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DENSITY OF PROBABILITY OF
PRESENCE OF ELEMENTARY

PARTICLES

LAURENT SCHWARTZ
UNIVERSITY OF PARIS

1. Introduction : nonrelativistic case

In the initial, nonrelativistic theory of quantum mechanics it is assumed that
the only information we have about the state of a partiële, at a given time, is
its wave function ^, a complex function on Rz or a complex function of three
coordinates x, y, z. This function is assumed to be square integrable, ^ £ L2,
and moreover one assumes

(1-1) Jff\*{x,y,z)\idxdydz = l.

Consider an observable physical quantity, taking its values in a set X. For
example, the position of the particle is a quantity with values in X = Z23 and
so is the velocity. The energy has values in X = R, and so on. In classical
mechanics, a measurement of such a quantity is supposed to be obtainable with
arbitrary accuracy, and, for a given state, the quantity has a definite value x in X.
In quantum mechanics, this unlimited précision disappears. If we make a meas-
urement of the quantity, for a particle ha ving the wave function ^, we have
only a probability law P*, de pending on >£, that is, a positive measure on X,
of total mass 1. Thus, if A is a subset of X, assumed to be measurable (P*),
the probability that the measurement will give a resuit in A C X is P*(A). It
is usually assumed that this probability law P* on X must be given by a spectral
décomposition of the Hubert space L2, with respect to X. Such a spectral décom-
position is defined as follows. It is a map P:A —>P(A) = Li, where A runs
over a Borel field of subsets of X, and L\ is a closed subspace of L2, with the
following properties.

(a) L% = {0}, where <j> = empty set of X, 0 = origin of the vector space
L2; IA = L\

(b) If A and B are disjoint subsets of X, L\ and L% are orthogonal in L2.
(c) If A is the union of a finite or denumerable family of disjoint subsets An)

then LA is the closure of the subspace of L2 spanned by the L2
An.

Thus the probability law P* of the physical quantity under considération
must be given by
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(1.2) P*(A) = \\*A\\* = fff \*A(x, y, z)\2 dx dy dz,

where ¥A is the orthogonal projection of ^ G L2 on the subspace P(A) = LA

of L2. Axiom (a) ensures that P*(tf>) = 0, P*(X) = 1, and (b) and (c) ensure,
according to Pythagoras' theorem, that P* is a completely additive set function;
it is therefore, as desired, a probability law on X.

In this model the state of the particle is given by the wave function ^, the
observable physical quantity by the spectral décomposition P, and thus a
measurement of the quantity for the state of the particle is governed by the
probability law P* on X, given by (1.2). There is in L2(RZ) a trivial spectral de-
composition, that for which L\ is the subspace of those ^ which are zero outside
A. It is regarded as the spectral décomposition associated with the observable:
••position of the particle in JB3." Therefore, we have, in a measurement, the fol-
lowing probability for the particle to be found in the subset A of Rz

(1.3) P*(A) = fff |¥(x, y, z)\2 dx dy dz.
A.

For this reason, |^|2 is the density of probability of présence. If now we look for
the spectral décomposition corresponding to the first coordinate x of the particle,
taking its values in R, it must be that for which, when B (ZR, the probability
for a measurement of x to give a resuit in B is

(1.4) fff \*(x,y,z)\2dxdydz.

This spectral décomposition is also the spectral décomposition associated with
the self-adjoint operator on L2 "multiplication by x" Multiplication by x is also
said to be the operator associated with the measurement of x.

If now we consider the évolution in time of the given particle, we shall have,
at every instant t1 a wave function tytj and thus a function of time ha ving values
in L2. It will also be a function ^ of the four variables x, y, z, £, defining for every
t a function ^rt of the three variables x, y, z. The usual rules of quantum mechanics
say that ^ must satisfy some Schrödinger équation such as

(1.5) i A ^ = # , * , ,
al

where, for every t, the Ht is a self-adjoint operator on L2. This self-adjointness
ensures, according to known properties of Hubert spaces, that any solution of
(1.5) keeps the same norm in L2 for every t) if, for t = 0, it has the norm l,
which is required by (1.1), this equality remains valid for every t, and the solution
defines a valid wave function for every t, and finally a valid motion of the par-
ticle. The Hamiltonian H, or the function t —> Hh dépends on the mechanical
conditions under considération.
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2. Relativistic case

