A(£) <tt = 0 by the Fourier reciprocity formula.

Although the analogous result is not known for 3C = 0c', it is very
ikely the same because ^(OcO = ©M is also a space of C°° fonctions.

4. Take now 3C = SD(Q), 8'(12). Here the Fourier transform
1 = $A is not only a function of §p, but also a holomorphic function
;)f exponential type on Cn (Paley-Wiener theorem, see page 32).
Fherefóre, there is a new trivial necessary condition, stronger than
[70), for (66) to have a solution in 5C5 for A given in 3CP, namely
[see page 42) :

(71) For every a G Cn, there exists a formai power series ua G Sa*
such that PaUa = -^a.

The condition being the same for £> and 8', we see that if, for
A G £>(û), (66) has a solution in 8'(fi), it has also a solution in £>(S2).

5. Every solution of the homogeneous System of P(D)X == 0
in 8(Q) is a limit, in 8(0), of solutions of the same System in 8(Rn).
And these are themselves limits of combinations of the exponential
polynomials which are solutions (see page 42).

6. It seems that a very important property in all these problems
is the "intégral représentation" or "fondamental principle" of
Ehrenpreis [10, 15, 16, 33]. Let r b e a convex compact set of Rn.
If 0 G £)(r), its Fourier image $ can be extended as an analytic
function on Cn (Paley-Wiener^theorem), and one sees easily that
it has the following property of decreasing at infinity: if

(72) J

then (f (v))-l4(!î + in) belongs to §*,„ = S(R* X Rn) = S(Cn).
Let us call §*,/ or simply § r the space of functions S (not necessarily
holomorphic) on Rn X Rn, such that f-"1^ G §ty- thus 4 G § r if
0 g ^ ( r ) . Conversely, if B is a holomorphic function of § r , one
sees [23] that its restriction to Rn is the Fourier image 4 of a function
<t> of £>(r). Finally, ^(©(r)) can be identified with the subspace of
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holomorphic functions of g*,/. There is on $itV
r a natural topology,

the weakest one for which 6 ~~—> f ~x 6 is continuous from S^n
T into

$£,,. And this topology induces on the subspace of holomorphic
functions just the topology transferred by ^ from that of £>(r).

Now let us take a distribution T on Rn. It defines a continuous
linear form on 3)(F), therefore on the subspace of holomorphic func-
tions of §{,,r. By the Hahn-Banach theorem, this last one can be
extended as a continuous linear form on §£,/, or an element of its
dual (#£,/)'. This dual is the space of distributions on Rn X Rn

whose product by f (77) lies in g$t/. Therefore we assign to T and F
a distribution on Rn X Rn; call Tv the symmetrie of this distribution
with respect to the origin (this has to be done because ^ does not
preserve the scalar product, but one has (Ûçf $( — 0) — (U} <£)).

Finally, Tv is defined as a distribution on Rn X Rn, belonging to
(St,/)', such that, for every <f> G SD(r):

(73) <T*9*)

One could consider TT as a kind of Fourier transform of T. In
fact, if T7 is tempered, one can take for fr the distribution
because

(74)

But one must remark that:
(a) fv belongs to SD'(Rn X Rn), not to £>'(Rn).
(b) TT is not unique because it is obtained by the Hahn-Banach

theorem; and it dépends on F. In fact, for every T and F, we
get a family of possible distributions f r, and the family of these
distributions becomes smaller if F becomes larger, T remaining
fixed.

Take now X G (2)'(Rn))5, solution of the homogeneous System
P(D)X = 0. For every F, the linear form X r , restricted to the
subspace of holomorphic functions of (§>ztrtr)q, surely vérifies
P(£ + iy)Xr = 0. The remarkable fact, called fundamental
principle, is that X r , as defined by the Hahn-Banach theorem as a
distribution on Rn X Rn, may be chosen in such a way that P(£ +
irj)Xr still is zero. In particular, in case of one équation, p = q = 1,
TT is carried by the complex manifold {f ; P(f) = 0}, which extends
the results of dimension 1 about mean-periodic distributions [35].

To end this article, let us give a very nice theorem. We shall
say that the (p, ç)-matricial polynomial P has the continuation
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property if every (q, 1) distribution X, defined on the complement
of a compact set of Rn, and solution of the homogeneous system
P(D)X = 0, admits a "continuation" X (equal to X in the com-
plement of a compact set of Rn; we do not intend necessarily the
same compact set), defined in the whole of Rn and solution of the
homogeneous system P(D)X = 0 in the whole of Rn. Then the
necessary and sufficient condition for P to have the continuation
property is the following: if a (p, 1) polynomial R vérifies QR = 0
for all the (1, p) polynomials Q such that QP = 0, then there exists
a (q, 1) polynomial R' such that R = PR' [10, 33]. This property
of P can be checked directly in the ring of polynomials. It is never
verified in case of one nontrivial équation (p = q = 1); for in this
case all the Q's are 0, then R is arbitrary, and an arbitrary poly-
nomial is not a multiple of P; and, indeed, a fundamental solution of
P(D) is a solution of the homogeneous équation in Q 0, and cannot
be extended as a solution of the homogeneous équation in the whole
of Rn. On the contrary, if Pi, P2 are two scalar polynomials

without common factor, then the matrix f p
l 1 has the previouö

property; for one has Q\P\ + Q2P2 = 0 if and only if (Qh Q2) is
multiple (by a polynomial) of (P2, —Pi), then one has Q1R1 +

Q2R2 = 0 for all (Qi, Q2) if and only if (^M is multiple of (p
l\

Thus every scalar distribution X, solution of Pi(D)X = 0,
P2(D)X = 0, in the complement of a compact set of Rn, is con-
tinuable as a solution of the same system in the whole of Rn.

Take now, on Cn, the matrix (Yi). Among the relations Qif 1 +

.r-J
+ • • • + QnÇn = O, we have that for which (for i =t= j)

Qi = fy, Qj = —f.-, Qifc = 0 for fc 4= i or j . They generate all the
relations (over the ring of polynomials), but this is not important
here. Now an (Ri) must be such that Rgj — #;f» = 0, for all

pairs t, j ; which impïies the existence of a scalar polynomial R' such
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that Ri = f»22'. This resuit is only valid for n > 2 (for n = 1,
Q = 0, and 22 is arbitrary, therefore not necessarily multiple of

f i). The f / s correspond to the differential operators -—=» and the

System - = = 0, j = 1, 2, . » . , n, is verified if and only if X is a

holomorphic function (Cauchy-Riemann équations). Thus we get,
as a particular case of this gênerai theory of partial differential
Systems with constant coefficients, the well-known theorem of
Hartog: a holomorphic function of n > 2 complex variables, defined
in the complement of a compact subset of Cn, is continuable to
the whole space.
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