In special relativity no distinction is made between the three space variables
x, y, z and the time variable t. The universe is a space ÜJ4, a four-dimensional

affine space, having an associated vector space J£4. We note that 2?4 is not a vector

space, it has no origin, and there is no sum of any two points; E 4 is the space of

vectors of ÜJ4. If a and b are two points of 2?4, then b — a is a vector, belonging

to E4. On EA is given a quadratic form, with signature (3.1) measuring the "uni-
verse lengths." A physical coordinate System is an orthonormal basis of 2?4,

given by an origin of E* and four vectors of 2?4. If xi, x2, Xz, x4 = et are called
the corresponding coordinates of an event (an event is a point of 2£4), the observer
sees xi, X2, Xz as its space coordinates and t as its time. A sense of time and an

orientation of E4 are also given.
The complete motion of a partiële will be a wave function >F, a complex func-

tion on E*. For a physical coordinate system ^ becomes a function of four var-
iables Xi, £2, £3, t, and we are led back to the situation of section 1.

We shall consider that a given partiële in given mechanical conditions is
characterized by all its possible motions. We may assume that all these possible
motions will be all the éléments of norm 1 in a Hubert space 3C of functions on
Ei. For instance, in the nonrelativistic case, for a particle characterized by the
Hamiltonian Hy the Hubert space 3C was formed by all the functions ^ of four
variables x, y} z) t satisfying (1.5) and belonging to L%VfZ for every t. The norm
in 3C was given by

(2.1) 11*111; = fff |*(*, y, z, t)| ' dx dy dz,

the result being independent of t because of the self-adjointness of Ht. We can
certainly not have the same kind of results in the relativistic case, because it
is not Lorentz invariant.

It is an uninteresting restriction to force ^ to be a function; we shall only
assume ^ to be a distribution on E A, a wave distribution. Remember that a
distribution ^ is a continuous linear form on the space &(EA) of the infinitely
differentiable functions on E'4, with compact support. The value of ^ on <p £ £>
will be denoted by ¥($>) or <¥, p>. 3C will be a subspace of the space 3D'(JEJ4)
of the distributions on 2£4. 3C will also have a given structure as a Hilbert space,
and we shall assume that the norm in 3C is such that convergence in 3C implies
convergence in the sense of distributions. There are infinitely many choices of 3C,
each of which gives a possible particle in some well-defined physical situation,
and all the ^ G OC, with norm 1 in 3C, give all the possible motions of such a
particle in the situation considered. We are only interested in spaces 3C 5* {0}
since we have to deal with éléments of 3C of norm 1.
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3. Free scalar elementary particle

For a detailed proof of the formulas given here, such as (3.3) and (4.5), see
Schwartz [1].

If the particle is free (no external fields), it has to be Lorentz universal, or
Lorentz invariant, in the sensé that a Lorentz transformation on a possible
motion ^ must give a new possible motion.

Thus we shall assume that, for any element a of the Lorentz group and any
^ of JC, the transformed distribution aV also belongs to 3C, and has the same
norm in 3C, that is,
(3.1) IkM'Hoc = | | * l k .
Note that the transformed distribution aV is defined, for any function <p £ $>
which is infinitely differentiable with compact support, by

(3.2) <r*(<p) = ^((7-V) = *[*(**)].

Therefore, a is a unitary operator on the Hubert space 3C, and the Lorentz group
G has here a unitary représentation in OC. We shall define as a free elementary
particle a free particle (thus Lorentz invariant) for which 5C is minimal, in the
sensé that no Lorentz invariant Hubert space 3C' ^ {0} contained in 3C exists
except 3C' = 3C with a proportional norm. Therefore the unitary représentation
of the Lorentz group G is simply an irreducible unitary représentation.

What we call here the Lorentz group is the proper inhomogeneous Lorentz group,
that is, the group of all the affine operators of E A onto itself, preserving the given

quadratic form, on E*, the orientation, and the sensé of time. The word inhomo-
geneous simply means that we consider affine operators of E± (for example,
translations), and the word proper means that we restrict ourselves to operators
preserving orientation (determinant +1) and sensé of time.

The complete list of all these Hubert spaces 3C C £>'(EA), Lorentz invariant
and minimal, may be obtained by different techniques, all using Fourier trans-
forms. The result is the following. Of course, for every JC, one can also take the
same with a proportional norm, but we shall not distinguish them.

(a) There is one special X, one-dimensional, all the éléments of which are
constant functions ty. It may be interpreted as the vacuüm.

(b) There is a series of spaces 3Ci, depending on one real parameter. These
cannot be physically interpreted.

(c) There is a normal series, physically interprétable. It dépends on a param-
eter m0 ^ 0, which may be interpreted as the rest mass of the particle, and a
parameter ± , which may be interpreted as the electric charge.

In this way the only particles we have found are the 7r-mesons, with spin 0.
We find, in this way, every possible mass m0, including 0, which is not true in
nature ! One can generalize and find all the known elementary particles by looking
for finite-dimensional vector-valued elementary particles, for which ^ is finite-
dimensional vector-valued, that is, ^ has a finite number of scalar components.
We find here charged particles only, because we considered complex-valued
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wave distributions ^r. With real-valued distributions neutral particles are
obtained.

The Hubert space 3Cmj>,+ may be described in the following way. Consider

the distribution on E±

(3.3)

= p.v. mr
- X 2

F(X2)

In this rather complicated formula Ni is a Neumann function; K\ a Kelvin
function; J\ a Bessel function (one could use a shorter formula with Hankel
functions); A~ is the name of the distribution, one of the "singular functions,"
that is, distribution of quantum mechanics; p.v. means Cauehy' s principal value;

X2 means the value on the vector X G E* of the Lorentz quadratic form; Y
means the Heaviside function where F(r) = 1 for r ^ 0, and = 0 for r < 0; e is
defined as the function e(r) = sign of r = +1 for r è 0, and — 1 for r < 0, so

that if Xo is the fourth component of X in any coordinate System Xh X2) Xz, XQ
—>

then e(Xo), for éléments X of the interior or the surface of the light cone, is + 1

for X in the positive light cone, —1 for X in the négative light cone; d(X2) is

defined from the ô(u) of one variable u by the change of variables u = X2 (we
dénote hère distributions in the physical way, as functions) ; c is the velocity of
light; h is Planck's constant. The parameter is written cmo/h so that ra0 may be
interpreted as rest mass of the partiële. Then a distribution ^ on E A belongs to

if and only if the expression

(3.4)

is bounded when ip runs over 2) (i^). Here * means convolution. In this case the
upper bound is the norm of ^ in 3Cmo,+-

All the SF of SCfno, + are solutions of the Klein-Gordon équation

(3.5)

This équation is here not assumed; we find it as a conséquence of our hypothesis
that 5C is Lorentz invariant and minimal.



312 FOURTH BERKELEY SYMPOSIUM! SCHWARTZ

The Hubert space 30™*,- is obtained in the same way from A+, which is ob-
tained from A~ by changing i into — i.

4. Density of probability of présence

From now on we shall write 3C instead of 3C«.I±. Then every * of 3C is a priori
a distribution. Actually one can prove it is a function, that is, a locally integrable
function defined almost everywhere on E^

Consider a physical coordinate System. Thus ^ becomes a function of
(x, y, z, t), locally integrable, defined almost everywhere. Therefore, if we fix the
time t = fo, then ^ is not defined as a function of x, y, z, since a hyperplane t = U
is a set of measure zero in J574. But one can prove the following resuit: it is pos-
sible to choose ^ (initially defined only almost everywhere) so that it is a con-
tinuons function of t, with values in the space LJoc of the locally integrable
functions of (x, y, z). Because of the continuity in t, the function ¥ is then
determined not merely almost everywhere in 2£4 but, for every t, almost every-
where with respect to (x, y, z).

Finally, ^ defines for t = U, a well-defined Lebesgue class of functions ^ 0 , and
also a well-defined distribution ^ 0 on Rz. Moreover, it can be proved that a
knowledge of ^ 0 , the cross section of ^f over the hyperplane t — U, completely
détermines ^ (quantum-mechanical determinism). The System of the function
SF*,, is a subspace 5Cfo of £>' CR3), having a one-to-one correspondence ^ —» %0 with
5C. Carrying over the Hubert structure of 5C onto 3Cto, we define 3C*0 as a Hubert
space contained in &(RZ), which may be called the cross section of the Hubert
space X by t = t0. Now any physical observable quantity at the time £0, with
values in a set X, must be measured by a spectral décomposition of 3C&,, relative
to X. If A —» P(A) = (3Cfo)A is this spectral décomposition, the probability of
finding the value of a measurement of the quantity in A, when the wave function
is ^ E 3C, with H l̂l = 1, will be

(4.1) P*(A) = \\(%9)A\\\

where ( ^ A is the orthogonal projection of ^ to on (30*)A. Since | |^0 | | = | |^ | | ,
where the Hubert structure on 3Q„ is defined by carrying over that of 5C, we
have that P* is, as desired, a probability law on X. We are interested in the
measurement of the position of the particle at the time fo, whose physical quan-
tity, the position, has values in Rz. Hère the resuit is essentially different from
that of the nonrelativistic case. One cannot postulate that the manifold (3C*0)A

is formed by all the ^ equal to zero outside A, because, as is seen by studying
the scalar product in 5C«0, in this case (3C*O)A and (SC^B would not be orthogonal
subspaces in 3Cto- In other words, l^ l 2 cannot be the density of probability of
présence. In yet other words, the "position operator" in coordinate Xi for i =
1, 2, 3, cannot be multiplication by xiy as it is in the nonrelativistic case, because
such an operator is not self-adjoint in the Hubert space 3Ĉ . In the physical
literature a density of probability of présence for the meson is often considered
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which is not even positive! What should be the spectral décomposition relative
to Rz, corresponding to the measurement of position ât the time £o?

It is natural to ask whether there exists a one-to-one norm preserving, linear
transformation ^ —• ©, from 3C*0 onto L2(RZ), that is, covariant with the inhomo-
geneous proper orthogonal group F of Rz. That is, ^ 0 must be such that

(4.2) ^ 0 —> 0 implies T^ , —» T 0

whenever r belongs to F. Note that F is the group of affine operators of IS3,
preserving lengths and the orientation. Here inhomogeneous means that it con-
tains the translations, proper that it preserves the orientation.

In this case the trivial spectral décomposition of L2(RZ) will define a spectral
décomposition of 3C*0 and (5C<0)̂  will be the set of 3C*0 corresponding to the set of
L2 formed by all the 0 equal to zero outside A. Such a spectral décomposition
will be acceptable as a spectral décomposition for the measurement of the posi-
tion of the partiële at the time £o, and 1012 will be acceptable as a possible density
of probability of présence at the time t0, for the particle ha ving the wave function
ty or the instantaneous £o-wave function tyto>

In fact, such a map Sf% —» 0 can be found. It is given as follows. If A is a
Laplacian on Rz, by Fourier transform ^ there is classically defined an operator

Thus, one has

(4.4)

or

*to>

ri - T

(4.5)

where p is the distance from the origin.
Actually, it may be written as a convolution,

(4.6)

where K is a Kelvin function, decreasing, classically, exponentially at infinity.
As we observe, 0 is obtained from %0 by a convolution, which is a nonlocal
opération. Therefore, knowledge of ^ 0 in an open set Q of Rz does not allow us to
know 0 in fi; for this, a complete knowledge of ^ 0 is necessary.

There are infinitely many other isome tries of 5C/o onto L2(RZ) ha ving the same
property of covariance with the orthogonal group. Namely, one can take the
previous one followed by any unitary transformation of L2 onto itself, commuting
with the inhomogeneous proper orthogonal group of Rz. Such a unitary trans-



314 FOURTH BERKELEY SYMPOSIUM: SCHWARTZ

formation ©' —• ®" is given, using the Fourier transform $, by the formula
(A. 7^ C C / T S " (cc(T^f\pif(p)

where /(p) is an arbitrary measurable funetion of the distance p from the origin
of R*.

Therefore, all the possible opérations ^ —• © are of the form

(4.8) © = £ * ¥<,,

where

Since the coefficient of eif(j>) is real and nonnegative, while eif(j>) itself is never real
and nonnegative unless /(p) = 21CT, it can be seen that there is one and only one
transformation of the form (4.9), where «£ is a distribution of positive type,
having a positive measure as Fourier transform. But I do not see any physical
reason for £ to be of positive type.

I should rather think that in the correspondence between the physical particle
and the mathematical représentation, there remains some arbitrariness. One
example is the choice of £, and the simplest choice is given in (4.6). The same
can be done for vector-valued (spin) particles.

REMARK. Of course, the formulas and équations given hère are well known
in physics; only the point of view and the method of exposition are new (and,
eventually, the mathematical rigor!).

Our density of probability of présence was already introduced by Newton
and Wigner [2].
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